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Abstract. Definitions from the theory of point processes are recalled. Models of inten-
sity function parametrization and maximum likelihood estimation from data are explored.
Closed-form log-likelihood expressions are given for the Hawkes (univariate and multi-
variate)process, Autoregressive Conditional Duration(ACD) and a hybrid model combining
the ACD and the Hawkes models. Data from the symbol SPY on three different electronic
markets is used to estimate model parameters and generate illustrative plots.
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1. Defintions

1.1. Point Processes and Intensities.
Consider a K dimensional multivariate point process. Let Nt

k denote the counting process

associated with the k-th point process which is simply the number of events which have occured by
time t. Let Ft denote the filtration of the pooled process Nt of K point processes consisting of the
set t0

k<t1
k<t2

k<	 <ti
k<	 denoting the history of arrival times of each event type associated with

the k=1	K point processes. At time t, the most recent arrival time will be denoted tNtk
k . A process

is said to be simple if no points occur at the same time, that is, there are no zero-length durations.

The counting process can be represented as a sum of Heaviside step functions θ(t) =
{

0 t < 0
1 t> 0

Nt
k=

∑

ti
k6t

θ(t− ti
k) (1)
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The conditional intensity function gives the conditional probability per unit time that an event of
type k occurs in the next instant.

λk(t|Ft)= lim
∆t→0

Pr (Nt+∆t
k −Nt

k> 0|Ft)

∆t
(2)

For small values of ∆t we have

λk(t|Ft)∆t=E(Nt+∆t
k −Nt

k|Ft) + o(∆t) (3)

so that

E((Nt+∆t
k −Nt

k)−λk(t|Ft)∆t) = o(∆t) (4)

and (4) will be uncorrelated with the past of Ft as ∆t→ 0. Next consider

lim
∆t→0

∑

j=1

(s1−s0)

∆t
(

Ns0+j∆t
k −Ns0+(j−1)∆t

k
)

−λk(s0+ j∆t|Ft)∆t

= lim
∆t→0

(Ns0
k −Ns1

k )−
∑

j=1

(s1−s0)

∆t

λk(j∆t|Ft)∆t

=(Ns0
k −Ns1

k )−

∫

s0

s1

λk(t|Ft)dt

(5)

which will be uncorrelated with Fs0, that is

E

(
∫

s0

s1

λk(t|Ft)dt

)

=Ns0
k −Ns1

k (6)

The integrated intensity function is known as the compensator , or more precisely, the Ft-compen-

sator and will be denoted by

Λk(s0, s1)=

∫

s0

s1

λk(t|Ft)dt (7)

Let xk = ti
k − ti−1

k denote the time interval, or duration, between the i-th and (i − 1)-th arrival
times. The Ft-conditional survivor function for the k-th process is given by

Sk(xi
k)=Pk(Ti

k>xi
k|Fti−1+τ) (8)

Let

ẼN(t)
k =

∫

ti−1

ti

λk(t|Ft)dt=Λk(ti−1, ti)

then provided the survivor function is absolutely continuous with respect to Lebesgue mea-
sure(which is an assumption that needs to be verified, usually by graphical tests) we have

Sk(xi
k) = e

−
∫

ti−1

ti λk(t|Ft)dt
= e

−ẼN(t)
k

(9)

and ẼN(t) is an i.i.d. exponential random variable with unit mean and variance. Since E
(

ẼN(t)

)

=1
the random variable

EN(t)
k =1− ẼN(t) (10)

has zero mean and unit variance. Positive values of EN(t) indicate that the path of conditional
intensity function λk(t|Ft) under-predicted the number of events in the time interval and negative
values of EN(t) indicate that λk(t|Ft) over-predicted the number of events in the interval. In this

way, (8) can be interpreated as a generalized residual. The backwards recurrence time given by

U (k)(t) = t− tNk(t) (11)

increases linearly with jumps back to 0 at each new point.

1.1.1. Stochastic Integrals.
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The stochastic Stieltjes integral [2, 2.1] of a measurable process, having either locally bounded
or nonnegative sample paths, X(t) with respect to Nk exists and for each t we have

∫

(0,t]

X(s)dNs
k=
∑

i>1

θ(t− ti
k)X(ti

k) (12)

1.2. The Autoregressive Conditional Duration(ACD) Model.

Letting pi be the family of conditional probability density functions for arrival time ti, the log
likelihood of the ACD model can be expressed in terms of the conditional densities or intensities as

lnL =
∑

i=1

Nt

log pi(ti|t0,	 , ti−1)

=
∑

i=1

Nt

log λ(ti|i− 1, t0,	 , ti−1)−

∫

t0

T

λ(u|Nu, t0,	 , tNu)du

(13)

We will see that λ can be parameterized in terms of

λ(t|Nt, t1,	 , tNt)=ω+
∑

i=1

Nt

πi(tNt+1−i− tNt−i) (14)

so that the impact of a duration between successive events depends upon the number of intervening
events. Let xi= ti − ti−1 be the interval between consecutive arrival times; then xi is a sequence
of durations or “waiting times”. The conditional density of xi given its past is then given directly by

E(xi|xi−1,	 , x1)= ψi(xi−1,	 , x1; θ)= ψi (15)

Then the ACD models are those that consist of the assumption

xi= ψi εi (16)

where εi is independently and identically distributed with density p(ε; φ) where θ and φ are
variation free. ACD processes are limited to the univariate setting but later we will see that this
model can be combined with a Hawkes process in a multivariate framework. [6] The conditional
intensity of an ACD model can be expressed in general as

λ(t|Nt, t1,	 , tNt)=λ0

(

t− tNt
ψNt+1

)

1

ψNt+1
(17)

where λ0(t) is a deterministic baseline hazard, so that the past history influences the conditional
intensity by both a multiplicative effect and a shift in the baseline hazard. This is called an
accelerated failure time model since past information influences the rate at which time passes.
The simplest model is the exponential ACD which assumes that the durations are conditionally
exponential so that the baseline hazard λ0(t)= 1 and the conditional intensity is

λ(t|xNt,	 , x1) =
1

ψNt+1
(18)

The compensator for consecutive events of the ACD model in the case of constant baseline intensity
λ0(t) = 1 is simply

Λk(ti−1, ti) =

∫

ti−1

ti

λ(t|xNt,	 , x1)dt

=

∫

ti−1

ti 1

ψNt+1
dt

=

∫

ti−1

ti 1

ψi
dt

=
ti−1− ti
ψi

(19)
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A general model without limited memory is referred to as ACD(m, q) where m and q refer to the
order of the lags so that there are (m+ q+1) parameters.

ψi=ω+
∑

j=1

m

αjxi−j+
∑

j=1

q

βjψi−j (20)

where ω> 0, αj> 0, βj> 0 so the conditional intensity is then written

λ(t|xNt,	 , x1) =
1

ω+
∑

j=1
m αjxNt+1−j+

∑

j=1
q βjψNt+1−j

(21)

The log-likelihood for the ACD(m,q) model is then written in terms of the durations xi= ti− ti−1

lnL({xi}i=1,	 ,n)=
∑

i=max(m,q)

n

ln





e
−
xi
ψi

ψi



 (22)

Note that we start the summation at max (m, q) because of the required “burn in” steps, an
alternative method if one wished to be pedantic would be to back-cast these “missing values”, which
would probably not result in much gain if a reasonable number of observations are gathered, that
is, n is high enough. An ACD process is stationary if

∑

i=1

m

αj+
∑

i=1

q

βj< 1 (23)

in which case the unconditional mean exists and is given by

µ=E[xi] =
ω

1− (
∑

i=1
m αj+

∑

i=1
q βj)

(24)

1.3. The Autoregressive Conditional Intensity Model.

1.3.1. The ACI(1,1) Model.
Let the conditional intensity function for process k be given by the non-negative function

λk(t|Ft) =ωk e
φN(t)
k

(25)

where ωk> 0 and φN(t)
k is a measurable function of the bivariate filtration of all past arrival times.

[1, 4.2] Since φN(t)
k is time-invariant between arrivals in the pooled process it is therefore indexed

by the associated counting process. Define the vector

φN(t)=

(

φN(t)
a

φN(t)
b

)

(26)

In this bivariate setting, each arrival can be one of two types. Let yi be the indicator variable

yi=

{

0 i− th event is of type a
1 i− th event is of type b

(27)

The parameterization proposed by [11] is

φN(t)=

{

αa EN(t)−1
a +BφN(t)−1 if yN(t)−1=0

αb EN(t)−1
b +BφN(t)−1 if yN(t)−1=1

(28)

or equivalently

φN(t)=(αa+(αb−αa) yN(t)−1)EN(t)−1+BφN(t)−1 (29)

where ω, αa and αb are 2-dimensional parameter vectors, B is a 2× 2 matrix, and EN(t) is an i.i.d.
unit exponential random variable given by

EN(t)=

{

EN(t)
a if yN(t)=1

EN(t)
b if yN(t)=0

(30)
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where the generalized residuals are

Ei
a =1−

∫

ti−1
a

ti
a

λa(t|Ft)dt

=1−

∫

ti−1
a

ti
a

ωa e
φN(t)
a

dt

=1−

∫

ti−1
a

ti
a

ωa e
αa EN(t)−1

a +BφN(t)−1dt

(31)

and

Ei
b=1−

∫

ti−1
b

ti
b

λb(t|Ft)dt=1−

∫

ti−1
b

ti
b

ωb e
φN(t)
b

dt (32)

If the N(t)-th arrival was of type a then EN(t)=ENa(t)
a . We see that φN(t) is a weighted-average of its

most recent value φN(t)−1 and the error term EN(t)−1 and in this way the model has Kalman-filter
like properties. If B is restricted to be diagonal then the model is called a Diagonal Autoregressive
Conditional Intensity model. By rearranging terms (29) can be rewritten as

(I −BL)φN(t)=(αa+(αb−αa)yN(t)−1)EN(t)−1 (33)

If the eigenvalues of B lie inside the unit circle then (29) can be written as infinite moving average

φN(t)=
∑

j=1

∞

Bj−1(αa+αb
∗yN(t)−j)EN(t)−j (34)

The compensator for this parametization is given by

Λk(s0, s1) =

∫

s0

s1

λk(t|Ft)dt

=

∫

s0

s1

ωk e
φN(t)
k

dt
(35)

1.3.2. Maximum Likelihood Estimation.

For a bivariate model that requires joint estimation of both processes the likelihood is expressed
as

L= e−(Λa(0,T )+Λb(0,T ))
∏

i=1

Na(t)

λa(ti
a|Ft)

∏

i=1

Nb(t)

λb(ti
b|Ft) (36)

For a general K-variate model the likelihood is expressed as

L= e
−
∑

k=1
K Λk(0,T )

∏

k=1

K
∏

i=1

Nk(t)

λk(ti
k|Ft) (37)

Due to the necessity of numerical integration, likelihood astimation for ACI processes tends to be
complicated and laborious to implement in code. Diagnostic testing for this model is discussed in
[7].

1.4. The Hawkes Process.

1.4.1. Linear Self-Exciting Processes.

A (univariate) linear self-exciting (counting) process Nt is one that can be expressed as [12]

λ(t) =λ0(t) +

∫

−∞

t

ν(t− s)dNs

=λ0(t) +
∑

ti<t

ν(t− ti)
(38)
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where λ0(t) is a deterministic base intensity and ν: R+ → R+ expresses the positive influence of
past events ti on the current value of the intensity process. The Hawkes process of order P is a
linear self-exciting process defined by the exponential kernel

ν(t)=
∑

j=1

P

αj e
−βj t (39)

so that the intensity is written as

λ(t) =λ0(t)+

∫

0

t
∑

j=1

P

αj e
−βj(t−s)dNs

=λ0(t)+
∑

i=0

Nt
∑

j=1

P

αj e
−βj(t−ti)

(40)

A univariate Hawkes process is stationary if

∑

j=1

P
αj
βj
< 1 (41)

If a Hawkes process is stationary then the unconditional mean is

µ=E[λ(t)] =
λ0

1−
∫

0

∞
ν(t)dt

=
λ0

1−
∫

0

∞ ∑

j=1
P αj e

−βj tdt

=
λ0

1−
∑

j=1
P αj

βj

(42)

For consecutive events, we have the compensator (7)

Λ(ti−1, ti) =

∫

ti−1

ti

λ(t)dt

=

∫

ti−1

ti

λ0(s)ds+
∑

k=0

i−1
∑

j=1

P
αj
βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=

∫

ti−1

ti

λ0(s)ds+
∑

j=1

P
αj
βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(43)

where there is the recursion

Aj(i− 1) =
∑

tk6ti−1

e−βj(ti−1−tk)

=
∑

k=0

i−2

e−βj(ti−1−tk)

=1+ e−βj(ti−1−ti−2)Aj(i− 2)

(44)

with Aj(0)=0. If λ0(t)=λ0 then (43) simplifies to

Λ(ti−1, ti) =(ti− ti−1)λ0+
∑

k=0

i−1
∑

j=1

P
αj
βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=(ti− ti−1)λ0+
∑

j=1

P
αj
βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(45)

1.4.2. The Hawkes(1) Model.
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The simplest case occurs when the baseline intensity λ0(t) is constant and P =1 where we have

λ(t)=λ0+
∑

ti<t

αe−β (t−ti) (46)

which has the unconditional mean

E[λ(t)] =
λ0

1−
α

β

(47)

1.4.3. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

lnL(N(t)t∈[0,T ])=

∫

0

T

(1−λ(s))ds+

∫

0

T

lnλ(s)dNs (48)

which in the case of the Hawkes model of order P can be explicitly written [10] as

lnL({ti}i=1	n) =T −Λ(0, T )+
∑

i=1

n

lnλ(ti)

=T −Λ(0, T )+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P
∑

k=1

i−1

αj e
−βj(ti−tk)





=T −Λ(0, T )+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P

αjRj(i)





=T −

∫

0

T

λ0(s)ds−
∑

i=1

n
∑

j=1

P
αj
βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P

αjRj(i)





(49)

where T = tn and we have the recursion[9]

Rj(i) =
∑

k=1

i−1

e−βj(ti−tk)

=e−βj(ti−ti−1)(1+Rj(i− 1))

(50)

If we have constant baseline intensity λ0(t) =λ0 then the log-likelihood can be written

lnL({ti}i=1	 n) =T −λ0T −
∑

i=1

n
∑

j=1

P
αj
βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0+
∑

j=1

P

αjRj(i)





(51)

Note that it was necessary to shift each ti by t1 so that t1=0 and tn=T .

1.5. Combining the ACD and Hawkes Models.

The ACD and Hawkes models can be combined to provide a model for intraday volatility. [3] Let

λ(t) =
1

ψNt
+

∫

0

t

ν(t− s)dNs (52)

where the ACD(20) part is

ψi=ω+
∑

j=1

m

αjxi−j+
∑

j=1

q

βjψi−j (53)

, , 7



and the Hawkes part has the exponential kernel(39)

∫

0

t

ν(t− s)dNs =

∫

0

t
∑

j=1

P

γj e
−ϕj (t−s)dNs

=
∑

k=0

Nt
∑

j=1

P

γj e
−ϕj(t−tk)

(54)

where we have replaced α= γ and β= ϕ in the Hawkes part so that the parameter names do not
conflict with the ACD part where α and β are also used as parameter names. Then we have

λ(t) =
1

ω+
∑

j=1
m αjxNt−j+

∑

j=1
q βjψNt−j

+

∫

0

t
∑

j=1

P

γj e
−ϕj (t−s)dNs

=
1

ω+
∑

j=1
m αjxNt−j+

∑

j=1
q βjψNt−j

+
∑

k=0

Nt
∑

j=1

P

γj e
−ϕj(t−tk)

(55)

The log-likelihood for this hybrid model can be written as

lnL({ti}i=1,..,n) =
∑

i=1

n
(

lnλ(ti)−

∫

ti−1

ti

λ(t)dt

)

=
∑

i=1

n

(lnλ(ti)−Λ(ti−1, ti))

(56)

By direct calculation, combining (19) and (43) we have the compensator

Λ(ti−1, ti) =

∫

ti−1

ti

λ(t)dt

=

∫

ti−1

ti 1

ψNt
+

∫

0

t

ν(t− s)dNsdt

=
ti− ti−1

ψi
+

∫

ti−1

ti
∫

0

t

ν(t− s)dNsdt

=
ti− ti−1

ψi
+

∑

k=0

i−1
∑

j=1

P
γj
ϕj

(

e−ϕj(ti−1−tk)− e−ϕj(ti−tk)
)

=
ti− ti−1

ψi
+
∑

j=1

P
γj
ϕj

(

1− e−ϕj(ti−ti−1)
)

Aj(i− 1)

(57)

where ψi is defined by (53) and by construction E
[

ti− ti−1

ψi

]

=1 and Aj(i) is given by (44) so that

(56) can be wriitten as

lnL({ti}i=1,..,n) =
∑

i=1

n

(lnλ(ti)−Λ(ti−1, ti))

=
∑

i=1

n



 log λ(ti)−





ti− ti−1

ψi
+
∑

j=1

P
γj
ϕj

(

1− e−ϕj(ti−ti−1)
)

Aj(i− 1)









=
∑

i=1

n

log







1

ψi
+

∑

k=1

Nti
∑

j=1

P

γ
j
e−ϕj(ti−tk)





−







ti− ti−1

ψi
+

∑

j=1

P

γj

ϕj

(

1− e−ϕj(ti−ti−1)
)

A
j
(i− 1)







(58)

1.6. Multivariate Hawkes Models.
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Let M ∈N
∗ and {(ti

m)}m=1,	 ,M be an M -dimensional point process. The associated counting

process will be denoted Nt = (Nt
1, 	 , Nt

M). A multivariate Hawkes process[5][8] is defined with
intensities λm,m=1	M given by

λm(t) =λ0
m(t)+

∑

n=1

M ∫

0

t
∑

j=1

P

αj
m,n

e
−βj

m,n(t−s)dNs
n (59)

In the simplest version with P =1 and λ0
m(t) constant we have

λm(t) =λ0
m+

∑

n=1

M ∫

0

t

αm,ne−β
m,n(t−s)dNs

n

=λ0
m+

∑

n=1

M
∑

ti
n<t

αm,ne−β
m,n(t−ti

n)

(60)

Rewriting (60) in vectorial notion, we have

λ(t)=λ0+

∫

0

t

G(t− s)dNs (61)

where

G(t) = (αm,n e−β
m,n(t−s))m,n=1	M (62)

Assuming stationarity gives E[λ(t)] = µ a constant vector and thus

µ =
λ0

I −
∫

0

∞
G(u)du

=
λ0

I − (
αm,n

βm,n
)

=
λ0
I −Γ

(63)

A sufficient condition for a multivariate Hawkes process to be stationary is that the spectral radius
of the so-called branching matrix

Γ=

∫

0

∞

G(s)ds=
αm,n

βm,n
(64)

be strictly less than 1. The spectral radius of the matrix G is defined as

ρ (G)= max
a∈S(G)

|a| (65)

where S(G) denotes the set of eigenvalues of G. The compensator of the m-th coordinate of a
multivariate Hawkes process between two consecutive events ti−1

m and ti
m of type m is given by

Λm(ti−1
m , ti

m) =

∫

ti−1
m

ti
m

λm(s)ds

=

∫

ti−1
m

ti
m

λ0
m(s)ds

+
∑

n=1

M
∑

j=1

P
∑

tk
n<ti−1

m

αj
m,n

βj
m,n [e

−βj
m,n(ti−1

m
−tk

n)− e
−βj

m,n(ti
m
−tk

n)]

+
∑

n=1

M
∑

j=1

P
∑

ti−1
m 6tk

n<ti
m

αj
m,n

βj
m,n [1− e

−βj
m,n(ti

m
−tk

n)]

(66)
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To save a considerable amount of computational complexity, note that we have the recursion

Aj
m,n(i− 1) =

∑

tk
n<ti−1

m

e
−βj

m,n(ti−1
m

−tk
n)

=e−βj
m,n(ti−1

m
−ti−2

m )
Aj
m,n(i− 2)+

∑

ti−2
m 6tk

n<ti−1
m

e
−βj

m,n(ti−1
m

−tk
n)

(67)

and rewrite (66) as

Λm(ti−1
m , ti

m) =

∫

ti−1
m

ti
m

λ0
m(s)ds

+
∑

n=1

M
∑

j=1

P
αj
m,n

βj
m,n

[

(1− e
−βj

m,n(ti
m
−ti−1

m ))×Aj
m,n(i− 1)+

∑

ti−1
m 6tk

n<ti
m

(1− e
−βj

m,n(ti
m
−tk

n))

]

(68)

where we have the initial conditions Aj
m,n(0)= 0.

1.6.1. Log-Likelihood.

The log-likelihood of the multivariate Hawkes process can be computed as the sum of the log-
likelihoods for each coordinate. Let

lnL({ti}i=1,	 ,NT
m)=

∑

m=1

M

lnLm({ti}) (69)

where each term is defined by

lnLm({ti})=

∫

0

T

(1−λm(s))ds+

∫

0

T

lnλm(s)dNs
m (70)

which in this case can be written as

lnLm({ti})=T −Λm(0, T )+
∑

i=1

N

zi
m ln [λ0

m(t)+
∑

n=1

M
∑

j=1

P
∑

tk
n<ti

αj
m,ne

−βj
m,n(ti−tk

n) (71)

where again tNTm=T and

zi
m=

{

1 event ti of typem
0 otherwise

(72)

Similiar to to the one-dimensional case, we have the recursion

Rj
m,n(i) =

∑

tk
n<tj

m

e
−βj

m,n(ti
m
−tk

n)

=







e
−βj

m,n(ti
m
−ti−1

m )
Rj
m,n(i− 1)+

∑

ti−1
m 6tk

n<ti
m e

−βj
m,n(ti

m
−tk

n) ifm� n

e
−βj

m,n(ti
m
−ti−1

m ) (1+Rj
m,n(i− 1)) ifm=n

(73)

so that (71) can be rewritten as

lnLm({ti}) =T −
∑

i=1

NT
m

∑

n=1

M
∑

j=1

P
αj
m,n

βj
m,n (1− e

−βj
m,n(T−ti))

+
∑

i=1

NT
m

ln [λ0
m(ti

m)+
∑

n=1

M
∑

j=1

P

αj
m,n

Rj
m,n(i)]

(74)

with initial conditions Rj
m,n(0) = 0 and where T = tN where N is the number of observations, M

is the number of dimensions, and P is the order of the model.
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2. Numerical Methods

2.1. The Nelder-Mead Algorithm.

The Nelder-Mead simplex algorithm[4] was used to optimize the likelihood expressions given
above.

2.1.1. Starting Points for Optimizing the Hawkes Process of Order P .

A starting point for the optimization of a Hawkes process of order P with an “exact” uncondi-
tional intensity was chosen as the most reasonable starting point, but it is by no means claimed to
be the best. Let xi= ti− ti−1 be the interval between consecutive arrival times as in the ACD model
(16). Then set the initial value of λ0 to

0.5

E[xi]
, α1	 P =

1

P
and β1	 P =2. This gives an unconditional

mean of E[xi] for these parameters used as a starting point for the Nelder-Mead algorithm.

3. Examples

3.1. Millisecond Resolution Trade Sequences.

The source data has resolution of milliseconds but the data is transformed prior to estimation
by dividing each time by 1000 so that the unit of time is seconds.

3.1.1. Univarate Hawkes model fit to SPY (SPDR S&P 500 ETF Trust).

Consider these parameter estimates for the (univariate) Hawkes model of various orders fitted
to data generated by trades of the symbol SPY traded on the NASDAQ on Oct 22nd, 2012.
The unconditional sample mean intensity for this symbol on this day on this exchange was
0.7655998283415355 trades per second where the number of samples is n = 17916. No deason-
alization was attempted, which would surely benefit the results; this will be reserved for future
work. As can be seen, P = 6 provides the best likelihood but a more rigorous method to choose
P would be to use some information criterion like Bayes or Akaike to decide the order P . Esti-
mation for P = 7 and greater was attempted but the optimizer kept settling on prior solutions
by taking some α parameters to 0 thus essentially reducing the order of the model. Standard
deviations are not provided, but presumably they could be estimated with derivative information.

P λ0 α1	P β1	 P lnL({ti}i=1	 n)− tn E[λ(t)]

1 0.4888895840 5.4436229616 15.0588031220 −14606.0079680 0.76567384816

2 0.13718922357
7.2188754084
0.0782472258

25.399826568
0.1454607237

−12733.4619196 0.77131730144

3 0.13163151059
0.0000000003
7.5467174975
0.0677609554

28.852294270
23.166515568
0.1276584845

−12506.0576338 0.917666203197

4 0.13296929140

0.0723686778
1.8881451880
5.1594817028
0.2982510629

0.1349722452
16.637110622
30.626390900
32.490874482

−12716.5362393 0.769984967876

5∗ 0.06084821553

0.0000055317
7.6260052075
0.1866285010
0.0000939392
0.0101541140

0.5138236561
29.316263593
0.7694261263
0.0693359346
0.0241678794

−12505.9421508 0.802736706908

6∗ 0.04014430354

7.6812049064
0.0000040868
0.0282570213
0.1970449132
0.0314334590
0.0027981168

30.467204143
7.5984574690
0.1178289377
1.2119099089
4.7015553402
0.0096010396

−12478.0771035 0.847703217380
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*=The exp/ln transform was used to ensure positivity of parameters of the estimate whereas absolute value was
used for the others, this resulted in the search point getting over local minima to achieve better likelihood.
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Figure 1. Price history for SPY traded on INET on Oct 22nd, 2012
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Figure 2. xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =1} in green
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Figure 3. xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =6} in green
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Figure 4. Zoomed in view of xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =6} in green

3.1.2. Multivariate SPY Data for 2012-08-14.

Consider a 5-dimensional multivariate Hawkes model of order P =1 fit to data for SPY from 3
exchanges, INET, BATS, and ARCA on 2012-08-14. Both INET and BATS distinguish buys from
sells whereas ARCA does not, hence 5 dimensional, 2 dimensions each for INET and BATS and
1 dimension for ARCA which will naturally have twice as high a rate as that for buys and sells
considered seperately. The 5 dimensions are organized as follows:

BATSBuys BATSSells INETBuys INETSells ARCATrades (75)
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Figure 5.

We say trades for ARCA because the type sent from the data broker is Unknown, indiciating
that it is unknown whether it is a buyer or seller initiated trade. We have the following parameter
estimates where “large” values of α (>0.1) are highlighted in bold.

λ=













0.25380789517348
0.269289236349466
0.221292886522613
0.158954542395839
0.371572853723448













(76)

α=















4.3514× 10−9 0.011879 0.2648 1.917× 10−8 0.10771

0.021881 2.6164× 10−8 2.5725× 10−8 0.024946 0.25138

0.29092 0.51715 1.1254× 10−8 0.0029919 0.004607

0.0041449 0.52852 0.018077 3.2535× 10−9 0.0237

0.021501 0.71358 1.0954 0.15264 4.1222× 10−9















(77)

β=













1.0954 10.803 16.665 20.188 9.6059
5.6238 11.558 16.721 18.304 7.9016
7.8125 15.299 16.431 14.702 6.6458
8.3083 15.758 17.749 12.953 3.1621
9.4264 16.369 19.303 11.071 2.8302













(78)

with a log-likelihood score of 39714.1497.

3.1.3. Multivariate SPY Data for 2012-11-19.
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Consider the same symbol, SPY, as a 5-dimensional Hawkes process as in 3.1.2, for a different
day, on 2012-11-19, estimated with order P = 2 for a total of 105 parameters. αj coefficients
that are >0.1 are highlighted in bold. The parameters listed below resulted in a log-likelihood
value of 36543.8529. An interesting pattern emerges in the β coefficients where it takes on some
approximate stair-step pattern ranging from 2 to 22. This might be indicitative of some fixed-
frequency algorithms operating across the different exchanges at approximate 1-second intervals.

λ=













0.113371928486215301
0.116069526955243113
0.120010488406567112
0.140864383337674315
0.236370243964866722













(79)

α1=













0.000000400520039 0.000743243048280 0.0730760324025721 0.0235425002925593 0.14994903109
0.000836306407254 0.000048087752871 0.0009983197029208 0.36091325418001 0.0303494022034
0.000007657273830 0.008293393618634 0.0000346485386433 0.55279157046563 0.0303324666473
0.000000051209296 0.044218944305554 0.0165858723488658 0.0002898699267899 0.12041188377
0.000343063367497 0.019728025120072 0.22664219457110 0.20883023885464 0.0002187148763













(80)

α2=













0.0247169438667 0.045938324942878493 0.52035195378729 0.0015976654768 0.0219865625857849
0.10369500283 0.000000961851428240 0.0058603752158104 0.17159388407 0.0001956826269151
0.0619247685514 0.005680420895898976 0.0000041940337011 0.0009132788022 0.0161550464515489
0.0073308612563 0.3760898786954499 0.0078995090167169 0.0000971358022 0.0022020712790430
0.37860663035 0.8648532461379836 0.0096939577784123 0.23909856627 0.0000001318796171













(81)

β1=













2.02691486662775 4.58853278669795 9.21516653991608 14.2039223554899 17.7230908440328108
2.30228990848878 5.70815142794409 9.75920981324501 15.0047495693597 17.1640776964259771
2.71360844613891 6.97390906252072 10.9112224210093 16.3935104902520 17.3801721025480269
3.18861359927744 6.93702281997507 12.0261860231254 17.5228876305459 17.8876296984556440
3.95262799649030 7.76155541730819 13.5039942724633 17.3549525971848 18.0730780733303966













(82)

β2=













19.6811983441165 20.56326127197891 18.53440853276660 11.10183435325997 5.955287687038747
20.2253306600591 21.39051471260508 16.97184115533537 9.548598696946248 5.459761230875715
20.2208259457254 22.20704300748698 17.88989095276187 8.724870367131993 4.215302773261564
19.7356631996375 21.67330389603866 15.76838788843381 7.534795006501931 3.517163899772246
20.2972304557004 19.06667927692781 13.19618799557176 6.812943703872132 2.825437512911523













(83)
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