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Abstract 

The objects that occur in nature can be categorized in several levels. In this collection every level except 

the first level is built from lower level objects. This collection represents a simple model of nature. The 

model exploits the possibilities that mathematical concepts provide. Also typical physical ingredients will 

be used.  

The paper splits the hierarchy of objects in a logic model and a geometric model. These two hierarchies 

partly overlap. 

  

No model of physics can change physical reality. 

Any view on physical reality involves a model 

Drastically different models can still be consistent in themselves. 

The Hilbert Book Model is a simple self-consistent model of physics. 

This model steps with universe-wide progression steps from one sub-model to the 

next one. Each of these sub-models represents a static status quo of the universe. 

The sub-models are strictly based on traditional quantum logic  

The HBM is a pure quaternion based model. Conventional physics is spacetime 

based. When both models are compared, then the progression quantity (which 

represents the page number in the Hilbert Book model) corresponds to proper time 

in conventional physics. 

The length of a smallest quaternionic space-progression step in the HBM 

corresponds with an "infinitesimal" coordinate time step in conventional physics. 

http://www.e-physics.eu/


2 
 

Contents 
1 Introduction ........................................................................................................................................... 5 

2 The logic model ..................................................................................................................................... 7 

2.1 Static status quo ............................................................................................................................ 7 

2.1.1 Quantum logic ....................................................................................................................... 7 

2.1.2 Hilbert logic ........................................................................................................................... 7 

Dynamic model .......................................................................................................................................... 8 

2.1.3 Correlation vehicle ................................................................................................................ 8 

2.1.4 Isomorphic model .................................................................................................................. 8 

2.1.5 Two step model ................................................................................................................... 10 

2.1.6 Selections ............................................................................................................................. 10 

2.2 Affine space ................................................................................................................................. 10 

2.3 Continuity .................................................................................................................................... 11 

2.3.1 Arranging dynamics ............................................................................................................. 11 

2.3.2 Establishing coherence ........................................................................................................ 11 

2.4 Hilbert spaces .............................................................................................................................. 12 

2.4.1 Real Hilbert space model ..................................................................................................... 12 

2.4.2 Gelfand triple ....................................................................................................................... 13 

2.4.3 Complex Hilbert space model ............................................................................................. 13 

2.4.4 Quaternionic Hilbert space model ...................................................................................... 14 

2.5 The reference Hilbert space ........................................................................................................ 16 

2.6 The cosmological principle revisited ........................................................................................... 17 

3 The HBM picture.................................................................................................................................. 18 

3.1 The Schrödinger picture .............................................................................................................. 18 

3.2 The Heisenberg picture ............................................................................................................... 18 

3.3 The Hilbert Book Model picture .................................................................................................. 18 

4 The enumeration process .................................................................................................................... 19 

4.1 Qpatterns..................................................................................................................................... 20 

4.1.1 Fourier transform ................................................................................................................ 21 

5 Geometric model ................................................................................................................................. 22 

5.1 RQE’s ............................................................................................................................................ 22 

5.2 Palestra ........................................................................................................................................ 23 



3 
 

5.3 Qpatches ...................................................................................................................................... 23 

5.4 Quaternionic distributions .......................................................................................................... 24 

5.5 QPAD’s and Qtargets ................................................................................................................... 24 

5.5.1 Inner products of QPAD’s .................................................................................................... 25 

5.6 Blurred distance functions .......................................................................................................... 25 

5.7 Local and global QPAD’s .............................................................................................................. 26 

5.8 Generations ................................................................................................................................. 26 

5.9 Elementary particles .................................................................................................................... 26 

5.9.1 Differential equations .......................................................................................................... 27 

5.9.2 Fourier transform ................................................................................................................ 29 

5.9.3 Inertial reference frames ..................................................................................................... 29 

5.9.4 Coupling Qpatterns ............................................................................................................. 30 

5.9.5 Elementary particle properties ............................................................................................ 31 

5.9.6 Elementary object samples ................................................................................................. 32 

5.10 Physical fields .............................................................................................................................. 36 

5.11 Gravitation field ........................................................................................................................... 36 

5.12 Electromagnetic fields ................................................................................................................. 36 

5.13 Photons and gluons ..................................................................................................................... 37 

6 Continuity equation ............................................................................................................................. 38 

6.1 From coupling equation to continuity equation ......................................................................... 38 

6.2 The differential and integral continuity equations ..................................................................... 38 

7 Inertia .................................................................................................................................................. 43 

7.1 Inertia from coupling equation ................................................................................................... 43 

7.2 Background potential .................................................................................................................. 44 

7.3 Interpretation .............................................................................................................................. 44 

7.4 Isotropic vector potential ............................................................................................................ 45 

8 Gravitation ........................................................................................................................................... 45 

8.1 Palestra ........................................................................................................................................ 45 

8.1.1 Spacetime metric ................................................................................................................. 45 

8.1.2 The Palestra step ................................................................................................................. 47 

8.1.3 Pacific space and black regions. .......................................................................................... 47 

8.1.4 Start of the universe. ........................................................................................................... 48 



4 
 

9 Modularization .................................................................................................................................... 49 

9.1 Complexity ................................................................................................................................... 49 

9.2 Relationalcomplexity ................................................................................................................... 49 

9.3 Interfaces ..................................................................................................................................... 49 

9.4 Interface types ............................................................................................................................. 50 

9.5 Modular subsystems ................................................................................................................... 50 

9.6 Relational complexity indicators ................................................................................................. 50 

9.7 Modular actions........................................................................................................................... 51 

9.8 Random design versus intelligent design .................................................................................... 51 

10 Functions that are invariant under Fourier transformation. ........................................................... 52 

10.1 Natures preference ..................................................................................................................... 52 

11 Events .............................................................................................................................................. 52 

11.1 Generations and annihilations .................................................................................................... 52 

11.2 Emissions and absorptions .......................................................................................................... 53 

11.3 Oscillating interactions ................................................................................................................ 53 

11.4 Movements ................................................................................................................................. 53 

12 Cosmology ....................................................................................................................................... 53 

12.1 Cosmological view ....................................................................................................................... 53 

12.2 The cosmological equations ........................................................................................................ 53 

12.3 Inversion surfaces ........................................................................................................................ 54 

12.4 Cosmological history ................................................................................................................... 54 

12.5 Entropy ........................................................................................................................................ 54 

13 Recapitulation ................................................................................................................................. 54 

14 Conclusion ....................................................................................................................................... 55 

 

  



5 
 

The "secret" of physics is the way that it enumerates its countable sets,  

such that these approach a corresponding continuum. 

 

1 Introduction 
I present you my personal view on the hierarchy of objects that occur in nature. Only the lowest levels 

are extensively treated. Composite particle objects are treated in a more general way. Cosmology is 

touched. 

The paper is founded on three starting points:  

 A sub-model in the form of traditional quantum logic that represents a static status quo.  

 A correlation vehicle that establishes cohesion between subsequent members of a sequence of 

such sub-models. 

 The cosmological principle. 

Further it uses three hypotheses. It turns out that the cosmological principle is already a corollary of the 

first two points.  

This hierarchy model is in concordance with the Hilbert Book Model1. Since the HBM is strictly based on 

the axioms of traditional quantum logic, the same will be the case for the logic part of the object 

hierarchy model. The Hilbert Book Model gets its name from the fact that traditional quantum logic can 

only represent a static status quo and for that reason dynamics must be represented by an ordered 

sequence of these static models. The similarity with a sequence of pages and a book is obvious. 

The object hierarchy model adds two fundamental starting points. First, a correlation vehicle must 

provide the cohesion between the subsequent members of the sequence. Second, the model must obey 

the cosmological principle.  

The cosmological principle means that at large scales, universe looks the same for whomever and 

wherever you are. One of the consequences is that at larger scales universe possesses no preferred 

directions. It is quasi-isotropic (on average isotropic). 

This paper is part of the ongoing HBM project. Many of the mathematical concepts that are touched 

here are treated in greater depth in Q-Formulӕ: http://vixra.org/abs/1210.0111  

The paper explains2 all features of fundamental physics that are encountered in the discussed hierarchy 

which ranges from propositions about physical objects until elementary particles. Amongst them are the 

cosmological principle, the existence of quantum physics, the existence of a maximum speed of 

information transfer, the existence of physical fields, the origin of curvature, the origin of inertia, the 

                                                           
1 http://vixra.org/abs/1209.0047 
2 Or it indicates a possible explanation 

http://vixra.org/abs/1210.0111
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dynamics of gravity, the existence of elementary particles, the existence of generations of elementary 

particles and the existence of the Pauli principle.  
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2 The logic model 

2.1 Static status quo 

2.1.1 Quantum logic 

The most basic level of objects in nature is formed by the propositions that can be made about the 

objects that occur in nature. The relations between these propositions are restricted by the axioms of 

traditional quantum logic. This set of related propositions can only describe a static status quo. 

In mathematical terminology the propositions whose relations are described by traditional quantum 

logic form a lattice. More particular, they form an orthomodular lattice that contains a countable infinite 

set of atomic (=mutually independent) propositions. Within the same quantum logic system multiple 

versions of sets of these mutually independent atoms exist. In this phase of the model the content of the 

propositions is totally unimportant. As a consequence these atoms form principally an unordered set3. 

Only the interrelations between the propositions count. 

Traditional quantum logic shows narrow similarity with classical logic, however the modular law, which is 

one of the about 25 axioms that define the classical logic, is weakened in quantum logic. This is the cause 

of the fact that the structure of quantum logic is significantly more complicated than the structure of 

classical logic. 

2.1.2 Hilbert logic 

The set of propositions of traditional quantum logic is lattice isomorphic  with the set of closed 

subspaces of a separable Hilbert space. However there exist still significant differences between this 

logic system and the Hilbert space. This gap can be closed by a small expansion of the quantum logic 

system.  

Step 1: Require that linear combinations of atomic propositions also belong to the logic system. Call such 

propositions linear propositions. 

Step 2: introduce the notion of relational coupling between two linear propositions. This measure has 

properties that are similar to the inner product of Hilbert space vectors. 

Step 3: Close the subsets of the new logic system with respect to this relational coupling measure. 

The relational coupling measure can have values that are taken from a suitable division ring. The 

resulting logic system will be called Hilbert logic.  

The Hilbert logic is lattice isomorphic as well topological isomorphic with the corresponding Hilbert 

space. 

Linear propositions are the equivalents of Hilbert vectors. General quantum logic propositions are the 

equivalents of (closed) subspaces of a Hilbert space.  

                                                           
3 This fact will prove to be the underpinning of the cosmologic principle. 
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The measure of the relational coupling between two linear propositions is the equivalent of the inner 

product between two Hilbert vectors.  

Due to this similarity the Hilbert logic will also feature operators4. 

In a Hilbert logic linear operators can be defined that have linear atoms as their eigenpropositions. Their 

eigenspace is countable. 

In a Hilbert logic system the superposition principle holds. A linear combination of linear proposition is 

again a linear proposition. 

Dynamic model 
A dynamic model can be constructed from an ordered sequence of the above static sub- models. Care 

must be taken to keep sufficient coherence between subsequent static models. However, some 

deviation must be tolerated, because otherwise, nothing dynamical will happen in this new dynamic 

model. The cohesion is established by a suitable correlation vehicle. 

2.1.3 Correlation vehicle 

The correlation vehicle uses a toolkit consisting of an enumerator generator, a reference continuum and 

a continuous function that maps the enumerators onto the continuum. The function is a continuous 

function of both the sequence number of the sub-models and the enumerators that are attached to a 

member of the selected set of atomic propositions. The enumeration is artificial and is not allowed to 

add extra characteristics or functionality to the attached proposition. For example, if the enumeration 

takes the form of a coordinate system, then this coordinate system cannot have an origin and it is not 

allowed to introduce preferred directions. The omission of the origin leads to an affine space. The 

avoidance of preferred directions produces problems in multidimensional coordinate systems. In case of 

a multidimensional coordinate system the correlation vehicle must use a smooth touch.  At very small 

scales the coordinate system must get blurred. This means that the guarantee for coherence between 

subsequent sub-models cannot be made super hard. Instead coherence is reached with an acceptable 

tolerance. 

2.1.4 Isomorphic model 

The natural form of the enumeration system can be derived from the lattice isomorphic companion of 

the quantum logic sub-model. 

In the third and fourth decade of the twentieth century Garret Birkhoff and John von Neumann5 were 

able to prove that for the set of propositions in the traditional quantum logic model a mathematical 

lattice isomorphic model exists in the form of the set of the closed subspaces of an infinite dimensional 

separable Hilbert space. The Hilbert space is a linear vector space that features an inner vector product. 

It offers a mathematical environment that is far better suited for the formulation of physical laws than 

what the purely logic model can provide. 

                                                           
4 The Hilbert logic does not feature dynamic operators. 
5http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics & Stanford Encyclopedia of Philosophy, 
Quantum Logic and Probability Theory, http://plato.stanford.edu/entries/qt-quantlog/ 

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://plato.stanford.edu/entries/qt-quantlog/
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Some decades later Constantin Piron6 proved that the only number systems that can be used to 

construct the inner products of the Hilbert vectors must be division rings. The only suitable division rings 

are the real numbers, the complex numbers and the quaternions7. Quaternions can be seen as 

combinations of a real scalar and a 3D (real) vector. The number system of the quaternions represent a 

dynamic 3D coordinate system. It can be shown that the eigenvalues of normal operators must also be 

taken from the same division ring. 

Since the set of real numbers is multiple times contained in the set of complex numbers and the set of 

complex numbers is multiple times contained in the set of quaternions, the most extensive isomorphic 

model is contained in an infinite dimensional quaternionic separable Hilbert space. For our final model 

we will choose the quaternionic Hilbert space, but first we study what the real Hilbert space model and 

the complex Hilbert space model provide. 

The set of closed subspaces of the Hilbert space represents the set of propositions that forms the static 

quantum logic system. The set of mutually independent atoms in the logic model corresponds to a set of 

base vectors that together span the whole Hilbert space. Like the sets of mutually independent atoms in 

the quantum logic system, multiple sets of orthonormal base vectors exist in the Hilbert space. The base 

vectors do not form an ordered set. However, a so called normal operator will have a set of eigenvectors 

that form a complete orthonormal base. The corresponding eigenvalues may provide a means for 

enumeration and thus for ordering these base vectors. An arbitrary normal operator does not fit. Its 

eigenvalues introduce an origin and in the case of a multidimensional eigenspace they may produce 

preferred directions. The represented atoms do not have such properties. Still, many suitable 

enumeration operators exist. However, several things can already be said about the eigenspace of the 

enumeration operator. This space is countable. It has no origin. It does not show preferred directions. It 

can be embedded in a corresponding reference continuum. 

As part of the corresponding Gelfand triple8 the separable Hilbert space forms a sandwich that features 

uncountable orthonormal bases and (compact) normal operators with eigenspaces that form a 

continuum. The reference continuum can be taken as the eigenspace of the corresponding enumeration 

operator that resides in the Gelfand triple of a reference Hilbert space. 

Together with the pure quantum logic model, we now have a dual model that is significantly better 

suited for use with calculable mathematics. Both models represent a static status quo. 

The Hilbert space model suits as part of the toolkit that is used by the correlation vehicle. 

As a consequence, an ordered sequence of infinite dimensional quaternionic separable Hilbert spaces 

forms the isomorphic model of the dynamic logical model. 

                                                           
6 C. Piron 1964; _Axiomatique quantique_  
7 Bi-quaternions have complex coordinate values and do not form a division ring. 
8 See http://vixra.org/abs/1210.0111 for more details on the Hilbert space and the Gelfand triple. See the 
paragraph on the Gelfand triple.  
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2.1.4.1 Correspondences 

Several correspondences exist between the two sub models: 

Quantum logic Hilbert space 

Propositions: 
𝑎, 𝑏 

Vectors: 
|𝑎⟩, |𝑏⟩ 

atoms 
𝑐, 𝑑 

Base vectors: 
|𝑐⟩, |𝑑⟩ 

Relational complexity: 
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑎 ∩  𝑏) 

Inner product: 
〈𝑎|𝑏〉 

Inclusion: 
(𝑎 ∪  𝑏) 

Sum: 
|𝑎⟩ + |𝑏⟩ 

For atoms 𝑐𝑖: 

⋃ 𝑐𝑖

𝒊

 

Subspace 

{∑ 𝛼𝑖|𝑐𝑖⟩

𝑖

}

∀𝛼𝑖

 

 

The distribution 

𝑎(𝑖) ≡ {〈𝑎|𝑐𝑖〉}∀𝑖
  

has no proper definition in quantum logic. It can be interpreted via the Hilbert space sub-model. 

2.1.5 Two step model 

In relation to the Hilbert space sub-model, it is quite possible that a Fourier transform takes place 

between subsequent steps. In that case two steps return to the configuration space. One step goes to 

the canonical conjugated space. 

The Fourier transform selects a new set of base vectors that are equally related to all previous base 

vectors. (They have the same inner product with all the previous base vectors). 

Particles live in the configuration space. Photons and gluons live in the canonical conjugated space. 

So there is a difference between odd pages and even pages. 

2.1.6 Selections 

At each step the enumeration generator makes 𝑁𝑠 arbitrary selections. In the simplest condition 𝑁𝑠 

equals 1. If a Qpattern contains 𝑁𝑝 arbitrary steps, then generating a Qpattern takes 
𝑁𝑝

𝑁𝑠
⁄  steps. 

2.2 Affine space 
The set of mutually independent atomic propositions is represented by an orthonormal set of base 

vectors in Hilbert space. Both sets span the whole of the corresponding structure. An arbitrary 

orthonormal base is not an ordered set. However, these base vectors can be enumerated. The 

installation of the correlation vehicle requests the introduction of enumerators. The enumeration may 

introduce an ordering. In that case the attachment of the numerical values of the enumerators to the 



11 
 

Hilbert base vectors defines a corresponding operator. It must be remembered that the selection of the 

enumerators and therefore the corresponding ordering is kind of artificial. The eigenspace of the 

enumeration operator has no unique origin and is has no preferred directions. Thus it has no axes. It can 

only indicate the distance between two or more locations. For multidimensional enumerators the 

distance is not precise. It represents a blurred coordinate system. Both in the Hilbert space and in its 

Gelfand triple, the enumeration can be represented by a normal enumeration operator. 

2.3 Continuity 

2.3.1 Arranging dynamics 

Embedding the enumerators in a continuum highlights the interspacing between the enumerators. 

Having a sequence of static sub-models is no guarantee that anything happens in the dynamic model. A 

fixed (everywhere equal) interspacing will effectively lame any dynamics. A more effective dynamics can 

be arranged by playing with the sizes of the interspacing. This is the task of a continuous distance 

function. 

2.3.2 Establishing coherence 

The coherence between subsequent static models can be established by embedding each of the 

countable sets in a single reference continuum. For example the Hilbert space can be embedded in its 

Gelfand triple. The enumerators of the base vectors of the separable Hilbert space can also be 

embedded in a corresponding continuum. That continuum is formed by the values of the enumerators 

that enumerate an orthonormal base of the Gelfand triple. We will reuse the same (reference) Gelfand 

triple for all members of the sequence of Hilbert spaces. The reference Gelfand triple is taken from a 

selected9 member of the sequence. Next a correlation vehicle is established by introducing a continuous 

distance function that controls the coherence between subsequent members of the sequence of static 

models. It does that by defining the interspacing in the countable set of the enumerators that act in the 

separable Hilbert space by mapping them to the reference continuum. In fact the differential of the 

distance function is used to specify the “infinitesimal” interspacing10. 

The equivalence of this action for the logic model is that the enumerators of the atomic propositions are embedded in a 

continuum that is used by an appropriate correlation vehicle. 

The distance function uses a combination of progression and the enumerator id as its parameter value. 

The value of the progression might be included in the value of the id. Apart from their relation via the 

distance function, the enumerators and the embedding continuum are mutually independent11. For the 

selected correlation vehicle it is useful to use numbers as the value of the enumerators. The type of the 

numbers will be taken equal to the number type that is used for specifying the inner product of the 

corresponding Hilbert space and Gelfand triple. The danger is then that a direct relation between the 

value of the enumerator of the Hilbert base vectors and the embedding continuum is suggested. So, here 

a warning is at its place. Without the distance function there is no relation between the value of the 

                                                           
9 The selection criterion is that around this member the scaling of the imaginary space is a symmetric function of 
progression. 
10 The differential defines a local metric. 
11 This is not the case for the reference Hilbert space in the sequence. There a direct relation exists. 
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enumerators and corresponding values in the embedding continuum. However, there is a well-defined 

relation between the images12 produced by the distance function and the embedding continuum that is 

formed by the corresponding enumerators in the Gelfand triple.13  

The relation between the members of a countable set and the members of a continuum raises a serious 

one-to-many problem. That problem can easily be resolved for real Hilbert spaces and complex Hilbert 

spaces, but it requires a special solution for quaternionic Hilbert spaces.  

Together with the reference continuum and the Hilbert base enumeration set the distance function 

defines the evolution of the model. 

2.4 Hilbert spaces 

2.4.1 Real Hilbert space model 

When a real separable Hilbert space is used to represent the static quantum logic, then it is sensible to 

use a countable set of real numbers for the enumeration. A possible selection is formed by the natural 

numbers. Within the real numbers the natural numbers have a fixed interspacing. Since the rational 

number system has the same cardinality as the natural number system, the rational numbers can also be 

used as enumerators. In that case it is sensible to specify a (fixed) smallest rational number as the 

enumeration step size. In this way the notion of interspacing is preserved and can the distance function 

do its scaling task14. In the realm of the real Hilbert space model, the continuum that embeds the 

enumerators is formed by the real numbers. The values of the enumerators of the Hilbert base vectors 

are used as parameters for the distance function. The value that is produced by the distance function 

determines the target location for the corresponding enumerator in the embedding continuum. The 

interspacing freedom is used in order to introduce dynamics in which something happens.  

In fact what we do is defining an enumeration operator that has the enumeration numbers as its 

eigenvalues. The corresponding eigenvectors of this operator are the target of the enumerator. 

With respect to the logic model, what we do is enumerate a previously unordered set of atomic propositions that together span 

the quantum logic system and next we embed the numerators in a continuum. The correlation vehicle takes care of the 

cohesion between subsequent quantum logical systems. 

While the progression step is fixed, the (otherwise fixed) space step might scale with progression. 

Instead of using a fixed smallest rational number as the enumeration step size and a map into a 

reference continuum we could also have chosen for a model in which the rational numbered step size 

varies with the index of the enumerator. 

                                                           
12 Later these images will be called Qpatches 
13 We will take the reference continuum from the Gelfand triple of the reference Hilbert space in the sequence. 
Thus, in the reference member of the sequence a clear relation between the two enumeration sets exist. 
14 Later, in the quaternionic Hilbert space model, this freedom is used to introduce space curvature and it is used 
for resolving the one to many problem. 
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2.4.2 Gelfand triple 

The Gelfand triple of a real separable Hilbert space can be understood via the corresponding 

enumeration model of the real separable Hilbert space. Let the smallest enumeration value of the 

rational enumerators approach zero. Even when zero is reached, then still the set of enumerators is 

countable. Now add all limits of converging rows of rational enumerators to the enumeration set. After 

this operation the enumeration set has become a continuum and has the same cardinality as the set of 

the real numbers. It means that also every orthonormal base of the Gelfand triple has that cardinality. It 

also means that linear operators in this space have eigenspaces that are continuums and have the 

cardinality of the real numbers15. 

2.4.3 Complex Hilbert space model 

When a complex separable Hilbert space is used to represent quantum logic, then it is sensible to use 

rational complex numbers for the enumeration. Again a smallest enumeration step size is introduced. 

However, the imaginary fixed enumeration step size may differ from the real fixed enumeration step 

size. The otherwise fixed imaginary enumeration step may be scaled as a function of progression. In the 

complex Hilbert space model, the continuum that embeds the enumerators of the Hilbert base vectors is 

formed by the system of the complex numbers. This continuum belongs as eigenspace to the 

enumerator operator that resides in the Gelfand triple. It is sensible to let the real part of the Hilbert 

base enumerators represent progression. The same will happen to the real axis of the embedding 

continuum. On the real axis of the embedding continuum the interspacing can be kept fixed. Instead, it is 

possible to let the distance function control the interspacing in the imaginary axis of the embedding 

continuum. The values of the rational complex enumerators are used as parameters for the distance 

function. The complex value of the distance function determines the target location for the 

corresponding enumerator in the continuum. The distance function establishes the necessary coherence 

between the subsequent Hilbert spaces in the sequence. The difference with the real Hilbert space 

model is, that now the progression is included into the values of the enumerators. The result of these 

choices is that the whole model steps with (very small, say practically infinitesimal) fixed progression 

steps. 

In the model that uses complex Hilbert spaces, the enumeration operator has rational complex numbers 

as its eigenvalues. In the complex Hilbert space model, the fixed enumeration real step size and the fixed 

enumeration imaginary step size define a maximum speed. The fixed imaginary step size may scale as a 

function of progression. The same will then happen with the maximum speed, defined as space step 

divided by progression step. However, if information steps one step per progression step, then the 

information transfer speed will be constant. Progression plays the role of proper time. Now define a new 

concept that takes the length of the complex path step as the step value. Call this concept the coordinate 

time step. Define a new speed as the space step divided by the coordinate time step. This new maximum 

speed is a model constant. Proper time is the time that ticks in the reference frame of the observed 

                                                           
15 This story also applies to the complex and the quaternionic Hilbert spaces and their Gelfand triples. 
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item. Coordinate time is the time that ticks in the reference frame of the observer16. Coordinate time is 

our conventional notion of time. 

Again the eigenvectors of the (complex enumeration) operator are the targets of the enumerator whose 

value corresponds to the complex eigenvalue.  

If we ignore the case of negative progression, then the complex Hilbert model exist in two forms, one in 

which the interspacing appears to expand and one in which the interspacing decreases with 

progression17. 

2.4.4 Quaternionic Hilbert space model 

When a quaternionic separable Hilbert space is used to model the static quantum logic, then it is 

sensible to use rational quaternions for the enumeration. Again the fixed enumeration step sizes are 

applied for the real part of the enumerators and again the real parts of the enumerators represent 

progression. The continuum that embeds the enumerators is formed by the number system of the 

quaternions. The scaling distance function of the complex Hilbert space translates into an isotropic 

scaling function in the quaternionic Hilbert space. However, we may instead use a full 3D distance 

function that incorporates the isotropic scaling function. This new distance function may act differently 

in different spatial dimensions. However, when this happens at very large scales, then it conflicts with 

the cosmological principle. At those scales the distance function must be quasi isotropic. The distance 

function is not allowed to create preferred distances. 

Now the enumeration operator of the Hilbert space has rational quaternions as its eigenvalues. The 

relation between eigenvalues, eigenvectors and enumerators is the same as in the case of the complex 

Hilbert space. Again the whole model steps with fixed progression steps. 

2.4.4.1 Curvature and fundamental fuzziness 

The spatially fixed interspacing that is used with complex Hilbert spaces poses problems with 

quaternionic Hilbert spaces. Any regular spatial interspacing pattern will introduce preferred directions. 

Preferred directions are not observed in nature18 and the model must not create them. A solution is 

formed by the randomization of the interspacing. Thus instead of a fixed imaginary interspacing we get 

an average interspacing. This problem does not play on the real axis. On the real axis we can still use a 

fixed interspacing. The result is an average maximum speed. This speed is measured as space step per 

coordinate time step, where the coordinate time step is given by the length of the 1+3D quaternionic 

path step. Further, the actual location of the enumerators in the embedding continuum will be 

determined by the combination of a sharp distance function and a Quaternionic Probability Amplitude 

Distribution (QPAD) that specifies the local blur. The form factor of the blur may differ in each direction 

and is set by the differential of the sharp distance function. The total effect is given by the convolution of 

the sharp distance function and a non-deformed QPAD. The result is a blurred distance function. 

                                                           
16 In fact coordinate time is a mixture of progression and space. See paragraph on spacetime metric. 
17 The situation that expands from the point of view of the countable enumeration set, will contract from the point 
of view of the embedding continuum of enumerators. 
18 Preffered directions are in conflict with the cosmological principle. 
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The requirement that the cosmological principle must be obeyed is the cause of a fundamental 

fuzziness of the quaternionic Hilbert model. It is the reason of existence of quantum physics. 

An important observation is that the blur mainly occurs locally. 

At larger distances the freedom that is tolerated by the distance function causes curvature of observed 

space. However, as explained before, at very large scales the distance function must be quasi isotropic19. 

The local curvature is described by the differential of the sharp part of the distance function. 

This picture only tells that space curvature might exist. It does not describe the origin of space curvature.  

For more detailed explanation, please see the paragraph on the enumeration process. 

2.4.4.2 Discrete symmetry sets 

Quaternionic number systems exist in 16 forms (sign flavors20) that differ in their discrete symmetry sets. 

The same holds for sets of rational quaternionic enumerators. Four members of the set represent 

isotropic expansion or isotropic contraction of the imaginary interspacing. At large scales two of them 

are symmetric functions of progression. The other two are at large scales anti-symmetric functions of 

progression. We will take the symmetrical member that expands with positive progression as the 

reference rational quaternionic enumerator set. Each member of the set corresponds with a 

quaternionic Hilbert space model. Thus apart from a reference continuum we now have a reference 

rational quaternionic enumerator set. Both reference sets meet at the reference Hilbert space. Even at 

the instance of the reference Hilbert space, the distance function must be a continuous function of 

progression. 

A similar split in quaternionic sign flavors occurs with continuous quaternionic functions. For each 

discrete symmetry set of their parameter space, the function values of the continuous quaternionic 

distribution exist in 16 versions that differ in their discrete symmetry set. Within the target domain of 

the quaternionic distribution the symmetry set will stay constant. 

2.4.4.3 Generations and Qpatterns 

During the progression step the generator of enumerators can depending on its efficiency only generate 

a certain amount of randomized enumerators. If generators with different efficiency exist, then several 

generations21 of local QPAD’s exist. For a selected generation the following holds: 

Apart from the adaptation of the form factor that is determined by the local curvature and apart from 

the discrete symmetry set of the QPAD, the QPAD’s are everywhere in the model the same.  

Therefore we will call this basic form of the selected QPAD generation a Qpattern For each generation, 

Qpatterns exist in 16 versions that differ in their discrete symmetry set. 

The paper does not reveal how much lower order objects are contained in a Qpattern. These objects are 

generated in a single progression step. 

                                                           
19 Quasi-isotropic = on average isoropic. 
20 See paragraph on Qpattern coupling 
21 See paragraph on generations 
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A Qpattern corresponds with the statistic mechanical notion of a microstate. A microstate of a gas is 
defined as a set of numbers which specify in which cell each atom is located, that is, a number labeling 
the atom, an index for the cell in which atom s is located and a label for the microstate22. 

2.4.4.4 Optimal ordering 

In the Hilbert space as well as in its isomorphic companion it is possible to select a base that has optimal 

ordering for the eigenvalues of a normal operator. In the quaternionic Hilbert space this optimally 

ordered base still contains sections that are in complete disorder. Optimally ordered means that these 

sections are uniformly distributed and that stochastic properties of these sections are the same. When 

the optimal ordering goes together with densest packaging, then all disordered sections are neighbors. A 

Poisson generator combined by a binomial process that is implemented by a suitable 3D isotropic spread 

function can implement such a section. 

In the quantum logic system a similar selection is possible for the set of mutually independent atomic 

propositions. There the atoms are enumerated by the same set of rational quaternionic values. 

2.5 The reference Hilbert space 
The reference Hilbert space is taken as the member of the sequence of Hilbert spaces at the progression 

instance where the distance function is a symmetric function of progression that expands in directions 

that depart from the progression value of the reference Hilbert space. 

At large and medium scales the reference member of the sequence of quaternionic Hilbert spaces is 

supposed to have a quasi-uniform23 distribution of the enumerators in the embedding continuum. This is 

realized by requiring that the eigenspace of the enumeration operator that acts in the Gelfand triple of 

the zero progression value Hilbert space represents the reference embedding continuum. With other 

words, at this instance of progression, the rational quaternionic enumeration space is flat. This member 

of the sequence still features a stochastic interspacing in the imaginary part of the embedding 

quaternionic continuum. For the reference Hilbert space the isotropic scaling function is symmetric at 

zero progression value. Thus for the reference Hilbert space at the reference progression instance the 

distribution of the enumerators will realize a densest packaging24.  

For all subsequent Hilbert spaces the embedding continuum will be taken from the Gelfand triple of the 

first reference Hilbert space. 

  

                                                           
22 http://www.intechopen.com/books/theoretical-concepts-of-quantum-mechanics/quantum-mechanical-
ensembles-and-the-h-theorem 
23 quasi-uniform = on average uniform. 
24 The densest packaging will also be realized locally when the geometry generates black regions. 
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2.6 The cosmological principle revisited 
The enumeration process attaches an artificial content to the each of the members in the unordered set 

of atomic propositions. The unrestricted enumeration with rational quaternions generates an artificial 

origin and it generates artificial preferred directions that are not present in the original set of atomic 

propositions. The correlation vehicle is not allowed to attach this extra functionality to the original 

propositions. However, the vehicle must still perform its task to establish cohesion between subsequent 

sub-models. One measure is to turn the enumeration space into an affine space. An affine space has no 

origin. The next measure is to randomize the enumeration process sufficiently such that an acceptable 

degree of cohesion is reached and at the same time a quasi-isotropy of this affine space is established. 

This measure requires the freedom of some interspacing, which is obtained by assigning a lowest 

rational number. In principle, a lowest rational number can be chosen for the real part and a different 

smallest base number can be chosen for the imaginary part. This choice defines a basic notion of speed. 

The resulting (imaginary) space is on average isotropic. The randomization results in a local blur of the 

continuous function that regulates the enumeration process. 

The result of these measures is that the cosmologic principle is installed. Thus, in fact the cosmological 

principle is a corollary of the other two starting points. 

However, according to this model, apart from the low scale randomization the universe was quite well 

ordered. After a myriad of progression steps this medium to large scale ordering is significantly 

disturbed. 
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3 The HBM picture 
In the advance of quantum physics two views on quantum physics existed.  

3.1 The Schrödinger picture 
The Schrödinger picture describes a dynamic implementation in Hilbert space in which the quantum 

states carry the time dependence. The operators are static.  

3.2 The Heisenberg picture 
The Heisenberg picture describes a dynamic implementation in Hilbert space in which the operators 

(represented by matrices) carry the time dependence. The quantum states are static. 

3.3 The Hilbert Book Model picture 
In the HBM the whole Hilbert space carries the proper time dependence. Both the enumeration operator 

and the patterns that represent the quantum state functions depend on the progression parameter. 
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4 The enumeration process 
It is not yet clear how Qpatterns will be shaped. This information can be derived from the requirements 

that are set for the correlation vehicle. We will start with an assumption for the enumeration process 

that for this vehicle will lead to the wanted functionality. 

Hypothesis I: At small scales the enumeration process is governed by a Poisson process. 

The lateral spread that goes together with the low scale randomization of the interspacing plays the role 

of a binomial process. The combination of a Poisson process and a binomial process is again a Poisson 

process, but locally it has a lower efficiency than the original Poisson process. For a large number of 

enumerator generations the resulting Poisson distribution resembles a Gaussian distribution25. If the 

generated enumerators are considered as charge carriers, then the corresponding potential has the 

shape of an Error function divided by 𝑟. Already at a short distance from its center location the potential 

function starts decreasing with distance 𝑟 as a 1/𝑟 function. 

 

                                                           
25 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 

If there is a static spherically symmetric Gaussian charge density 

ρf(r) =
Q

σ3√2π
3 exp (

−r2

2σ2
) 

where Q is the total charge, then the solution 𝜑(𝑟) of Poisson's equation, 

∇2φ = −
ρf

ε
 

is given by 

φ(r) =
Q

4πεr
erf (

r

√2σ
) 

where 𝑒𝑟𝑓(𝑥) is the error function. 

Note that, for 𝑟 much greater than 𝜎, the erf function approaches unity and the potential 𝜑 (𝑟) 

approaches the point charge potential 

φ(r) ≈
Q

4πεr
 

as one would expect. Furthermore the 𝑒𝑟𝑓 function approaches 1 extremely quickly as its argument 

increases; in practice for 𝑟 >  3𝜎 the relative error is smaller than one part in a thousand. 

http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Electrical_potential
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Now we remember Bertrand’s theorem.26 : 

Bertrand's theorem states that only two types of central force potentials produce stable, closed 

orbits:  

(1) an inverse-square central force such as the gravitational or electrostatic potential 

𝑉(𝑟) =  
−𝑘

𝑟
 

and  

(2) the radial harmonic oscillator potential 

𝑉(𝑟) =  ½ 𝑘 𝑟2 

With other words the assumption that the enumerators are generated by a Poisson process produces 

the proper cohesion requirements for the correlation vehicle. 

According to this investigation it becomes acceptable to assume that the undisturbed shape of the 

Qpatterns can be characterized as Gaussian distributions27. Since this distribution produces the correct 

shape of the gravitation potential, it would explain the origin of curvature. 

4.1 Qpatterns 
Qpatterns have a fixed shape. The Fourier transform of a Qpattern has the same shape. 

Not all enumerations that are required for generating a full Qpattern need to be generated in a single 

progression step. It is thinkable that per progression step only a single enumerator is generated.  

In subsequent steps on average the generator switches in each dimension from positive to negative 

locations. And on average the imaginary part will switch sign as well. Otherwise the average location will 

move away or the pattern will implode or explode.  

The fact that the enumerator generator generates Qpatterns does not say that these patterns are 

generated in one progression step. It is quite likely that the pattern is generated as one generation per 

progression step. Only when the Qpattern stays fixed at a single location, then that location will see the 

generation of a Qpattern that takes a shape that approaches a Gaussian distribution. It will take a huge 

number of progression steps to reach that condition. 

A moving Qpattern will be spread out. 

                                                           
26 http://en.wikipedia.org/wiki/Bertrand's_theorem. 
27 It might be clear that in this way an explanation is given for the effect of a Qpattern on local curvature. 

(1) 

(2) 

http://en.wikipedia.org/wiki/Central_force
http://en.wikipedia.org/wiki/Potential
http://en.wikipedia.org/wiki/Orbit_(dynamics)
http://en.wikipedia.org/wiki/Orbit_(dynamics)
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Electrostatics
http://en.wikipedia.org/wiki/Simple_harmonic_oscillator
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4.1.1 Fourier transform 

A Qpattern that has the form of a Gaussian distribution has a Fourier transform that also has the form of 

a Gaussian distribution. 

A coupled Qpattern is compact in configuration space and wide spread in canonical conjugated space. 

A free Qpattern is compact in canonical conjugated space and wide spread in configuration space. 
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5 Geometric model 
The geometric model applies the quaternionic Hilbert space model. From now on the complex Hilbert 

space model and the real Hilbert space model are considered to be abstractions of the quaternionic 

model. It means that the special features of the quaternionic model bubble down to the complex and 

real models. For example both lower dimensional enumeration spaces will show blur at small 

enumeration scales. Further, both models will show a simulation of the discrete symmetry sets that 

quaternionic systems and functions possess. This can be achieved with spinors and Dirac matrices or 

with the combination of Clifford algebras, Grassmann algebras and Jordan algebras.. 

At large scales the model can properly be described by the complex Hilbert space model. After a 

sufficient number of progression steps, at very large scales the quaternionic model is quasi isotropic. 

We will place the reference Hilbert space at zero progression value.  

Quaternionic numbers exist in 16 discrete symmetry sets. When used as enumerators, half of this set 

corresponds with negative progression and will not be used in this geometric model. 

As a consequence we will call the Hilbert space at zero progression value the start of the model.  

This model does not start with a Big Bang. Instead it starts in a state that is characterized by densest 

packaging of the Qpatches. 

 

5.1 RQE’s 
RQE stands for Rational Quaternionic Enumerator. This lowest geometrical level is formed by the 

enumerators of a selected base of a selected member of the sequence of Hilbert spaces. The selected 

base vectors represent the atoms of the quantum logic system. In this level, the embedding continuum is 

not included. The sequence number corresponds with the progression value in the real part of the value 

of the RQE. In principle the enumerators enumerate a previously unordered set. 

The ordering and the corresponding origin of space become relevant when an observer object considers 

one or more observed objects. The real part of the enumerators defines progression. In physics 

progression conforms to proper time. As a consequence according to our model, the equivalent of 

proper time steps with a fixed step.  

HYPOTHESIS II : At its start nature used only one discrete symmetry set for its lowest level of geometrical 

objects. This discrete symmetry set is the same set that characterizes the reference continuum. This 

situation stays throughout the history of the model. This set corresponds with the reference 

quaternionic Hilbert space model. 

Due to this restriction the RQE-space is not afflicted with splits and ramifications28. 

                                                           
28 http://en.wikipedia.org/wiki/Quaternion_algebra#Quaternion_algebras_over_the_rational_numbers 
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5.2 Palestra 
The second geometric level is a curved space, called Palestra. As ingredients, it consists of an embedding 

continuum, the embedded RQE set and a sharp continuous quaternionic distance function. The local 

curvature is defined via the differential of the continuous (sharp) quaternionic distance function. The 

parameter space of the distance function is formed by the RQE-set. Thus since the RQE-set is countable, 

the Palestra contains a countable set of images of the sharp distance function. We will call these images 

“Qpatches”. The distance function may include an isotropic scaling function. The differential of the 

distance function defines an infinitesimal quaternionic step. In physical terms the length of this step is 

the infinitesimal coordinate time interval. The differential is a linear combination of sixteen partial 

derivatives. It defines a quaternionic metric29. Like the first geometric level, this level represents an 

affine space. The enumeration process adds a coordinate system. The selection of the coordinate system 

is arbitrary. The origin and the axes of this coordinate system only become relevant when the distance 

between locations must be handled. The origin is taken at the location of the current observer. The 

underlying space is an affine space. It does not have a unique origin. 

Like all continuous quaternionic functions, for each discrete symmetry set of its parameter space, the 

distance function exists in 16 different discrete symmetry sets for its function values. This means that 

also 16 different embedding continuums exist. As a consequence, there are 16 different versions of the 

Palestra. The density distributions of the enumerators do not differ. The versions differ in the direction in 

which the enumerated objects move. However, these versions may superpose. The symmetry set of the 

distance function values may differ from the symmetry set of the parameter space of the distance 

function. The distance function keeps its discrete symmetry set throughout its life. One of the 16 

Palestras acts as reference Palestra. The corresponding distance function and thus this reference 

Palestra has the same sign flavor30 as the reference set that is formed by the lowest level of the 

geometrical objects. 

5.3 Qpatches 
The third level of geometrical objects consists of a countable set of space patches that occupy the 

Palestra. We already called them Qpatches. They are images of the RQE’s that house in the first 

geometric object level. The set of RQE’s is used as parameter space for the distance function. Apart from 

the rational quaternionic value of the corresponding RQE, their charge is formed by the discrete 

symmetry set of the distance function. The curvature of the second level space relates directly to the 

density distribution of the Qpatches. The Qpatches represent the centers of the locations of the 

regions31 where next level objects can be detected. The name Qpatch stands for space patches with a 

quaternionic value. The charge of the Qpatches can be named Qsymm, Qsymm stands for discrete 

symmetry set of a quaternion. However, we already established that the value of the enumerator is also 

contained in the property set that forms the Qsymm charge. 

                                                           
29 See the paragraph on the spacetime metric. 
30 We will use sign flavors and discrete symmetry sets interchangeably. 
31 Not the exact locations. 
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The enumeration problems that come with the quaternionic Hilbert space model indicate that the 

Qpatches are in fact centers of a fuzzy environment that houses the potential locations where the actual 

RQE image can be found. A Qpatch is a non-blurred image of a RQE. 

5.4 Quaternionic distributions 
Quaternionic distributions consist of a real scalar distribution and an imaginary 3D vector distribution. 

It is the sum of a symmetric distribution and an asymmetric distribution. 

The complex Fourier transform of a symmetric (complex) function is a cosine transform. It is a real 

function. 

The complex Fourier transform of an anti-symmetric (complex) function is a sine transform. It is an 

imaginary function. 

This cannot directly be translated to quaternionic functions. The simplest solution is to consider the 

symmetric parts and asymmetric parts separately. 

5.5 QPAD’s and Qtargets 
The fuzziness in the correlated sampling of the enumerators and their images in the reference 

continuum is described by a quaternionic probability amplitude distribution (QPAD). The squared 

modulus of the QPAD represents the probability that an image of an RQE will be detected on the exact 

location that is specified by the value of the parameter of the blurred distance function. The QPAD’s that 

act as Qpatterns have a flat parameter space in the form of a quaternionic continuum. The QPAD adds 

blur to the sharp distance function. The blurred distance function is formed by the convolution of the 

sharp distance function with the Qpattern. In this way the local form of the QPAD becomes a deformed 

Qpattern. The adaptation concerns the form factor of the QPAD. The form factor may differ in each 

direction. It is determined by the differential of the sharp distance function. On detection the image 

produced by the blurred distance function is a Qtarget.  

Qtargets only exist when a corresponding detection (interaction) is performed.  

The fact that Qtargets only exist on the instance of detection is related to the fact that a Qpattern is not 

generated completely in one progression step. It is more likely that for each Qpatch location only one 

enumerator is generated at each progression step. This also explains that on the occurrence of events 

the Qpattern is starting to be generated in a different mode. Only when the Qpattern stays untouched, a 

rather complete Qpattern will be generated at that location. When the Qpatch moves, then the 

corresponding Qpattern smears out. When a Qpattern couples or decouples, then the pattern 

generation changes its mode. For example when a Qpattern couples it will keep a relatively small pattern 

in configuration space. However, when it decouples, then it will keep a relatively small pattern in the 

canonical conjugated space of the configuration space. 

The parameter space of the blurred distance function is a flat quaternionic continuum. The RQE’s form 

points in that continuum. QPAD’s are quaternionic distributions that contain a scalar potential in their 

real part that describes a density distribution of potential Qtargets. Further they contain a 3D vector 
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potential in their imaginary part that describes the associated current density distribution of potential 

Qtargets. Continuous quaternionic distributions exist in eight different discrete spatial symmetry sets. 

However, the QPAD’s inherit the discrete symmetry of their connected sharp distance function. The 

QPAD’s superpose. Together they form a global QPAD. 16 different global QPAD’s exist. 

The distributions are continuous functions. The objects that are described by these distributions form 

countable discrete sets. 

5.5.1 Inner products of QPAD’s 

Each QPAD is a are representative of a Hilbert vector and indirectly the QPAD represents a linear 

proposition. 

Two QPAD’s a and b have an inner product defined by  

〈𝑎|𝑏〉 = ∫ 𝑎 𝑏 𝑑𝑉
𝑉

 

Since the Fourier transform ℱ preserves inner products, the Parseval equation holds for the inner 

product: 

〈𝑎|𝑏〉 = 〈ℱ𝑎|ℱ𝑏〉 = 〈�̃�|�̃�〉 = ∫ �̃� �̃� 𝑑�̃�
�̃�

 

QPAD’s have a norm 

|𝑎| = √〈𝑎|𝑎〉 

5.6 Blurred distance functions 
The blurred distance function 𝒫 has a flat parameter space that is formed by rational quaternions. It is 

the convolution of the sharp distance function ℘ with a Qpattern 𝜓. 

𝒫 = ℘ ∘ 𝜓 

℘ describes the long range variation and 𝜓 describes the short range variation. Due to this separation it 

is possible to describe the effect of the convolution on the local QPAD as a deformed Qpattern, where 

the form factor is controlled by the differential 𝑑℘ of the sharp distance function.  

Fourier transforms cannot be defined properly for functions with a curved parameter space, however, 

the blurred distance function 𝒫 has a well-defined Fourier transform �̃�, which is the product of the 

Fourier transform ℘̃ of the sharp distance function and the Fourier transform �̃� of the Qpattern.  

�̃� = ℘̃ × �̃� 

The Fourier transform pairs and the corresponding canonical conjugated parameter spaces form a 

double-hierarchy model. 

(1) 

(2) 

(3) 

(1) 

(2) 
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The Fourier transform of the blurred distance function equals the product of the Fourier transform of the 

sharp distance function and the Fourier transform of the Qpattern. 

16 blurred distance function exist that together cover all Qpatches. One of the 16 blurred distance 

functions acts as reference. The corresponding sharp distance function and thus the corresponding 

QPAD have the same discrete symmetry set as the lowest level space.  

The fact that the blur 𝜓 mainly has a local effect makes it possible to treat ℘ and 𝜓 seperately32. 

5.7 Local and global QPAD’s 
The model uses Qpatterns in order to implement the fuzziness of the local interspacing. After adaptation 

of the form factor to the differential of the sharp distance function a local QPAD is generated. The non-

transformed local QPAD is a Qpattern. Each Qpattern possess a private inertial reference frame33. The 

superposition of all these local QPAD’s, including the (deformed) higher generations of the Qpatterns, 

forms a global QPAD. Each of the 16 blurred distance functions corresponds to a global QPAD. The global 

QPAD is the image of the corresponding distance function. 

In principle each of the Qpatterns may extend over the whole RQE-space. However, the amplitude of 

these Qpatterns diminishes with the distance from their center point34.  

5.8 Generations 
Photons and gluons correspond to a special kind of Qpatterns. Two photon Qpatterns and six35 gluon 

Qpatterns exist36. 

For fermions, three generations of Qpatterns exist that have non-zero extension and that differ in their 

basic form factor. 

Generations may differ in the frequency at which they oscillate and/or in the number of objects that take 

part in the Qpattern.  

The generator of enumerators is for a part a random number generator. That part is responsible for the 

generation of the Poisson distribution. During the progression step the generator of enumerators can 

depending on its efficiency only generate a certain amount of randomized enumerators. If generators 

with different efficiency exist, then several generations of Qpatterns exist. 

5.9 Elementary particles 
Elementary particles are constituted by the coupling of two Qpatterns that belong to the same 

generation. One of the Qpatterns is the quantum state function of the particle. The other Qpattern can 

be interpreted to implement inertia. Apart from their sign flavors these constituting Qpatterns form the 

                                                           
32 𝜓 concerns quantum physics. ℘ concerns general relativaty. 
33 See the paragraph on inertial reference frames. 
34 See the paragraph on the enumeration process. 
35 In the Standard Model gluons appear as eight superpositions of the six base gluons. 
36 Bertrand’s theorem indicates that under some conditions, the Qpatterns of photons and gluons might be 
described as radial harmonic oscillators. 
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same quaternionic distribution. However, the sign flavor must differ and their progression must have the 

same direction. It means that the density distribution is the same, but the signs of the flows of the 

concerned objects differ between the two distributions.  

Coupling occurs because the two Qpatterns that constitute the coupling take the same location. Because 

they differ in their discrete symmetry they take part in a local oscillation where an outbound move is 

followed by an inbound move and vice versa37. 

If the first Qpattern oscillates, then the second Qpattern oscillates in synchrony or asynchronous. This 

situation may differ per dimension. This results in 32 elementary particle types, 32 anti-particle types 

and 8 non-particle types. The coupling has a small set of observable properties: coupling strength, 

electric charge, color charge and spin. The coupling affects the local curvature of the involved Palestras.  

Qpatterns that belong to the same generation have the same shape. This is explained in the paragraph 

on the enumeration process. The difference between the coupling partners resides in the discrete 

symmetry sets. Thus the properties of the coupled pair are completely determined by the sign flavors of 

the partners. 

HYPOTHESIS III: If the quaternionic quantum state function of an elementary particle couples to a local 

piece of the reference blurred distance function, then the particle is a fermion, otherwise it is a boson. 

For anti-particles the quaternionic conjugate of the reference blurred distance function must be used. 

Non-coupled Qpatterns are bosons. 

The fact that for fermions the reference continuum and the reference enumerator set play a crucial role 

may indicate that the Pauli principle is based on this fact. 

This paper does not give an explanation for the influence on the spin by the fact that the quantum 

state function is connected to an isotropic or an anisotropic Qpattern.  

5.9.1 Differential equations 

Locally, the coupling of two Qpatterns is controlled by a coupling equation 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

𝜙 = 𝛻𝜓; differential equation; holds for continuous quaternionic distributions 

𝛻𝜓 = 𝜙; continuity equation; holds for QPAD’s 

𝛻𝜓 = 𝑚 𝜑; coupling equation; holds for coupled field pairs {𝜓, 𝜑} 

Here 𝛻 is the quaternionic nabla. 𝜓 and 𝜑 are normalized Qpatterns that belong to the same 

generation. 𝜓 plays the role of quantum state function. The coupling factor 𝑚 is a global 

characteristic of the particle. The equation ignores the influence of the sharp distance function 

℘. For elementary particles 𝜓 and 𝜑 are different sign flavors of the same Qpattern: 

                                                           
37 See: Coupling Qpatterns. 

(1) 

(1a) 

(1b) 

(1c) 
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𝜓0 = 𝜑0 

|𝝍| = |𝝋| 

〈𝜓|𝜓〉 = ∫ |𝜓|2 𝑑𝑉 =
𝑉

〈𝜑|𝜑〉 = ∫ |𝜑|2 𝑑𝑉 = 1
𝑉

 

〈𝜙|𝜙〉 = ∫ |𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

〈𝛻𝜓| 𝜑〉 = ∫ (𝛻𝜓) 𝜑 𝑑𝑉 =
𝑉

𝑚 

This makes |𝜙| to the distribution of the local energy and 𝑚 to the total energy of the quantum state 

function. The coupling equation can be split in a real equation and an imaginary equation.  

𝛻0𝜓0 − 〈𝜵, 𝝍〉  = 𝑚 𝜑0 

𝛻0𝝍 + 𝜵𝜓0  + 𝜵 × 𝝍 = 𝑚 𝝋 

Bold characters indicate imaginary quaternionic distributions and operators. Zero subscripts indicate real 

distributions and operators.  

The quantum state function of a particle moving with uniform speed 𝒗 is given by 

𝜓 =  𝜒 +   𝜒0 𝒗 

 𝜒0 =  𝜓0  

Here 𝜒 stands for quantum state function of the particle at rest.  

We introduce new symbols. In order to indicate the difference with Maxwell’s equations we use Gotic 

capitals: 

𝕰 = 𝛻0𝝍 +  𝜵𝜓0 

𝕭 = 𝜵 × 𝝍 

The local field energy 𝐸 is given by: 

𝐸 = |𝜙| = √𝜙0𝜙0 + 〈𝝓, 𝝓〉  = √𝜙0𝜙0 + 〈𝕰, 𝕰〉 + 〈𝕭, 𝕭〉 + 𝟐〈𝕰, 𝕭〉 

The total energy is given by the volume integral 

𝐸𝑡𝑜𝑡𝑎𝑙 = √∫ |𝜙|2 𝑑𝑉
𝑉

 

In a static situation the local energy 𝐸 reduces to 

(2) 

(3) 

(4) 

(5) 

(6) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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𝐸𝑠𝑡𝑎𝑡𝑖𝑐 = √〈𝜵, 𝝍〉2 + 〈𝕰, 𝕰〉 + 〈𝕭, 𝕭〉 

Photons and gluons are not coupled. 

In the standard model the eight gluons are constructed from superpositions of these six base gluons. 

5.9.2 Fourier transform 

In a region of little or no space curvature the Fourier transform of Qpatterns can be taken. 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

ℳ�̃� = �̃� = 𝑚 �̃� 

〈�̃�|ℳ�̃�〉 =  𝑚 〈�̃�|�̃�〉 

ℳ = ℳ0 + 𝞛  

ℳ0�̃�0 − 〈𝞛, �̃�〉  = 𝑚 �̃�0 

ℳ0𝝍 + 𝞛�̃�0  + 𝞛 × �̃�  = 𝑚 �̃� 

∫ �̃�2 𝑑�̃� =
�̃�

∫ (ℳ�̃�)
2

 𝑑�̃� =
�̃�

𝑚2 

In general |�̃�〉 is not an eigenfunction of operator ℳ. That is only true when |�̃�〉 and |�̃�〉 are equal. For 

elementary particles they are equal apart from their difference in discrete symmetry. 

5.9.3 Inertial reference frames 

Each Qpattern possesses an inertial reference frame that represents its current location, its orientation 

and its discrete symmetry. The reference frame corresponds with a Cartesian coordinate system that has 

a well-defined origin. Reference frames of different Qpatterns have a relative position. A Qpattern does 

not move with respect to its own reference frame. However, reference frames of different Qpatterns 

may move relative to each other. The reference frames reside in an affine space. Interaction can take 

place between reference frames that reside in different HBM pages and that are within the range of the 

interaction speed. Within the same HBM page no interaction is possible. Interaction runs from a 

reference frame to a frame that lays in the future of the sender. 

Coupling into elementary particles puts the origins of the reference frames of the coupled Qpatterns at 

the same location. At the same location reference frames are parallel. That does not mean that the axes 

have the same sign. 

  

(14) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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5.9.4 Coupling Qpatterns 

Qpatterns are not static. Instead they oscillate. The interpretation of this oscillation is that on the 

average the Qpattern keeps its location and it keeps its form. Thus an outbound move must be followed 

by an inbound move. The zero order temporal frequency of this oscillation is set by the progression step. 

In this light coupling means the synchronization of the involved Qpatterns. For fermions the oscillation 

can occur in three, two or one dimensions. Bosons may oscillate differently in different dimensions. The 

sharp distance function takes care of the stickier part of the dynamics. The synchronization can involve 

oscillations that are in-phase and oscillations that are in anti-phase. These criterions may act isotropic or 

they may hold in one or two dimensions. 

The coupling uses pairs {𝜓𝑥, 𝜓𝑦} of two sign flavors. Thus the coupling equation runs: 

𝛻𝜓𝑥 = 𝑚 𝜓𝑦 

Corresponding anti-particles obey 

(𝛻𝜓𝑥)∗ = 𝑚 (𝜓𝑦)∗ 

The anti-phase couplings must use different sign flavors. In the figure below 𝜓⓪ acts as the reference 

sign flavor. 

The coupling and its effect on local curvature can be understood from the background of Bertrand’s 

theorem 

 

 

 

 

 

 

 

 

 

 

 

  

(1) 

(2) 

 

Figure 1: Sign flavors 

 

 

Eight sign flavors  

(discrete symmetries) 

Colors N, R, G, B, R̅, G̅, B̅, W 

Right or Left handedness R,L 
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5.9.5 Elementary particle properties 

Elementary particles retain their properties when they are contained in composite particles. 

5.9.5.1 Spin 

HYPOTHESIS IV: Spin relates to the fact whether the coupled Qpattern is the reference Qpattern.  

Each generation has its own reference Qpattern. Fermions couple to the reference Qpattern. Fermions 

have half integer spin. Bosons have integer spin.  

The spin of a composite equals the sum of the spins of its components. 

5.9.5.2 Electric charge 

HYPOTHESIS V: Electric charge depends on the difference and direction of the base vectors for the 

Qpattern pair. Each sign difference stands for one third of a full electric charge. Further it depends on the 

fact whether the handedness differs. If the handedness differs then the sign of the count is changed as 

well.  

The electric charge of a composite is the sum of the electric charge of its components. 

5.9.5.3 Color charge 

HYPOTHESIS VI: Color charge is related to the direction of the anisotropy of the considered Qpattern 

with respect to the reference Qpattern. The anisotropy lays in the discrete symmetry of the imaginary 

part. The color charge of the reference Qpattern is white. The corresponding anti-color is black. The color 

charge of the coupled pair is determined by the colors of its members.  

All composite particles are black or white. The neutral colors black and white correspond to isotropic 

Qpatterns. 

Currently, color charge cannot be measured. In the Standard Model the existence of color charge is 

derived via the Pauli principle. 

5.9.5.4 Mass 

Mass is related to the number of involved Qpatches. It is more directly related to the square root of the 

volume integral of the square of the local field energy 𝐸. Any internal kinetic energy is included in 𝐸. 

The same mass rule holds for composite particles. The fields of the composite particles are dynamic 

superpositions of the fields of their components. 
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5.9.6 Elementary object samples 

With these ingredients we can look for agreements with the standard model. It appears that the 

coverage is complete. But the diversity of the HBM table appears to be not (yet) discernible. 

For the same generation, the real parts of the Qpatterns (that contain the static scalar distribution) are 

all born the same way! When the Qpattern holds position and oscillates there, the imaginary part 

changes sign at each oscillation cycle. In this way the Qpatterns become vibrating micro states. The 

vibration mode may vary per dimension. (The parameter space acts as a reference). 

Elementary particles are couplings of two Qpatterns that may vary in their vibration modes. The 

vibration modes determine the properties of the particle. 

5.9.6.1 Photons and gluons 

Photons and gluons are not coupled. In the standard model the eight gluons are constructed from 

superpositions of these six base gluons. 

type s-type e-charge c-charge Handedness SM Name 

{𝜓⑦} boson 0 N R photon 

{𝜓⓪} boson 0 W L photon 

{𝜓⑥} boson 0 R̅ R gluon 

{𝜓①} boson 0 R L gluon 

{𝜓⑤} boson 0 G̅ R gluon 

{𝜓②} boson 0 G L gluon 

{𝜓④} boson 0 B̅ R gluon 

{𝜓③} boson 0 B L gluon 

 

Photons and gluons are better interpreted as Qpatterns in Fourier space. During their lifetime they do 

not couple. Only at the instance of generation or annihilation they couple to the emitter or absorber.  

Two types of photons exist. One fades away from its point of generation. The other concentrates until it 

reaches the absorber. The act of interaction can be interpreted as a Fourier transform. The Fourier 

transforms converts a distribution in configuration space into a distribution in its canonical conjugated 

space or vice versa. 

For gluons similar things occur, but they happen in fewer than three dimensions. 

5.9.6.2 Leptons and quarks 

According to the Standard Model both leptons and quarks comprise three generations.  They form 22 

particles. Neutrinos will be treated separately. 

5.9.6.2.1 Neutrinos 

Neutrinos are boso-fermions and have zero electric charge. They are leptons, but they seem to belong to 

a separate low-weight family of (three) generations. They couple to a Qpattern that has the same sign-

flavor. The Qpatterns oscillate synchronous. The lowest generation has a very small rest mass. 
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type s-type e-charge c-charge Handedness SM Name 

{𝜓⑦, 𝜓⑦} fermion 0 NN RR neutrino 

{𝜓⓪, 𝜓⓪} Anti-fermion 0 WW LL neutrino 

{𝜓⑥, 𝜓⑥} boson? 0 R̅R̅ RR neutrino 

{𝜓①, 𝜓①} Anti- boson? 0 RR LL neutrino 

{𝜓⑤, 𝜓⑤} boson? 0 G̅G̅ RR neutrino 

{𝜓②, 𝜓②} Anti- boson? 0 GG LL neutrino 

{𝜓④, 𝜓④} boson? 0 B̅B̅ RR neutrino 

{𝜓③, 𝜓③} Anti- boson? 0 BB LL neutrino 

5.9.6.2.2 Leptons 

Pair s-type e-charge c-charge Handedness SM Name 

{𝜓⑦, 𝜓⓪} fermion -1 N LR electron 

{𝜓⓪, 𝜓⑦} Anti-fermion +1 W RL positron 

The generations contain the muon and tau generations of the electrons. The Qpatterns oscillate 

asynchronous in three dimensions.  
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5.9.6.2.3 Quarks 

Pair s-type e-charge c-charge Handedness SM Name 

{𝜓①, 𝜓⓪} fermion -1/3 R LR down-quark 

{𝜓⑥, 𝜓⑦} Anti-fermion +1/3 R̅ RL Anti-down-quark 

{𝜓②, 𝜓⓪} fermion -1/3 G LR down-quark 

{𝜓⑤, 𝜓⑦} Anti-fermion +1/3 G̅ RL Anti-down-quark 

{𝜓③, 𝜓⓪} fermion -1/3 B LR down-quark 

{𝜓④, 𝜓⑦} Anti-fermion +1/3 B̅ RL Anti-down-quark 

{𝜓④, 𝜓⓪} fermion +2/3 B̅ RR up-quark 

{𝜓③, 𝜓⑦} Anti-fermion -2/3 B LL Anti-up-quark 

{𝜓⑤, 𝜓⓪} fermion +2/3 G̅ RR up-quark 

{𝜓②, 𝜓⑦} Anti-fermion -2/3 G LL Anti-up-quark 

{𝜓⑥, 𝜓⓪} fermion +2/3 R̅ RR up-quark 

{𝜓①, 𝜓⑦} Anti-fermion -2/3 R LL Anti-up-quark 

The generations contain the charm and top versions of the up-quark and the strange and bottom 

versions of the down-quark. The Qpatterns oscillate asynchronous in one or two dimensions. 

5.9.6.2.4 Reverse quarks 

Pair s-type e-charge c-charge Handedness SM Name 

{𝜓⓪, 𝜓①} fermion +1/3 R RL down-r-quark 

{𝜓⑦, 𝜓⑥} Anti-fermion -1/3 R̅ LR Anti-down-r-quark 

{𝜓⓪, 𝜓②} fermion +1/3 G RL down-r-quark 

{𝜓⑦, 𝜓⑤} Anti-fermion -1/3 G̅ LR Anti-down-r-quark 

{𝜓⓪, 𝜓③} fermion +1/3 B RL down-r-quark 

{𝜓⑦, 𝜓④} Anti-fermion -1/3 B̅ LR Anti-down-r_quark 

{𝜓⓪, 𝜓④} fermion -2/3 B̅ RR up-r-quark 

{𝜓⑦, 𝜓③} Anti-fermion +2/3 B LL Anti-up-r-quark 

{𝜓⓪, 𝜓⑤} fermion -2/3 G̅ RR up-r-quark 

{𝜓⑦, 𝜓②} Anti-fermion +2/3 G LL Anti-up-r-quark 

{𝜓⓪, 𝜓⑥} fermion -2/3 R̅ RR up-r-quark 

{𝜓⑦, 𝜓①} Anti-fermion +2/3 R LL Anti-up-r-quark 

The generations contain the charm and top versions of the up-r-quark and the strange and bottom 

versions of the down-r-quark. The Qpatterns oscillate asynchronous in one or two dimensions. 
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5.9.6.3 W-particles 

The 18 W-particles have indiscernible color mix. 𝑊+and 𝑊− are each other’s anti-particle. 

Pair s-type e-charge c-charge Handedness SM Name 

{𝜓⑥, 𝜓①} boson -1 R̅R RL 𝑊− 

{𝜓①, 𝜓⑥} Anti-boson +1 RR̅ LR 𝑊+ 

{𝜓⑥, 𝜓②} boson -1 R̅G RL 𝑊− 

{𝜓②, 𝜓⑥} Anti-boson +1 GR̅ LR 𝑊+ 

{𝜓⑥, 𝜓③} boson -1 R̅B RL 𝑊− 

{𝜓③, 𝜓⑥} Anti-boson +1 BR̅ LR 𝑊+ 

{𝜓⑤, 𝜓①} boson -1 G̅G RL 𝑊− 

{𝜓①, 𝜓⑤} Anti-boson +1 GG̅ LR 𝑊+ 

{𝜓⑤, 𝜓②} boson -1 G̅G RL 𝑊− 

{𝜓②, 𝜓⑤} Anti-boson +1 GG̅ LR 𝑊+ 

{𝜓⑤, 𝜓③} boson -1 G̅B RL 𝑊− 

{𝜓③, 𝜓⑤} Anti-boson +1 BG̅ LR 𝑊+ 

{𝜓④, 𝜓①} boson -1 B̅R RL 𝑊− 

{𝜓①, 𝜓④} Anti-boson +1 RB̅ LR 𝑊+ 

{𝜓④, 𝜓②} boson -1 B̅G RL 𝑊− 

{𝜓②, 𝜓④} Anti-boson +1 GB̅ LR 𝑊+ 

{𝜓④, 𝜓③} boson -1 B̅B RL 𝑊− 

{𝜓③, 𝜓④} Anti-boson +1 BB̅ LR 𝑊+ 

The Qpatterns oscillate differently in multiple dimensions. 

5.9.6.4 Z-candidates 

The 12 Z-particles have indiscernible color mix. 

Pair s-type e-charge c-charge Handedness SM Name 

{𝜓②, 𝜓①} boson 0 GR LL Z 

{𝜓⑤, 𝜓⑥} Anti-boson 0 G̅R̅ RR Z 

{𝜓③, 𝜓①} boson 0 BR LL Z 

{𝜓④, 𝜓⑥} Anti-boson 0 R̅B̅ RR Z 

{𝜓③, 𝜓②} boson 0 BR LL Z 

{𝜓④, 𝜓⑤} Anti-boson 0 R̅B̅ RR Z 

{𝜓①, 𝜓②} boson 0 RG LL Z 

{𝜓⑥, 𝜓⑤} Anti-boson 0 R̅G̅ RR Z 

{𝜓①, 𝜓③} boson 0 RB LL Z 

{𝜓⑥, 𝜓④} Anti-boson 0 R̅B̅ RR Z 

{𝜓②, 𝜓③} boson 0 RB LL Z 

{𝜓⑤, 𝜓④} Anti-boson 0 R̅B̅ RR Z 

The Qpatterns oscillate differently in multiple dimensions. 
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5.10 Physical fields 
Elementary particles conserve their properties in higher level bindings. These properties are sources to 

new fields. Besides the photons and the gluons these fields are the physical fields that we know. These 

new fields can be described by quaternionic distributions and when they cover large numbers of 

particles they can be described with quaternionic distributions that contain a scalar potential and a 

vector potential like the QPAD's described above. However, if they contain multiple charge carriers, then 

these charge carriers are particles and not Qpatches and the charge is a property of the corresponding 

particle.  

5.11 Gravitation field 
One of the physical fields, the gravitation field describes the local curvature of the reference Palestra. It 

equals the scalar potential field that corresponds to the real part of the quantum state function. 

The gravitation field has much in common with the right term in the coupling equation. 

 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

 

Both 𝜓 and 𝜑 are normalized. So, 𝜙 can represent the gravitation potential field of the considered 

particle.  

Now let 𝜙 represent the quaternionic potential of a set of massive particles. It is a superposition of single 

charge potentials.  

𝜙 = 𝜙0 + 𝝓 =  ∑ 𝜙𝑖

𝑖

=  ∑ 𝑚𝑖  𝜑𝑖

𝑖

 

The particles may represent composites. In that case the mass 𝑚𝑖 includes the internal kinetic energy of 

the corresponding particle. Here 𝜙 and 𝜙𝑖  are not considered as a QPAD, but as quaternionic 

distribution. All massive particles attract each other. In superpositions, gravitational fields tend to 

enforce each other. 

5.12 Electromagnetic fields 
The electric charge 𝑒𝑖 is represented similarly as𝑚𝑖, but where 𝑚𝑖 is always positive, the electric charge 

𝑒𝑖 can be either positive or negative. Equal signs repel, opposite signs attract each other. Superposition 

of the fields must include the sign. In superpositions, arbitrary electronic fields tend to neutralize each 

other. Moving electric charges correspond to a vector potential and the curl of this vector potential 

corresponds to a magnetic field. 

𝜙 = 𝜙0 + 𝝓 = ∑ 𝑒𝑖  𝜑𝑖

𝑖

 

(1) 

(2) 

(1) 
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Here 𝜙 is the quaternionic electro potential. It is a superposition of single charge potentials 𝜙𝑖. 𝜙0 is the 

scalar potential. 𝝓 is the vector potential. The values of the electric charge sources 𝑒𝑖 are included in 𝜙. 

𝑬 = 𝛻0𝝓 +  𝜵𝜙0 

𝑩 = 𝜵 × 𝝓 

5.13 Photons and gluons 
Photons and gluons are QPAD’s. 

In configuration space they obey 

𝛻𝜓 = 0 

𝛻2𝜓 = 0 

Photons and gluons are better considered as QPAD’s in the canonical conjugated space of the 

configuration space. 

The Fourier transform of a Qpattern has the same shape as its Fourier transform. Both approach the 

shape of a 3D Gaussian distribution. 

  

(2) 

(3) 

(1) 

(2) 
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6 Continuity equation 

6.1 From coupling equation to continuity equation 
Locally, the coupling of two Qpatterns is controlled by a coupling equation 

𝛻𝜓 = 𝑚 𝜑 

The coupling equation is equivalent is equivalent to a quaternionic differential equation. 

𝜙 = 𝛻𝜓 

The coupling equation is also equivalent to a quaternionic differential continuity equation. 

𝛻𝜓 = 𝜙 

This is best comprehended when the corresponding integral equation is investigated. 

6.2 The differential and integral continuity equations 
Let us approach the balance equation from the integral variety of the balance equation. 

When 𝜌0(𝑞) is interpreted as a charge density distribution, then the conservation of the corresponding 

charge38 is given by the continuity equation: 

 

Total change within V = flow into V + production inside V 

In formula this means: 

𝑑

𝑑𝜏
∫  𝜌0 𝑑𝑉

𝑉

= ∮ �̂�𝜌0

𝒗

𝑐
 𝑑𝑆

𝑆

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

The conversion from formula (2) to formula (3) uses the Gauss theorem39. Here �̂� is the normal vector 

pointing outward the surrounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which the charge density 𝜌0(𝜏, 𝒒) 

enters volume V and 𝑠0 is the source density inside V. In the above formula 𝝆 stands for 

                                                           
38 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 

(1) 

(2) 

(3) 

(1) 

 (2) 

(3) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
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𝝆 =  𝜌0𝒗/𝑐  

 

It is the flux (flow per unit area and unit time) of 𝜌0 . 

 

The combination of 𝜌0(𝜏, 𝒒) and 𝝆(𝜏, 𝒒) is a quaternionic skew field 𝜌(𝜏, 𝒒) and can be seen as a 

probability amplitude distribution (QPAD). 

 

𝜌 ≝ 𝜌0 + 𝝆 

 

𝜌(𝜏, 𝒒)𝜌∗(𝜏, 𝒒) can be seen as an overall probability density distribution of the presence of the carrier of 

the charge. 𝜌0(𝜏, 𝒒) is a charge density distribution. 𝝆(𝜏, 𝒒) is the current density distribution. 

This results in the law of charge conservation:  

 

𝑠0(𝜏, 𝒒) = ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, (𝜌0(𝜏, 𝒒)𝒗(𝜏, 𝒒) + 𝛁 × 𝒂(𝜏, 𝒒))〉 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, 𝝆(𝜏, 𝒒) + 𝑨(𝜏, 𝒒)〉 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝜏, 𝒒), 𝛁𝜌0(𝜏, 𝒒)〉 ∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒) 

 

∓〈𝛁, 𝑨(𝜏, 𝒒)〉 

 

The blue colored ± indicates quaternionic sign selection through conjugation of the field 𝜌(𝜏, 𝒒). The 

field 𝒂(𝜏, 𝒒) is an arbitrary differentiable vector function. 

 

〈𝛁, 𝛁 × 𝒂(𝜏, 𝒒)〉 = 0 

 

                                                                                                                                                                                            
39 http://en.wikipedia.org/wiki/Divergence_theorem  

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Divergence_theorem
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𝑨(𝜏, 𝒒) ≝  𝛁 × 𝒂(𝜏, 𝒒) is always divergence free. In the following we will neglect 𝑨(𝜏, 𝒒). 

 

Equation (6) represents a balance equation for charge density. What this charge actually is, will be left in 

the middle. It can be one of the properties of the carrier or it can represent the full ensemble of the 

properties of the carrier. 

 

Up to this point the investigation only treats the real part of the full equation. The full continuity 

equation runs: 

 

𝑠(𝜏, 𝒒) = ∇𝜌(𝜏, 𝒒) = 𝑠0(𝜏, 𝒒) + 𝒔(𝜏, 𝒒) 

 

=  ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝛁, 𝝆(𝜏, 𝒒)〉 ± ∇0𝝆(𝜏, 𝒒) +  𝛁𝜌0(𝜏, 𝒒) ± (±𝛁 × 𝝆(𝜏, 𝒒)) 

 

= ∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝜏, 𝒒), 𝛁𝜌0(𝜏, 𝒒)〉 ∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒)  

 

±∇0𝒗(𝜏, 𝒒) + ∇0𝜌0(𝜏, 𝒒) +  𝛁𝜌0(𝜏, 𝒒) 

 

±(±(𝜌0(𝜏, 𝒒) 𝛁 × 𝒗(𝜏, 𝒒) − 𝒗(𝜏, 𝒒) × 𝛁𝜌0(𝜏, 𝒒)) 

 

𝑠0(𝜏, 𝒒) = 2∇0𝜌0(𝜏, 𝒒) ∓ 〈𝒗(𝑞), 𝛁𝜌0(𝜏, 𝒒)〉 ∓ 〈𝛁, 𝒗(𝜏, 𝒒)〉 𝜌0(𝜏, 𝒒) 

 

𝒔(𝜏, 𝒒) = ±∇0𝒗(𝜏, 𝒒) ±  𝛁𝜌0(𝜏, 𝒒) 

 

± (±(𝜌0(𝜏, 𝒒) 𝛁 × 𝒗(𝜏, 𝒒) − 𝒗(𝜏, 𝒒) × 𝛁𝜌0(𝜏, 𝒒))) 

 

(8) 

(9) 

(10) 
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The red sign selection indicates a change of handedness by changing the sign of one of the imaginary 

base vectors. Conjugation also causes a switch of handedness. It changes the sign of all three imaginary 

base vectors. 

In its simplest form the full continuity equation runs: 

 

𝑠(𝒒, 𝜏) = ∇𝜌(𝒒, 𝜏) 

 

Thus the full continuity equation specifies a quaternionic distribution 𝑠 as a flat differential ∇𝜌. 

 

When we go back to the integral balance equation, then holds for the imaginary parts: 

 

𝑑

𝑑𝜏
∫ 𝝆 𝑑𝑉

𝑉

= − ∮�̂�𝜌0 𝑑𝑆
𝑆

− ∮�̂� × 𝝆 𝑑𝑆
𝑆

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

For the full integral equation holds: 

 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

Here �̂� is the normal vector pointing outward the surrounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which 

the charge density 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. In the above formula 𝜌 

stands for 

(4) 

(5) 

(6) 

(7) 
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𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 𝜌0 . 𝑡 stands for progression (not 

coordinate time). 

  

(8) 
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7 Inertia 
We use the ideas of Denis Sciama404142. 

7.1 Inertia from coupling equation 
In order to discuss inertia we must reformulate the coupling equation. 

𝛻𝜓 = 𝑚 𝜑 

𝛻0𝜓0 − 〈𝛻, 𝜓〉  = 𝑚 𝜑0 

𝛻0𝜓 + 𝛻𝜓0  + 𝛻 × 𝜓 = 𝕰 + 𝕭 = 𝑚 𝜑 

We will write 𝜓 as a superposition 

𝜓 =  𝜒 +  𝜒0 𝒗 

𝜓0 =  𝜒0 

𝝍 =  𝝌 +  𝜒0 𝒗 

𝜒 represents the rest state of the object. With respect to progression, it is a constant.  

𝛻0𝜒 = 0 

For the elementary particles the coupled distributions { 𝜓 , 𝜑 } have the same real part. 

𝜓0 =  𝜑0 

𝛻0𝝍 =  𝜒0 �̇� 

Remember 

𝕰 = 𝛻0𝝍 +  𝜵𝜓0 

𝜒0 �̇� = 𝕰 − 𝜵𝜓0 

In static conditions 𝒗 represents a uniform speed of linear movement. However, if the uniform speed 

turns into acceleration �̇� ≠ 𝟎, then an extra field of size 𝜒0�̇� is generated that counteracts the 

acceleration. The Qpattern does not change, thus 𝜵𝜓0 does not change. Also 𝕭 does not change. This 

means that the acceleration of the particle corresponds to an extra 𝕰 field that counteracts the 

acceleration. On its turn it corresponds with a change of the coupling partner 𝜑. That change involves 

the coupling strength 𝑚. The counteraction is felt as inertia. 

                                                           
40 http://arxiv.org/abs/physics/0609026v4.pdf  
41 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
42http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   
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(2) 
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(4) 

(5) 

(6) 

(7) 

(8) 
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http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://rmp.aps.org/abstract/RMP/v36/i1/p463_1
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7.2 Background potential 
The superposition of all real parts of Qpatterns of a given generation produces a uniform background 

potential. At a somewhat larger distance 𝑟 these real Qpattern parts diminish in their amplitude as 1/𝑟. 

However, the number of involved Qpatterns increases with the covered volume. Further, on average the 

distribution of the Qpatterns is isotropic and uniform. The result is a huge (real) local potential 𝛷 

𝛷 =  − ∫
�̅�0

𝑟
𝑑𝑉

𝑉

=  −�̅�0 ∫
𝑑𝑉

𝑟𝑉

= 2𝜋 𝑅2�̅�0 

After averaging the Qpatterns reduce to their real parts. 

�̅� =  �̅�0;  �̅� =  𝟎 

Apart from its dependence on the average value of �̅�0, 𝛷 is a huge constant. Sciama relates 𝛷 to the 

gravitational constant 𝐺. 

𝐺 = (−𝑐2) ⁄ 𝛷 

If the considered local particle moves relative to the universe with a uniform speed 𝒗, then a vector 

potential 𝑨 is generated.  

𝑨   = − ∫
𝒗 �̅�0

𝑐 𝑟
𝑑𝑉

𝑉

 

Both �̅�0ρ and v are independent of r. The product 𝒗 �̅�0 represents a current. Together with the constant 

c they can be taken out of the integral. Thus 

𝑨 =  𝛷 𝒗/𝑐 

𝕰 =  −𝜵𝜱 −
𝟏

𝒄
· �̇�  

If we exclude the first term because it is negligible small, we get: 

𝕰 =  −
𝛷

𝑐2
 �̇� = 𝐺 �̇� 

Like 𝜒0 and 𝝌 forms a QPAD 𝜒, the fields 𝛷 and 𝑨 together form a QPAD. However, this time the fields 

𝛷 and 𝑨 do not represent parts of a Qpattern. The 𝜒 Qpattern differs fundamentally from the QPAD that 

is formed by 𝛷 and 𝑨. Instead these fields represent the distribution of the averages of the quantum 

state functions of distant particles and the distribution of the currents of these patterns.  

7.3 Interpretation 

As soon as an acceleration of the local item occurs, an extra component �̇� of field 𝕰 appears that 

corresponds to acceleration �̇�.  

In our setting the component 𝜵𝛷 of the field 𝕰 is negligible. With respect to this component the items 

compensate each other’s influence. This means that if the influenced subject moves with uniform speed 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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𝒗, then 𝕰 ≈ 0. However, a vector potential 𝑨 is present due to the movement of the considered item. 

Any acceleration of the considered local item goes together with an extra non-zero 𝕰 field. In this way 

the universe of particles causes inertia in the form of a force that acts upon the 𝜒0 distribution of the 

accelerating item.  

If we compare this result with the previous analysis of inertia, then it becomes sensible to interpret the 

coupling partner of the quantum state function as the representation of the superposition of the tails 

of the quantum state functions of distant particles. 

The amplitude of 𝛷 says something about the number of coupled Qpatterns of the selected generation 

that exist in universe. If it is constant and the average interspacing grows with progression, then the 

universe dilutes with increasing progression. Also the volume of the reference continuum over which the 

integration must be done will increase with progression. The total energy of these coupled Qpatterns 

that is contained in universe equals: 

 𝐸𝑡𝑜𝑡𝑎𝑙 = √∫ |
�̅�0

𝑟
|
2

𝑑𝑉
𝑉

 

7.4 Isotropic vector potential 
The scalar background potential is accompanied by a similar background vector potential that is caused 

by the fact that the considered volume that was investigated in order to calculate the scalar background 

potential is enveloped by a surface that delivers a non-zero surface integral. The isotropic background 

potential corresponds to an isotropic scaling factor. This factor was already introduced in the first phases 

of the model. 

8 Gravitation 
The sharp distance function can act as the base of a quaternionic gravitation theory. The sharp distance 

function has sixteen partial derivatives that combine in a differential. 

8.1 Palestra 
All quantum state functions share their parameter space as affine spaces. Due to the fact that the 

coupling of Qpatterns affects this parameter space, the Palestra is curved. The curvature is not static. 

With other words the Qpatches in the parameter space move and densities in the distribution of these 

patches change. For potential observers, the Palestra is the place where everything classically happens. 

The Palestra comprises the whole universe. 

8.1.1 Spacetime metric 

The Palestra is defined with respect to a flat parameter space, which is spanned by the rational 

quaternions43. We already introduced the existence of a smallest rational number, which is used to 

arrange interspace freedom. The specification of the set of Qpatches is performed by a continuous 

                                                           
43 http://en.wikipedia.org/wiki/Quaternion_algebra#Quaternion_algebras_over_the_rational_numbers 
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quaternionic distribution ℘(𝑥) that acts as a distance function. This distance function defines a 

quaternionic infinitesimal interval 𝑑𝑠. On its turn this definition defines a metric44. 

 

𝑑𝑠(𝑥)  = 𝑑𝑠𝜈(𝑥)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑥𝜇
𝑑𝑥𝜇

𝜇=0…3

=  𝑞𝜇(𝑥)𝑑𝑥𝜇 

= ∑ ∑ 𝑒𝜈

𝜕℘𝜈

𝜕𝑥𝜇
𝑑𝑥𝜇

𝜈=0,…3

𝜇=0…3

= ∑ ∑ 𝑒𝜈𝑞𝜈
𝜇

𝑑𝑥𝜇

𝜈=0,…3

𝜇=0…3

 

 

The base 𝑒𝜈 and the coordinates 𝑥𝜇 are taken from the flat parameter space of ℘(𝑥). That parameter 

space is spanned by the quaternions. The definition of the quaternionic metric uses a full derivative 𝑑℘ 

of the distance function ℘(𝑥). This full derivative differs from the quaternionic nabla 𝛻, which ignores 

the curvature of the parameter space. On its turn 𝑑℘ ignores the blur of 𝒫. 

The distance function ℘(𝑥) may include an isotropic scaling function 𝑎(𝜏) that only depends on 

progression 𝜏. It defines the expansion/compression of the Palestra. 

𝑑𝑠 is the infinitesimal quaternionic step that results from the combined real valued infinitesimal 𝑑𝑥𝜇 

steps that are taken along the 𝑒𝜇 base axes in the (flat) parameter space of ℘(𝑥). 

𝑑𝑥0 = 𝑐 𝑑𝜏 plays the role of the infinitesimal space time interval d𝑠𝑠𝑡
45. It is a physical invariant. 𝑑𝜏 plays 

the role of the proper time interval and it equals the infinitesimal progression interval. The progression 

step is an HBM invariant. Without curvature, 𝑑𝑡 in ‖𝑑𝑠‖  =  𝑐 𝑑𝑡 plays the role of the infinitesimal 

coordinate time interval. 

𝑐2 𝑑𝑡2 =  𝑑𝑠 𝑑𝑠∗ = 𝑑𝑥0
2 + 𝑑𝑥1

2+𝑑𝑥2
2+𝑑𝑥3

2 

 

𝑑𝑥0
2 = 𝑑𝑠𝑠𝑡

2 = 𝑐2 𝑑𝑡2 −  𝑑𝑥1
2−𝑑𝑥2

2−𝑑𝑥3
2 

 

𝑑𝑥0
2 is used to define the local spacetime metric tensor. With that metric the Palestra is a pseudo-

Riemannian manifold that has a Minkowski signature. When the metric is based on 𝑑𝑠2, then the 

                                                           
44 The intervals that are constituted by the smallest rational numbers represent the infinitesimal steps. Probably 
the hair of mathematicians are raised when we treat the interspacing as an infinitesimal steps. I apologize for that. 
45 Notice the difference between the quaternionic interval 𝑑𝑠 and the spacetime interval 𝑑𝑠𝑠𝑡 

(1) 

(2) 

(3) 
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Palestra is a Riemannian manifold with a Euclidean signature. The Palestra comprises the whole universe. 

It is the arena where everything happens. 

For the distance function holds 

𝜕2℘

𝜕𝑥𝜇𝜕𝑥𝜈
=

𝜕2℘

𝜕𝑥𝜈𝜕𝑥𝜇
 

And similarly for higher-order derivatives. Due to the spatial continuity of the distance function ℘(𝑥), 

the quaternionic metric as it is defined above is far more restrictive than the metric tensor that that is 

used in General Relativity: 

𝑑𝑠2 = 𝑔𝑖𝑘  𝑑𝑥𝑖 𝑑𝑥𝑘 

Still 

𝑔𝑖𝑘 = 𝑔𝑘𝑖 

8.1.2 The Palestra step 

When nature steps with universe (Palestra) wide steps during a progression step ∆x0, then in the 

Palestra a quaternionic step ∆s℘ will be taken that differs from the corresponding flat step ∆𝑠𝑓 

∆𝑠𝑓 = ∆𝑥0 + 𝒊 ∆𝑥1 + 𝒋 ∆𝑥2 + 𝒌 ∆𝑥3 

∆𝑠℘ = 𝑞0∆𝑥0 + 𝑞1 ∆𝑥1 + 𝑞2 ∆𝑥2 + 𝑞3 ∆𝑥3 

The coefficients qμ are quaternions. The ∆xμ are steps taken in the (flat) parameter space of the distance 

function ℘(x). 

8.1.3 Pacific space and black regions. 

If we treat the Palestra as a continuum, then the parameter space of the distance function is a flat space 

that it is spanned by the number system of the quaternions. This parameter space gets the name “Pacific 

space”. This is the space where the RQE’s live. If in a certain region of the Palestra no matter is present, 

then in that region the Palestra is hardly curved. It means that in this region the Palestra is nearly equal 

to the parameter space of the distance function.  

The Pacific space has the advantage that when distributions are converted to this parameter space the 

Fourier transform of the converted distributions is not affected by curvature. 

In a region where the curvature is high, the Palestra step comes close to zero. At the end where the 

Palestra step reaches the smallest rational value, an information horizon is established. For a distant 

observer, nothing can pass that horizon. The information horizon encloses a black region. Inside that 

region the quantum state functions are so densely packed that they lose their identity. However, they do 

not lose their sign flavor. The result is the formation of a single quantum state function that consists of 

the superposition of all contributing quantum state functions. The resulting black body has mass, electric 

charge and angular momentum. The quantum state function of a black region is quantized. Due to the 

(4) 

(5) 

(6) 

(1) 

(2) 



48 
 

fact that no information can escape through the information horizon, the inside of the horizon is 

obscure. No experiment can reveal its content. It does not contain a singularity at its center. All 

characteristics of the black region are contained in its quantum state function46. 

The distance function ℘(𝑥) is a continuous quaternionic distribution. Like all continuous quaternionic 

distributions it contains two fields. It is NOT a QPAD. It does not contain density distributions. 

8.1.4 Start of the universe. 

At the start of the universe the package density was so high that also in that condition only one mixed 

QPAD can exist. That QPAD was a superposition of QPAD’s that have different sign flavors. Only when 

the universe expands enough, multiple individual Qpatterns may have been generated. In the beginning, 

these QPAD’s where uncoupled. 

  

                                                           
46 See Cosmological hstory 
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9 Modularization 
A very powerful influencer is modularization. Together with the corresponding encapsulation it has a 

very healthy influence on the relational complexity of the ensemble of objects on which modularization 

works. The encapsulation takes care of the fact that most relations are kept internal to the module. 

When relations between modules are reduced to a few types, then the module becomes reusable. The 

most Influential kind of modularization is achieved when modules can be configured from lower order 

modules. 

Elementary particles can be considered as the lowest level of modules. All composites are higher level 

modules. 

When sufficient resources in the form of reusable modules are present, then modularization can reach 

enormous heights. On earth it was capable to generate intelligent species. 

9.1 Complexity 
Potential complexity of a set of objects is a measure that is defined by the number of potential relations 
that exist between the members of that set.  
If there are n elements in the set, then there exist n*(n-1) potential relations. 

Actual complexity of a set of objects is a measure that is defined by the number of relevant relations 
that exist between the members of the set.  
 
In human affairs and with intelligent design it takes time and other resources to determine whether a 
relation is relevant or not. Only an expert has the knowledge that a given relation is relevant. Thus it is 
advantageous to have as little irrelevant potential relations as is possible, such that mainly relevant and 
preferably usable relations result.  
 
Physics is based on relations. Quantum logic is a set of axioms that restrict the relations that exist 
between quantum logical propositions. Via its isomorphism with Hilbert spaces quantum logic forms a 
fundament for quantum physics. Classical logic is a similar set of restrictions that define how we can 
communicate logically. Like classical logic, quantum logic only describes static relations. Traditional 
quantum logic does not treat physical fields and it does not touch dynamics. However, the model that is 
based on traditional quantum logic can be extended such that physical fields are included as well and by 
assuming that dynamics is the travel along subsequent versions of extended quantum logics, also 
dynamics will be treated. The set of propositions of traditional quantum logic is isomorphic with the set 
of closed subspaces of a Hilbert space. This is a mathematical construct in which quantum physicists do 
their investigations and calculations. In this way fundamental physics can be constructed. Here holds 
very strongly that only relevant relations have significance. 

9.2 Relationalcomplexity 
We define relational complexity as the ratio of the number of actual relations divided by the number of 
potential relations. 

9.3 Interfaces 
Modules connect via interfaces. Interfaces are used by interactions. Interactions run via (relevant) 

relations. Relations that act within modules are lost to the outside world of the module. Thus interfaces 
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are collections of relations that are used by interactions. Inbound interactions come from the past. 

Outbound interactions go to the future. Two-sided interactions are cyclic. They take at least two 

progression steps. They are either oscillations or rotations of the inter-actor. 

9.4 Interface types 
Apart from the fact that they are inbound, outbound or cyclic the interfaces can be categorized with 

respect to the type of relations that they represent. Each category corresponds to an interface type. An 

interface that possesses a type and that installs the possibility to couple the corresponding module to 

other modules is called a standard interface.  

9.5 Modular subsystems 
Modular subsystems consist of connected modules. They need not be modules. They become modules 

when they are encapsulated and offer standard interfaces that makes the encapsulated system a 

reusable object. 

The cyclic interactions bind the corresponding modules together. Like the coupling factor of elementary 

particles characterizes the binding of the pair of Qpatterns will a similar characteristic characterize the 

binding of modules. 

This binding characteristic directly relates to the total energy of the constituted sub-system. Let 𝜓 

represent the renormalized superposition of the involved distributions. 

𝛻𝜓 = 𝜙 = 𝑚 𝜑 

∫ |𝜓|2 𝑑𝑉 =
𝑉

∫ |𝜑|2 𝑑𝑉 = 1
𝑉

 

∫ |𝜙|2 𝑑𝑉 =
𝑉

𝑚2 

Here again 𝑚 represents total energy. 

The binding factor is the total energy of the sub-system minus the sum of the total energies of the 

separate constituents. 

9.6 Relational complexity indicators 
The inner product of two Hilbert vectors is a measure of the relational complexity of the combination. 

A Hilbert vector represents a linear combination of atoms. When all coefficients are equal, then the 

vector represents an assembly of atoms. When the coefficients are not equal, then the vector represents 

a weighted assembly of atoms. 

For two normalized vectors |𝑎⟩ and |𝑏⟩: 

〈𝑎|𝑎〉 = 1 

(1) 

(2) 

(3) 

(1) 
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〈𝑏|𝑏〉 = 1 

〈𝑎|𝑏〉 = 0 means |𝑎⟩ and |𝑏⟩ are not related. 

〈𝑎|𝑏〉 ≠ 0 means |𝑎⟩ and |𝑏⟩ are related. 

|〈𝑎|𝑏〉| = 1 means |𝑎⟩ and |𝑏⟩ are optimally related. 

9.7 Modular actions 
Subsystems that have the ability to choose their activity can choose to organize their actions in a 

modular way. As with static relational modularization the modular actions reduce complexity and for the 

decision maker it eases control. 

9.8 Random design versus intelligent design 
At lower levels of modularization nature design modular structures in a stochastic way. This renders the 

modularization process rather slow. It takes a huge amount of progression steps in order to achieve a 

relatively complicated structure. Still the complexity of that structure can be orders of magnitude less 

than the complexity of an equivalent monolith. 

As soon as more intelligent sub-systems arrive, then these systems can design and construct modular 

systems in a more intelligent way. They use resources efficiently. This speeds the modularization process 

in an enormous way. 

  

(2) 

(3) 

(4) 

(5) 
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10 Functions that are invariant under Fourier transformation. 
A subset of the (quaternionic) distributions have the same shape in configuration space and in the 

linear canonical conjugated space. 

We call them dual space distributions. It are functions that are invariant under Fourier 

transformation47. 

The Qpatterns and the harmonic and spherical oscillations belong to this class. 

Fourier-invariant functions show iso-resolution, that is, ∆p= ∆q in the Heisenberg’s uncertainty 

relation. 

10.1 Natures preference 
Nature seems to have a preference for this quaternionic distributions that are invariant under 

Fourier transformation. 

A possible explanation is the two-step generation process, where the first step is realized in 

configuration space and the second step is realized in canonical conjugated space. The whole pattern 

is generated two-step by two-step. 

The only way to keep coherence between a distribution and its Fourier transform that are both 

generated step by step is to generate them in pairs. 

11 Events 

11.1 Generations and annihilations  
At the instant of generation or annihilation, the enumerator generator will change its mode and the 

Qpattern that will be generated changes its mode as well. 

The number of enumerator generations per step that contributes to a Qpattern was left open. However, 

if this number is larger than one, then it is difficult to understand that at a given instant the whole 

Qpattern changes its mode. The Qpattern has no knowledge of the mode that its members are in. The 

individual members might have that knowledge. In that case it is part of their charge. 

So, from now on we suppose that the Qpatterns will be generated such that one member is generated 

per progression step. An event then indicates that the enumeration generator changes its generation 

mode. 

For example, when a particle is annihilated the generator switches from generating a Qpattern in 

configuration space to generating an equivalent pattern in the canonical conjugated space. The result is 

that the pattern is no longer coupled and becomes a photon or a gluon. Of course the reverse procedure 

occurs at the generation of a particle. 

                                                           
47 Q-Formulӕ contains a section about functions that are invariant under Fourier transformation. 



53 
 

11.2 Emissions and absorptions 
When only a part of a composite annihilates, then a similar process can take place. A sub-module is 

annihilated and either the whole energy is emitted in the form of radiation or only part of the energy is 

emitted and the rest is used to constitute a new particle at a lower energy level.  

It is also possible that a complete sub-module is emitted. This can be done in a two-step mode, where 

first the sub-module is converted into radiation and subsequently the sub-module is regenerated. 

Absorption is described as the reverse process. 

11.3 Oscillating interactions 
Oscillating interactions are implemented by cyclic interfaces. They consist of a sequence of annihilations 

and generations, where the locations alternate. 

11.4 Movements 
The fact that a particle moves, and the fact that a Qpattern is generated with only one Qtarget per 

progression step means that during a movement the Qpattern is spread along the path of movement. 

12 Cosmology 

12.1 Cosmological view 
Even when space was fully densely packed with matter (or another substance) then nothing dynamic 

would happen. Only when sufficient interspacing comes available dynamics becomes possible. 

The Hilbert Book Model exploits this possibility. It sees black regions as local returns to the original 

condition. 

12.2 The cosmological equations 
The integral equations that describe cosmology are: 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

Here �̂� is the normal vector pointing outward the surrounding surface S, 𝒗(𝜏, 𝒒) is the velocity at which 

the charge density 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. In the above formula 𝜌 

stands for 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

(1) 

(2) 

(3) 
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It is the flux (flow per unit of area and per unit of progression) of 𝜌0 . 𝑡 stands for progression (not 

coordinate time). 

12.3 Inversion surfaces 
An inversion surface 𝑆 is characterized by: 

∮�̂�𝜌 𝑑𝑆
𝑆

= 0 

12.4 Cosmological history 
The inversion surfaces divide universe into compartments. Think that these universe pockets contain 

matter that is on its way back to its natal state. If there is enough matter in the pocket this state forms a 

black region. The rest of the pocket is cleared from its mass content. Still the size of the pocket may 

increase. This represents the expansion of the universe. Inside the pocket the holographic principle 

governs. The black region represents the densest packaging mode of entropy. 

The pockets may merge. Thus at last a very large part of the universe may return to its birth state, which 

is a state of densest packaging of entropy. 

Then the resulting mass which is positioned at a huge distance will enforce a uniform attraction. This 

uniform attraction will install an isotropic extension of the central package. This will disturb the densest 

packaging quality of that package. The motor behind this is formed by the combination of the attraction 

through distant massive particles, which installs an isotropic expansion and the influence of the small 

scale random localization which is present even in the state of densest packaging. 

This describes an eternal process that takes place in and between the pockets of an affine space. 

12.5 Entropy 
As a whole, universe expands. Locally regions exist where contraction overwhelms the global expansion. 

These regions are separated by inversion surfaces. The regions are characterized by their inversion 

surface. Within these regions the holographic principle resides. The fact that the universe as a whole 

expands means that the average size of the encapsulated regions increases. 

The holographic principle says that the total entropy of the region equals the entropy of a black region 

that would contain all matter in the region. Black regions represent regions where entropy is optimally 

packed. 

Thus entropy is directly related to the interspacing between enumerators. With other words, local 

entropy is related to local curvature. 

13 Recapitulation 
The model starts by taking quantum logic as its foundation. It could as well have started by taking an 

infinite dimensional separable Hilbert space as its foundation. However, in that case the special role of 

base vectors would not so easily have been brought to the front. It appears that the atoms of the logic 

(1) 



55 
 

system and the base vectors of the Hilbert space play a very crucial role in the model. They represent the 

lowest level of objects in nature that play the theater of our observation.  

The atoms are only principally unordered at very small “distances”. They have content. The Hilbert space 

offers built-in enumerator machinery that defines the distances and that specifies the content of the 

represented atoms. 

The isotropic scaling factor that was assumed in the early phases of the model appears to relate to mass 

carrying particles that exist at huge distances. 

The master of the enumeration process is the distance function 𝒫. This function has a flat parameter 

space. 

𝒫 = ℘ ∘ 𝜓 

At small scales this function becomes a spread function 𝜓 that governs the quantum physics of the 

model. The whole function 𝒫 is a convolution of a sharp part ℘ and the spread function 𝜓. The 

differential of ℘ delivers a local metric. The spread function appears to be generated by a Poisson 

generator which produces Qpatterns. 

After a myriad of progression steps the original ordering of the natal state of the model is disturbed so 

much that the natal large and medium scale ordering is largely lost. However, this natal ordering is 

returning in the black regions that constitute pockets that surround them in universe. When the pockets 

merge into a huge black region, the history might restart enforced by the still existing low scale 

randomization and by the isotropic expansion factor, which is the consequence of the existence of 

massive particles at huge distances in this affine space. 

The model uses a first part where elementary particles are formed by the representatives of the atomic 

propositions of the logic. 

In a second part the formation of composites is described by a process called modularization. In that 

stage, in places where sufficient resources are present, the modularization process is capable of forming 

intelligent species.  

This is the start of a new phase of evolution in which the intelligent species get involved in the 

modularization process and shift the mode from random design to intelligent design. Intelligent design 

runs much faster and uses its resources in a more efficient and conscientious way. 

14 Conclusion  
With respect to conventional physics, this simple model contains extra layers of individual objects. The 

most interesting addition is formed by the RQE’s and the Qpatches. They represent the atoms of the 

quantum logic sub-model. 

The model gives an acceptable explanation for the existence of an (average) maximum velocity of 

information transfer. The two prepositions: 

(1) 
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 Atomic quantum logic fundament 

 Correlation vehicle 

Lead to the existence of fuzzy interspacing of enumerators of the Hilbert space base vectors and to 

dynamically varying space curvature when compared to a flat reference continuum. 

Without the freedom that is introduced by the interspacing fuzziness and which is used by the dynamic 

curvature, no dynamic behavior would be observable in the Palestra. 

In the generation of the model the enumeration process plays a crucial role, but we must keep in mind 

that the choice of the enumerators and therefore the choice of the type of correlation vehicle is to a 

large degree arbitrary. It means that the Palestra has no natural origin. It is an affine space. The choice 

for quaternions as enumerators seems to be justified by the fact that the sign flavors of the quaternions 

explain the diversity of elementary particles. 

Physicist that base their model of physics on an equivalent of the Gelfand triple which lacks a 

mechanism that creates the freedom that flexible interspaces provide, are using a model in which no 

natural curvature and fuzziness can occur. Such a model cannot feature dynamics. 

Attaching a progression parameter to that model can only create the illusion of dynamics. However, that 

model cannot give a proper explanation of the existence of space curvature, space expansion, quantum 

physics or even the existence of a maximum speed of information transfer. 

Physics made its greatest misstep in the thirties when it turned away from the fundamental work of 

Garret Birkhoff and John von Neumann. This deviation did not prohibit pragmatic use of the new 

methodology. However, it did prevent deep understanding of that technology because the methodology 

is ill founded. 

Doing quantum physics in continuous function spaces is possible, by it makes it impossible to find the 

origins of dynamics, curvature and inertia. Most importantly it makes it impossible to find the reason of 

existence of quantum physics.  

Only the acceptance of the fact that physics is fundamentally countable can solve this dilemma. 

Please attack these statements with your criticism. 
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