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Abstract

Many decision making problems that arise in Finance, Economics, Inventory etc. can be

formulated as Markov Decision Problems (MDPs) and solved using Dynamic Programming

techniques. Further, to mitigate the statistical errors in estimating the underlying transition

matrix or to exercise optimal control under adverserial setup led to the study of robust for-

mulations of the same problems in Ghaoui and Nilim [11] and Iyengar [8]. In this work, we

study the computational methodologies to develop and validate feasible control policies for the

Robust Dynamic Programming Problem. In terms of developing control policies, the current

work can be seen as generalizing the existing literature on Approximate Dynamic Program-

ming (ADP) to its robust counterpart. The work also generalizes the Information Relaxation

and Dual approach of Brown, Smith and Sun [4] to robust multi period problems. While

discussing this framework we approach it both from a discrete control perspective and also as

a set of conditional continous measures as in Ghaoui and Nilim [11] and Iyengar [8]. We show

numerical experiments on applications like ... In a nutshell, we expand the gamut of problems

that the dual approach can handle in terms of developing tight bounds on the value function.

1 Introduction

Many Dynamic Optimization problems under uncertainity can be modeled as Markov Decision

Process (MDP) and can be solved via Dyanmic Programming methodologies. Usually, in such

problems the state space transition probability matrix is known to the decision maker (usually

modeled time homogeneous) and the uncertainity is primarily the exact state that the underlying

Markov Process would transition to. Hence, decision maker optimizes the expected future reward

process w.r.t. to the knowledge of the transition probabilities.

Sometimes the exact characterization of the uncertainity is not possible (in this case the

transition probability matrix). This is possible due to the statistical errors in estimation of the

transitional probabilities from historical data or presence of an adversary who chooses the worst

case alternative at each instant for every control. These problems have been studied in the context

of Air traffic control by Nilim and Ghaoui [11], robust optimal stopping in Iyengar [8], repeated
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zero sum games in game theory []. The growing litreature, a few mentioned above characterize

settings or applications under which the underlying problem can be modeled as a robust version

of a dynamic programming problem.

more on exact DP and how the exact robust DP works

Elghouoi and garud talk about all the stuff they have done. Talk about other litreature.

In this current work, our main focus is not on modeling the given problem as a robust dynamic

programming problem. But rather, developing computational methodologies once the Bellman

recursion has been set up. Robust Dynamic Programming problem is a more general framework

than MDP’s but can still be solved by backward induction (with the additional inner problem

being solved at each step). Since, many practical problems that can be posit as a robust dp

problems are high dimensional in terms of the state space, efficient computations is a bottleneck,

which is referred to in the litreature as the ’curse of dimensionality’. Many methods that contend

this curse develop methodologies based on an approximation architecture (of basis functions) that

obtain near optimal policies or a fair approximation to value function. These methods proposed

by carroee, Benjamin van roy and others [] and Longstaff schwartz procedure in american options.

later many other such ADP methods continoulsy studied by moallemi, weintraub, bertsekas a lot.

The success of all these methods in practice, see bertsekas survey These methods generally obtain

a lower bound on the value function as they work with sub optimal policies.

To validate these approximations, the dual bounds which generate upper bounds on the value

to go function was initially developed by haugh and kogan, rogers in the context of pricing

complex american options. Though, primarily motivated by applications in pricing complex high

dimensional derivatives, these dual methods gained prominence in inventory others. swing options

paper (Cite) The main ideas in the deriving the dual bounds stem from karatzas and davis. Brown

smith sun generalize the ideas of martin haugh to general dynamic programming problems and

they give a universal representation of dual bounds and ideal penalty functions for general MDP’s.

Also, followe the gradient penalties for the same. Their approach gives a systematic approach to

deriving penalty martingales and dual bounds for any MDP problem.

We generalize their work to robust dynamic programming problems. Unlike MDP’s, a feasible

policy to a robust DP may not be a strict lower bound to the original problem. We highlight

this fact more in section []. Hence, to validate a feasible policy, we need to construct tight lower

and upper bounds (unlike earlier, where dual bounds were needed for upper bound only, as any

feasible policy is a lower bound). We construct two dual problems (dual upper and dual lower)

for every robust dynamic programming problem. Denoting the given problem as the primal, we

derive penalties and conditions similar to that of brown smith and sun [] where these 3 problems

are equivalent in the sense of optimal value functions (Strong duality). Also, We construct ideal

penalties for both these problems and outline a general methodology validating any given feasible

policy.

How does the dual problem work? like penalizing anticipating constraints.
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Though, the main goal of our work was a validation technique for the primal problem, the lack

of efficient computational methodologies to solve the problem motivated to develop heuristic poli-

cies. Garud [] outline value iteration and policy iteration techniques for robust and highlight the

study of approximate robust dp techniques. This current work extends the theory of approximate

DP to approximate robust DP. The idea of fictious plays are used to construct good heuristic

policies to start with. As of now, we hope most of the theory of approximate dp would extend to

this setup. Further analysis are on the way.

next on conditional continous measures.

Though this is a theoretically motivated paper, practical applications of these uncertaintites

are highlighted in the context of .few papers here........ This paper highlights the applications in

this and that as important and numerical simulations are used to establish the validity of bounds

as a useful technique.

The paper is organized in the following way: In section 2, we discuss games with discrete

controls and the dual approach in modeling the same problem. Section 3, we discuss games

with adversarial measures. In section 4, we discuss heuristic policies for the Robust Dynamic

Programming problem, Finally, we conclude the paper with some numerical experiments for

relevant applications.

2 Model - 1 (Games with discrete controls)

2.1 General Framework

Consider a general finite-horizon discrete-time multi-player (Decision Maker (DM) and the Ad-

versary) control problem with a probability space (Ω,F (DM),P) for the DM and (Ω,F (A),P) for

the adversary. Time is indexed by the set T : = {0, 1, ...T} and the evolution of DM’s information

is described by the filtration F (DM) = {F (DM)
0 , ...,F (DM)

T } with F (DM) = F (DM)
T . We make the

usual assumption that F (DM)
0 = {0,Ω} so that the decision maker starts out with no information

regarding the outcome of uncertainity. Defined similarly are the dynamics of the adversary. There

is a state vector, xt ∈ Rn, whose dynamics satisfy

xt+1 = ft(xt, ut, vt), t = 0, . . . , T − 1 (1)

where ut ∈ Ut(xt) ⊆ Rm is the control taken at time t by the decision maker and vt ∈
Vt(xt, ut) ⊆ Rm is the control taken at time t by the adversary after observing the control ut

chosen by the decision maker. A feasible strategy for the DM, u := (u0, . . . , uT ) is one where each

individual action satisfies ut ∈ Ut(xt) for all t. We let U denote the set of such strategies. A feasible

adapted strategy, u := (u0, . . . , uT ) is one where each individual action satisfies ut ∈ Ut(xt) and

where u is F (DM)
t -adapted. We let UF(DM) denote the set of all such F (DM)

t -adapted strategies.

Similarly, a feasible strategy for the adversary, v := (v0, . . . , vT ) is one where each individual

action satisfies vt ∈ Vt(xt, ut) for all t. We let V denote the set of such strategies. A feasible
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adapted strategy, v := (v0, . . . , vT ) is one where each individual action satisfies vt ∈ Vt(xt, ut) and

where v is F (A)
t -adapted. We let VF(A) denote the set of all such F (A)

t -adapted strategies. Note

that, if the set Vt(.) is a singleton, then it becomes the classical dynamic programming problem.

The objective of the DM is to select a feasible adapted strategy, u, to maximize the expected

total gain (for every feasible adapted strategy ṽ of the adversary)

g(u, ṽ) :=
T∑
t=0

gt(xt, ut, ṽt)

where we assume each gt(xt, ut, ṽt) is F (DM)
t measurable. In particular, the decision maker’s

problem is then given by

J0(x0, v
∗) := sup

u∈UF(DM)

E

[
T∑
t=0

gt(xt, ut, v
∗
t )

]
(2)

where the expectation in is taken over the set of possible outcomes, w = (w1, . . . , wT ) ∈ Ω.

We model the reward structure as a zero-sum game i.e.−gt(.) is the reward of the adversary

whenever gt(.) is the reward of the DM. Hence, the objective of the adversary is to select a feasible

adapted strategy v, to minimize the expected total gain for every adapted strategy,ũ,of the DM.

J0(x0, u
∗) := inf

v∈VF(A)

E

[
T∑
t=0

gt(xt, u
∗
t , vt)

]
(3)

where the expectation in is taken over the set of possible outcomes, w = (w1, . . . , wT ) ∈ Ω.

Letting J∗(t) denote the value function of the problem, the described multi-player problem

reduces to choosing sequential control in the following Bellman recursion setup,

J∗t (xt) = sup
ut∈Ut(xt)

{
inf

vt∈Vt(xt,ut)
Et

[
gt(xt, ut, vt) + J∗t+1(xt+1)

]}
t = 0, . . . , T (4)

witht the understanding that J∗T+1 = 0. In practice of course, it is often too difficult or time

consuming to perform the iteration. This can occur, for example, if the state vector, xt, is high-

dimensional or if the constraints imposed on the controls are too complex or difficult to handle.

We refer to it as the ‘curse of dimensionality’. In such circumstances, we must be satisfied with

sub-optimal policies.

Hence, the focus of the current analysis is from a point where we have a feasible solution (ũ, ṽ)

(which generates a a value-to-go function J̃t) and we need to validate the quality of the feasible

policy i.e. we want to check if the robust value gap between the robust value function, J̃t and the

optimal robust solution,J∗t , is minimized in some appropriate sense.

If the adversary’s decision problem is solvable at each time step easily, i.e. ṽt = v∗t (xt, ũt),

which essentially means both the adversary and the decision maker can solve the inner problem
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at each instant efficiently, So, the problem boils down to that of a dynamic programming problem

in the following way:

J∗t (xt) = sup
ut∈Ut(xt)

Et

[
gt(xt, ut, v

∗
t ) + J∗t+1(xt+1)

]
t = 0, . . . , T (5)

where xt+1 = ft(xt, ut, v
∗
t ) and if the chooses decision maker chooses sub-optimal control, ũ, ob-

tains a value J̃ . It is clear, J̃t ≤ J∗t , since, the policy ũt is just an arbitrary feasibly policy for the

decision maker’s problem and the dual analysis of Brown, smith and sun[] can be used to validate

the feasible policy. For the sake of completion, we review their analysis in Appendix A below.

But, if the controls (ũt, ṽt) are just feasible, we cannot infer immidiately if the value function J̃t is

smaller or greater than J∗t . Though the player choosing ũt is playing a suboptimal contol policy,

the adversary again is not playing the corresponding worst response control. This is because of

his own inability in solving the problem exactly due to curse of dimensionality.

This is the central point of deviation from the dual approaches to the dynamic programming

problem. Since, the feasible solution is only sub-optimal does not guarantee a value lower or

higher than the optimal robust value function. To validate such policies, we need to have a upper

and lower bound on the optimal robust value function. In the event, that these bounds are tight,

and the feasible policy generates a value function in the range of the bounds, we can conclude

that we are implementing “good” control policies on the system.

2.2 The Dual Approach

For this purpose, we construct dual lower and dual upper which are based on information relax-

ations. Given a feasible control (ũt, ṽt), these duals can be used to construct lower and upper

bounds respectively. When these duals are fed with optimal controls (u∗t , v
∗
t ), then the value of

primal robust DP, dual lower and dual upper are the same. In the usual dynamic programming

setting, this dual lower is always equal to the primal DP.

Lemma 1 (Weak Duality)

If (ũ, ṽ) are primal feasible and zup and zlow are dual upper and dual lower feasible respectively,

and G(DM),G(A) are relaxations of F (DM) and F (A) respectively, then

E[g(ũ, ṽ)] ≤ sup
u∈UF(DM)

E[g(u, ṽ)] ≤ sup
u∈UG(DM)

E[g(u, ṽ)− zup(u, ṽ)] (6)

E[g(ũ, ṽ)] ≥ inf
v∈VF(A)

E[g(ũ, v)] ≥ inf
v∈VG(A)

E[g(ũ, v)− zlow(ũ, v)] (7)

Proof: In Appendix (B)
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Theorem 1 (Strong Duality)

Let G(DM),G(A) are relaxations of F (DM) and F (A) respectively and (ũ, ṽ) defined as above. Then,

sup
u∈U(DM)

F

E[g(u, ṽ)] = inf
zup∈Z(DM)

F

{
sup

u∈UG(DM)

E[g(u, ṽ)− zup(u, ṽ)]

}

inf
v∈V(A)

F

E[g(ũ, v)] = sup
zlow∈Z

(A)
F

{
inf

v∈VG(A)

E[g(ũ, v)− zlow(ũ, v)]

} (8)

In particular, if (ũ, ṽ) are the optimal controls for both the players i.e. (u∗, v∗), then

sup
zlow∈Z

(A)
F

{
inf

v∈VG(A)

E[g(ũ, v)− zlow(ũ, v)]

}
= E[g(u∗, v∗)] = inf

zup∈Z(DM)
F

{
sup

u∈UG(DM)

E[g(u, ṽ)− zup(u, ṽ)]

}
(9)

If the primal problem is bounded, then both the dual problems are bounded and has an optimal

solutions that achieve the bound

Proof: In Appendix (B)

Theorem 2 (Complementary Slackness)

Let (u∗, v∗) and (z∗up, z
∗
low) be feasible solutions for the primal and dual problems respectively with

information relaxations G(DM),G(A) of F (DM) and F (A) respectively. A necessary and sufficient

condition for these to be optimal solutions for their respective problems is that E[z∗up(u
∗, v∗)] = 0,

E[z∗low(u∗, v∗)] = 0 and

inf
v∈VG(A)

E[g(u∗, v)− z∗low(u∗, v)] = E[g(u∗, v∗)− z∗up(u
∗, v∗)] = sup

u∈UG(DM)

E[g(u, v∗)− z∗up(u, v
∗)]

(10)

Theorem 3 (Ideal Penalty)

(Gradient Penalty)

Proposition 1 (Structural Policies)

(Other Properties)

• Find the controls (ũt, ṽt) from one of the heuristic policies mentioned above.

• Use (ũt, ṽt) to calculate Dual Upper Bound.

• use (ũt, ṽt) to calculate Dual Lower Bound.

• Check the quality of the heuristic policy
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3 Model - 2 (Games with Uncertain Transition Kernels)

• Formulation

• Talk in the context of special measures as in Garud. (just survey the main ideas). Talk how

the infimum could be solved using them

4 Heuristic Policies

4.1 Fictitious plays

4.2 Value iteration/policy iteration

Discuss as in Garud.

4.3 Approximate dynamic programming

• Value iteration/policy iteration

• Temporal difference learning

• ALP

• Pathwise

5 Simulation - Numerical Experiments

• Zero sum games

• multiple stopping zero sum games

• pricing covertibles

• convertibles with multiple fancy

• auctions (stochastic games)

• multi period control
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6 Appendix B: Proofs

Proof: Weak duality Given feasible controls ũt = ũt(xt) and ṽt = ṽt(xt, ũt)

(Dual Upper):

inf
vt∈Vt(xt,ut)

Et

[
gt(xt, ut, vt) + J∗t+1(xt+1)

]
≤ Et

[
gt(xt, ut, ṽt) + J∗t+1(x̃t+1)

]
(11)

where x̃t+1 = ft(xt, ut, ṽt)

Now, take suput∈Ut
on both sides, we get,

J∗t (xt) = sup
ut∈Ut(xt)

inf
vt∈Vt(xt,ut)

Et

[
gt(xt, ut, vt) + J∗t+1(xt+1)

]
≤ sup

ut∈Ut(xt)
Et

[
gt(xt, ut, ṽt) + J∗t+1(x̃t+1)

] (12)

Now, just follow the information relaxation ideas for a usual DP to find a bound on the above

quantity. Following, perfect information relaxation, we will have

J∗t (xt) ≤ Et

[
sup

ut∈Ut(xt)
gt(xt, ut, ṽt) + J∗t+1(x̃t+1)−∆J̃t+1(x̃t+1)

]
(13)

where ∆J̃t+1(x̃t+1) = J̃(x̃t+1)− Et[J̃(x̃t+1)] is the penalty discussed in Brown, Smith, Sun.

(Dual Lower):

Using ideas of perfect information relaxation again, we have,

inf
vt∈Vt(xt,ut)

Et

[
gt(xt, ut, vt) + J∗t+1(xt+1)

]
≥ Et

[
inf

vt∈Vt(xt,ut)
gt(xt, ut, vt) + J∗t+1(xt+1)−∆Jt

]
(14)

Taking suput∈Ut
on both sides,

J∗t (xt) = sup
ut∈Ut(xt)

inf
vt∈Vt(xt,ut)

Et

[
gt(xt, ut, vt) + J∗t+1(xt+1)

]
≥ sup

ut∈Ut(xt)
Et

[
inf

vt∈Vt(xt,ut)
gt(xt, ut, vt) + J∗t+1(xt+1)−∆Jt

]
≥ Et

[
inf

vt∈Vt(xt,ũt)
gt(xt, ũt, vt) + J∗t+1(xt+1)−∆Jt

] (15)

The last inequality follows because ũt is just an arbitrary policy which need not attain the

supremum above.
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