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Abstract. Definitions from the theory of point processes are recalled. Models of inten-
sity function paramaterization and maximum likelihood estimation from data are explored.
Closed-form log-likelihood expressions are given for the Hawkes process, Autoregressive Con-
ditional Duration(ACD), and Log-ACD models. The Autoregressive Conditional Intensity
model is also discussed.
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1. Defintions

1.1. Point Processses and Intensities.

Consider a K dimensional multivariate point process. Let Nk(t) denote the counting process

associated with the k-th point process which is simply the number of events which have occured by
time t. Let Ft denote the filtration of the pooled process N(t) of K point processes consisting of
the set t0

k<t1
k<t2

k<	 <ti
k<	 denoting the history of arrival times of each event type associated

with the k=1	K point processes. At time t, the most recent arrival time will be denoted tNk(t)
k .

A process is said to be simple if no points occur at the same time, that is, there are no zero-
length durations. The counting process can be represented as a sum of Heaviside step functions

θ(t)=
{

0 t < 0
1 t> 0

Nk(t)=
∑

ti
k6t

θ(t− ti
k) (1)

The conditional intensity function gives the conditional probability per unit time that an event of
type k occurs in the next instant.

λk(t|Ft) = lim
∆t→0

Pr (Nk(t+∆t)−Nk(t)> 0|Ft)

∆t
(2)

For small values of ∆t we have

λk(t|Ft)∆t=E(Nk(t+∆t)−Nk(t)|Ft)+ o(∆t) (3)

so that

E((Nk(t+∆t)−Nk(t))−λk(t|Ft)∆t) = o(∆t) (4)
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and (4) will be uncorrelated with the past of Ft as ∆t→ 0. Next consider

lim
∆t→0

∑

j=1

(s1−s0)

∆t

(Nk(s0+ j∆t)−Nk(s0+(j − 1)∆t))−λk(s0+ j∆t|Ft)∆t

= lim
∆t→0

(Nk(s0)−Nk(s1))−
∑

j=1

(s1−s0)

∆t

λk(j∆t|Ft)∆t

=(Nk(s0)−Nk(s1))−

∫

s0

s1

λk(t|Ft)dt

(5)

which will be uncorrelated with Fs0, that is

E

(
∫

s0

s1

λk(t|Ft)dt

)

=Nk(s0)−Nk(s1) (6)

The integrated intensity function is known as the compensator , or more precisely, the Ft-compen-

sator and will be denoted by

Λk(s0, s1)=

∫

s0

s1

λk(t|Ft)dt (7)

Let τk = ti
k − ti−1

k denote the time interval, or duration, between the i-th and (i − 1)-th arrival
times. The Ft-conditional survivor function for the k-th process is given by

Sk(τi
k)=Pk(Ti

k>τi
k|Fti−1+τ) (8)

Let

ẼN(t)
k =

∫

ti−1

ti

λk(t|Ft)dt

then provided the survivor function is absolutely continuous with respect to Lebesgue measure we
have

Sk(τi
k) = e

−
∫

ti−1

ti λk(t|Ft)dt
= e

−ẼN(t)
k

(9)

and ẼN(t) is an i.i.d. exponential random variable with unit mean and variance. Since E
(

ẼN(t)

)

=1
the random variable

EN(t)
k =1− ẼN(t) (10)

has zero mean and unit variance. Positive values of EN(t) indicate that the path of conditional
intensity function λk(t|Ft) under-predicted the number of events in the time interval and negative
values of EN(t) indicate that λk(t|Ft) over-predicted the number of events in the interval. In this

way, (8) can be interpreated as a generalized residual. The backwards recurrence time given by

U (k)(t) = t− tNk(t) (11)

increases linearly with jumps back to 0 at each new point.

1.1.1. Stochastic Integrals.
The stochastic Stieltjes integral [2, 2.1] of a measurable process, having either locally bounded

or nonnegative sample paths, X(t) with respect to Nk exists and for each t we have
∫

(0,t]

X(s)dNk(s)=
∑

i>1

θ(t− ti
k)X(ti

k) (12)

1.2. The Autoregressive Conditional Duration Model.
Let xi= ti− ti−1 be the interval between two arrival times; then xi is a sequence of durations

or “waiting times”. The conditional density of xi given its past is then given directly by

E(xi|xi−1,	 , x1)= ψi(xi−1,	 , x1; θ)= ψi (13)

Then the ACD models are those that consist of the assumption

xi= ψi εi (14)
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where εi is independently and identically distributed with density p(ε; φ) where θ and φ are
variation free. These models are interesting but suffering from the drawback of being limited to
the univariate setting. [3]

1.3. The Autoregressive Conditional Intensity Model.

1.3.1. The ACI(1,1) Model.
Let the conditional intensity function for process k be given by the non-negative function

λk(t|Ft) =ωk e
φN(t)
k

(15)

where ωk> 0 and φN(t)
k is a measurable function of the bivariate filtration of all past arrival times.

[1, 4.2] Since φN(t)
k is time-invariant between arrivals in the pooled process it is therefore indexed

by the associated counting process. Define the vector

φN(t)=

(

φN(t)
a

φN(t)
b

)

(16)

In this bivariate setting, each arrival can be one of two types. Let yi be the indicator variable

yi=

{

0 i− th event is of type a
1 i− th event is of type b

(17)

The parameterization proposed by [6] is

φN(t)=

{

αa EN(t)−1
a +BφN(t)−1 if yN(t)−1=0

αb EN(t)−1
b +BφN(t)−1 if yN(t)−1=1

(18)

or equivalently

φN(t)=(αa+(αb−αa) yN(t)−1)EN(t)−1+BφN(t)−1 (19)

where ω, αa and αb are 2-dimensional parameter vectors, B is a 2× 2 matrix, and EN(t) is an i.i.d.
unit exponential random variable given by

EN(t)=

{

EN(t)
a if yN(t)=1

EN(t)
b if yN(t)=0

(20)

where the generalized residuals are

Ei
a =1−

∫

ti−1
a

ti
a

λa(t|Ft)dt

=1−

∫

ti−1
a

ti
a

ωa e
φN(t)
a

dt

=1−

∫

ti−1
a

ti
a

ωa e
αa EN(t)−1

a +BφN(t)−1dt

(21)

and

Ei
b=1−

∫

ti−1
b

ti
b

λb(t|Ft)dt=1−

∫

ti−1
b

ti
b

ωb e
φN(t)
b

dt (22)

If the N(t)-th arrival was of type a then EN(t)=ENa(t)
a . We see that φN(t) is a weighted-average of its

most recent value φN(t)−1 and the error term EN(t)−1 and in this way the model has Kalman-filter
like properties. If B is restricted to be diagonal then the model is called a Diagonal Autoregressive
Conditional Intensity model. By rearranging terms (19) can be rewritten as

(I −BL)φN(t)=(αa+(αb−αa)yN(t)−1)EN(t)−1 (23)

If the eigenvalues of B lie inside the unit circle then (19) can be written as infinite moving average

φN(t)=
∑

j=1

∞

Bj−1(αa+αb
∗yN(t)−j)EN(t)−j (24)
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The compensator for this parametization is given by

Λk(s0, s1) =

∫

s0

s1

λk(t|Ft)dt

=

∫

s0

s1

ωk e
φN(t)
k

dt
(25)

1.3.2. Maximum Likelihood Estimation.

For a bivariate model that requires joint estimation of both processes the likelihood is expressed
as

L= e−(Λa(0,T )+Λb(0,T ))
∏

i=1

Na(t)

λa(ti
a|Ft)

∏

i=1

Nb(t)

λb(ti
b|Ft) (26)

For a general K-variate model the likelihood is expressed as

L= e−
∑

k=1
K Λk(0,T )

∏

k=1

K
∏

i=1

Nk(t)

λk(ti
k|Ft) (27)

Due to the necessity of numerical integration, likelihood astimation for ACI processes tends to be
complicated and laborious to implement in code.

1.4. The Hawkes Process.

1.4.1. Linear Self-Exciting Processes.

A (univariate) linear self-exciting (counting) process N(t) is one that can be expressed as [7]

λ(t) =λ0(t)+

∫

−∞

t

ν(t− s)dN(s)

=λ0(t)+
∑

ti<t

ν(t− ti)
(28)

where λ0(t) is a deterministic base intensity and ν: R+ → R+ expresses the positive influence of
past events ti on the current value of the intensity process. The Hawkes process of order P is a
linear self-exciting process defined by the exponential kernel

ν(t)=
∑

j=1

P

αj e
−βj t (29)

so that the intensity is written as

λ(t) =λ0(t) +

∫

0

t
∑

j=1

P

αj e
−βj(t−s)dN(s)

=λ0(t) +
∑

ti<t

∑

j=1

P

αj e
−βj(t−ti)

(30)

A univariate Hawkes process is stationary if

∑

j=1

P
αj

βj
< 1 (31)

If a Hawkes process is stationary then the unconditional mean is

E[λ(t)] =
λ0

1−
∫

0

∞
ν(t)dt

=
λ0

1−
∑

j=1
P αj

βj

(32)
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For consecutive events, we have the compensator

Λ(ti−1, ti) =

∫

ti−1

ti

λ0(s)ds+
∑

k=0

i−1
∑

j=1

P
αj

βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=

∫

ti−1

ti

λ0(s)ds+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(33)

where there is the recursion

Aj(i− 1) =
∑

tk6ti−1

e−βj(ti−1−tk)

=
∑

k=0

i−2

e−βj(ti−1−tk)

=1+ e−βj(ti−1−ti−2)Aj(i− 2)

(34)

with Aj(0)=0. If λ0(t)=λ0 then Equation 33 simplifies to

Λ(ti−1, ti) =(ti− ti−1)λ0+
∑

k=0

i−1
∑

j=1

P
αj

βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=(ti− ti−1)λ0+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(35)

1.4.2. The Hawkes(1) Model.

The simplest case occurs when the baseline intensity λ0(t) is constant and P =1 where we have

λ(t)=λ0+
∑

ti<t

αe−β (t−ti) (36)

which has the unconditional mean

E[λ(t)] =
λ0

1−
α

β

(37)

1.4.3. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

lnL(N(t)t∈[0,T ]) =

∫

0

T

(1−λ(s))ds+

∫

0

T

lnλ(s)dN(s) (38)

which in the case of the Hawkes(P) model can be explicitly written [5] as

lnL({ti}i=1	 n) =−Λ(0, tn)+
∑

i=1

n

lnλ(ti)

=−Λ(0, tn)+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P
∑

k=1

i−1

αj e
−βj(ti−tk)





=−Λ(0, tn)+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P

αjRj(i)





=−

∫

0

tn

λ0(s)ds−
∑

i=1

n
∑

j=1

P
αj

βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0(ti) +
∑

j=1

P

αjRj(i)





(39)
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where we have the recursion[4]

Rj(i) =
∑

k=1

i−1

e−βj(ti−tk)

=e−βj(ti−ti−1)(1+Rj(i− 1))

(40)

If we have constant baseline intensity λ0(t) =λ0 then the log-likelihood can be written

lnL({ti}i=1	n) =−λ0 tn−
∑

i=1

n
∑

j=1

P
αj

βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0+
∑

j=1

P

αjRj(i)





(41)
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