
David B. Chandler, Maw-Shang Chang,
Ton Kloks, Jiping Liu, Sheng-Lung Peng

Probe Graph Classes

October 17, 2012

Contents

Part I Introductory Matter

1 Introduction . 3

2 Preliminaries . 7

Part II Unpartitioned Classes

3 Self Complementary Classes . 21
3.1 Probe cographs . 21
3.2 Probe P4-reducible graphs . 26
3.3 Probe P4-sparse graphs . 29
3.4 Probe splitgraphs . 32

4 Chordal Graphs . 37
4.1 Preliminaries . 37
4.2 Partitioned probe chordal graphs . 40
4.3 Probe chordal graphs . 41

Part III Partitioned Classes

5 Chordal Bipartite Graphs . 47
5.1 Preliminaries . 47

5.1.1 Totally balanced matrices . 50
5.1.2 Biclique trees . 53

5.2 Partitioned probe chordal bipartite graphs 55
5.3 Partitioned probe strongly chordal graphs 56

VIII Contents

6 Comparability Graphs . 61
6.1 Preliminaries . 61
6.2 Partitioned probe comparability graphs . 63
6.3 A partitioned probe Dushnik & Miller . 73

7 Permutation Graphs . 77
7.1 Preliminaries . 77
7.2 Recognition of partitioned probe permutation graphs 81
7.3 Treewidth of probe permutation graphs . 85

8 Distance Hereditary Graphs . 89
8.1 Preliminaries . 89
8.2 A partitioned probe Bandelt & Mulder . 92
8.3 Partitioned probe ptolemaic graphs . 94
8.4 Recognition of PPDH–graphs . 95

References .103

Index .113

Part I

Introductory Matter

1

Introduction

UNFORTUNATELY, ‘most’ graph algorithmic problems that appear in practical
situations are NP-complete for graphs in general. In practical situations how-
ever, the graphs at hand are rarely general: some underlying structure of the
graph class of interest often allows an efficient algorithm that solves the prob-
lem. Therefore, much effort is put into research to solve NP-complete prob-
lems for graphs restricted to certain graph classes. Certain problems that turn
up in the Human Genome Project can be expressed as problems on interval
graphs. To analyze a long strand of DNA, enzymes are used to cut the DNA se-
quence into smaller fragments called clones. The clones are reproduced many
times for further research. To reconstruct the DNA strand, tests are performed
to determine whether a pair of clones overlap in the longer DNA strand. If
these tests were run on every pair of clones, the problem would map nicely
to the interval graph recognition problem. To reduce the number of physical
experiments that are needed, one selects a subset of the clones, called probes,
and tests for overlaps between two clones if and only if at least one of the
clones is a probe. This gives rise to a new graph theoretic model. Probe inter-
val graphs were introduced in 1994 by Zhang [192] and used in [193, 194]
to model certain problems in physical mapping of DNA. Clones correspond to
vertices of a graph, where vertices are labeled as either probes or nonprobes.
The objective is to find a mapping of the vertices to intervals on the line such
that two vertices are adjacent if and only if the intervals have a nonempty in-
tersection and at least one of the vertices is a probe. In other words; the input
to the problem is a graph G and a subset of probe vertices. The other vertices,
the nonprobes, form an independent set in G. The objective is to add edges
between certain nonprobe vertices such that the graph becomes an interval
graph [92, Chapter 4]. Generalizing this concept, we introduce the following
definition of probe graphs of graph classes:

4 1 Introduction

Definition 1.1. Let G be a class of graphs. A graph G = (V, E) is a probe graph
of G if its vertex set can be partitioned into a set of probes P and an independent
set of nonprobes N, such thatG can be embedded in a graph of G by adding edges
between certain nonprobes.

If the partition of the vertices of a graph G into a set of probes P and a set
of nonprobes N is part of the input we call G a partitioned probe graph of
G if G can be embedded into a graph of G by adding edges between certain
vertices of N. We denote a partitioned graph as G = (P + N, E), and when this
notation is used it is to be understood that N is an independent set. We will
refer to the class of (partitioned) probe graphs of the class of (XXX) graphs as
(partitioned) probe (XXX) graphs where (XXX) is the name of a graph class.

To gain insight into the graph class of probe interval graphs, attention
was drawn to probe chordal graphs in [13, 89]. A year later, in 2004, the
recognition of partitioned and unpartitioned probe chordal graphs was han-
dled in [14]. The algorithm for the partitioned case runs in O(nm) time,
while the unpartitioned case takes O(n2m) time. Between whiles, efficient
algorithms for the recognition of partitioned probe interval graphs turned
up in [129, 147]. The first of these algorithms runs in O(n2) time, while
the second one runs in O(n +m logn) time. Finally, a recognition algorithm
for unpartitioned probe interval graphs appeared in [36]. According to [14],
probe chordal graphs also have immediate applications in certain reconstruc-
tion problems of phylogenies. At present, the study of most other probe graph
classes is of (great) interest mainly for theoretical reasons. The study of a
probe graph class first of all establishes demarcations on the robustness of
the graph class with respect to irresolute inputs. Partitioned probe interval
graphs were introduced for this purpose. It also brings to light many inter-
esting, sometimes unforeseen properties of the new graph class in question.
We hope that this book convinces the reader that the study of probe graphs
of graph classes is highly illuminating and satisfying. We aim at gaining in-
terest by showing many nice structural results of these new graph classes and
by illustrating a wide variety of techniques applicable for the recognition of
them.

The recognition problem of partitioned probe graph classes can be seen as
a subcase of the graph sandwich problem [82, 88, 91]. In the general sand-
wich problem for a graph property π, one is given two graphs G1 = (V, E1)

and G2 = (V, E2) such that E1 ⊆ E2 and the question is whether there exists a
graphG = (V, E) such that E1 ⊆ E ⊆ E2 and which satisfies property π. In [88]
it is shown that the problem can be solved in polynomial time when π is the
property of being a threshold graph, a splitgraph, or a cograph. The problem
is shown to be NP-complete for comparability graphs, permutation graphs,
and several other graph classes. Given a partitioned graph G = (P + N, E), we

1 Introduction 5

can define the graph G1 = G and G2 as the graph obtained from G by adding
all edges between nonprobes. The question whether G is a partitioned probe
graph of a graph class G thus translates directly to the graph sandwich prob-
lem with π as the property of being a graph of G. In this book we show that
the recognition problem for partitioned probe graphs is solvable in polynomial
time for many more graph classes than the general sandwich problem.

2

Preliminaries

A graph G is a pair G = (V, E), where V 6= ∅ is a finite set, the elements of
which are called the vertices of G and where E is a set of two-element subsets
of V, called the edges. For our convenience we denote an edge e as e = (x, y),
rather than e = {x, y} or e = xy, and we say that x and y are adjacent in G.
Two vertices which are adjacent are called neighbors of each other. For a vertex
x we denote its set of neighbors by N(x) and call this set the neighborhood of
x. We let N[x] = N(x) ∪ {x} and call this set the closed neighborhood of x. If x
and y are adjacent we say that they are the endvertices of the edge (x, y). To
indicate that two vertices x and y are adjacent we sometimes write x ∼ y. We
write n = |V | for the number of vertices and m = |E| for the number of edges.

For two sets A and B we write A+B and A−B instead of A+B and A \B

respectively. We write A ⊆ B if A is a subset of B with possible equality and
we write A ⊂ B if A is a subset of B and A 6= B. For a set A and an element x
we write A+ x instead of A+ {x} and A− x instead of A− {x}.

For a graph G = (V, E) and a subset S ⊆ V we write G[S] for the subgraph
of G induced by S, i.e., the subgraph with vertex set S and edges those ele-
ments of E with both endvertices in S. For a subset W ⊆ V we write G −W

for the subgraph induced by V −W. For a vertex x we write G− x rather than
G− {x}. For a subset W ⊆ V of vertices we write N(W) = ∪x∈VN(x) −W.

The complement of a graph G, denoted as G, is the graph in which two
vertices are adjacent exactly when they are not adjacent in G. A path in a
graph G = (V, E) is a sequence of vertices [x1, . . . , xk] where (xi, xi+1) ∈ E for
i = 1, . . . , k−1. The path is chordless if there are no other edges in the induced
subgraph G[{x1, . . . , xk}] than the ones mentioned above. A graph isomorphic
to a chordless path with k vertices is denoted as Pk. A cycle in a graph G
is a sequence of vertices [x1, . . . , xk] where {xi, xi+1} for 1 = 1, . . . , k − 1

and {x1, xk} are edges in G. The cycle is chordless if there are no other edges

8 2 Preliminaries

than the ones mentioned above in G[{x1, . . . , xk}]. We denote a graph which
is isomorphic to a chordless cycle with k vertices by Ck.

A separator (or cutset) in a graph G = (V, E) is a subset S ⊂ V of vertices
such that the vertices of G− S can be partitioned into two non–empty sets V1

and V2 such that there is no edge with one end–vertex in V1 and the other in
V2. A graph G is disconnected if the empty set is a separator in G. The graph
is connected otherwise. If a graph G is disconnected then the components of G
are the maximal subsets of vertices that induce connected subgraphs in G. If S
is a separator and C is a component of G− S then C is a full component of S if
every vertex of S has at least one neighbor in C. A separator S is minimal if it
has at least two full components. For any pair of vertices x and y in different
full components of a minimal separator S, the separator is called a minimal
x, y-separator.

A clique in a graph G is a subset S of its vertices such that every pair
of vertices in S is adjacent. A graph isomorphic to a clique with ` vertices is
denoted by K`. The clique numberω(G) of a graph G is the maximum number
of vertices in a clique of G. The chromatic number χ(G) of a graph G is the
minimum number of colors needed to color the vertices such that the end–
vertices of every edge receive different colors. It is easy to see that for every
graph χ(G) ≥ ω(G), since, when coloring the vertices of a graph such that
adjacent vertices receive different colors, all vertices of any clique in G must
receive different colors.

The computation of both numbers χ(G) and ω(G) are NP–complete, i.e.,
it is widely believed that they are not efficiently computable. However, when-
ever for a graph G equality of these numbers occurs, then there is a polyno-
mial time algorithm to compute it [141]. This is the case because there exists
a polynomial time computable value θ(G) such that ω(G) ≤ θ(G) ≤ χ(G)

for every graph G. The value of θ(G) can be obtained in polynomial time by
linear programming methods [10], pp. 325–356.

A hole in a graph G is a chordless cycle of length at least 5. An antihole
is the complement of such a cycle. A hole or antihole is odd if the number
of its vertices is odd, otherwise it is even. Consider coloring the vertices of a
chordless cycle such that adjacent vertices receive different colors. When the
cycle is even, then this can be done by using only two colors, since the two
colors can be assigned alternately to the vertices along the cycle. Hence for
every even cycle the chromatic number is equal to its clique number, i.e. 2.
However, when the cycle is odd and has at least 5 vertices, one more color
is needed, that is ω = 2 and χ = 3 for these graphs. The same phenomenon
occurs when coloring the complements of these cycles. If the cycle has an
odd number of vertices at least 5 then one more color is needed to color
the complement of the cycle than the lowerbound as indicated by the clique

2 Preliminaries 9

number suggests. If the cycle has an even number of vertices, then the clique
number and chromatic number of the complement are equal.

A graphG is called perfect if for every induced subgraph the chromatic num-
ber equals its clique number. As shown above, perfect graphs cannot have
odd holes or antiholes. Many special classes of perfect graphs have been thor-
oughly investigated and documented over the last years [26, 86], and many
of them find applications in various fields. This is so because for a lot of these
classes also many other NP-complete problems are solvable using efficient al-
gorithms, and this solves many problems that occur in practice.

The perfect graph conjecture, proved by Lovász in 1972 [141],1 states that
the class of perfect graphs is self-complementary, i.e., a graph G is perfect if
and only if its complement G is perfect. The strong perfect graph conjecture
guesses that a graph is perfect if and only if the graph contains no odd hole
or antihole. A proof of this conjecture was recently levied in [43].

For a nice appetizer on perfect graphs we refer to [94]. Both conjectures
on perfect graphs, the first one saying that the class is self complementary,
and the second one saying that they are exactly the graphs without holes or
antiholes, are attributed to Berge. The problems find their origin in Shan-
non’s classical paper [175], and Berge says that his attention was drawn to
this paper some time in June 1957. With his student Alain Ghouila-Houri,
Berge formulated his two most famous conjectures in 1960. Since then both
conjectures have made a tremendous impact on graph-theoretical research
and the work on algorithmic graph theory and combinatorics. In [16], quot-
ing many famous mathematicians like Rota and Chvátal, it is mentioned that
Berge’s work helped rescue graph theory and combinatorics from “the slum
of mathematics.” We leave it in the middle whether this was still necessary at
that time. It seems funny, that Berge writes in [9] that Shannon’s paper [175]
“could have been missed by mathematicians working in algebra and combina-
torics.” Nowadays, this is almost impossible to imagine! Shannon had a very
clearcut motivation for studying and posing part of the questions [175] that
were glamorized by Berge into his two most famous conjectures. For a more
accurate report on the history we refer to [9], and for an exhibition how it
links combinatorics, graph theory, combinatorial optimization, semi–definite
programming, polyhedral and convexity theory, and “even” information the-
ory, we refer to the beautiful “favorite theorem” [94] paper of Grötschel.

1 When informed by Berge, via a postcard, of Lovász’ success, Fulkerson, who had
worked on the problem for more than a decade, independently finished his own
proof within a few hours [16]. Since then, the proof of this theorem has developed
into a one–hour presentable classroom appetizer taking up less space than half a
page [78].

10 2 Preliminaries

As already mentioned above, one of the merits of perfect graphs is that the
“basic” NP-complete problems CLIQUE, INDEPENDENT SET2, CHROMATIC NUM-
BER, and CLIQUE COVER3 become solvable in polynomial time when restricted
to perfect graphs [10]. For other problems that are NP-complete for graphs in
general much less is known when the graphs are restricted to the class of per-
fect graphs, but for many important sub–families also many other problems
become efficiently tractable. Recent developments indicate that a tremendous
expansion of this knowledge can be expected in the near future due to the
discovery of a decomposition for perfect graphs, discussed in some detail be-
low.

Until very recently it was unknown whether deciding if a graph is perfect
or not is in NP. Recently a polynomial time recognition algorithm for perfect
graphs was announced [54]. The complexity of finding an odd hole or anti-
hole was unknown for quite some time, and until now, no easy algorithm is
available. The currently fastest algorithm to detect the presence of odd–length
holes or antiholes takes O(n10) time, where n is the number of vertices of the
graph [54, 164].4 The proof of the strong perfect graph theorem shows that
these graphs go along with an almost elementary decomposition tree with
only 4 types of prime graphs and only a few types of internal nodes, e.g.;

2 An independent set in a graph G is a clique in the complement G.
3 A clique cover in a graph G is a coloring of the complement G.
4 The algorithm of [54] can also be used to produce an odd hole or antihole. In [54]

it is mentioned that checking whether a general graph contains an odd hole is still
an open problem. At the moment we are not aware of any algorithm that produces
an odd hole (if it exists). An odd–hole–free graph recognition algorithm for graphs
of bounded clique size has been announced [45]. For even holes the present situta-
tion is as follows. In [42] an algorithm appeared that produces an even hole if there
exists one. However, it should be mentioned that in this paper holes are defined as
chordless cycles of length at least 3. Hence the algorithm could produce a “hole” of
length 4, and it is not obvious how to augment this algorithm for finding even holes
of length more than 5. The algorithm of [42] runs in O(n31) time. In this paper it
is mentioned that the problem of finding the shortest even hole is still open. The sit-
uation where the parity constraint is dropped is as follows: A nice characterization
of graphs without holes or antiholes appeared in [11]. The algorithm based on this
characterization runs in O(n +m2) time and uses O(n +m2) space. However, it
does not produce a hole or antihole in all cases. The algorithm of [105] produces
a hole or antihole if there exists one. This algorithm can be implemented to run on
O(n+m2) time and usesO(n+m) space. The algorithm of [164] checks if a graph
has a hole and produces one if this is the case. This algorithm can be implemented
to run in (n+m2) time and O(nm) space. The same result is shown for antiholes,
i.e., an antihole can be detected and produced in O(n+m2) time O(nm) space. If
the graph does not have a C5 the space complexity can be reduced to O(n +m).
Notice that Bienstock showed that it is NP-hard to find odd holes containing a given
vertex.

2 Preliminaries 11

every odd-hole-free graph is either basic or has a double star cutset or
a 2-join [54].

Graphs that allow a decomposition tree with a restricted set of prime
graphs that can occur as leaves of the tree, and a restricted set of internal
nodes which serve as graph decomposition operators, often permit efficient al-
gorithms for certain NP-complete problems. Examples are graphs of bounded
treewidth, branchwidth, cliquewidth, &tc, and many other graph classes like
planar graphs and cographs which found their origin in alternative charac-
terizations first. Research takes place in two directions. Usually, either one
starts with the graph class and tries to find the suitable decomposition tree,
or one starts with a certain decomposition tree and tries to analyze the graphs
which permit this decomposition. Here one takes a certain decomposition tree
and tries to “fit” the graph into this “haute couture.” For some decomposi-
tion trees, like tree decompositions, the prime graphs consist of single vertex
graphs. As an oposite example in this respect one can consider the modular–
decomposition tree, where the prime graphs can take almost any shape and
size and the decomposition tree is determined solely by the description of
the interplay of the internal nodes as modules. Although one type of research
usually precedes the other, both directions are researched eventually.

In order to prove the perfect graph theorem researchers guessed for a long
time at the suitable decomposition tree.5 This research led to various alterna-
tive decomposition trees, e.g., different types of homogeneous decomposition
trees and decomposition trees using star cutsets, or clique cutsets, that appear
to be useful in practice to solve certain NP–complete problems. Eventually,
two separate groups of researchers found two slightly different decomposi-
tion trees (above, we only mentioned the one that appeared in [54]) and
proved the correctness of the strong perfect graph theorem along the way.
In case a graph is perfect, there exists a decomposition tree where the “basic
graphs”, or “prime graphs”, that occur as leaves of this decomposition tree,
are bipartite graphs,6 linegraphs7 of bipartite graphs, or the complements of
these classes. Notice that, for example, the bipartite graphs are perfect, since
they do not contain any odd cycle. It is fairly easy to see that also the other

5 Quite early, the right collection of prime graphs was conceived.
6 A graph is bipartite if its chromatic number is at most two, i.e., when there exists

a partition of the vertices into two sets V1 and V2 such that every edge connects a
vertex of V1 with a vertex of V2. Alternatively, bipartite graphs can be characterized
as those graphs without any odd length cycle.

7 The linegraph L(G) of a graphG = (V, E) is the intersection graph of the elements of
E, i.e., the vertices of L(G) are the edges of G and two vertices in L(G) are adjacent
whenever the corresponding edges in G have a vertex in common.

12 2 Preliminaries

basic graphs are perfect. For the basic (or: “prime”) perfect graphs many NP–
complete problems are solvable in polynomial (and usually even linear) time.

A double star cutset is a separator S containing two adjacent vertices x and
y such that all other vertices of S are adjacent to at least one of these two. It is
not difficult to find a double star cutset in a graph in polynomial time: Simply
try all possible adjacent vertices x and y and a pair of vertices a and b such
that a and b are not adjacent. Then let S be the set of vertices that contains
x, y, and all neighbors of x and y except a and b. Finally check if this set
S separates a and b into different components. In the recognition algorithm
for perfect graphs the problem is to find those double star cutsets that are
suitable for the decomposition tree, i.e., it is required that they decompose a
graph in such a way that the odd-hole-free property is maintained. Until now,
this is the bottleneck in the recognition algorithm: Double star cutsets that
guarantee the preservation of odd-hole-freeness can be found only after the
graph is first cleaned.

A 2-join is a partition of the vertices into two sets V1 and V2 such that
each contains nonempty vertex sets Ai and Bi, i = 1, 2, such that every vertex
of A1 is adjacent to every vertex of A2, every vertex of B1 is adjacent to
every vertex of B2, and there are no further adjacencies between V1 and V2.
A 2-joins in a graph can also be detected in polynomial time [53]. For the
recognition algorithm of perfect graphs they present less difficulties than the
double star cutsets: Every 2-join can be used to decompose a graph such that
the odd-hole-free property is preserved.

In order to prove the strong perfect graph theorem, two separate groups of
researchers joined forces and proved that, after cleaning the graph, it captures
the class of perfect graphs in the sense that a decomposition can be obtained
from double star cutsets and 2-joins that preserves the odd-hole-free property.
The decomposition tree with prime graphs as the leaves and double star cut-
sets and 2-joins as internal nodes, seems at the moment to be the winning
strategy for the recognition algorithm of perfect graphs (after the clean-up
before a double star cutset is used), i.e., deciding whether a graph has an odd
hole or antihole.

The decomposition tree could be of great importance to find polynomial
time combinatorial algorithms for certain NP-complete problems on perfect
graphs and other graph classes. Therefore, finding more efficient algorithms
to find this decomposition tree and the use of it to solve NP-complete prob-
lems is of great interest. For example, it would be of great interest to find
combinatorial algorithms for problems such as CLIQUE, CHROMATIC NUMBER,
and others for the class of perfect graphs. Although more widely applicable,
the available algorithms for computing the clique and chromatic number at
the moment use linear programming and are of little use in practice. More-

2 Preliminaries 13

over, the algorithms do not produce a proof that the computed number is the
correct one unless the graph is known to be perfect. The newly obtained de-
composition tree for perfect graphs indicates that more efficient algorithms
are within reach for the class of perfect graphs.

Definition 2.1. Let G be a class of graphs. A graph G is a probe graph of G if
its vertices can be partitioned into a set P and an independent set N such that G
can be embedded into a graph G′ ∈ G by adding edges between certain vertices
of N. The vertices of P are called probes and those of N are called nonprobes.

If the partition of the vertices into probes and nonprobes is part of the input,
then we call the graph a partitioned probe graph of G. In this book we denote
a partitioned probe graph of G as G = (P + N, E), and when this notation is
used it is to be understood that N is an independent set in G. If the graph
class G is not specified we call G = (P + N, E) a partitioned graph if N is an
independent set. We will refer to the class of (partitioned) probe graphs of
the class of (XXX) graphs as (partitioned) probe (XXX) graphs where (XXX) is
the name of a graph class. We call a graph G′ ∈ G obtained from G by adding
some edges between vertices of N an embedding of G.

Definition 2.2. Let G = (P + N, E) be a partitioned graph. Let G∗ be obtained
from G by removing all edges between vertices of N. G∗ is called the sandwich
conjugate of G.

One of the main motivations for studying probe graphs of classes of perfect
graph is the following observation:

Theorem 2.3 (Probe Sandwich Theorem). Let G be a class of graphs which is
self-complementary, i.e., H ∈ G⇔ H ∈ G. Let G = (P+N, E) be a graph with a
partition of its vertices into P and an independent set N. Then G is a partitioned
probe graph of G if and only if its sandwich conjugate G∗ is in the same category.

Corollary 2.4. A graph G = (P + N, E) is a partitioned probe perfect graph if
and only if its sandwich conjugate is likewise.

Probe graphs of classes of perfect graphs constitute new classes, and it is
interesting to see that many probe classes of classes of perfect graphs are still
perfect.

Definition 2.5. A Meyniel graph is a graph in which every cycle of odd length
at least 5 has at least two chords.

Meyniel graphs are the graphs without an odd hole nor a cap.8

8 A cap is a cycle of length at least 5 with exactly one chord between two vertices at
distance 2 in the cycle.

14 2 Preliminaries

Theorem 2.6. The only graph classes for which all probe graphs are perfect, are
classes of Meyniel graphs.

Proof. The probe Meyniel graphs are known in the literature as the slim
graphs. The perfectness of slim graphs was shown in [110]. For alternative
proofs see [43, 111]. If a graph has an odd hole then obviously it cannot
be perfect. If a graph does not have an odd hole but, instead, a cap, we can
take the two endvertices of the chord as nonprobes and the other vertices as
probes. Thus we obtain a probe graph with an odd hole. ut

Meyniel graphs can be recognized in polynomial time [31]. As far as we know,
the recognition of slim graphs is still an open problem. We conjecture that at
least the partitioned case is recognizable in polynomial time:

Conjecture 2.7. There exists a polynomial time recognition algorithm for par-
titioned probe Meyniel graphs.

In the following theorem we show a similar characterization for the graph
classes for which all probe graphs are weakly chordal. For the house, domino,
and gem we refer to Figure 8.1 on page 89. A sun is a graph obtained from an
even cycle of length at least 6 in which edges are added to make a maximum
independent set into a clique. For a 3-sun we refer, e.g., to Figure 3.1 on
page 22. If some edges of the clique are possibly missing, but the graph is still
chordal, it is called a trampoline. Farber and Chang [71, Lemma 4.5] observed
that every trampoline has a sun as an induced subgraph. In the following, a
partial k-sun is a graph with 2k vertices, of which k vertices induce the kernel,
which is a Hamiltonian graph, and k other vertices form an independent set.
Each vertex of the kernel is adjacent to exactly two vertices of the independent
set, and each vertex of the independent set is adjacent to two consecutive
vertices of the Hamiltonian cycle of the kernel. Note that we do not require
here that G be chordal.

Theorem 2.8. The probe graphs obtained from a graph are all weakly chordal
if and only if the graph contains no induced house, hole, domino, nor sun.

Proof. A graph whose probe graphs are all weakly chordal clearly cannot con-
tain a house, a hole, a domino, or a sun. In each case we get a hole in the
probe graph by deleting the edges joining a certain set of nonprobes. We show
by contradiction that the probe graphs of the graph class with none of these
induced subgraphs are weakly chordal.

Let G be a graph containing a hole or an antihole and suppose H is some
embedding of G which contains no induced house, hole, domino, nor full
sun. Suppose G contains an antihole of size at least 6. An antihole can only
have two nonprobes, and deleting one of the nonprobes leaves at least the

2 Preliminaries 15

complement of a P5, a house, which is also a house in H. An antihole of size
5 is also a C5.

Now we assume G contains a chordless cycle C with at least five vertices.
From now on we can assume that G = C and H is simply the embedding of
C. If C has three or more consecutive probes, then there must be a hole in the
embedding. Suppose then that the nonprobes of C are each followed by one
or two probes before the next nonprobe. Say C contains the path [a, b, c, d]

with a and d nonprobes. Then a and d must be adjacent in H, or there will
be a hole. Consider the graph H′ obtained from H by deleting the four edges
of H[a, b, c, d]. There must be a path from a to d in H′. If the distance from a

to d in H′ is 2, there is a house in H. If it is 3, there is a domino in H. If it is
more than 3, there is a hole in H. Therefore, C consists of alternating probes
and nonprobes.

Let C contain the path G[a, b, c, d, e], where a, c, and e are nonprobes and
suppose that the edges (a, c) and (c, e) are both lacking in H. If (a, e) is an
edge in the embedding, we have a C5. Otherwise let [a = x0, x1, . . . , xi = e]

be a chordless path in H which avoids b, c, and d. If x1 is not adjacent to c in
H, then the path [c, b, a, x1, x2] is part of a chordless cycle in H of length at
least 5. Therefore (c, x1) is an edge. If (c, x2) is an edge, then we have a house.
If (c, x2) is not an edge, but (c, x3) is one (or if i = 2), then we have a domino.
Otherwise the path [c, x1, x2, x3, x4] is part of a hole (or H[c, d, e, x2, x1] is a
hole if i = 3 or H[c, x1, x2, x3, x4] is a hole if c is adjacent to x4). Therefore
we know that G contains no P5 with three nonprobes such that neither pair
at distance 2 is adjacent in the embedding.

Assume then that C contains the path G[a, b, c, d, e], and that (a, c) is
an edge in the embedding, but (c, e) is not. If (a, e) is an edge we have a
house. Otherwise consider a chordless path [a = x0, x1, . . . , xi = e] in the
embedding which avoids b, c, and d. If x1 is not adjacent to c but x2 is, we
have a house with b as the roof. If neither x1 nor x2 is adjacent to c, then
the path [c, a, x1, x2, x3] is part of a hole (or H[a, c, d, e, x1] is a hole if i = 2

or H[c, a, x1, x2, x3] is a hole if c is adjacent to x3). Therefore x1 is adjacent
to c. Then we apply the same argument with a as the roof to get a house or
hole unless x2 is adjacent to c. Continuing inductively, we get that xi = e is
adjacent to c, a contradiction. Thus, every pair of nonprobes at distance 2 in
C is adjacent in H, and H must be a partial sun.

Since every trampoline contains a sun, H cannot be chordal, or there
would be a full sun. If H were not even weakly chordal, then there would
be a hole or a house. Therefore H contains at least a C4. We choose a C4 with
three vertices “close" together. That is, we let a, b, c, and d be four nonprobes
such that H[a, b, c, d] is a C4, and such that the unique path from a to c in
G−d contains b, and such that this path is the shortest possible for any choice

16 2 Preliminaries

of a, b, c, and d such that H[a, b, c, d] is a C4. Clearly no two of a, b, c, and
d are consecutive nonprobes in G (that is, at distance 2 in G); otherwise the
intermediate probe forms a house with the C4. Let u and w be the nonprobes
immediately preceding and following b in G. Also relabel to vertices of the C4

as v1, v2, v3, and v4, so that b = v1 and the nonedges are (v1, v3) and (v2, v4).
First suppose that w is not adjacent to v3. If w is adjacent to exactly one

of v2 and v4, then H[w, v1, v2, v3, v4] is a house. Suppose then that w is not
adjacent to any of v2, v3, or v4. Let (w = w1, w2, . . . , wi) be the consecutive
nonprobes inG after v1 and suppose thatN(wj)∩{v2, v3, v4} = ∅ for 1 ≤ j < i
but N(wi) ∩ {v2, v3, v4} 6= ∅. (Such a wi must exist.) If N(wi) includes v1

and at least one of v2 or v4, then we have a partial sun: the kernel consists
of the vertices (v1, w1, w2, . . . , wi), and the independent set consists of the
intermediate probes and v2 or v4. Then either the partial sun is chordal, and
there is a full sun inside, or it is not chordal, and there is another C4 induced
by four vertices of the kernel. Since all four vertices of the new C4 are on the
path from b to c, they are too close together, contradicting the way we picked
a, b, c, and d.

If N(wi)∩ {v1, v2, v3, v4} is {v1, v3}, {v2, v4}, or {v2, v3, v4}, then we get an-
other C4 by replacing v3 or v4 by wi, and v1, w1, and v2 are closer than v4,
v1, and v2. In the other cases that |N(wi) ∩ {v1, v2, v3, v4}| = 2 we obtain a
house. If wi is adjacent to exactly one of v2, v3, or v4, but not to v1, we con-
sider a chordless path from v1 towi chosen from the vertices (v1, w1, . . . , wi).
Either we get a chordless cycle of length at least 5, or the path consists of v1,
wi, and just one other vertex x, with wi adjacent to v2 or to v4. In that case,
H[v1, v2, v3, v4, wi, x] is a domino, a contradiction. We conclude that w = w1

must be adjacent to both v2 and v4.
Again we let (w1, . . . , wi) be the nonprobes following v1 inG, and suppose

that wi is adjacent to v3 but that wj is not adjacent to v3 for 1 ≤ j < i. Such a
wi must exist, because if H[wj−1, v2, v3, v4] is a C4, and wj is not adjacent to
v3, we just showed thatwj must be adjacent to v2 and v4, andH[wj, v2, v3, v4]

is also a C4. If wj happens to be the next nonprobe before c 6= v3, then we
get a house.

We also consider the nonprobes (u = u1, u2, . . .) on the other side of
v1. By the same argument, there must be some uj which is adjacent to v3,
and the nonprobes (u1, u2, . . . , uj−1) are not adjacent to v3. If uj and wi are
not adjacent to each other, then we consider a chordless path from uj to wi

on the vertices (uj−1, . . . , u1, v1, w1, . . . , wi−1). With this path and v3, either
we have a hole, or we have a C4 with three vertices in the interior of the
original path from a to c, a contradiction. If uj and wi are adjacent, then the
nonprobes (uj, . . . , u1, v1, w1, . . . , wi) form the kernel of a partial sun with
the intermediate probes and v3 as the independent set. Again we have a full

2 Preliminaries 17

sun inside, or a C4 contained within the original path from a to c. The proof
is complete. ut

Corollary 2.9. Probe distance-hereditary graphs and probe interval graphs are
weakly chordal.

If G = (P + N, E) is a probe perfect graph, then the complement of every
odd cycle of length at least five contains exactly two nonprobes, and these
are connected by an edge in any embedding of G. This observation, and the
Probe Sandwich Theorem 2.3 mentioned above, led us to conjecture, some-
what boldly, the following:

Conjecture 2.10 (Partitioned Probe Perfect Graph Conjecture). There exists a
polynomial time algorithm to test whether a partitioned graph G = (P+N, E)
is probe perfect.

Conjecture 2.11 (Probe Perfect Graph Conjecture). There exists a polynomial
time algorithm to test whether a graph is probe perfect.

One of the merits of perfect graphs is that some of the ‘basic’ NP-complete
problems such as CLIQUE, INDEPENDENT SET, CHROMATIC NUMBER, and CLIQUE

COVER become solvable in polynomial time when restricted to this class [10].
For probe classes of perfect graphs, we have the following theorem:

Theorem 2.12. Let G be any class of perfect graphs. Let PPG be the class of par-
titioned probe graphs of G. Then the CLIQUE problem can be solved in polynomial
time for all graphs in PPG.

Proof. Let G = (P+N, E) be a partitioned graph in PPG. Recall that, if a graph
is perfect the CLIQUE problem is tractable in polynomial-time via Lovász theta
function; see, e.g., pp. 325–356 in [10].
Observe that ω(G) can be computed as follows: For every vertex x ∈ N, com-
pute the maximum clique size of G[N[x]], which is a perfect graph. Also com-
pute the maximum clique size of G[P], which is likewise perfect. Then ω(G)

will be the maximal value of these, and thus it can be computed in polynomial
time. ut

If G = (P + N, E) is a partitioned probe perfect graph then its chromatic
number is at most one more than ω(G[P]) since, after coloring the subgraph
induced by the probes, at most one more color is needed to color the set of
nonprobes. Thus for every partitioned probe perfect graph

ω(G) ≤ θ(G) ≤ χ(G) ≤ ω(G[P]) + 1 ≤ ω(G) + 1

The situation that hinders the settlement of the chromatic number occurs
when θ(G) = ω(G) = ω(G[P]). In that case the chromatic number can be
either ω(G) or ω(G) + 1.

18 2 Preliminaries

Conjecture 2.13. There exists a polynomial time algorithm to compute the
chromatic number of a partitioned probe perfect graph.

Conjecture 2.14. There exists a polynomial time algorithm to compute the
clique number of a probe perfect graph.

Conjecture 2.15. There exists a polynomial time algorithm to compute the in-
dependence number of a partitioned probe perfect graph.

Part II

Unpartitioned Classes

3

Self Complementary Classes

In this chapter we consider the recognition of probe graphs of some self-
complementary classes. We show that there are polynomial-time recogni-
tion algorithms for (partitioned) probe cographs, P4-reducible, P4-sparse, and
splitgraphs. The general strategy is to investigate the partitioned case first,
and then to deal with the unpartitioned case by exhibiting a polynomial num-
ber of feasible partitions. We show that the probe graphs of all these classes
are again perfect, thus by Theorem 2.6 on page 14 they are all classes of
Meyniel graphs.

3.1 Probe cographs

A cograph is a graph without an induced P4, i.e., an induced path with 4 ver-
tices [139]. Since the complement of P4 is again P4, it follows that cographs
form a self-complementary class of graphs. By now there are many character-
izations known and in the literature various characterizations of the class are
used to define the class. They were discovered independently and given differ-
ent names, for instance D∗-graphs, hereditary-Dacey graphs, 2-parity graphs,
and complement-reducible graphs. For our purposes the following character-
ization will make the grade.

Theorem 3.1 ([50]). Cographs can be characterized as follows:

1. A graph consisting of a single vertex is a cograph.
2. Let G1 and G2 be cographs. Then the join of G1 and G2, obtained by making

every vertex of G1 adjacent to every vertex of G2 is again a cograph.
3. Let G1 and G2 be cographs. Then the (disjoint) union of G1 and G2 is again

a cograph.
4. There are no other cographs.

22 3 Self Complementary Classes

Notice that this decomposition recursively defines a cotree in which leaves
correspond with the vertices of the graph and internal vertices are labeled as
a join or a union. There is a wide variety of linear time cograph recognition
algorithms. To mention just a few, see, e.g., [27, 33, 52, 62, 99, 140].

To strike up an acquaintance with the class of probe cographs we mention
some bagatelles.

rr
rr r r r�

�
@
@
�
�
@
@

rr
r r r rr
HH

H
@@ ����

�

��� �� @@
HHH

r r rr rr r
�� @@ �� @@
@@ ��

rrr
rrr
@

@
@

�
�
��� @@

Fig. 3.1. The 3-sun, parapluie, parachute, and the co-rising sun.

Theorem 3.2. Let G be a probe cograph. Then:

a. Every induced 2K2
1 in a probe cograph remains an induced 2K2 in every em-

bedding.
b. If G contains an induced P5, say P = [u, v,w, x, y], then vertices u, w, and y

must be nonprobes.
c. G has no induced Pk+1, Ck and Ck for any k ≥ 5. Other forbidden induced

subgraphs include the parachute, domino, co-rising sun, and the parapluie.
We refer to Figures 3.1 and 8.1 on page 89 for depicting these graphs.

d. If G is a probe cograph then its cliquewidth is at most 4.

Proof. (a) Notice that only one endpoint of each edge can be a non-probe.
However, adding an edge between two endpoints of each edge induces a P4.
(b) The only way to destroy all induced P4s in P by joining nonprobes with
edges is to add edges uw and wy. Therefore, u,w and y must be nonprobes.
(c) It immediately follows from (b) that a probe cograph cannot have an
induced Pk and Ck for k ≥ 6. A probe cograph cannot have an induced C5

since such a cycle has at most two non-adjacent vertices and adding an edge
between two such vertices cannot destroy all P4’s.
Since a maximal clique in a k-cycle (k ≥ 6) has cardinality 2, the complement
of such a cycle has independence number 2. Connecting such a pair of non-
adjacent vertices cannot destroy all induced P4’s in the graph. Hence a probe
cograph cannot have an induced Ck for k ≥ 5.
Applying (a), it is easy to check that other forbidden induced subgraphs in-
clude the parachute, the domino, the co-rising sun, the parapluie, and plenty
of others.
1 That is, the disjoint union of two edges.

3.1 Probe cographs 23

(d) Let H = (V, E) be a cograph and let (P,N) be a partition of V such that
G is obtained from H by making N an independent set. Recall that a graph
is a cographs if and only if its cliquewidth is at most 2 (see, e.g., [21, 90]).
Consider a 2-expression for H. The two labels are used to construct H from
two cographs H1 and H2 by taking the disjoint union or the complete join. We
use two more labels, one for the non-probes in H1 and one for the non-probes
in H2. ut

Remark 3.3. Until now we have been unable to determine a complete list of
forbidden induced subgraphs for the class of probe cographs.

Remark 3.4. Graphs of bounded cliquewidth allow polynomial time algo-
rithms for many NP-complete problems [55]. A prerequisite, however, is
that a cliquewidth expression of bounded width is available. Obtaining a
cliquewidth expression for graphs with cliquewidth at most 4 is still an open
problem.

Recall that a graph is weakly chordal if it has no induced Ck nor Ck for
any k ≥ 5 [105]. We have the following result.

Corollary 3.5. A probe cograph is weakly chordal, hence perfect.

Note that probe cographs form a proper subclass of the weakly chordal graphs.
As an example may serve the rising sun, i.e., the complement of the graph on
the right in Figure 3.1.

The following observations will enable us to design a recognition algo-
rithm.

Theorem 3.6. Let G be a graph.

1. If G is disconnected then G is a probe cograph if and only if every component
induces a probe cograph.

2. Assume G is disconnected and let C1, C2, . . . , Ck be the components of G.
Then G is a probe cograph if and only if all induced subgraphs G[Ci], i =

1, . . . , k are cographs except possibly one which is a probe cograph.
3. Assume G and G be connected. If G is a probe cograph, then G∗ is discon-

nected. If that is the case then, by Theorem 2.3 on page 13, G is a probe
cograph if and only if every component of G∗ induces a probe cograph in G.

Proof. (1): Consider an embedding G′ of G into a cograph. Let C be the ver-
tex set of a component of G. Then G′[C] is also a cograph since the class of
cographs is hereditary. It follows that no edges need to be added between
non-probes of different components of G.
(2): Suppose G is a probe cograph. Since the set of non-probes N is an in-
dependent set in G, it is a clique in G. Thus at most one component of G

24 3 Self Complementary Classes

contains non-probe vertices. Therefore all components except possibly one
are necessarily cographs. If there is a non-cograph component then this must
be a probe cograph.
Conversely, suppose G[C1] is a probe cograph and G[Ci] is a cograph for i ≥ 2.
Consider an embedding of G[C1]. Since G is the join of the subgraphs G[Ci]

for i = 1, 2, . . . , k, we obtain an embedding of G into a cograph.
(3): Consider a cograph embedding H of G. Since G is connected, so is H.
Since H is a cograph, H is disconnected, but H is a supergraph of G∗, hence
also G∗ is disconnected. ut

Theorem 3.7. There exists an O(n3) time algorithm to test whether a parti-
tioned graph G = (P + N, E) is a probe cograph.

Proof. Let G = (P+N, E) be a partitioned graph. We can use either linear time
cograph recognition algorithm, e.g., [52, 99] to test whether G is a cograph.
If this is the case, we are done. Otherwise, assume G is disconnected and let
C1, . . . , Ck be the components of G, for some k ≥ 2. By Theorem 3.6, G is a
probe cograph if and only if each G[Ci] is a probe cograph (with the induced
partition into probes and nonprobes). We test recursively each G[Ci] whether
it is a probe cograph.
Assume G is disconnected with components C1, . . . , Ck. By Theorem 3.6, G
is a probe cograph iff each G[Ci] is a cograph except possibly one, which is
a probe cograph and contains all nonprobes. Using an adjacency matrix for
the graph G, we can find a representation for G and find the components of
G in O(n2) time. There must be one Ci which contains all nonprobes. We
test recursively whether G[Ci] is a probe cograph. Other graphs G[Cj] must
be cographs, this can be tested in linear time.
Finally assume that G and G are connected. By Theorem 3.6, G∗ is discon-
nected. Let C1, . . . , Ck be the components of G∗. Then check whether each
G[Ci] is a probe cograph recursively with the induced partition.
We have described the recognition algorithm recursively. Its correctness fol-
lows from Theorem 3.6. The algorithm first checks whether the input graph is
a cograph, this can be done in O(n+m) time. If it is not, then it takes O(n2)

time to compute the components C1, . . . , Ck of G, G, or G∗. By induction,
each component Ci takes O(|V(Ci)|

3) time. Notice that:

k∑
i=1

c3
i ≤ c3

1 + (n− c1)3 ≤ n3 − 3nc1(n− c1) ≤ n3 − n2

since 1 ≤ c1 ≤ n − 1, where we write ci = |V(Ci)|. Since the overhead takes
at most O(n2) time, this proves the theorem. ut

Remark 3.8. The proof shows that each partitioned probe cograph G has a
rooted decomposition tree where the leaves are the vertices of G and the

3.1 Probe cographs 25

internal nodes are of three possible types: either a union node, when the sub-
graph induced by the leaves in the subtree is disconnected, or a join node
when the complement of this subgraph is disconnected, or a “sandwich join”
node when the subgraph and its complement are connected. This decomposi-
tion tree can be built in O(n3) time.

Remark 3.9. Alternatively, the general sandwich algorithm of [88] could be
used. This algorithm runs in O(n(n+m+ |N|2)) time.

The next theorem deals with the unpartitioned case and shows that there
exists a polynomial number of feasible partitions.

Theorem 3.10. Let G and G be connected and assume that G is not a cograph.
Then G is a probe cograph if and only if there are two non-adjacent vertices x
and y in G such that G is a probe cograph with probe set P = N(x) +N(y) and
nonprobe set N = V − P.

Proof. Assume G is a probe cograph with an embedding G′. We may assume
that G′ is the join of two graphs G′1 and G′2 since G′ is obtained from the
connected graph G by adding some edges.
Let Ni and Pi be the probes and nonprobes in G′i, i = 1, 2. Since G is con-
nected, we have that N1 6= ∅ and N2 6= ∅. Take any x ∈ N1 and y ∈ N2.
ut

Theorem 3.11. The problem of recognizing probe cographs can be reduced to
the problem of recognizing partitioned probe cographs in O(n+m) time.

Proof. If G is disconnected, then the problem reduces to the problem of test-
ing whether each connected component of G induces a probe cographs in G.
If G is disconnected, then all the nonprobes must lie in one component of
G. The problem reduces to the problem of testing whether each connected
component of G is a cograph, except possibly one which is a probe cograph.
Using the modular decomposition tree [146] of G, we can locate in linear
time a set of modules which partition V, such that each module is connected
and the complement is connected. The graph G is a probe cograph if and
only if the graph G[C] is a probe cograph for each such module C, with one
additional restriction. For each module in the decomposition tree which in-
duces a graph which is not coconnected, there can be only one coconnected
component which is not a cograph. (This information can be read from the
tree.)
In the following assume G and G are connected. First we run the cograph
recognition algorithm of, e.g., [52, 99] which tests if G is a cograph (we as-
sumed it was not) and produces an induced P4 in G if it is not. Let the induced
P4 found by the algorithm be P = [a, b, c, d]. We distinguish two possibilities.

26 3 Self Complementary Classes

Case 1. Assume a, c ∈ N and b, d ∈ P. If V(G) − (N(a) + N(c)) is an inde-
pendent set, then N(a) + N(c) can be used as the set of probes. Otherwise
consider an embedding H of G, which must be the join of two cographs H1

and H2. It is not hard to see that {a, b, c, d} ⊆ V(H1) or {a, b, c, d} ⊆ V(H2).
Assume the former is the case. There must exist a nonprobe α ∈ V(H2) since
otherwise G would be disconnected. Then α is adjacent to b and to d and not
adjacent to a nor c. Consider

Ω = {α | [a, b, α, d] is an induced P4 in G}

The vertices of Ω must all be nonprobes (or we have a P4 we cannot destroy)
and we have P = N(a) + N(Ω). Note that this case includes the possibility
that P = N(a) +N(c). Since Ω can be found in O(n+m) time, so can P. The
feasible partition can be tested by an algorithm recognizing partitioned probe
cographs.
The case where a, c ∈ P and b, d ∈ N is similar.

Case 2. Assume a, d ∈ N and b, c ∈ P. Similarly to Case 1, ifN(a)+N(d) is not
the complete set of probes, then the vertices {a, b, c, d} cannot lie in both H1

and H2. Assume {a, b, c, d} ⊆ V(H1). There exists a nonprobe α ∈ V(H2)∩N.
In G, α is adjacent to b and c and not adjacent to a and d. Now, it is easy to
see that P = N(a) +N(α). Find the set

Ω = {α | b, c ∈ N(α) and a 6∈ N(α) and d 6∈ N(α)}

All vertices of Ω must be nonprobes, otherwise there exists a house in any
embedding. Thus in this case P = N(a) +N(d) +N(Ω). ut

Corollary 3.12. There exists an O(n3) algorithm for the recognition of probe
cographs.

An improvement of this algorithm will be described in Chapter 8.

3.2 Probe P4-reducible graphs

P4-reducible graphs were defined in [125].

Definition 3.13. A graph G is P4-reducible if every vertex belongs to at most
one induced P4 of G.

Definition 3.14. An ornament in a graph G is an induced P4, P = [a, b, c, d]

such that every vertex of G − V(P)2 is adjacent to b and to c and non-adjacent
to a and to d.
2 Abusing notation we also use G− P for the graph G− V(P).

3.2 Probe P4-reducible graphs 27

In [125] the following characterization of P4-reducible graphs was given. It
led to a linear time recognition algorithm for P4-reducible graphs which ap-
peared in [128].

Theorem 3.15 ([125]). A graph G is P4-reducible if and only if for every in-
duced subgraph H of G, exactly one of the following conditions is satisfied:

1. either H or H is disconnected, or
2. there is a unique ornament.

Remark 3.16. The class of P4-reducible graphs is self-complementary.

Theorem 3.17. Let G be a probe P4-reducible graph.

(1) G is Pk-free for k ≥ 6.
(2) G is Ck and Ck-free for k ≥ 5.
(3) G is weakly chordal hence perfect.

Proof. (1): It’s easy to verify that P6 can not be embedded as a P4-reducible
graph. Hence a probe P4-reducible graph has no induced Pk for k ≥ 6.
(2): From (1) we see that G is Ck-free for k ≥ 7. It can be verified that G
is C5- and C6-free. Ck has independent number two. The resulting graph by
connecting an edge of two independent vertices of Ck is still not P4-reducible
since any vertex incident to the two independent vertices is in at least two
induced P4s. Thus, G is Ck-free for k ≥ 5.
(3): Follows from (2) directly. ut

Consider the recognition problem for probe P4-reducible graphs. We first
consider the partitioned case.

Lemma 3.18. Let G = (P + N, E) be a partitioned probe graph. Assume P is a
set of 4 vertices in G that can be made into an ornament of G by adding some
edges between vertices of N. Then G is probe P4-reducible if and only if G − P is
probe P4-reducible.

Proof. Suppose that G is probe P4-reducible. Since G − P is an induced sub-
graph, G− P is probe P4-reducible.
If G− P is probe P4-reducible, then add edges incident with vertices of P ∩ N
and edges between vertices of P ∩N and (G− P)∩N to make P an ornament.
Also add edges between vertices of N−P to make G−P P4-reducible. It is easy
to check that every vertex is then in at most one P4 since each P4 different
from P is in G− P. ut

The following lemma deals with the case where G or G is disconnected. The
proof is identical to the proof of Theorem 3.6.

28 3 Self Complementary Classes

Lemma 3.19. Let G be a graph.

1. If G is disconnected then G is probe P4-reducible if and only if each component
of G is probe P4-reducible.

2. Let G be disconnected. Then G is probe P4-reducible if and only if except one
component which is probe P4-reducible, all other components of G are P4-
reducible.

The next lemma deals with the case that G is connected but the sandwich
conjugate G∗ is disconnected.

Lemma 3.20. Let G = (P + N, E) be a connected partitioned graph. Let Ci,
i = 1, . . . , k be the components of the sandwich conjugate G∗, and let

Ni = Ci ∩ N and Pi = Ci ∩ P

Then G is probe P4-reducible if and only if each G[Pi + Ni] is probe P4-reducible
with a vertex partition into probes Pi and nonprobes Ni.

Proof. If G is partitioned probe P4-reducible, then each G[Pi + Ni] is parti-
tioned probe P4-reducible since this is an induced subgraph.
Suppose that each Gi = G[Pi +Ni] is probe P4-reducible with vertex partition
(Ni,Pi). We can make an embedding of G by taking the join of the embed-
dings of the graphs Gi. ut

Theorem 3.21. There exists a polynomial time algorithm to test if a graph G =

(P + N, E) is partitioned probe P4-reducible.

Proof. If G is disconnected, then G is probe P4-reducible if and only if ev-
ery component is probe P4-reducible. If G is connected but G∗ is not, then
Lemma 3.20 applies.
Let G = (P + N, E) and G∗ be connected. If G is a partitioned probe P4-
reducible graph, let H be an embedding of G. Then H and H are connected.
By Theorem 3.15,H has a unique ornament and Lemma 3.18 applies. This can
be tested in polynomial time as there are at mostO(n4) subsets P of 4 vertices.
If neither lemma applies then G is not a partitioned probe P4-reducible graph.
ut

Consider the recognition problem for unpartitioned probe P4-reducible
graphs. The proof of the following lemma can be copied from the proof of
Theorem 3.10 so we omit it.

Lemma 3.22. Let G and G be connected probe P4-reducible graph with an em-
bedding G ′ such that G ′ is disconnected. Then there are non-adjacent vertices x
and y in G such that choosing P = N(x)+N(y) and N = V −P provides a valid
partition.

3.3 Probe P4-sparse graphs 29

We now describe the recognition algorithm for the unpartitioned case. Like in
the algorithm for probe cographs, we try a polynomial number of feasible par-
titions of the vertex set into probes and nonprobes as input for the algorithm
which checks the partitioned case.

i. Check the connectivity of G. If G is disconnected, and G is probe P4-
reducible if and only if every component is probe P4-reducible. Hence-
forth assume that G is connected.

ii. Check the connectivity of G. If G is disconnected with components
C1, . . . , Ck, then G is probe P4-reducible if and only if all induced sub-
graphs G[C1], G[C2], . . . G[Ck] are P4-reducible except one which is probe
P4-reducible. Henceforth assume that G is connected.

iii. Consider the case that there exists an embedding G′ such that G′ is dis-
connected. By Lemma 3.22 there must exist non-adjacent vertices x and y
in G such that choosing P = N(x) +N(y) and N = V − P provides a valid
partition. In this step, try all such partitions until finding an embedding
of G or go to next step.

iv. Consider the case that there is an embedding G′ such that G′ and G′

are connected. Then by Theorem 3.15, G′ has a unique ornament P =

[a, b, c, d]. Since G is connected and a and d are pendant vertices, we
may assume that a, d ∈ P in some valid partition if this exists. We consider
three possibilities:
a. There is a valid partition with b ∈ P and c ∈ N. Hence b is adjacent in
G to all vertices of V − P and N = (V − P −N(c)) + c.

b. There is a valid partition with b, c ∈ N. Hence b and c are not adjacent
in G. Then N(b) − P = N(c) − P = P − {a, d}.

c. If b, c ∈ P, then P is an ornament in G. In that case G is probe P4-
reducible if and only if G− P is probe P4-reducible.

By the discussion above we obtain:

Theorem 3.23. It can be tested in polynomial time whether a graph G is probe
P4-reducible. If this is the case a valid embedding can be obtained in polynomial
time.

3.3 Probe P4-sparse graphs

Hoàng introduced P4-sparse graphs [111].

Definition 3.24. A graph G is P4-sparse if no set of 5 vertices induces more than
one P4.

In [126] Jamison and Olariu characterized P4-sparse graphs using spiders.

30 3 Self Complementary Classes

Definition 3.25. A graph G is a spider if there is a partition of the vertices into
three sets S, K, and R, satisfying:

1. S is an independent set, K is a clique, and |S| = |K| ≥ 2,
2. every vertex of R is adjacent to every vertex of K and to no vertex of S,
3. there is a bijection f between S and K such that either ∀x∈SN(x) = {f(x)},

or ∀x∈SN(x) = K − f(x). In the first case, G is called a thin spider and in
the second case G is a thick spider.

The set R is called the head of the spider.

Theorem 3.26 ([126]). A graph is P4-sparse if and only if for every induced
subgraph H exactly one of the following conditions is satisfied:

1. either H or H is disconnected, or
2. H is isomorphic to a spider.

Notice that the class of P4-sparse graphs is self-complementary and properly
contains the P4-reducible graphs. Actually, a graph G is P4-reducible if and
only if G is P4-sparse and (S3, S3)-free[126].3 For a forbidden induced sub-
graph characterization of P4-sparse graphs we refer to [126]. A decomposition
tree for P4-sparse graphs can be obtained in linear time [127].

Theorem 3.27. Probe P4-sparse graphs are perfect.

Proof. Let G be a probe P4-sparse graph. Note that C5 contains more than one
induced P4. Any hole with more than 5 vertices has an induced P5, hence it
is not P4-sparse. It follows that P4-sparse graphs don’t contain any hole. They
also cannot contain a house (see Figure 8.1 on page 89), since a house has
still two induced P4s. Any cap, i.e., a cycle with at least 5 vertices and exactly
one chord between vertices at distance 2 in the cycle, contains a hole or is a
house. Hence these are also not P4-reducible. It follows that P4-sparse graphs
are Meyniel. By Theorem 2.6 on page 14 probe P4-sparse graphs are perfect.
ut

Remark 3.28. Since C6 is a probe P4-sparse graph since it can be embedded
as a 3-sun by making a triangle of an independent set with 3 vertices. Hence
probe P4-sparse graphs are not necessarily weakly chordal.

Notice that the statements and proofs of Lemmas 3.19, 3.20, and 3.22 can be
carried over to similar statements and proofs for probe P4-sparse graphs.

Lemma 3.29. Let G be a graph.

3 The graph S3 is the 3-sun, or Hajós graph. See Figure 3.1.

3.3 Probe P4-sparse graphs 31

1. If G is disconnected then G is probe P4-sparse if and only if each component
of G is probe P4-sparse.

2. Assume that the complement G is disconnected. Let C1, C2, . . . , Ck be the
vertex sets of the components of G. Then G is probe P4-sparse if and only if all
induced subgraphs G[C1], G[C2], . . . , G[Ck] are P4-sparse except possibly one
which is probe P4-sparse.

3. Let G = (P + N, E) be a connected, partitioned graph. Let G∗ be the sandwich
conjugate graph with connected components C1, . . . , Ck. Then G is probe P4-
sparse if and only if each G[Ci] is probe P4-sparse with the induced vertex
partition into probes and nonprobes.

4. Assume G and G are connected probe P4-sparse. Let G′ be an embedding of G
such that G′ is disconnected. Then there exist non–adjacent vertices x and y
in G such that P = N(x) +N(y) and N = V − P is a valid partition.

In the following lemma we show how to check whether a partitioned graph
G can be embedded into a thin spider by adding some edges in N.

Lemma 3.30 (Thin spider embedding). Assume G = (P + N, E) and G∗ are
connected.

1. Assume there exists a vertex x ∈ P and a pendant vertex y ∈ N(x) such that
V can be partitioned into a set S = y + (V − N[x]) of pendants, K = N(S),
and R = V − K − S, and assume that this partition can be completed into a
thin spider by adding edges to N. Then G is probe P4-sparse if and only if G[R]

is probe P4-sparse with the induced partition into probes and nonprobes.
2. Let S be the set of pendant vertices that are probes. Let K = N(S) and R =

V − K − S. Assume G can be embedded into a thin spider with this partition.
Then G is probe P4-sparse if and only if G[R] is probe P4-sparse with the
induced partition.

3. Otherwise, G is not a probe thin spider.

Proof. If G is a partitioned probe P4-sparse, then G[R] is probe P4-sparse with
the induced partition into probes and nonprobes since G[R] is an induced
subgraph of G.
Assume G can be completed into a thin spider with partition into sets S, K,
and R. If there exists a vertex x ∈ K ∩ P, then let y be a pendant neighbor of
x in S. The partition described in the first case occurs.
Assume that G can be embedded in a thin spider with K ⊆ N. Since G is
connected and |K| ≥ 2, we have:

a. all pendant vertices in S are in P,
b. R 6= ∅,
c. K has no pendant vertices, and
d. all pendant vertices in R are in N.

32 3 Self Complementary Classes

Thus, in this case, S is exactly the set of pendant vertices in P, K = N(S), and
R = V − K− S.
In both cases, if G[R] is probe P4-sparse, then add all edges to obtain an em-
bedding of G[R], and all edges to make G a thin spider. It is easy to see that
any 5 vertices that induce a P5 must be in R. Therefore, the embedding of G
is P4-sparse. ut

Lemma 3.31 (Thick spider embedding). Let G = (P + N, E) be a partitioned
probe graph. Let G∗ be the sandwich conjugate of G. Then G is a probe thick
spider if and only if G∗ is a probe thin spider.

Proof. The class of P4-sparse graphs is self-complementary. The complement
of a thin spider is a thick spider. The claim now follows immediately from the
Probe Sandwich Theorem 2.3. ut

Theorem 3.32. There exists a polynomial time algorithm that checks if a parti-
tioned graph G = (P + N, E) is probe P4-sparse.

Proof. If G is disconnected with components C1, . . . , Ck, then G is probe P4-
sparse if and only if every component G[Ci] is probe P4-sparse (with the in-
duced partition). Likewise, by Lemma 3.29, item (3), we may as well assume
that also G∗ is connected. Thus we may assume that there is an embedding G′

of G such that G′ and G′ are connected. By Theorem 3.26, G′ is a spider. Now
Lemmas 3.30 and 3.31 lead to a polynomial time algorithm to check whether
G can be embedded into a thin or thick spider. ut

Theorem 3.33. There exists a polynomial time algorithm to test if a graph G is
probe P4-sparse and to produce a valid embedding if this is the case.

Proof. The first two items of Lemma 3.29 deal with the case where G or G is
disconnected. The seeking after an embedding G′ such that G′ is disconnected
is easy by Lemma 3.29 item (4). This reduces the problem to the case where
G can be embedded as a spider. By Lemma 3.31, we may further assume that
G can be embedded as a thin spider. To do this, we let I be the set of pendant
vertices. For each y ∈ I, there is a unique vertex x such that xy is an edge.
Apply Lemma 3.30 to obtain a partition of V into sets S, K and R. If none of
these partitions work, then all vertices in I must be probes. Let the set S in
Lemma 3.30 be I. This will either reduce the graph G to the smaller subgraph
R or allow the conclusion that G is not a probe P4-sparse graph. Clearly only
polynomial number of partitions need to be dealt with. ut

3.4 Probe splitgraphs

Splitgraphs were introduced by Földes and Hammer in [73]. They are exactly
the graphs G for which G and its complement are chordal.

3.4 Probe splitgraphs 33

Definition 3.34. A graph is chordal if it has no induced cycle of length more
than 3.

Definition 3.35. A graph G = (V, E) is a splitgraph if its vertices can be parti-
tioned into a clique C and an independent set S.

We use G = (C, S, E) to denote a splitgraph with clique C and independent
set S. The following characterization of splitgraphs is on tap:

Theorem 3.36 ([73, 188]). Let G be a graph. The following conditions are
equivalent:

(i) G is a splitgraph.
(ii) G and G are chordal.

(iii) G has no induced 2K2, C4, nor C5.

The fact that probe chordal graphs are perfect was observed in [89].

Theorem 3.37 ([89]). Probe chordal graphs are perfect.

Proof. An odd cycle C2k+1 has maximal independent sets of cardinality k.
Choosing any independent set leaves at least one edge untouched which im-
plies two consecutive probes. The two consecutive probes do not have a com-
mon neighbor, hence they must be in a chordless cycle of length at least 4 in
any embedding. That is, the resulting graph is not chordal.
Removing an edge from Ck, k ≥ 6 leaves at least two disjoint edges, i.e., a C4

in the complement. ut

Corollary 3.38. Probe splitgraphs are perfect.

Remark 3.39. Notice that all bipartite graphs are probe splitgraphs. Besides
the odd holes and odd antiholes, also the union of an edge and a K3 is forbid-
den and there are plenty of others.

Assume that G′ = (C, S, E′) is an embedding of a probe splitgraph G =

(V, E). Let N be the set of nonprobes, let NC = N ∩ C, and let NS = N ∩ S. Let
P = V − N and PC = C − NC. Notice that there must exist an embedding of
G such that NS = ∅, for example an embedding with a minimal number of
nonprobes, otherwise there won’t be any embedding. Thus, to test whether an
unpartitioned graph is a probe splitgraph, it is sufficient to hit upon NC and
add the necessary edges to turn it into a clique. Following our modus operandi
we first consider the recognition problem for partitioned probe splitgraphs.

Theorem 3.40. There is a O(n + m) time algorithm to recognize partitioned
probe splitgraphs.

34 3 Self Complementary Classes

Proof. To boot the trivial case we test whether G is a splitgraph using some
linear time algorithm, e.g., the algorithm described in [103]. If G is a split
graph we are done. Assume we are not that lucky.
Let G = (P + N, E) be a partitioned probe splitgraph and let G′ = (C, S, E′) be
an embedding ofG. As affirmed above it suffices to find NC, add the necessary
edges to turn it into a clique, and check whether the resulting graph is a split
graph. We assume that G′ is an embedding such that |C| is maximal. It follows
that a vertex of N belongs to S if and only if its degree in G is less than |PC|.
Use the algorithm of [103] to test whether G[P] is a split graph. If this is not
the case then G is not a probe splitgraph. Otherwise, obtain a partition into
clique CP and independent set SP of G[P], such that CP is a maximal clique
of G[P]. Then |PC| is either |CP | or |CP | − 1.
Our algorithm computes, for the two possible values of |PC|, the sets NS and
NC using the above degree condition. Then it makes NC into a clique by
adding edges and finally checks whether the resulting graph is a split graph.
ut

The unpartitioned case awaits.

Theorem 3.41. A graph G is a probe splitgraph if and only if G is a splitgraph
or if there exists a clique K and one vertex κ ∈ K such that G−K is bipartite and
there is a bipartition of G−K such that every vertex of one color class is adjacent
to every vertex of K− κ and not adjacent to κ.

Proof. Assume G is not a splitgraph.
Let G′ = (C, S, E′) be an embedding of G with a minimal number of non-
probes. Let NC and NS be the sets of nonprobes contained in C and S, respec-
tively. Then NS = ∅. Hence NC 6= ∅. Picture a partition into C and S such
that |C| is maximal. Then every vertex of S has at most |C| − 1 neighbors in C.
Consider the graph G[NC + S]. As clear as day, this subgraph is bipartite with
color classes NC and S. Let κ be any vertex in NC and K = (C−NC)+κ. Then
K is a clique in N[κ], G − K is bipartite with color classes NC − κ and S, and
every vertex of NC − κ is adjacent to every vertex of C− NC = K− κ.
Now assume that the graph has a clique K with a specified vertex κ ∈ K such
that G−K is bipartite with a bipartition such that every vertex of at least one
of the 2 color classes is adjacent to every vertex of K− κ and no vertex of this
color class is adjacent to κ. We can make a clique of K together with this color
class to complete the graph into a splitgraph. ut

Notice that a vertex κ satisfying the conditions can be assumed to be a non-
probe in NC.

This characterization pimps the following algorithm:

3.4 Probe splitgraphs 35

Theorem 3.42. There is a polynomial time algorithm which recognizes unpar-
titioned probe splitgraphs.

Proof. Assume that G is not a splitgraph. Find one of the forbidden induced
subgraphs; 2K2, C4, or C5. If the output is a C5 then G is not a probe split
graph by Lemma 3.37. Assume this is not the case and let H be the forbidden
induced subgraph, i.e., H is either 2K2 or C4. Two vertices of H will be probes
and the other two will be nonprobes and we may assume that these two
nonprobes belong to NC.
For each of the four vertices of H the algorithm checks whether it is a vertex
of NC and can thus be chosen as the vertex κ in Theorem 3.41. This is done
as follows for a fixed choice of vertex κ: Test whether G[N[κ]] is a splitgraph
in O(n+m) time. If G is a probe splitgraph with κ ∈ N then G[N[κ]] is a split-
graph. If G[N[κ]] is not a splitgraph then reject the choice of κ. Otherwise find
a partition (K1, S1) of N[κ] such that K1 is a clique and S1 is an independent
set in G[N[κ]]. Two cases pop up:

Case 1: G[N[κ]] has a unique maximal clique. Then we may assume that K1

is the unique maximal clique. Let z ∈ K1 such that |N(z)| is minimal. Then
try K = K1 or K = K1 − z as input for Theorem 3.41.

Case 2: G[N[κ]] has at least two maximal cliques. In this case, we assume
that K1 is a minimal clique so that (K1, S1) is the split representation of
G[N[κ]]. Let z ∈ S1 with maximal degree. Then try K = K1 or K = K1 + z

as input for Theorem 3.41.

Consequently, for each fixed κ it takes O(n +m) to obtain either one or two
possible candidates for K and no other need to be verified. For each such K,
it takes O(n + m) time to check if K and κ meet the requirements of The-
orem 3.41, which must be the case for some κ and some K if G is a probe
splitgraph, and otherwise no such pair κ and K exists. The algorithm checks
at most 3 vertices as candidates for κ, therefore, after the forbidden induced
subgraph is found, the time complexity of the algorithm is linear. ut

Remark 3.43. Recently Dieter Kratsch informed that he found a linear time
algorithm that produces a 2K2, a C4, or a C5 if G is not a splitgraph [135]. If
correct, the timebound in Theorem 3.42 reduces to linear time.

4

Probe Chordal Graphs

In this chapter we present algorithms to recognize partitioned and unparti-
tioned probe chordal graphs. These algorithms are based on Golumbic and
Lipshteyn’s original work [89] and they are described in Berry, Golumbic, and
Lipsteyn’s paper [14]. For the partitioned case they obtain an O(nm) algo-
rithm while for the unpartitioned case they obtain an O(n2m) algorithm. For
a detailed time analysis we refer to [12].

4.1 Preliminaries

Recall the definition of a chordal graph:

Definition 4.1 ([100]). A graph is chordal if it has no induced chordless cycle
of length more than 3.

Chordal graphs are amongst the most researched graph classes. Walter, in
1978, established the following characterization of chordal graphs which clar-
ifies immediately the relation with trees. Given a family S of subtrees of a tree,
a graph G is constructed in the following way. The vertices of G are the sub-
trees of S, and two vertices are adjacent if the corresponding subtrees have at
least one node of the underlying tree in common. For the following character-
ization see also [79, 29].

Theorem 4.2 ([190]). A graph G is chordal if and only if G is the intersection
graph of a family of subtrees of a tree.

Notice that subtrees of a tree, seen as sets of tree nodes, fulfill the Helly
property:

Definition 4.3. Let E be a family of sets. Then E fulfills the Helly property if the
following condition holds: If for any subfamily E′ of E the elements of E′ pairwise
intersect then also ∩e∈E′e 6= ∅.

38 4 Chordal Graphs

Consider an intersection model for a chordal graph G = (V, E) as a family
of subtrees of a tree T . Notice that the smallest subtree containing a given leaf
of T does not need to occupy more than exactly this leaf. The neighborhood
of this vertex x is a clique in G. Using the Helly property, in a tree model T ′

for G − x, there is a node p in T ′ such that all vertices of N(x) occupy this
node. By extending the tree T ′ with one node adjacent to p, a tree model for
G can be obtained. This proves by induction that T need not to be larger than
the number of vertices of the graph.

For each node i in the tree, let Si be the set of vertices of G of which the
corresponding subtrees contain the node i. The sets Si are usually called bags.
The following properties 1-3 are obviously satisfied. The fourth follows from
the Helly property and the fifth is a simple observation.

1. Every vertex x ∈ V appears in at least one bag.
2. For every edge (x, y) in G, there exists a bag Si such that x, y ∈ Si.
3. For every vertex x ∈ V, the bags that contain x form a subtree of T , namely

the subtree corresponding with x.
4. The clique number of G is the maximal size of a bag.
5. If G is a chordal graph then, by suitable contraction of edges in T , the

nodes of T are in 1-1 correspondence with the maximal cliques of G.
Hence the number of maximal cliques in a chordal graph is at most n.

As it turns out, the first three properties form exactly the definition of a
tree decomposition of a graph, as defined by Robertson and Seymour. A tree
decomposition for a graph G is a pair (T, S) where T is a tree and S a set of
subsets of V, which are in 1-1 correspondence with the nodes of T , such that
the requirements 1-3 stated above are satisfied. They define the width of a
tree decomposition as the maximal size of a bag minus one, and the treewidth
of a graph as the minimum width over all possible tree decompositions of G.
In this definition they subtract one in order to make a tree have treewidth 1.
Notice the following:

If G′ is a subgraph of G, then the treewidth of G′ is at most equal to
the treewidth of G because any tree decomposition for G induces a
tree decomposition for G′.

It follows that G has treewidth ≤ k if and only if G is a subgraph of a chordal
graph with clique number at most k+1. The linear time recognition algorithm
found by Bodlaender [19] for graphs of bounded treewidth, finds a tree de-
composition, i.e., an embedding of the graph in a chordal graph with bounded
clique number. Since so many problems are well-known to be easily solvable
for chordal graphs, especially when these have bounded clique number, it
becomes clear that the same holds true for graphs of bounded treewidth. A

4.1 Preliminaries 39

common approach is to perform dynamic programming on the subtrees and
bags of the tree decomposition. Of course, exceptions to this rule are problems
that are already NP-complete for trees, such as the bandwidth problem.

If G is a chordal graph and the tree nodes of the tree decompososition cor-
respond uniquely with the maximal cliques in G, then this tree decomposition
is also called a clique tree of G. Notice that the number of maximal cliques
in G is at most n. It is also easy to see that the minimal separators in G are
exactly the intersections of the bags that correspond with endvertices of edges
in the clique tree of G [35, 77, 150], that is, every minimal separator is the
intersection of two maximal cliques in G. The converse is another classic:

Theorem 4.4 ([66]). A graph is chordal if and only if every minimal separator
is a clique.

Linear time algorithms for construction a clique tree can be found in [18,
183]. Other classical recognition algorithms for chordal graphs make use of
perfect elimination orderings. The concept of a simplicial vertex was intro-
duced by Lekkerkerker and Boland in [138].

Definition 4.5 ([138]). A vertex x in a graph G is simplicial if N(x) induces a
clique in G. An ordering [x1, . . . , xn] of the vertices of G is a perfect elimination
ordering if xi is simplicial in G[{xi, . . . , xn}] for all i = 1, . . . , n.

The property of having a perfect elimination ordering characterizes chordal
graphs:

Theorem 4.6 (Dirac’s Theorem [66, 74, 174]). A graph is chordal if and
only if every induced subgraph has a simplicial vertex. Equivalently: a graph is
chordal if and only if it has a perfect elimination ordering.

If a chordal graph is not a clique, then it has at least two simplicial vertices
which are not adjacent. This property allows one to find perfect elimination
orderings of chordal graphs in linear time, for example using maximum car-
dinality search or lexicographic breadth first search [174, 186].

Paying their P’s and Q’s to Lekkerkerker and Boland, Berry et al. introduced
the concept of an LB-simplicial vertex.

Definition 4.7. A vertex x is LB-simplicial if for every component C of G−N[x],
N(C) is a clique in G[N(x)].

Theorem 4.8 ([138]). A graph is chordal if and only if every vertex is LB-
simplicial.

40 4 Chordal Graphs

4.2 Partitioned probe chordal graphs

Recall that Meyniel graphs are those graphs in which every odd cycle of length
at least 5 has at least two chords. Obviously, chordal graphs are Meyniel since,
by definition, they don’t have any chordless cycle of length more than 3.
Hence probe chordal graphs are probe Meyniel. By Theorem 2.6 on page 14
probe chordal graphs are perfect. For a direct proof see Theorem 3.37 on
page 33. In fact [89] contains the basic observation used in the recognition
algorithm for probe chordal graphs:

If G = (P + N, E) is a partitioned probe chordal graph then there is no
chordless cycle in G of length at least 4 with two adjacent probes.

We prove the converse of this observation in Theorem 4.11. We start with an
analogue of Dirac’s theorem. Recall our definition of a partitioned graph:

Definition 4.9. A graph G = (P + N, E) with a partition of the vertices into a
set P of probes and a set N of nonprobes is a partitioned graph if the set of
nonprobes is an independent set.

Definition 4.10. Let G = (P + N, E) be a partitioned graph. A vertex x is quasi-
LB-simplicial if for every component C of G −N[x], N(C) induces a partitioned
probe clique in G[N(x)].

Theorem 4.11 ([14]). Let B be a partitioned bipartite graph. The following
conditions are equivalent:

(i) G is partitioned probe chordal bipartite.
(ii) Every probe vertex is quasi-LB-simplicial.

(iii) No induced chordless cycle of length at least 4 has two adjacent probes.

Proof. (i) ⇒ (iii): If there is a chordless cycle C with at least 4 vertices and
with two adjacent probes, then in any embedding of C the two probes will
be in a chordless cycle of length at least 4, since they don’t have a common
neighbor in C.
(iii) ⇒ (ii): Let x ∈ P. Assume there is a component C of G − N[x] such
that N(C) has two vertices y and z which are not adjacent and of which at
least one, say y, is a probe. Then consider a chordless y, z-path with internal
vertices in C. Together with x, the path makes a chordless cycle with two
adjacent probes, x and y.
(ii)⇒ (i): We prove a somewhat more general claim. We prove that the claim
holds for graphs with a partial fill-in of edges between nonprobes. We prove
this by induction on the number of probes. First assume that G has no probes.
Then we can make a clique of the nonprobes and obtain a chordal graph.

4.3 Probe chordal graphs 41

Now let x be a probe. By assumption x is quasi-LB-simplicial. For each com-
ponent C of G−N[x] make a clique of N(C). Notice that this does not create
any chordless cycles of length at least 4 with adjacent probes. Let G′ be this
graph. By induction G′ − x can be completed into a chordal graph by adding
edges between nonprobes. Obviously, the same can be accomplished without
adding edges between different components of G′ − N[x]. Let H be such an
embedding with x added back in. Every vertex of H is LB-simplicial hence, by
Theorem 4.8, H is chordal. ut

This wraps up the recognition for the partitioned case. It is easy to see that
checking if every probe vertex is quasi-LB-simplicial takes only O(nm) time,
see e.g., [12]. This proves:

Theorem 4.12 ([14]). There exists an O(nm) algorithm that checks if a parti-
tioned graph G = (P + N, E) is probe chordal.

Remark 4.13. It was shown in [12] that filling in the edges to make every
vertex LB-simplicial takes only O(nm) time. Hence an actual embedding can
be obtained within the same time bound.

4.3 Probe chordal graphs

In this section we describe the O(n2m) algorithm of [14] for the recognition
of (unpartitioned) probe chordal graphs.

Definition 4.14. Let G be a graph.

1. A C-edge is an edge that is contained in a chordless cycle of length at least 4.
2. Two vertices are C-equivalent if they are connected by a path consisting of

C-edges.

Obviously, ‘being C-equivalent’ is an equivalence relation. The equivalence
class are called C-components.

Definition 4.15. A graph is bicolorable if there is a coloring of the vertices with
two colors such that in every chordless cycle of length at least 4, no two adjacent
vertices have the same color.

Lemma 4.16 ([12]). Let Q be a C-component. If G[Q] is bicolorable then it has
exactly two opposite bicolorings.

Proof. Consider a bicoloring. Any pair of vertices x, y ∈ Q is connected by a
path P of C-edges. The colors of the vertices along P must alternate. Hence
the color of any vertex determines uniquely the color of all other vertices in
Q. ut

42 4 Chordal Graphs

Remark 4.17. Notice that P6 is not probe chordal. It is bicolorable, however
every bicoloring produces an edge between vertices of the same color.

Lemma 4.18 ([12]). Let Q be a C-component. Then G[Q] is probe chordal if
and only of one of the two colors in the bicoloring of Q induces an independent
set in G.

Proof. If G[Q] is probe chordal then one of the two colors must be the set of
nonprobes in any embedding. Conversely, if one of the two colors induces an
independent set, then by Theorem 4.11 the graph G[Q] is probe chordal. ut

We need one more lemma for our recognition algorithm.

Lemma 4.19 ([12]). Let Q and R be two bipartite C-components. Assume Q has
a vertex x which is adjacent to at least two vertices in R. Then in any embedding
x is a probe.

Proof. Assume x is adjacent to an edge (a, b) in R. Since R is bipartite, one of
a and b is a nonprobe in any embedding. Hence xmust be a probe. IfN(x)∩R

is an independent set, then consider a shortest path between two neighbors
of x. Together with x this path induces a chordless cycle of length at least 4,
which contradicts x 6∈ R. ut

In the rest of this chapter we assume that G is connected. It is easy to
see that the collection of C-components can be obtained in polynomial time.
See for example [181] which can be used to identify the C-edges in O(nm2)

time in a straightforward fashion. For the optimal time analysis, which leads
to O(n2m), we refer to [12, 14]. This step is the bottleneck of the algorithm’s
complexity. Assume we have obtained this collection of C-components. Pro-
ceed as follows:

Step 1. Find a bicoloring of every C-component. Check if at least one color in-
duces an independent set in G. If this is not the case then STOP; the graph
is not probe chordal. If there is exactly one color class which is indepen-
dent, then assign this as a set of nonprobes. The remaining unlabeled
C-components are bipartite.

Step 2. Check if there is no edge with both endvertices assigned as a non-
probe. If there is one, then STOP; the graph is not probe chordal.

Step 3. If there is an edge (x, y) and y is labeled as a nonprobe, then label
x as a probe, and bicolor the C-component of x accordingly. Repeat the
previous and this step until no more vertices are getting a label.

Step 4. If there is a vertex x in a C-component Q adjacent to two vertices in
another C-component R, then check if x is already labeled as a nonprobe.
If so; STOP; the graph is not a probe chordal graph. Otherwise, label x as

4.3 Probe chordal graphs 43

a probe, and label all vertices of Q accordingly. Repeat Step 3 and 4 until
no more vertices are labeled or until the conclusion is drawn that G is not
probe chordal.

Step 5. At this point the graph is probe chordal. To complete the labeling,
first remove all C-components which are already labeled. Construct the
quotient graph on the remaining C-components, by making two of these
adjacent whenever there is an edge between them. This quotient graph is
chordal. Consider a simplicial vertex Q. In Q there is at most one vertex x
adjacent to vertices in other C-components. Label x as a probe and label
the other vertices of Q accordingly. Remove Q from the quotient graph.
Now notice that there must exist some C-component Q with at most one
vertex x adjacent to vertices in other C-components. Label this vertex as a
probe. Label the other vertices of Q accordingly, and remove Q.

This algorithm runs in polynomial time. We refer to [14] and [12] for a
detailed time analysis. Their final result is:

Theorem 4.20 ([12]). There exists an O(n2m) algorithm to recognize probe
chordal graphs and to find an embedding if this is the case.

Part III

Partitioned Classes

5

Partitioned Probe Chordal Bipartite Graphs

A bipartite graph is chordal bipartite if it has no induced cycles of length more
than 4. We show that the recognition problem of partitioned probe chordal
bipartite graphs is in P. For the class of partitioned probe strongly chordal
graphs we have not been able to settle the complexity issue of finding an
embedding. We discuss some partial results in the final section.

5.1 Preliminaries

Recall that a graph is bipartite if its set of vertices can be partitioned into
two color classes, say X and Y, such that there are no edges between vertices
contained in the same color class. We represent a bipartite graph as B =

(X, Y, E). A bipartite graph B = (X, Y, E) is complete bipartite if every vertex
of X is adjacent to every vertex of Y. If B is complete bipartite we also write
B = (X, Y).

Definition 5.1. Let B = (X, Y, E) be a bipartite graph. For an edge e = (x, y)

let N(e) = N(x) + N(y) − {x, y} be the neighborhood of e. We write N[e] =

N(x) +N(y) for the closed neighborhood of e.

Definition 5.2. We call two edges e = (x, y) and f = (a, b) distinct if {a, b} ∩
{x, y} = ∅. They are disjoint if they are distinct and a, b 6∈ N(e).

Definition 5.3. A bipartite graph B = (X, Y, E) is chordal bipartite if it does not
have an induced cycle of length more than 4.

Theorem 5.4. A bipartite graph is chordal bipartite if and only if for every edge
e = (x, y)

1. N[e] = V or

48 5 Chordal Bipartite Graphs

2. for every component C of G−N[e], N(C) is complete bipartite.

Proof. Assume B is chordal bipartite. Let C be a component of B − N[e]. If
N(C) has two nonadjacent vertices in different color classes then, with e and
the adjacencies in C we find a chordless cycle of length at least 6. Conversely,
ifΩ is a chordless cycle of length at least 6, then any edge e ofΩ hasΩ−N[e]

in some component C of B − N[e] and N(C) is not complete bipartite since
the two neighbors of e in Ω are not adjacent. ut

Theorem 5.4 can also be derived from various results on weakly chordal
graphs [11, 105, 109]. More general results for hole-free graphs and weakly
chordal graphs follow from a theorem by Chvátal, Rusu, and Sritharan.

Definition 5.5 ([41]). A chordless path [x1, . . . , xk] is simplicial if it does not
extend into any chordless path [x0, x1, . . . , xk, xk+1].

Theorem 5.6 ([41]). For every positive integer k, a graph contains no chordless
cycle of length at least k+3 if and only if each of its nonempty induced subgraphs
contains a simplicial path with at most k vertices.

The case k = 1 is Dirac’s classical result. From this result the following theo-
rem is derived:

Theorem 5.7 ([107]). A graph has no holes if and only if every induced sub-
graph either

i. has a star cutset,
ii. has a double star cutset, or

iii. is a clique or C4 or two nonadjacent vertices.

Notice that if a graph G has a (double) star cutset then it also contains a full
(double) star cutset or otherwise a dominated vertex. A star cutset S centered
at x is full if S = N[x]. A vertex x dominates a vertex y if N(y) ⊆ N[x]. If there
is a star cutset S centered at x and if N[x] is not a full star cutset then there
is a component of G − S completely contained in N(x). Then x dominates all
vertices of this component [107]. For chordal bipartite graphs we obtain the
following (older) particularization.

Definition 5.8. Let B = (X, Y, E) be a bipartite graph. An edge e is bisimplicial
if N[e] induces a complete bipartite graph.

Definition 5.9. Let B = (X, Y, E) be a bipartite graph and [e1, . . . , em] an or-
dering of its edges. Let Bi = (X, Y, Ei) with E0 = E and Ei = Ei−1 − ei. The
ordering [e1, . . . , em] is a perfect edge elimination ordering if ei is bisimplicial
in Bi−1.

5.1 Preliminaries 49

Theorem 5.10 ([87]). A bipartite graph is chordal bipartite if and only if it has
a perfect edge elimination ordering. Furthermore, any bisimplicial edge can be
taken to start the ordering.

In case of a perfect edge elimination ordering, a bisimplical edge is removed,
but not its endvertices. If also the endvertices are removed, then the converse
of Theorem 5.10 does not hold. The 6-pan, i.e., a 6-cycle plus one pendant
vertex, is clearly not chordal bipartite. It has a bisimplicial edge, namely the
edge incident with the pendant vertex. If the bisimplical edge is removed
together with its endvertices, we end up with a P5, which is chordal bipartite.

The greedy algorithm which takes any bisimplicial edge to start with can
be used to find a perfect edge elimination ordering. Efficient algorithms that
find a perfect edge elimination ordering appeared for example in [81, 133].
In [81] it is shown that a bisimplicial edge in a chordal bipartite graph can be
found in O(n2) time. Hence a perfect edge elimination ordering for a chordal
bipartite graph can be obtained in O(n2m) time.

Since chordal bipartite graphs are bipartite weakly chordal graphs we
shortly review some older noteworthy ideas that play a role for this class.
Hayward [105] introduced the class of weakly chordal graphs as those
graphs having no holes or antiholes. Obviously, these graphs are perfect.
The up-to-date fastest recognition algorithms for weakly chordal graphs
are [11, 108, 164]. All these algorithms take O(n+m2) time. The algorithm
of [108] uses only linear space while that of [11] uses O(n +m2) space and
that of [164] uses O(nm) space. If the graph has no induced C5 the space
complexity of the last algorithm can be reduced to O(n +m). Only the algo-
rithm of [164] can be used to find resolutely holes or antiholes in graphs. The
algorithm of [108] produces only one of the two, while the algorithm of [11]
in some cases terminates producing neither a hole nor an antihole.

Definition 5.11 ([109]). Two vertices x and y in a graph G form a 2-pair if
each chordless path between them has exactly two edges. A co-pair is a 2-pair in
G.

Observe that x and y form a 2-pair if and only if the common neighborhood
of x and y is a separator of the graph. The fastest way to find a 2-pair, as far as
we know, is via an O(nm) time algorithm [3] or, alternatively, via fast matrix
multiplication in O(n2.376) time.1

Theorem 5.12 ([109]). A graph G is weakly chordal if and only if every in-
duced subgraph of G either is a clique or else has a 2-pair.

1 As far as we know Coppersmith and Winograd’s matrix multiplication is the cur-
rently fastest [47]. The conjecture is that Θ(n2) suffices.

50 5 Chordal Bipartite Graphs

Theorem 5.13 ([109, 184]). Let G be a graph with a 2-pair x, y, and let G′ be
the graph obtained from G by either adding the edge (x, y) to G or identifying
them to form a single vertex. Then G is weakly chordal if and only if G′ is weakly
chordal.

A general idea for a recognition algorithm of weakly chordal graphs is to look
for a 2-pair [3, 184]. Connect the two vertices that form a 2-pair and repeat
the search for a 2-pair. The graph is weakly chordal if and only if this proce-
dure ends with a clique. This characterization led to an O(n4) time recogni-
tion algorithm [184]. Furthermore, Theorem 5.13 makes it possible to think
up efficient algorithms for NP-complete problems such as CLIQUE, INDEPEN-
DENT SET, CHROMATIC NUMBER, and CLIQUE COVER when restricted to the class
of weakly chordal graphs [108, 109]. As already mentioned above, the time
complexity for the recognition problem was improved in [11, 108, 164, 179]
to O(n+m2) time. Weakly chordal graphs have at most n+m minimal sepa-
rators and they can be listed inO(n+m2) time [11]. The procedure described
above also generates all minimal separators of a weakly chordal graphs.

A characterization generalizing Theorem 5.4 for weakly chordal graphs is
the following.

Definition 5.14. An edge e is LB-simplicial if one of the following holds:

1. N[e] = V or
2. for every component C of G−N[e], and for every component ∆ of G[N(C)] at

least one endvertex of e is adjacent to all vertices of ∆.

Theorem 5.15 ([11]). A graph is weakly chordal if and only if every edge is
LB-simplicial.

To illustrate the relation between chordal bipartite graphs and strongly
chordal graphs we add the following section on totally balanced matrices.

5.1.1 Totally balanced matrices

Recall that a graph is strongly chordal if it is chordal and every even cycle of
length at 6 has an odd chord [71]. Chordal bipartite graphs are the bipartite
analogue of the strongly chordal graphs. They were authoritatively introduced
in [87]. The close connection is best explained via the concept of a totally
balanced matrix. Let A be an m × n 0, 1-matrix, let b be a 0, 1-vector. Let
P(A,b) and Q(A,b) denote the following two polyhedra.

P(A,b) = { x ∈ <n | Ax ≤ b and x ≥ 0}
Q(A,b) = { x ∈ <n | Ax ≥ b and x ≥ 0}

5.1 Preliminaries 51

A 0, 1-matrix A is perfect if the polyhedron P(A,b) has only integral extrema
for every 0, 1-vector b. A 0, 1-matrix is balanced if Q(A,b) has only integral
extrema for every 0, 1-vector b. Balanced matrices are perfect [75]. When the
matrix A of a linear programming problem is balanced then many optimiza-
tion problems have a polynomial time solution thanks to the fact that the two
polyhedra P(A,b) and Q(A,b) both have only integral extremal points [75]
for every 0, 1-vector b. Berge proved that a 0, 1-matrix is balanced precisely
when it has no square submatrix of odd order with precisely two ones in each
row and column [7, 80].2 When viewed as the adjacency matrix of a bipartite
graph where columns and rows correspond to the vertices of the two color
classes, the balanced matrices correspond uniquely to the bipartite graphs
with no holes of length 2 mod 4. These bipartite graphs are called balanced.
Conforti, Cornuéjols, and Rao designed polynomial recognition algorithms for
balanced matrices [46, 107]. They proved that every balanced bipartite graph
is either totally unimodular or has a double star cutset. A 0, 1-matrix A is to-
tally unimodular if the determinant of every square submatrix is 0, 1, or −1,
that is, if P(A,b) is integral for all integral b [117, 167]. (See also [65]).
Seymour [185] proved a decomposition theorem (using 2-joins) for totally
unimodular matrices which is the basis for a recognition algorithm. A bipar-
tite graph is totally unimodular if the corresponding matrix, as defined above
is totally unimodular.

It can be seen that a graph is perfect if and only if its clique matrix is
perfect [40]. A graph is balanced if its clique matrix is balanced; so balanced
graphs are perfect [8]. If a connected graph is balanced then the number
of maximal cliques is at most the number of edges [22]. Given a graph, its
maximal cliques can be listed with polynomial delay in O(nmk) time, where
k is the number of maximal cliques [187]; hence, there is a polynomial-time
recognition algorithm for balanced graphs [63]. A characterization in terms
of “extended odd suns” appeared in [22].

2 Berge called a 0, 1-matrix bicolorable if the columns can be partitioned into red
and blue such that every row with at least two 1s contains a 1 in a blue and a
1 in a red column. He proved that a 0, 1-matrix is balanced if and only if every
submatrix is bicolorable. A bicoloring algorithm is given in [32]. This algorithm
produces either a bicoloring or a chordless cycle of length 2 mod 4 in the bipartite
graph. Notice that this algorithm does not provide a test for a matrix to be balanced.
The bicoloring-concept is extended in [44] in order to characterize balanced 0,±1-
matrices. A similar characterization for totally unimodular 0, 1-matrices (and also
for 0,±1-matrices) was obtained by Ghouilla-Houri [80]. (See also [167].) A 0, 1-
matrix is totally unimodular if and only if for every subset of the columns there
exists a partition into red and blue columns such that for every row the number of
red and blue ones differs at most one.

52 5 Chordal Bipartite Graphs

Lovász [142] defined a hypergraph to be totally balanced if every cycle of
length greater that 2 has some edge incident with at least three vertices of the
cycle. Based upon this definition we have:

Definition 5.16 ([1, 2]). A (0, 1)-matrix is totally balanced if it does not con-
tain as a submatrix the vertex-edge incidence matrix of a cycle of length at least
3. Equivalently, a 0, 1-matrix is totally balanced if the bipartite graph obtained
by letting rows and columns represent the vertices of the two color classes and by
making two vertices adjacent if the matrix has a one in the corresponding row
and column, is chordal bipartite.

r r
c

c
r r�

�

@
@

@
@

�
�

1

2 3

4

56

0@1 0 1

1 1 0

� 1 1

1A

Fig. 5.1. A 6-cycle. Vertices 2 and 5 are nonprobes. In order to make the bipartite
graph (totally) balanced (i.e., chordal bipartite), the edge between 2 and 5 has to be
added. In the matrix, with rows labeled [1, 3, 5] and columns labeled [2, 4, 6], this entry
has to be filled with a 1.

rrc
crr
@

@
@

�
�
�

�
�
@
@

1
2

3

4

5

6

0BBBBBB@

1 1 0 0 0 1

1 1 1 1 � 1

0 1 1 1 0 0

0 1 1 1 1 1

0 � 0 1 1 1

1 1 0 1 1 1

1CCCCCCA

0BBBBBB@

1 0 1 0 1 0

0 1 1 0 0 1

1 1 1 � 1 1

0 0 � 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

1CCCCCCA

0BBBBBB@

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 1

1 0 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

1CCCCCCA
Fig. 5.2. A labeled 3-sun. Vertices 2 and 5 are nonprobes. The other vertices are probes.
The first matrix is the closed neighborhood matrix with vertex ordering [1, 2, 3, 4, 5, 6]

where ‘feasible edges’ between nonprobes are replaced by �s. The second is a sym-
metric doubly lexical ordering (with ordering 0 < � < 1) of this matrix with vertex
ordering [3, 1, 2, 5, 4, 6]. The third matrix shows a Γ -free ordering [3, 1, 5, 4, 6, 2] with
the �s replaced with 1s. Hence this embedding is strongly chordal. Notice that when
the �s are replaced with 0s in the second matrix it is still doubly lexical ordered but
it contains a Γ . Notice that the completion problem of a symmetric 0, 1,�-matrix with
1s on the diagonal, into a symmetric totally balanced matrix is precisely the strongly
chordal sandwich problem [88]. The complexity of this problem is open.

A graph is totally balanced if its clique matrix is totally balanced. The class of
totally balanced graphs is exactly the class of the strongly chordal graphs:

5.1 Preliminaries 53

a graph is strongly chordal if and only if its clique matrix is totally bal-
anced [71, 143]. The closed neighborhood matrix is obtained from the ordi-
nary adjacency matrix by putting 1’s on the diagonal. For every graph, the
clique matrix is totally balanced if and only if its closed neighborhood matrix
is totally balanced [71]. Hence:

Theorem 5.17 ([71]). A graph is strongly chordal if and only if its closed neigh-
borhood matrix is totally balanced. A graph is chordal bipartite if and only if its
adjacency matrix is totally balanced.

The following concept was introduced for the recognition of strongly
chordal graphs, independently in [116, 143]. A lexical ordering of vectors is
the standard lexicographic ordering except that the vectors are read back-
wards, i.e., from highest to lowest coordinate. A doubly lexical ordering of a
real-valued matrix is an ordering of its rows and columns such that the rows
and also the columns as vectors are lexically increasing. Notice that every
real-valued matrix has a doubly lexical ordering [143]. If a symmetric ma-
trix has a dominant diagonal,3 such as the closed neighborhood matrix of a
graph, then there also exists a symmetric doubly lexical ordering [143]. For a
k× ` matrix, a doubly lexical ordering can be found in O(L log(k+ `)+k+ `),
where L = k + ` + f and f is the number of entries not equal to the smallest
entry [168, 182].

Definition 5.18. A Γ is a submatrix of the form
(

1 1
1 0

)
.

Theorem 5.19 ([143]). A (0, 1)-matrix has a Γ -free ordering if and only if it is
totally balanced. A doubly lexical ordering of a totally balanced matrix is Γ -free.

This characterization leads to an algorithm to recognize strongly chordal
graphs and chordal bipartite graphs in O(min{n2,m logn}) time [71, 143,
168, 182].

5.1.2 Biclique trees

We end these introductory sections with an analogue of clique trees for
chordal graphs. A chordal graph is the intersection graph of a family of sub-
trees of a tree [79, 190]. Recall that a clique tree for a chordal graph G is
a tree T together with a 1-1 mapping from the maximal cliques in G to the
nodes in T such that the maximal cliques in G that contain any given vertex x
are mapped to a subtree of T . For chordal bipartite graphs we obtain a similar

3 The diagonal of a symmetric matrix A is dominant if A(i, i) ≥ A(i, j) for all indices
i and j.

54 5 Chordal Bipartite Graphs

result. Recall that a chordal graph can have at most n maximal cliques. Sim-
ilarly, using Theorem 5.10 it is easy to see that a chordal bipartite graph can
have at most m maximal bicliques (see, e.g., Lemma 8.2.1 in [132]):

Definition 5.20. A biclique in a bipartite graph B = (X, Y, E) is a complete
bipartite subgraph that contains at least one C4.

For a biclique C in a bipartite graph B = (X, Y, E), with color classes P ⊆ X
and Q ⊆ Y we write C = (P,Q).

Definition 5.21. Let B = (X, Y, E) be chordal bipartite. A biclique tree is a tree
T together with a 1-1 mapping from the maximal bicliques in B to the nodes
in T such that for every edge, the maximal bicliques that contain that edge are
mapped to a subtree of T .4

For the following result, see also [28, 152, 154].

Theorem 5.22. Every chordal bipartite graph B has a biclique tree T . If B is
biconnected, every vertex is contained in bicliques that form a subtree.

Proof. Assume B is a chordal bipartite graph. If B contains no C4 we take an
empty tree. If B is a biclique then we can take a tree T with one node and map
B to this node.
Assume B is not a biclique. Consider a bisimplicial edge e = (x, y). IfN(x) = y

or N(y) = x, then e is not contained in any biclique. In that case a biclique
tree for B− e will serve as a biblique tree for B.
Assume N(x) − y and N(y) − x are not empty. Let C = (N(x), N(y)). Assume
C − {x, y} is contained in a biclique of B − {x, y}. Then consider B − {x, y}.
This graph is chordal bipartite hence there is a biclique tree T ′. Consider a
maximal biclique C′ that contains C − {x, y}. Assume C′ is mapped to a node
p in T ′. Create a new node q and make this adjacent to p. Map C to q. Since
all edges incident with x or y are in C only and all other edges of C are in C′,
the new tree T is a biclique tree for B.
Assume C − {x, y} is not contained in a biclique of B − {x, y}. Then x and y
each have only one neighbor y′ and x′ respectively and these are adjacent,
i.e., C = ({x, x′), {y, y′}). Construct a biclique tree T ′ for B− {x, y}. If (x′, y′) is
not contained in any biclique of B−{x, y}, then make a new node q adjacent to
any node in T ′ and map C to q. Assume (x′, y′) is contained in some maximal
bicliques of B − {x, y}. Choose any of these and let it be mapped to a node p
of T ′. Make a new node q adjacent to p and map C to q.
Assume that B is biconnected. We claim that every vertex is in bicliques that
form a subtree. Assume not. Assume x is in some node p and in q but not in

4 Abusing notation somewhat we also call the tree T a biclique tree.

5.2 Partitioned probe chordal bipartite graphs 55

any node on the p, q-path in T . There are edges ep ∈ p and eq ∈ q incident
with x, but with distinct other endvertices. Since B is biconnected, the other
endvertices must be in some path that does nor contain x. If the edges ep

and eq are in a C4, then x must appear also in the nodes on the p, q-path.
Otherwise we find a chordless cycle of length at least 6. ut

5.2 Partitioned probe chordal bipartite graphs

Chordal bipartite graphs are exactly the bipartite weakly chordal graphs.5

In this section let B = (X, Y, E) be a bipartite graph with a partition of the
vertices into a set P of probes and an independent set N of nonprobes. For a
subset Z of vertices we write P(Z) = P ∩ Z and N(Z) = N ∩ Z.

Definition 5.23. A feasible edge is either an edge of B or two nonprobes.

Definition 5.24. For a feasible edge e and a component C of B − N[e] such
that N(C) + e is probe complete bipartite, the block (e, C) is the subgraph of B
induced by e+ C+N(C).

For a feasible edge e with vertices x and y we use the notation e = (x, y) and
call x and y the endvertices of e.

Lemma 5.25. If B is chordal bipartite, (e, C) a block such that N(C) has at
least one vertex in each color class, then there exists an edge e′ in C such that
N(C) ⊆ N(e′).

Proof. Two vertices in one color class having private neighbors in C imply a
chordless cycle of length at least 6 (with x or y). Hence there exists vertices
x′ and y′ in the two color classes such that N(C) ⊆ N(x′) +N(y′). Consider a
chordless x′, y′-path in C. This shows that there must exist an edge. ut

Lemma 5.26. Let (e, C) be a block with vertex set T . There exists an embedding
B∗ for B[T] such that e is an edge and NB∗(C) is complete bipartite if and only if
either B(T) is probe complete bipartite or there exists a feasible edge e′ = (x′, y′)

in C such that:

1. N(C) ⊆ N(e′) and
2. for every component C′ of B − N[e′] that does not contain e there exists an

embedding of the block (e′, C′) such that e′ is an edge.

5 It yields to argument that they should be called this way, since chordal bipartite
graphs are not chordal. Other names, like bichordal have been suggested, e.g.,
in [169]. To avoid further discussion we don’t suggest totally balanced graphs.

56 5 Chordal Bipartite Graphs

Proof. Consider an embedding B∗ of B[T] with e an edge and NB∗(C) com-
plete bipartite. By Theorem 5.4, in the embedding either NB∗ [e] = T or for
every component C′ of T∗ −NB∗ [e], NB∗(C

′) is complete bipartite. In the first
case x and y are made adjacent to all vertices of their opposite color classes
in C. Hence C contains only nonprobes and since N is an independent set
and B[C] is connected, |C| = 1. Hence B(T) is probe complete bipartite. Con-
sider the second case. We claim that there exists an alternative embedding B′

obtained from B∗ by deleting all edges in B∗ from e to C. Assume B′ has a
chordless cycle of length at least 6. Then either x or y, say x makes a chord
with some vertex c in this cycle in B∗. Then the neighbors of x must have
private neighbors in C, which is a contradiction.

ut

5.3 Partitioned probe strongly chordal graphs

Strongly chordal graphs are those chordal graphs without an induced sun.
They are strongly related to chordal bipartite graphs. So far we have not been
able to device a polynomial-time algorithm for the recognition of partitioned
probe strongly chordal graphs. In this section we mention some partial results
and some open problems.

Farber [71] introduced strongly chordal graphs. His motivation was a
polynomial time algorithm for the WEIGHTED DOMINATING SET problem on
strongly chordal graphs, which is NP-complete for chordal graphs in general.
Recall that a chord in a cycle is an edge connecting two vertices of the cycle
which are not adjacent in the cycle.

Definition 5.27. An odd chord in a cycle of even length at least 6 is a chord
joining two vertices whose distance along the cycle is odd.

Definition 5.28. A graph is strongly chordal if and only if it is chordal and
every even cycle of even length at least 6 has an odd chord.

Actually, Farber [71] defined strongly chordal graphs as those graphs that
have a strong elimination ordering. The above is an equivalent characteriza-
tion [71, Theorem 6.1].

Recall that chordal graphs are characterized by the presence of a simplicial
vertex in every induced subgraph [66]. For strongly chordal graphs there is a
similar characterization.

Definition 5.29. A simple vertex is a vertex x such that for every pair y, z ∈
N(x) either N[y] ⊆ N[z] or N[z] ⊆ N[y].

5.3 Partitioned probe strongly chordal graphs 57

That is, the closed neighborhoods of the neighbors of a simple vertex form a
chain under inclusion. Notice that simple vertices are simplicial. Farber proved
the following analogue of Dirac’s Theorem (4.6 on page 39):

Theorem 5.30 ([71]). A graph is strongly chordal if and only if every induced
subgraph has a simple vertex.

Since the class of strongly chordal graphs is hereditary every strongly chordal
graph has a simple elimination ordering, which is the analogue of a perfect
elimination ordering for chordal graphs. That the appearance of a simple
elimination ordering characterizes strongly graphs is true but not obvious.
In his paper Farber proves that if every even cycle of length at least 6 has an
odd chord then every induced subgraph has a simple vertex. In order to do
this he makes use of a forbidden induced subgraph characterization.

Definition 5.31. A sun is a graph obtained from an even cycle of length at least
6 in which edges are added to make a maximum independent set into a clique.

If the cycle is of length 2k, then the sun is called a k-sun. A 3-sun is illustrated
in Figure 3.1 on page 22. If some edges of the clique are possibly missing, but
the graph is still chordal, it is called a trampoline. We call the set of vertices
of degree more than 2 the kernel of the trampoline. Farber and Chang [71,
Lemma 4.5] observed that every trampoline has a sun as an induced sub-
graph. Notice that a strongly chordal graph does not have an induced sun,
since the even cycle has no odd chord.

Theorem 5.32 (Farber’s Theorem [34, 71]). A graph is strongly chordal if
and only if it is chordal and has no induced sun.

Theorem 5.33 ([71]). A graph is strongly chordal if and only if it has a simple
elimination ordering.

The following theorem follows also from Theorem 2.8 on page 14.

Theorem 5.34. Probe strongly chordal graphs are weakly chordal.

Proof. Since probe strongly chordal graphs are probe chordal, they are perfect
(see Theorem 3.37 on page 33). Consider a hole of length 2k, k ≥ 3. In order
to make this chordal one needs a set of nonprobes of size k. This can be made
a sun by turning it into a clique. Since every trampoline contains a sun as an
induced subgraph [34, 71, 123] the embedding will have a sun.
Any path of length at least 6 has two disjoint edges. Hence, deleting any edge
from a hole of length at least 6 leaves a 4-cycle in the complement. ut

58 5 Chordal Bipartite Graphs

Let G = (P + N, E) be a partitioned graph. Let C = [a, b, c, d] be a chord-
less 4-cycle in G such that probes and nonprobes alternate in C. Any chordal
embedding of G must have the edge filled in between the nonprobes in C.

Definition 5.35 ([89]). The enhanced graph G∗ is the graph obtained from
a partitioned graph G = (P + N, E) by adding all edges between nonprobes in
alternating 4-cycles of G.

Golumbic and Lipshteyn obtained the following result for partitioned probe
chordal graphs which are weakly chordal:

Theorem 5.36 ([89]). Let G = (P+N, E) be a partitioned probe chordal graph
which is weakly chordal. Then the enhanced graph G∗ is chordal.

Unfortunately, this does not solve the recognition problem for partitioned
probe strongly chordal graphs. As an example take the 3-sun (see Figure 3.1
on page 22) in which one simplicial vertex and one vertex of degree 4 are the
only (nonadjacent) nonprobes. The enhanced graph is the 3-sun itself, which
is not strongly chordal. A strongly chordal embedding is obtained by adding
the edge between the two nonprobes.

c
r r r

r
r

r
r
c r r

r
��

@@

@@ ��

�� @@

@@

��
@@

��

��

@@PPPPP

��
��
�

�
�
�

��
��
�

@
@

@ PP
PP

P

x

y

p p p p p p p p p p p p p p
p p p p p pa

b

c

d

e

=

rcc
rrr

@
@

@

�
�
��� @@

x

y

a b

⊕ r c
r

c

r
r
r r

@@

��

@@ ��

�� @@

��

@@

�
�
�

@
@
@

x

y

c

d

e

Fig. 5.3. The split of a 6-sun into a 3-sun and a 4-sun.

Lemma 5.37. A sun can be embedded into a strongly chordal graph if and only
if the underlying cycle has no P3 of probes and the clique and independent set
both have at least one nonprobe.

Proof. Let S be a sun. Obviously, Smust contain at least two nonadjacent non-
probes. Notice that, if an edge is added between two simplicials, this creates a
C4. Hence in this case there must also be an edge added between a simplicial
and a vertex of the clique. This shows that there must be at least one non-
adjacent pair of nonprobes in the clique and independent set. We prove by
induction that there is no embedding when the cycle contains a P3 of probes.
This is easy to check for the case where S is a 3-sun. Assume S is a k-sun

5.3 Partitioned probe strongly chordal graphs 59

for some k > 3. Consider an edge (x, y) added between a nonprobe of the
clique and a nonprobe of the independent set. The edge (x, y) splits S into
two smaller suns, or into a diamond6 and a smaller sun. (See Figure 5.3.) The
P3 is contained in a smaller sun: Notice that it cannot be in a diamond, since
any diamond that splits off has at least one simplicial nonprobe. By induction,
there is no embedding of the smaller sun.
We prove the converse by induction. We show that there exists an embedding
which adds edges only between vertices of the independent set and the clique.
When S is a 3-sun, an embedding is obtained by adding an edge between a
nonadjacent pair of nonprobes. Let S be a k-sun for some k > 3. We first
show that the cycle must have a P4 with nonprobe endpoints. This is clear
when there is an edge with probe endvertices since there is no P3 of probes.
If there is no such edge, the claim follows since the probes and nonprobes
cannot alternate. Let (x, y) be the middle edge of the P4. Of the two, let x be
the simplicial. Let a and b be the nonprobe neighbors in the cycle of x and y
respectively. Add the edge (a, b). This splits S into a diamond and a k− 1-sun
S′. By induction, since S′ has at least one pair of nonprobes a and b in the
independent set and clique, and since the cycle of S′ has no P3 of probes, there
exists an embedding of S′. Notice that N[y] ⊆ N[a] in the embedding. That is,
x is simple. This process eliminates the simplicial vertices one by one. In the
end only the clique and one simplicial vertex remains. Obviously, this does not
have a sun. This shows that there exists a simple elimination ordering, that is,
the embedding is strongly chordal. ut

We end this section by mentioning some conjectures that we have not been
able to settle.

Conjecture 5.38. A partitioned graph G = (P + N, E) has an embedding into
a strongly chordal graph if and only if the enhanced graph G∗ is chordal and
every even cycle in G∗ of length at least 6 either has an odd chord or two
nonprobes at odd distance in the cycle.

We call a vertex probe simple if it can be made into a simple vertex by
adding edges between nonprobes.

Conjecture 5.39. A graph is partitioned probe strongly chordal if and only if
the enhanced graph is chordal and every induced subgraph has a probe simple
vertex.

6 A diamond is a 4-cycle with exactly one chord.

6

Partitioned Probe Comparability Graphs

In this chapter we show that there exist polynomial time algorithms for the
recognition of partitioned probe comparability and cocomparability graphs.
We give an O(nm)-time algorithm for the recognition of partitioned probe
comparability graphs, where n and m are the numbers of vertices and edges,
respectively.

By definition, a graph is a cocomparability graph if its complement is a
comparability graph. Hence a partitioned graph G is a partitioned probe co-
comparability graph if G∗, the sandwich conjugate of G, is a partitioned probe
comparability graph. Thus partitioned probe cocomparability graphs can be
recognized in O(n3) time by using the recognition algorithm for partitioned
probe comparability graph.

A graph is a permutation graph if and only if it is at the same time a
comparability graph and a cocomparability graph [170]. An immediate con-
sequence is that a probe permutation graph is both probe comparability and
probe cocomparability. For partitioned graphs, surprisingly, also the ‘converse’
remains true: G is a partitioned probe permutation graph if and only if G and
G∗ are both partitioned probe comparability graphs. This result leads to an
O(n3) time recognition algorithm for partitioned probe permutation graphs.

6.1 Preliminaries

Unless stated otherwise, a graph is regarded as undirected. If the graph is di-
rected we use the notation−→xy to denote the arc directed from x to y. Likewise,
we use←−xy to denote the arc directed in the opposite direction. For a subset A
of edges or arcs of a graph we denote by V(A) the set of endvertices incident
with elements of A.

We say that a vertex x and a setU ⊂ V with x 6∈ U of vertices are completely
adjacent, partially adjacent, or nonadjacent if x is adjacent to every vertex of

62 6 Comparability Graphs

U, if there exist y, z ∈ U such that (x, y) ∈ E and (x, z) /∈ E, or if x is not
adjacent to any vertex of U, respectively. If X and Y are disjoint subsets of
V, and (x, y) is an edge of G with x ∈ X and y ∈ Y, we say that (x, y) is an
XY-edge. In case X = {x}, it is an xY-edge. Moreover, we say that X and Y are
adjacent. If every pair (x, y) with x ∈ X and y ∈ Y is an edge of G, we say that
X, Y are completely adjacent.

If X is a subset of the vertices of a partitioned graph G = (P + N, E), then
we write P(X) = X ∩ P and N(X) = X ∩ N.

For a subset E ⊆ E of edges of a graph G = (V, E), let
−→
E = {−→xy,−→yx |

(x, y) ∈ E}. If E = E we use
−→
E =

−→
E . We call elements of

−→
E directed edges of

G. For a set F of directed edges, we write F̂ = {(x, y) | −→xy ∈ F or −→yx ∈ F} for its
symmetric closure.

Definition 6.1. Let F ⊆
−→
E be a set of directed edges of a graph G = (V, E).

Define:

1. F−1 =
{←−xy | −→xy ∈ F}, and

2. F2 =
{−→xz | −→xy and −→yz ∈ F for some y ∈ V

}
.

Definition 6.2. Let E ⊆ E be a subset of edges of a graph G = (V, E). We call F
an orientation of E if F+ F−1 =

−→
E and F ∩ F−1 = ∅.

If E = E, we call F also an orientation of G.

Definition 6.3. A transitive orientation of a graph G = (V, E) is an orientation
F of E such that F2 ⊆ F. A graph G is a comparability graph if G has a transitive
orientation.

Given a comparability graph, a transitive orientation of its edges can be ob-
tained in linear time [99, 146].1 However, checking the transitivity of the
orientation needs a verification phase, for which no faster algorithm is known
than, e.g., a fast matrix multiplication (see, e.g., [48, Chapter 26]).

Definition 6.4 (Golumbic [86]). Define the binary relation Γ on the directed
edges

−→
E of a graph G = (V, E) as follows. For (x, y), (x, z) ∈ E,

−→xy Γ −→xz ⇐⇒ ←−xy Γ ←−xz ⇐⇒ (y, z) /∈ E

The relation Γ is reflexive and symmetric and its transitive closure Γc is an
equivalence relation on

−→
E . The equivalence classes of Γc partition

−→
E into the

implication classes of G. For an implication class A of G, the symmetric closure
of A, i.e., Â, is called a color class of G.

1 For a bit more accessible algorithm, we refer to [62]. Notice however, that this
algorithm runs in O(n+mα(n,m)) time.

6.2 Partitioned probe comparability graphs 63

Golumbic [83, 84] gave a simple algorithm to test whether a graph G =

(V, E) is a comparability graph and to give it a transitive orientation if it is a
comparability graph. The central part of Golumbic’s algorithm is to compute
a G-decomposition of

−→
E , defined as follows.

Definition 6.5. Let G = (V, E) be a graph. A G-decomposition is a partition
E = B̂1 + · · · + B̂k, where Bi is an implication class of G

[
B̂i + · · ·+ B̂k

]
for

i = 1, . . . , k.

Golumbic’s algorithm follows directly from the following theorem.

Theorem 6.6 (TRO Theorem [83, 84, 86]). Let G = (V, E) be a graph and let
E = B̂1+· · ·+B̂k be a G-decomposition. The following statements are equivalent.

(i) G is a comparability graph;
(ii) A ∩A−1 = ∅ for all implication classes A of G;

(iii) Bi ∩ B−1
i = ∅ for i = 1, . . . , k.

Furthermore, if these conditions hold, then B1+· · ·+Bk is a transitive orientation
of E.

By Theorem 6.6, we can test whether a graph G = (V, E) is a compara-
bility graph and give G a transitive orientation through computing a G-
decomposition. Golumbic [83, 84, 86] gave an algorithm to compute a G-
decomposition in O(∆ ·m) time where ∆ is the maximum degree of a vertex
in G.

6.2 Partitioned probe comparability graphs

In this section we extend the algorithm for recognizing comparability graphs
given by Golumbic [83, 84, 86] to allow recognizing partitioned probe com-
parability graphs within the same time bound. This algorithm shows that a
graph G is a comparability graph by showing that G has a transitive orienta-
tion. An orientation of a partitioned probe comparability graph may not be
transitive, but the transitive completion may be a transitive orientation of an
embedding. The following proposition is clear from the definitions.

Proposition 6.7. Let G = (P+N, E) be a partitioned probe comparability graph
with an embedding H. Let F be a transitive orientation of H, F =

−→
E ∩F, and let

(V, Fc) be the transitive closure of (V, F). Then,

(i) Fc ⊆ F,
(ii) V(F − F) ⊆ N, and

(iii) (V, F̂c) is a comparability graph with transitive orientation Fc.

64 6 Comparability Graphs

Observe that Fc is an orientation of the smallest embedding of G such that
it can be oriented in agreement with F. We will call F a quasitransitive ori-
entation. Determining whether G is partitioned probe comparability will be
equivalent to determining whether it has a quasitransitive orientation.

Definition 6.8. Let G = (P + N, E) be a partitioned graph and let F be an
orientation of G. We call F quasitransitive if V(F2 − F) ⊆ N.

Theorem 6.9. A partitioned graph G = (P + N, E) is partitioned probe compa-
rability if and only if G has a quasitransitive orientation.

Proof. Using the notation of Proposition 6.7, if G is partitioned probe compa-
rability with embedding H, then F is clearly a quasitransitive orientation of G.
That is, if −→xy,−→yz ∈ F ⊆ F, then −→xz ∈ F and, unless x and z are both nonprobes,
−→xz ∈ F.
Now suppose F is a quasitransitive orientation of G. Let F = F+ F2. We prove
that G is a partitioned probe comparability graph by showing that (V,F) is
transitive, i.e., by showing that F2 ⊆ F. Suppose both −→xy,−→yz ∈ F. We show
that −→xz ∈ F.
If y is a probe, then −→xy,−→yz ∈ F and hence −→xz ∈ F2 ⊆ F.
Suppose instead that y is a nonprobe. If x is also a nonprobe, then −→xy /∈ F.
Therefore −→xy ∈ F2 and there exists a u ∈ P such that −→xu,−→uy ∈ F. Similarly, if
z ∈ N, there exists a v ∈ P such that −→yv,−→vz ∈ F. Notice that u 6= v; otherwise
the edge (u, y) would be oriented in two directions. Thus if x, y, and z are all
nonprobes, we obtain

v ∈ P and −→uy, −→yv ∈ F =⇒ −→uv ∈ F
v ∈ P and −→xu, −→uv ∈ F =⇒ −→xv ∈ F

−→xv, −→vz ∈ F =⇒ −→xz ∈ F2 ⊆ F.

If x and y are nonprobes but z is a probe, then −→uy,−→yz ∈ F implies that −→uz ∈ F
and again −→xz ∈ F2. The case that x is a probe but z is a nonprobe is similar.
Thus G is a probe comparability graph and H = (V, F̂) is an embedding of G.
ut

We need to modify the Γ relation to use it in partitioned probe comparability
recognition.

Definition 6.10. Let G = (P + N, E) be a partitioned graph. We define a binary
relation Υ on

−→
E as follows. Let (x, y), (x, z) ∈ E be edges of G. Then each of

−→xy Υ −→xz and −→yx Υ −→zx if and only if one of the following holds:

(a) y = z, or
(b) (y, z) /∈ E and at least one of y and z is a probe.

6.2 Partitioned probe comparability graphs 65

The relation Υ is reflexive and symmetric. Its transitive closure, denoted by
Υc, defines an equivalence relation on

−→
E . We call the equivalence classes the

probe implication classes of G. Let A be a probe implication class of G. We
call the symmetric closure of A, i.e., Â, a probe color class of G. We define the
probe G-decomposition as follows:

Definition 6.11. Let G = (P + N, E) be a partitioned graph. A partition E =

B̂1 + · · · + B̂k is called a probe G-decomposition if Bi is a probe implication
class of G

[
B̂i + · · ·+ B̂k

]
for each 1 ≤ i ≤ k.

The following extension of Theorem 6.6 is the basis for our algorithm to
recognize and orient partitioned probe comparability graphs.

Theorem 6.12 (Probe TRO Theorem). Let G = (P + N, E) be a partitioned
graph with probe G-decomposition E = B̂1 + · · ·+ B̂k. The following statements
are equivalent.

(i) G is a partitioned probe comparability graph;
(ii) A ∩A−1 = ∅ for all probe implication classes A of G;

(iii) Bi ∩ B−1
i = ∅ for i = 1, . . . , k.

Furthermore, if these conditions hold, then F = B1 + · · ·+Bk is a quasitransitive
orientation of E and H = (V, F̂) is a comparability graph which is an embedding
of G, where F = F+ F2.

Theorem 6.12 extends the recognition algorithm for comparability graphs
given in [86] to a recognition algorithm for partitioned probe comparabil-
ity graphs and assigning a quasitransitive orientation. An embedding fol-
lows from the quasitransitive orientation. We postpone the proof of the
Probe TRO Theorem. Some of the following lemmas are extensions of lem-
mas given in [83, 84, 86, 178] for proving the TRO Theorem.

Arcs −→xy and −→uv are in the same probe implication class if and only if they
are joined by an Υ-chain, i.e., a sequence of edges (xi, yi) ∈ E such that

−→xy = −−→x0y0 Υ · · · Υ −−−→xkyk = −→uv. (6.1)

Lemma 6.13. If −→xy Υc −→uv, then there exists an Υ-chain (6.1) such that for each
i, 1 ≤ i ≤ k, either xi−1 = xi and yi−1 6= yi, or

xi−1 6= xi and yi−1 = yi.
(6.2)

Such a chain will be called a canonical Υ-chain.

Proof. Suppose −→xy Υc −→uv and that (6.1) is a shortest Υ-chain from −→xy to −→uv.
Then (6.2) holds for each 1 ≤ i ≤ k, since otherwise the ith step is equality
and we have a shorter chain by removing it. ut

66 6 Comparability Graphs

Corollary 6.14. Let G = (P + N, E) be a partitioned graph and let A be a probe
implication class of G. Then (V(A), Â) is a connected graph.

Lemma 6.15 (The Probe Triangle Lemma). Let x, y, and z be three distinct
vertices of a partitioned graph G = (P + N, E), let z ∈ P, and let X, Y, and Z be
probe implication classes of G with X 6= Z and Z 6= Y−1 and having arcs −→xy ∈ Z,
−→zx ∈ Y, such that −→zy ∈ X. Then the following four statements hold.

1. If x 6= u 6= y, (x, u) ∈ E and −→xu Υ −→xy, then z 6= u, (z, u) ∈ E and −→zu ∈ X.
2. If x 6= u 6= y, (u, y) ∈ E and −→uy Υ −→xy, then z 6= u, (z, u) ∈ E and −→zu ∈ Y.
3. If −→pq ∈ Z, then −→zp ∈ Y and −→zq ∈ X.
4. z /∈ V(Z).

Proof. We first prove 1. Notice that −→xz /∈ Z, since −→zx ∈ Y and Z 6= Y−1. Then
u 6= z because −→xy ∈ Z 6= Y−1 and −→xu Υ −→xy. Since z ∈ P, if (z, u) /∈ E, −→xz Υ −→xu,
a contradiction to the assumption that −→xz /∈ Z. Hence (z, u) ∈ E must hold.
Since −→xu Υ −→xy, we have that (y, u) /∈ E and at least one of y and u is a probe.
Because (z, u) ∈ E, (z, y) ∈ E, (y, u) /∈ E, and at least one of y and u is a
probe, we have −→zu Υ −→zy and −→zu ∈ X because −→zy ∈ X.
The proof of 2 is similar.
Next, to prove 3, let −→pq ∈ Z. By Lemma 6.13, since −→xy ∈ Z, there exists a
canonical Υ-chain

−→xy = −−→x0y0 Υ · · · Υ −−−→xkyk = −→pq.
We claim that xi 6= z 6= yi,

−→zxi ∈ Y, and −→zyi ∈ X, for 0 ≤ i ≤ k. We prove the
claim by induction on i. It holds for i = 0 by assumption. Suppose it holds for
i − 1. If xi−1 = xi and yi 6= yi−1, then −→zyi ∈ X by 1. Otherwise xi−1 6= xi

and yi = yi−1 and hence −→zxi ∈ Y by 2. In either case, we have xi 6= z 6= yi,
−→zxi ∈ Y and −→zyi ∈ X. In particular, p = xk 6= z 6= yk = q, −→zp = −→zxk ∈ Y, and
−→zq = −−→zyk ∈ X. Thus 3 and 4. ut

The following is immediate from (4) of Lemma 6.15.

Corollary 6.16. Let G = (P + N, E) be a partitioned graph with a probe impli-
cation class Z. Let x, y, z ∈ V = P + N, let (x, y), (x, z), (y, z) ∈ E, and let z ∈ P.
If −→xy ∈ Z, then z ∈ V(Z) if and only if at least one of −→xz ∈ Z or −→zy ∈ Z.

Lemma 6.17. Let G = (P + N, E) be a partitioned graph and let A be a probe
implication class of G. Exactly one of the following alternatives holds.

(i) either A = A−1 or,
(ii) A∩A−1 = ∅, and A and A−1 are quasitransitive orientations of the graph

GA = (V(G), Â).

6.2 Partitioned probe comparability graphs 67

Proof. If A ∩A−1 6= ∅, then there exists an arc −→xy ∈ A ∩A−1, and −→xy Υc −→yx.
For any −→uv ∈ A, we have −→uv Υc −→xy and −→yx Υc −→vu, implying −→uv Υc −→vu and
−→vu ∈ A. Thus A = A−1.
On the other hand suppose A∩A−1 = ∅. We will show that V(A2−A) ⊆ N by
showing that for −→xy,−→yz ∈ A where at least one of x and z is a probe of G, −→xz ∈
A. If (x, z) /∈ E, then −→xy Υ −→zy and −→zy ∈ A ∩ A−1 6= ∅, a contradiction. Thus
(x, z) ∈ E must hold. If −→xz ∈ A, then we are done. Suppose −→xz /∈ A. Consider
the case of x ∈ P. We have −→yz ∈ A and −→yx,−→xz /∈ A. By Corollary 6.16, x /∈
V(A), a contradiction. The case of z ∈ P is similar. Thus A is a quasitransitive
orientation of GA.
Obviously, quasitransitivity of A implies quasitransitivity of A−1 for GA. ut

Lemma 6.18. Let G = (V, E) = (P + N, E) be a partitioned graph, and let A
be a probe implication class of G. If F is a quasitransitive orientation of GĀ =

(V, E− Â) and if A∩A−1 = ∅, then F+A is a quasitransitive orientation of G.

Proof. By the previous lemma, A is a quasitransitive orientation of GA =

(V, Â). Let F = F+A. Clearly F is an orientation of G and F∩A = ∅. If F is not
quasitransitive, then there exist arcs −→xy,−→yz ∈ F, x and z not both nonprobes,
such that −→xz /∈ F. If (x, z) /∈ E then −→xy Υ −→zy, contradicting quasitransitivity of
A unless both −→xy,−→zy ∈ F. But then −→xy and −→yz violate quasitransitivity of GĀ.
Suppose then that −→zx ∈ F. Two of the three arcs, −→xy,−→yz, and −→zx, must be in A,
or in F. We have a violation of quasitransitivity in GA, or in GĀ, respectively.
ut

Notice that for every implication class A, V(A) is a module in G [86, pp. 112].
We define the following generalization which includes probe implication
classes.

Definition 6.19. Let G = (P + N, E) be a partitioned graph, and let M ⊆ V =

P + N. Let C1, . . . , Ct be the components of G[P(M)]. We call M a QT-module
if the following conditions are satisfied.
(a) ∀x∈P−M either N(x) ∩M = ∅ or M ⊆ N(x).
(b) ∀y∈N−M∀1≤i≤t either N(y) ∩ V(Ci) = ∅ or V(Ci) ⊆ N(y).

Lemma 6.20. Let G = (P + N, E) be a partitioned graph and let A be a probe
implication class of G. Then V(A) is a QT-module.

Proof. First suppose there exists an x ∈ P −V(A) which is connected to some,
but not all, vertices in V(A). Define R = {w ∈ V(A) | (x,w) ∈ E} and U =

V(A) − R. By Corollary 6.14, the undirected graph (V(A), Â) is connected.
There exist p ∈ U and q ∈ R such that −→pq ∈ A or←−pq ∈ A. Since (p, q), (q, x) ∈
E, (p, x) /∈ E, and x ∈ P, we obtain

68 6 Comparability Graphs

−→pq Υ −→xq and ←−pq Υ←−xq, (6.3)

contradicting x /∈ V(A). We have shown that condition (a) of Definition 6.19
is satisfied.
Instead suppose there exist a y ∈ N − V(A) and a component Ci of P(V(A))

such that y is adjacent to some but not all vertices in Ci. The proof is the
same as before, except that now R and U are the neighbors and nonneighbors
of y restricted to Ci, and that this time p is a probe in (6.3) (instead of x).
Therefore condition (b) of Definition 6.19 is also satisfied. ut

Lemma 6.21. Let G = (P+N, E) be a partitioned graph, letM be a QT-module
and let A be a probe implication class of G. Then either

V(A) ⊆M or A ∩ (M×M) = ∅.

Proof. Suppose that −→xy Υ −→zy for some edges (x, y), (y, z) ∈ E with x, y ∈ M
and z ∈ V −M. If z ∈ P, Definition 6.19 gives us that (x, z) ∈ E. If z ∈ N and
(x, z) /∈ E, then x cannot be a probe, because otherwise x and y are in the
same component of P(M). Either case contradicts −→xy Υ −→zy, from which the
lemma follows. ut

We are now ready to prove our main theorem.

Theorem 6.22. Let G = (V = P + N, E) be a partitioned graph. The following
statements are equivalent.

(i) G is a partitioned probe comparability graph.
(ii) A ∩A−1 = ∅ for each probe implication class A of G.

(iii) For each probe implication class A of G, the graphs GA = (V, Â) and
GĀ = (V, E− Â) are partitioned probe comparability graphs.

(iv) For some probe implication class A of G, the graphs GA = (V, Â) and
GĀ = (V, E− Â) are partitioned probe comparability graphs.

Proof. We will prove the theorem by induction on the number of vertices in G,
and on the number k of probe color classes when two graphs have the same
number of vertices.
Suppose k = 1. Since G has only one probe color class, E(GĀ) = ∅, and
by Lemma 6.17, all the statements hold or none hold.
For the remainder of the proof we assume that k > 1, and that the theorem
holds for all partitioned probe graphs on fewer vertices than G, and for all
partitioned probe graphs on V(G) for which the number of probe color classes
is less than k. We prove that the statements are equivalent for a partitioned
probe graph G of k probe color classes.
(i)⇒(ii). Let F be a quasitransitive orientation of G and suppose that −→xy ∈
A ∩A−1. Then there is an Υ-chain from −→xy to −→yx

6.2 Partitioned probe comparability graphs 69

−→xy = −−→x1y1 Υ · · · Υ −−→x`y` = −→yx.
However, from the definitions of Υ and quasitransitive orientation for G, if
(x, y) and (p, q) are two edges of G such that −→xy ∈ F and −→xy Υ −→pq then
−→pq ∈ F, which is a contradiction since −→xy and −→yx cannot both be in F.
(ii)⇒(iii). That GA is a partitioned probe comparability graph follows from
(ii) of Lemma 6.17. In the following we prove that GĀ is also a partitioned
probe comparability graph. We consider two cases:
CASE 1. V(A) = V. First we show that every probe implication class D of
G, with D̂ 6= Â, is a subset of some probe implication class of GĀ. Let ΥĀ

denote the relation Υ for the graph GĀ. Suppose −→xy,−→xz ∈ D and −→xy Υ −→xz.
Then (x, z) /∈ E and clearly −→xy ΥĀ

−→xz. That is, an Υ-chain between two arcs
of D implies an ΥĀ-chain between them. Thus D is a subset of some probe
implication class of GĀ.
We will show that probe implication classes of G that merge in GĀ are all
stars in GĀ with a nonprobe as the center, and any two stars which merge
together have a common center as the source for all arcs or the sink for all
arcs in the classes. Therefore D ∩D−1 = ∅ for every probe implication class
D of GĀ. Since GĀ has at least one class fewer than G, the result now follows
from the induction hypothesis.
Suppose the relation ΥĀ connects −→xy ∈ Di and −→xz ∈ Dj, where Di andDj are
two distinct probe implication classes of G. Then (y, z) ∈ Â. If x ∈ P, then by
Lemma 6.15 (4) x /∈ V(A), contradicting the assumption V(A) = V(G); thus
x ∈ N, and y and z must be probes. Also note that Di 6= D−1

j , since otherwise
−→zx,−→xy ∈ Di, but −→zy /∈ Di. Therefore D̂i ∩ D̂j = ∅.
Suppose there exists a vertex p 6= x such that −→xy Υ −→py. Then p ∈ P since
x ∈ N. Since z ∈ P and −→xy,−→py ∈ Di, we have −→pz ∈ Dj by the Probe Trian-
gle Lemma (iii). Then by (iv) of the same lemma, since −→py ∈ Di,

−→pz ∈ Dj,
and −→yz ∈ Â, we have p /∈ V(A), a contradiction. Hence all arcs of the probe
implication class of −→xy must be of the form −→xq. Hence Di is a star, as claimed.
Since −→xy ∈ Di and −→xz ∈ Dj, we see that Di and Dj merge at x.
CASE 2. V(A) ⊂ V. As in Case 1, every probe implication class of G except A
and A−1 is contained in some probe implication class of GĀ. Therefore GĀ

has at least one color class fewer thanG. The result follows from the induction
hypothesis if D ∩D−1 = ∅ for every implication class of GĀ.
We divide the arcs of

−→
E (GĀ) into two groups: those arcs between two vertices

of M = V(A), and those with at least one endvertex not in M. Since M is a
QT-module, by Lemma 6.21, every probe implication class of G is either a
subset of

−→
E (G[M]), or disjoint from

−→
E (G[M]). First consider G[M]. Relation

Υ does not connect any arc of
−→
E (G[M]) with any arc not in

−→
E (G[M]), and

ΥĀ does not either, because the edges of G missing in GĀ do not leave M.

70 6 Comparability Graphs

Thus, by the same argument as in Case 1, every probe implication class D of
(M,E(G[M]) −A) satisfies D ∩D−1 = ∅.
Next we consider those probe implication classes that are disjoint from−→
E (G[M]). Let X be a set containing one vertex from each component of
G[P(M)]. Since G[V −M+ X] is a proper induced subgraph, it satisfies state-
ment (ii) of the theorem. Since the vertex set is not all of G, the induction
hypothesis says that G[V −M+X] is a partitioned probe comparability graph
having a quasitransitive orientation F. We extend this orientation to an ori-
entation F∗ of (V, E− E(G[M])) as follows. Let v ∈ V − M. Since X is an
independent set, every arc between v and X in F is from v to X, or every such
arc is from X to v. We give every edge between v andM the same orientation.
We show that F∗ is again a quasitransitive orientation. Suppose there is a
violation of quasitransitivity in F∗ involving (v, x), (v, y) ∈ E. If v ∈ V −M,
and x, y ∈M, by the construction of F∗,

−→vx ∈ F∗ ⇐⇒ −→vy ∈ F∗
and there is no violation.
Next, assume x ∈ M but v, y ∈ V −M, and x and y not both nonprobes. If
x ∈ P, let z ∈ X be the vertex, possibly the same as x, in the same component
of P(G[M]) as x; otherwise, if x ∈ N, let z ∈ X be arbitrary. Then

(z, y) ∈ E ⇐⇒ (x, y) ∈ E

because M is a QT-module. Since (v, x) and (v, z) have the same direction,
as well as (x, y) and (z, y) if they are both edges, and since {z, y, v} does not
contain a violation of quasitransitivity, neither does {x, y, v}.
Suppose now v ∈ M and x, y ∈ V − M. Then there exists z ∈ X such that
(z, x), (z, y) ∈ E and such that (z, x) and (z, y) receive the same orientations
as (v, x) and (v, y), respectively. Since F is quasitransitive, {x, y, z} does not
contain a violation of quasitransitivity; neither therefore does {x, y, v}.
We conclude that (V, E− E(G[M])) is a partitioned probe comparability graph
with quasitransitive orientation F∗ and with fewer color classes than G. By the
inductive hypothesis D∩D−1 = ∅ for every implication class D of this graph.
Thus we have D∩D−1 = ∅ for every probe implication class D of GĀ, which
by induction on the number of classes is a partitioned probe comparability
graph.
(iii)⇒(iv) is clear.
(iv)⇒(i). This implication is precisely Lemma 6.18. ut

Another characterization follows immediately.

Theorem 6.23. Let G = (P + N, E) be a partitioned graph and let A be a probe
implication class of G. Assume that V − V(A) 6= ∅ and that G[P(V(A))] has `

6.2 Partitioned probe comparability graphs 71

connected components V1, . . . , V`. Let X = {xi | 1 ≤ i ≤ ` and xi ∈ P(Vi)}. Then
G is a partitioned probe comparability graph if and only if G[V −V(A)+X] and
G[V(A)] are both partitioned probe comparability.

Proof. The class of probe comparability graphs is hereditary. Therefore, if G
is in the class, then so are the two induced subgraphs. To get the reverse
result, we use the same construction as in case 2, (ii)⇒(iii), of the proof of
Theorem 6.22 to get D∩D−1 = ∅ for every probe implication class of G, and
thus G is a partitioned probe comparability graph. ut

Also the Probe TRO Theorem follows immediately from Theorem 6.22.

We now present an algorithm for recognizing partitioned probe comparabil-
ity graphs which is a modification of the algorithm given in Golumbic [86]
for recognizing comparability graphs. The algorithm computes a probe G-
decomposition, B̂1, . . . , B̂k for G. It uses the function

CLASS(i, j) =

h if −−→vivj has been assigned to Bh,
−h if −−→vivj has been assigned to B−1

h ,
undefined if −−→vivj has not yet been assigned,

and a variable FLAG which is 0 if B ∩ B−1 = ∅ for each class B in the decom-
position, and 1 otherwise. If the algorithm terminates with FLAG = 0, then
a quasitransitive orientation of G is obtained by combining all edges having
positive CLASS.
The algorithm finds a probe color class B̂h of the current graph, deletes
it, and iterates. It calculates B̂h by arbitrarily finding an arc −→xy which has
not yet been assigned to any B̂h for 1 ≤ h < i and visiting all arcs −→pq
with −→xy Υc −→pq using the DFS-like procedure Quasi − EXPLORE(i, j). The
variable FLAG changes from 0 to 1 whenever Bh ∩ B−1

h 6= ∅. By Theo-
rem 6.12 G is a partitioned probe comparability graph if and only if FLAG

never changes. Quasi − EXPLORE(i, j) differs from EXPLORE(i, j) given by
Golumbic in checking one more condition, {vi, vh} /∈ N(G), when testing
whether −−→vivj Υ

−−→vivh. The details of the algorithm and Quasi − EXPLORE(i, j)

are given in Algorithm 1 and Algorithm 2, respectively.
It is easy to see that the modified algorithm can be implemented in the same
time bound as the algorithm given by Golumbic. Hence we have the following
theorem.

Theorem 6.24. Recognition of partitioned probe comparability graphs and find-
ing a quasitransitive orientation can be done in O(∆ ·m) time and O(n +m)

space, where ∆ is the maximum degree of a vertex. Moreover, an embedding can
also be obtained from a quasitransitive orientation in O(∆ ·m) time.

72 6 Comparability Graphs

Algorithm 1 Recognizing a partitioned probe comparability graph.

Input: The directed version (V(G),
−→
E (G)) of a partitioned probe graphGwith vertices

v1, v2, . . . , vn whose adjacency sets obey j ∈ Adj(i) if and only if −−→vivj ∈ −→E (G).
Output: A variable FLAG and a variable CLASS(i, j) for each edge−−→vivj. If the algorithm
terminates with FLAG equal to zero, then a quasitransitive orientation of G is obtained
by combining all edges having positive CLASS.
1: Initialize: k← 0; FLAG← 0;
2: for each edge −−→vivj ∈ −→E (G) do
3: if CLASS(i, j) is undefined then
4: k← k+ 1;
5: CLASS(i, j)← k; CLASS(j, i)← −k;
6: Quasi-EXPLORE(i, j);
7: end if
8: end for

Algorithm 2 procedure Quasi-EXPLORE(i, j)

Input: −−→vivj.
Output: Find the edges of a probe implication class containing edge −−→vivj.
For each edge with CLASS undefined, assign it a value.
1: for each h ∈ Adj(i) such that

{vh, vj} 6⊆ N(G) and h /∈ Adj(j) or |CLASS(j, h)| < k do
2: if CLASS(i, h) is undefined then
3: CLASS(i, h)← k; CLASS(h, i)← −k;
4: Quasi-EXPLORE(i, h);
5: else
6: if CLASS(i, h) = −k then
7: CLASS(i, h) = k; FLAG← 1;
8: Quasi-EXPLORE(i, h);
9: end if

10: end if
11: end for
12: for each h ∈ Adj(j) such that

{vh, vi} 6⊆ N(G) and h /∈ Adj(i) or |CLASS(i, h)| < k do
13: if CLASS(h, j) is undefined then
14: CLASS(h, j)← k; CLASS(j, h)← −k;
15: Quasi-EXPLORE(h, j);
16: else
17: if CLASS(h, j) = −k then
18: CLASS(h, j) = k; FLAG← 1;
19: Quasi-EXPLORE(h, j);
20: end if
21: end if
22: end for

6.3 A partitioned probe Dushnik & Miller 73

Let G = (P + N, E) be a partitioned graph. Recall that the sandwich conju-
gate G∗ of G is the partitioned graph obtained from G by removing all edges
between vertices of N. By the above definition, we have that a partitioned
graph is a partitioned probe cocomparability graph if and only if its sandwich
conjugate G∗ is a partitioned probe comparability graph. Thus we have the
following corollary.

Corollary 6.25. The recognition of partitioned probe cocomparability graphs
can be done in O(n3) time.

6.3 A partitioned probe Dushnik & Miller

r r
cr
r

r
c

�
��

�

HH
HH

@
@
@
@

�
�

@
@

��
�
��

�
�
�

4

2
3

5 1

6

7

c r r r c r r

c r r c r r r

�
�
�
�
�
�
�
�
�

!!
!!

!!
!!

!!
!!

!!
!

A
A
A
A
A
A

�
�
�
�
�
�

HH
H

HH
H

HH
H

HH
H

Q
Q
Q

Q
Q
Q

Q
Q
Q

@
@
@

@
@
@

6 2 3 5 1 7 4

1 3 7 6 4 5 2

d

Fig. 6.1. A partitioned probe permutation graph and an intersection diagram of an
embedding. Vertices 1 and 6 are nonprobes. The other vertices are probes.

Definition 6.26 ([70, 170]). Let π ∈ Sym(n) be a permutation acting on the
set of integers {1, 2, . . . , n}. We define the inversion graph G[π] as follows. The
graph has vertex V = {x1, . . . , xn} and edge set E defined by

(xi, xj) ∈ E ⇐⇒ (i− j) (π−1(i) − π−1(j)) < 0.

An undirected graph G is called a permutation graph if there exists a permuta-
tion π such that G ∼= G[π].

Geometrically, we can diagram an inversion graph as follows. Write the inte-
gers 1, . . . , n left to right as distinct points on a line, and write the permuta-
tion π of {1, . . . , n} on a parallel line. The vertices ofG[π] are the line segments
joining points with the same label, and two vertices are joined by an edge if
their line segments intersect.

Dushnik and Miller showed that a graph G is a permutation graph if and
only if both G and G are comparability graphs [69]. This characterization per-
mits permutation graphs to be recognized in linear time [146]. In this section
we show that this characterization extends to partitioned probe permutation
graphs where G is replaced by the sandwich conjugate G∗.

74 6 Comparability Graphs

Lemma 6.27. LetG = (P+N, E) be a partitioned graph. ThenG is a partitioned
probe permutation graph if and only if there exists a labeling L of the vertices
by integers 1, . . . , n, and a permutation π ∈ Sym(n) such that (x, y) ∈ E if and
only if both

{x, y} 6⊆ N and (L(x) − L(y))
(
π−1L(x) − π−1L(y)

)
< 0. (6.4)

Proof. It is easy to see that if (x, y) ∈ E(G[π]) − E is an edge, then {x, y} ⊆ N.
Thus G[π] is an embedding of G. ut

Recall that the sandwich conjugate G∗ of a partitioned probe graph G is the
graph obtained from G by removing all edges between vertices of N.

Theorem 6.28 (The Partitioned Probe Dushnik & Miller). A partitioned
probe graph G is a probe permutation graph if and only if both G and G∗ are
partitioned probe comparability graphs.

Proof. LetG be a partitioned probe permutation graph and letH be an embed-
ding of G. Both H and H are comparability graphs. By definition, {x, y} ⊆ N if
either (x, y) ∈ E(H) − E(G) or (x, y) ∈ E(H) − E(G). Thus both G and G∗ are
partitioned probe comparability graphs.
Suppose both G and G∗ are partitioned probe comparability graphs. By Theo-
rem 6.9, both G and G∗ have quasitransitive orientations. Let F1 and F2 be qu-
asitransitive orientations of G and G∗, respectively. We claim that (V, F1 + F2)

is an acyclic digraph. If not, let v0, . . . , v`, v0 be a cycle of the smallest pos-
sible length ` > 3. Since at least one of the two ends of an edge is a probe,
without loss of generality let v0 ∈ P. Then either←−−v0v2 ∈ F1 +F2, in which case
v0, v1, v2, v0 is a shorter cycle, or−−→v0v2 ∈ F1+F2, in which case v0, v2, v3, . . . , v0

is a shorter cycle, contradicting minimality in each case.
If ` = 3, then at least two of the three vertices visited by the cycle are probes
and at least two of the edges of the cycle are in the same Fi, 1 ≤ i ≤ 2,
implying that Fi is not quasitransitive. Thus (V, F1 + F2) is acyclic. Similarly
(V, F−1

1 + F2) is acyclic. In the following we construct a permutation π such
that G[π] is an embedding of G. Define two labelings L and L′ as follows.
1. Label the vertices in the order determined by a topological sort of vertices

of (V, F1 + F2), that is, L(x) = i if x is the ith vertex of this sort.
2. Label the vertices according to the order determined by a topological sort

of vertices of (V, F−1
1 + F2), that is, that is, L′(x) = i if x is the ith vertex of

the new sort.

Then π(i) = L ◦ L′−1
(i), for i = 1, . . . , n.

Notice that L(y) > L(x) if and only if −→xy ∈ F1 + F2. Similarly L′(y) > L′(x)

if and only if −→xy ∈ F−1
1 + F2. Since it is the edges of E which have their

6.3 A partitioned probe Dushnik & Miller 75

orientations reversed between Steps I and II and {x, y} 6⊆ N if (x, y) ∈ E, we
have

(x, y) ∈ E ⇐⇒ {x, y} 6⊆ N and (L(x) − L(y)) (L′(x) − L′(y)) < 0

which is exactly what we get by substituting π = L ◦ L′−1 into (6.4). ut

By Theorem 6.24 and Theorem 6.28 we obtain:

Theorem 6.29. A partitioned probe permutation graph can be recognized in
O(n3) time.

7

Partitioned Probe Permutation Graphs

In this chapter, we provide a recognition algorithm for partitioned probe per-
mutation graphs with time complexity O(n2). We also show that probe per-
mutation graphs have at most O(n4) minimal separators. As a consequence,
for probe permutation graphs there exist polynomial-time algorithms solv-
ing problems like TREEWIDTH and MINIMUM FILL-IN. We apply a modular de-
composition technique for the recognition of partitioned probe permutation
graphs. The recognition of the unpartitioned case remains an open problem.
We conjecture that it is polynomial.

Probe permutation graphs are in general not perfect (see Fig. 7.1), but
they have many other interesting features. In Section 7.3, we prove that
probe permutation graphs have at most O(n4) minimal separators. An al-
gorithm to find all minimal separators in a graph with polynomial delay ap-
peared in [134]. As a consequence, there exist polynomial-time algorithms
solving problems like TREEWIDTH and MINIMUM FILL-IN for probe permuta-
tion graphs [24]. Note that the treewidth and pathwidth parameters coincide
for permutation graphs [134]. Thus the PATHWIDTH problem, which in gen-
eral is much more difficult to compute, can also be solved in polynomial time
for permutation graphs. It is easy to see that pathwidth and treewidth do not
coincide for probe permutation graphs in general.

7.1 Preliminaries

For convenience we define permutation graphs by their matching diagrams.

Definition 7.1. Let π be a permutation of (1, . . . , n). The matching diagram of
π is obtained as follows. Write the integers (1, . . . , n), horizontally from left to
right. Underneath, write the integers (π1, . . . , πn), also horizontally from left to

78 7 Permutation Graphs

right. Draw n straight line segments connecting the two 1’s, the two 2’s, and so
on.

Definition 7.2. A graph is a permutation graph if it is isomorphic to the inter-
section graph of the line segments of a matching diagram.

r c
c

r
r

@
@

�
�

qqq
q

4

2 3

5 1

r c r r c
r c r r c
HHH

HHH
HH

PPPPPPPPPPPP

���
���

��

������������

d
3 5 1 4 2

1 2 3 4 5

Fig. 7.1. A 5-cycle. Vertices 2 and 5 are nonprobes.

c r
r

r
r c

@
@

�
�

@
@

�
�

q q q q q q q q q2

3 1

6 4

5 r c r r c r
r c r r c r
�
��

�
��

�
�H

HHH
HHH

H��
��

��
��

��
��PPPPPPPPPPPP�

��
�
��

�
�H

HHH
HHH

H

d
3 5 1 6 2 4

1 2 3 4 5 6

Fig. 7.2. A 6-cycle. Vertices 2 and 5 are nonprobes.

To get acquainted with the class of probe permutation graphs we show
that they cannot have induced cycles of length more than 6.

Definition 7.3. An asteroidal triple in a graph G, abbreviated AT, is a set of
three mutually nonadjacent vertices, {x1, x2, x3}, such that removing the neigh-
borhood of any one of the vertices of the triple, xi, leaves the other two vertices
of the triple in the same component of G − N[xi]. A graph is AT-free if it does
not contain any AT.

It is easy to see that permutation graphs are AT-free: Consider three parallel
lines in a matching diagram. Then any path connecting the outermost two
must have some vertex whose line segment crosses the parallel line lying
between them.

Theorem 7.4. A probe AT-free graph G cannot have chordless cycles of length
more than 6. Furthermore, every chordless 6-cycle has exactly two nonprobes at
distance 3 in the cycle.

Proof. Let C be a chordless cycle. Consider the set of probes in C. There can be
at most two components in C−N; otherwise there is an AT in any embedding.
Hence, if the length of C is more than 5, there must be exactly two compo-
nents in C − N. Furthermore, each component must be a single vertex or an

7.1 Preliminaries 79

edge; otherwise, there still will be an AT in any embedding. Since the set of
nonprobes is independent, there must be exactly two nonprobes; otherwise,
there are more than two components in C − N. Hence C must have length 6,
and the nonprobes must be at distance 3. ut

Hence we obtain the following result.

Theorem 7.5. Probe permutation graphs cannot have induced cycles of length
more than 6.

Theorem 7.6 ([170]). A graph is a permutation graph if and only if G and G
are comparability graphs.

Notice that permutation graphs form a self-complementary class of graphs.
That is, if a graph is a permutation graph then so is its complement G. The
class of probe permutation graphs, however, is not self-complementary. For
example, the disjoint union of two disjoint 6-cycles becomes a permutation
graph if one long diagonal is added to each C6 (Fig. 7.2). In the complement
of 2C6, the nonprobes necessary to make each C6 subgraph a probe permuta-
tion graph are not independent in the combined graph. Recall the following
definition of the sandwich conjugate:

Definition 7.7. Let G be a partitioned graph. The sandwich conjugate G∗ of G
is the partitioned graph with P(G∗) = P(G) and N(G∗) = N(G) obtained from
G by removing all edges between vertices of N(G).

Note that, if G is a self-complementary class of graphs, then G is a partitioned
probe graph of G if and only if its sandwich conjugate falls into the same
category.
Theorem 7.6 permits permutation graphs to be recognized in linear time, us-
ing the linear time algorithm of [146] to find a modular decomposition tree.

Definition 7.8. Let G = (V, E) be a graph. A subset M ⊆ V of vertices is called
a module if for every vertex z ∈ V −M,

M ⊆ N(z) or M ∩N(z) = ∅.

i. A module M is called strong if for every module M′ the modules M and M′

do not overlap, i.e., either M ∩M′ = ∅, M ⊆M′, or M′ ⊆M.
ii. A module M is trivial if M = V, M = ∅, or |M| = 1.

iii. A graph G is called prime if G contains only trivial modules.

The following celebrated theorem of Gallai started a long line of the re-
search into modular decompositions.

Theorem 7.9 ([145]). If G and G are connected, then there is a unique parti-
tion P of V and a transversal set1 U ⊆ V such that:
1 Sometimes the subgraph induced by the transversal is called the quotient graph.

80 7 Permutation Graphs

1. |U| > 3,
2. G[U] is a maximal prime subgraph of G, and
3. for every class S of the partition P, S is a module and |S ∩U| = 1.

Strong modules satisfy the following property. IfM 6= V is a strong module
then the smallest strong module M′ properly containing M is uniquely deter-
mined. This property defines a parent relation in the modular decomposition
tree.

1. The leaves of this tree are the vertices of the graph.
2. A node is labeled as a parallel node if the subgraph induced by the leaves

in the subtree is disconnected. The children of the node are the compo-
nents.

3. A node is labeled as a series node if the complement of the subgraph
induced by the leaves in the subtree is disconnected. The children are the
components of this complement.

4. Finally, an internal node is prime if the graph induced by the leaves in
the subtree as well as the complement of this induced subgraph are con-
nected. The children are the strong modules mentioned in Theorem 7.9.
The node is labeled with the prime graph induced by the transversal set.

In case the graph G is disconnected, we let the transversal set be the subgraph
induced by one vertex of each component. In this case the subgraph induced
by the transversal set is an independent set. Likewise, whenG is disconnected,
by taking one vertex of each component of G we get a transversal set which
induces a clique.

The history of algorithms to find the modular decomposition tree is long,
starting with [57, 131, 158, 159]. A linear-time algorithm was finally obtained
by McConnell and Spinrad, and, independently, by Habib et al., [146]. Much
research is still being done to simplify this algorithm. See, e.g., [98] for one of
the most recent developments. Using modular decompositions, an orientation
of a graph can be obtained in linear time, and it is transitive if the graph is a
comparability graph. However, no better algorithm is known for checking the
transitivity of the orientation than a matrix multiplication.

For the recognition of permutation graphs the situation is much better.
Notice that a diagram for a permutation graph can be obtained as follows.
Let F1 be a transitive orientation of G and let F2 be a transitive orientation
of G. Then F1 + F2 is an acyclic orientation of the complete graph; hence it
gives a unique linear ordering of the vertices of G. Likewise, F−1

1 + F2 gives a
unique linear ordering. The first linear ordering can be used for the top line
and the second for the bottom line of a permutation diagram representing G.
The result is a linear time recognition algorithm for permutation graphs, since

7.2 Recognition of partitioned probe permutation graphs 81

it takes linear time to find F1 and F2 using the modular decomposition algo-
rithm of [146], and one only needs to check whether the intersection diagram
correctly represents G. The transitivity of F1 and F2 is then guaranteed.

Notice that if G is a prime permutation graph, then both G and G are
uniquely partially orderable, or UPO [86]. That is, F1 and F2 are uniquely
determined up to the reversal. Therefore, we have the following result.

Lemma 7.10. A prime permutation graph has a unique matching diagram, up
to reversal and exchanging the top and bottom line.

7.2 Recognition of partitioned probe permutation graphs

Let G = (P + N, E) be a partitioned graph. We aim at constructing a diagram
for G such that, if x and y are two line segments in the diagram, not both
nonprobes, then they cross if and only if the vertices x and y are adjacent
in G. Obviously, the graph G[P] induced by the probes must be a permutation
graph, since the class of permutation graphs is hereditary. Using the algorithm
of [146], we compute the modular decomposition tree for G[P]. Our strategy
is to try to insert the nonprobes into a suitable diagram for G[P].

Theorem 7.11. There exists an algorithm to determine in O(n2) time whether
a partitioned graph G = (P + N, E) is a partitioned probe permutation graph
and to obtain an embedding if one exists.

Proof. We will first describe a recognition algorithm and then analyze the time
complexity. We must construct a matching diagram for G such that, if x and y
are two lines in the diagram, not both nonprobes, they cross if and only if the
vertices x and y are adjacent in G.
Step 1. First we check whether G[P] is a permutation graph. If G[P] is not a
permutation graph, then G is not a partitioned probe permutation graph.
Step 2. We find the modular decomposition tree T for G[P]. In general, ifM is
a set of probes, and x /∈M is some other vertex, we say x is partially adjacent
to M if x is adjacent to one or more vertices of M and also nonadjacent to
one or more vertices of M.

LetM be an internal node of T , a strong module ofG[P], and let NM be the
set of nonprobes which are partially adjacent to M. If a nonprobe is adjacent
to no vertex or every vertex of M, then its placement in the diagram, relative
to M, is determined at a higher level of T , or if M is the root, the placement
is trivial. Let Mi, 1 ≤ i ≤ r, be the immediate children of M. Let TM be the
subtree of T with M as the root. Then TM is the modular tree decomposition
of H = G[M]. When each Mi is replaced by a single vertex pi, with adjacency
inherited from the module Mi, we obtain the quotient graph H0, isomorphic

82 7 Permutation Graphs

to H[U], the graph induced by the transversal set U (see Theorem 7.9 and
following). Since H0 and G[Mi], 1 ≤ i ≤ r, are induced subgraphs of G[P],
they are all permutation graphs.

We start with M = P, the root of T . We repeat Step 3 until we reach every
leaf or find that G = (P + N, E) is not a partitioned permutation graph. Then
Step 4 produces a permutation diagram.
Step 3. Find H0 and a matching diagram for H0 so that each nonprobe can
be inserted. According to Theorem 7.9 there are three cases to consider, de-
pending on whether H0 is a clique (the root is a series node), an independent
set (the root is a parallel node), or a prime graph with at least four vertices
mentioned in the theorem (the root is a prime graph).

We think of the line representing each vertex pi of H0 as a thickened
line or box, reflecting that each module Mi may have multiple vertices. The
endpoints of these lines will thicken to be horizontal line segments, which
remain disjoint. We must insert the nonprobe x into the diagram so that it
intersects each probe pi correctly: crossing pi, disjoint from pi, or in case of
partial adjacency (if ∅ ⊂ (Mi ∩ N(x)) ⊂ Mi with proper inclusions), with
an endpoint part of the way into pi. By definition, we need not worry about
whether nonprobes cross each other.
Case 1: The node is prime. In this case, both H and H are connected. By
Theorem 7.9, H0 = H[U] is a maximal prime permutation subgraph of H.
By Lemma 7.10, the matching diagram of H0 is fixed up to reversing it left
to right and flipping it upside down. By definition, if x ∈ NM, then M is
not a module of G[M + x]. Partial adjacency can only occur at the ends of
the segment representing x. Thus if x is partially or totally adjacent to every
vertex in H0, the partial adjacency must be at the corners of the diagram, and
we easily place x in the diagram of H0. The only other way that H0 + x, with
partial adjacency counted as adjacency, could fail to be prime is if x and pi

have the same adjacency for some vertex pi in H0. In that case, x goes “near”
pi. If it has no partial adjacency, except possibly to Mi, then x goes inside,
next to, or crossing pi. There are four distinct vertices in G0 with diagram
endpoints next to those of pi (or three in case a corner endpoint belongs
to pi). These and Mi are the only possible partial adjacencies of x, and the
placement is immediate.

When H0 + x is prime, the transitive orientation algorithm, as described
in [146], correctly orients every edge and nonedge between H0 and x. We
cannot use x as a pivot, but since both H0 and H0+x are prime, the procedure
will correctly separate every vertex of H0 + x without requiring x as a pivot,
with one exception. The first run of the algorithm selects some vertex u of H0

(which is a source or a sink of H0) to use as the first pivot of the second run.
If u was selected because it was the highest ranking probe, but the nonprobe

7.2 Recognition of partitioned probe permutation graphs 83

x was actually higher, then the second run will not distinguish whether x is a
source or a sink (having chosen one of the two orientations ofH0). Instead we
allow both possibilities. We check which one places x correctly in the diagram
of H0. Once we have placed x in the diagram, the possible partial adjacencies
are on either side of the initial placement of the endpoints of x.
Case 2: The node is a parallel node; that is, H = G[M] is disconnected.
Each Mi is a component of H, and H0 is an independent set. The ver-
tices of H0 correspond to the components of H. In this case the pi’s must
be in a sequence, so that each nonprobe is adjacent to consecutive probes
in the diagram of H0, with partial adjacency only allowed on the ends. To
find this ordering, let S = {p1, . . . , pr}. We first construct a collection of
subsets C of S as follows. For each x ∈ NM, we include in C the subset
Sx = {pi|x is adjacent to a vertex of Mi}. The nonprobe x may have partial
adjacency to up to two probes in H0. In that case we also include in C the
subset Sx − pi for each pi if x is partially adjacent to Mi.

We also need to ensure that if a nonprobe has adjacency outside M, then
its neighbors inside M are placed together on the correct side of the diagram.
To this effect, we include two artificial probe vertices in S, p[and p], and in
constructing C make p[adjacent to every nonprobe which enters M from the
left, while making p] adjacent to every nonprobe which enters M from the
right. To force p[and p] to the outside, we include in C the subsets M + p[

and M + p]. Note that left and right here are relative designations derived
from the parent of M.

It is clear that we need to find a permutation π of the elements of S such
that for every subset I ∈ C, the elements of I appear as a consecutive subse-
quence of π. Booth and Luecker [23] showed that this problem can be solved
(using the PQ-tree) in O(|C| + |S| +

∑
I∈C |I|) time. The permutation π gives a

matching diagram of H0.
Case 3: The node is a series node; that is, H0 is a clique. In this case we
consider the sandwich conjugate and the diagram of the parallel node H0,
which is obtained by reversing the bottom line. Those nonprobes which have
the top end inside the diagram of H0 and the bottom outside will reverse their
direction of exit, while those with the bottom end inside H0 and the top end
outside do not.

We should note that in Case 2 we could assume that the parent node ofM
was prime, because the parent of a parallel node cannot be another parallel
node, and if the parent were a clique we would have taken the conjugate. In a
prime node we have the exact information as to which nonprobes exit a child
node to the left, exit to the right, or may be considered internal to the child
node.

84 7 Permutation Graphs

When M is a series node and the parent is a parallel node, we have to
use a second method to determine whether a nonprobe enters the diagram
of H0 from the left or the right. Determine a shortest adjacency list in H0 of
any nonprobe whose line exits the diagram. The left-right partition is made
according to whether the adjacency list of a nonprobe contains this short list
as a subset or does not contain it.

In this case we get a relative up-down orientation of a nonprobe depend-
ing on whether or not the right-left orientation changed when we took the
sandwich conjugate. The rest of the algorithm is similar to Case 2.
Step 4. We create the matching diagram for H0. First we have to get the
diagrams of all the nodes right side up. Designate the internal nodes of T
by Mi, 1 ≤ i ≤ s. We have to determine how to flip the diagram of each
Mi over so that every nonprobe gets an endpoint on the top line and the
other endpoint on the bottom line. We do so by reducing the problem to
finding a proper 2-coloring of a bipartite graph R. Each Mi is represented
by two vertices ti and bi. These are made adjacent in R to make sure they
get assigned to different lines of the diagram, i.e., one to the top line and the
other to the bottom line. Consider a nonprobe x which partially intersects two
modules Mi and Mj, so that one endpoint is in each. Suppose we know from
Case 1 or from Case 3 where each endpoint goes with respect to ti, bi, tj, and
bj. Then we connect the two vertices in R, one of {ti, bi} and one of {tj, bj},
where the nonprobe has its endpoints. (In case we have information about
only one endpoint of a nonprobe, we can connect the known locations of that
endpoint to the opposite vertex, ti or bi, of one of the known locations.) The
flip-over problem reduces to finding a proper 2-coloring of R. If the problem
has no solution, then G is not a partitioned probe permutation graph.

Finally we assemble the diagram starting from the root of T , recursively
replacing each box in the diagram by the diagram of the node it represents,
repeatedly refining the placement of the nonprobes.

The correctness of the algorithm is clear. Either we obtain a matching
diagram for G such that if x and y are two lines in the diagram, at least one is
a probe, they cross if and only if x and y are adjacent in G, or else we discover
that G is not a partitioned probe permutation graph.

Next, we analyze the complexity of the algorithm. Steps 1 and 2 take
O(n+m). We obtain the modular decomposition tree T ofG[P] and the unique
diagram of each prime node. The transitive orientation algorithm [146] simul-
taneously gives the correct placement of the nonprobes in prime nodes, Case
1 of Step 3, in the same time. We can clearly determine the nodes to which
each nonprobe x is partially adjacent in O(n) time.

For Cases 2 and 3 of Step 3, we have the PQ-algorithm which takes O(|C|+

|S|+
∑

I∈C |I|) for each node. Since (|C|+ |S|) is withinO(n), and the number of

7.3 Treewidth of probe permutation graphs 85

nodes is within O(n), the contribution of the first two terms is within O(n2).
For each nonprobe x, then, we need to show that the sum of its adjacency lists
|I|, in nodes where x has partial adjacency, is no more than O(n). Note that
|I| is not the number of vertices in a node M to which x is adjacent, but the
number of children of M to which x is at least partially adjacent. If a node
is totally adjacent to x, then the descendants of that node do not contribute.
Since a node is a nonempty module, the contribution of total adjacencies
to the sum of |I| for x cannot exceed n. Likewise, x can have at most two
partial adjacencies, and only one node can have that many. Therefore the
contribution of partial adjacencies of x to the sum of |I| is also less than n.

In Case 3 of Step 3, we determine which end of a nonprobe goes up in
constant time for each nonprobe at each node. In Step 4 we 2-color a bi-
partite graph R in which there are at most 2n vertices. We said we would
connect two vertices in R if they represent the locations of opposite ends of
the line representing some nonprobe in two nodes of the tree T . The infor-
mation obtained from a single nonprobe would be represented as a complete
bipartite graph on certain vertices of R. It could require checking O(n2) edges
of R for each nonprobe, inserting the edge if it is not already represented. In
fact, the information obtained from each nonprobe can be represented by a
spanning tree of this complete bipartite graph. Therefore, we can construct R
by checking O(n) edges for each nonprobe. Finally, assembling the diagram
can be done in linear time, and checking it for correctness can be done in
O(n2) time. Therefore recognition of partitioned probe permutation graphs,
and construction of a diagram for an embedding if a graph is a partitioned
probe permutation graph, can be accomplished in O(n2) time. ut

Conjecture 7.12. There exists a polynomial-time algorithm for the recognition
of (unpartitioned) probe permutation graphs.

7.3 Treewidth of probe permutation graphs

In this section we analyze the structure of the minimal separators in an unpar-
titioned probe permutation graph, proving that problems such as TREEWIDTH

and MINIMUM FILL-IN are computable in polynomial time for graphs in this
class. Although at the moment we do not know how to recognize this class,
we show that the treewidth can be determined nevertheless, or else a conclu-
sion is drawn that the graph is not in the class, if more than n4/4 minimal
separators are found. Assume throughout that G is connected.

Definition 7.13. Let G = (V, E) be a graph.

1. A set Ω ⊂ V is a separator if G−Ω has at least two components.

86 7 Permutation Graphs

2. If Ω is a separator and C is a component of G −Ω such that every vertex of
Ω has at least one neighbor in C, then C is a full component of Ω.

3. A separator Ω is a minimal separator if it has at least two full components.
4. If x and y are vertices in different full components of Ω, then Ω is called a

minimal x, y-separator.

Definition 7.14. Consider a matching diagram. A scanline in the diagram is
any line segment with one end vertex on each horizontal line such that the end-
points do not coincide with endpoints of line segments of the diagram.

Consider a scanline s in a matching diagram such that at least one line seg-
ment x of the diagram has its two endpoints to the left and at least one line
segment y has both its endpoints to the right of s. Take out all the lines in the
matching diagram that cross the scanline s. The corresponding set of vertices
clearly separates x and y into different components. For minimal separators,
the converse also holds:

Theorem 7.15 ([20]). Let G be a permutation graph and consider any match-
ing diagram of G. Let x and y be nonadjacent vertices in G. Then every minimal
x, y-separator consists of all line segments that cross some scanline that lies be-
tween the line segments of x and y in the diagram.

Corollary 7.16. A permutation graph has fewer than n2 minimal separators.

Theorem 7.17. LetG be a connected probe permutation graph equipped with an
embedding H. Consider a matching diagram of H. LetΩ be a minimal separator
in G. Then there exist noncrossing scanlines s1 and s2, such that

1. ΩP consists of all the probes crossing at least one of s1 and s2, or with both
endpoints between s1 and s2, and

2. ΩN consists of all the nonprobes that cross both s1 and s2.

Proof. LetΩ be a minimal x, y-separator in G. If x ∈ N andΩ = N(x), thenΩ
consists of only probes. We can take one scanline immediately next to x and
the other scanline just outside the last vertices of the diagram. The argument
is similar when Ω = N(y) and y ∈ N.

The other possibility is that the two full components of G −Ω containing
x and y each contain at least one probe. Assume that the probes of the com-
ponent Cx that contains x appear to the left of the probes of the component
Cy that contains y.2 Take a scanline s1 immediately to the right of the probes
of Cx. Also consider the probes of G −Ω, including the probes of Cy, which
appear to the right of the probes of Cx. Take scanline s2 immediately to the
left of these probes. Then Ω contains all the probes between s1 and s2 or

2 Clearly they cannot “interlace."

7.3 Treewidth of probe permutation graphs 87

crossing at least one of them. All the nonprobes of Ω cross both of s1 and s2.
Since this set separates x and y and since Ω is minimal, Ω is equal to it. ut

Since the scanlines do not cross, and except for the |N| neighborhood separa-
tors of nonprobes, the endpoints are in the interior of the diagram, we have
this corollary.

Corollary 7.18. A probe permutation graph has fewer than n4/4 minimal sep-
arators.

Theorem 7.19. Polynomial-time algorithms exist solving the TREEWIDTH and
the MINIMUM FILL-IN problems for the class of probe permutation graphs.

Proof. An algorithm that finds all minimal separators in a graph with poly-
nomial delay appeared in [134]. Bouchitte and Todinca showed in [24] how
to solve the problems mentioned above in polynomial time, given the list of
minimal separators.

Conjecture 7.20. There is a polynomial-time algorithm to solve the PATHWIDTH

problem for the class of probe permutation graphs.

8

Partitioned Probe Distance Hereditary Graphs

In this chapter we give two recognition algorithms for partitioned probe
distance-hereditary graphs. Both algorithms run roughly in O(n4) time. The
first one is theoretically slightly faster. The second one has the advantage of
producing a decomposition tree.

8.1 Preliminaries

r r
r rr
�� @@ r

r
r

r
r

@
@@

�
��

�
�� r r

r r
r r

r
r

r
r

r
b

b
bb

B
B
B
BB

�
�
�
��

"
"
""

�
�� @

@@

Fig. 8.1. A house, a hole, a domino, and a gem.

Definition 8.1 ([118]). A connected graph is distance hereditary if the dis-
tance between any two vertices remains the same in every connected induced
subgraph.1

Definition 8.2. A pendant vertex in a graph is a vertex of degree 1.

Definition 8.3. A twin in a graph is a module with two vertices. A twin is true
if the vertices are adjacent. Otherwise the twin is false.

Theorem 8.4 ([6]). Connected distance-hereditary graphs with at least two ver-
tices are exactly the graphs that can be evoked from an edge by one-vertex exten-
sions consisting of attaching pendant vertices and creating twins.
1 Interpretive, we call a graph also distance hereditary if every component is such.

90 8 Distance Hereditary Graphs

Remark 8.5. This implies that distance-hereditary graphs are contained in the
class of circle graphs.2

To start with, distance-hereditary graphs can be captured by forbidden
induced subgraphs [6, 59]. For the house, hole, domino, and the gem, we
refer to Figure 8.1. Note that, if a graph does not contain an induced house,
hole, domino, nor gem, then adding a pendant vertex, or creating a twin
cannot give rise to one of these induced subgraphs.

Theorem 8.6 (Bandelt & Mulder [6]). 3 Let G be a graph. The following con-
ditions are equivalent:

1. G is connected and distance hereditary.
2. G is connected and does not contain a house, hole, domino, or a gem as an

induced subgraph.
3. Every connected induced subgraph of G with at least 2 vertices has a pendant

vertex or a twin.
4. For every pair of vertices x and y with d(x, y) = 2, there is no induced x, y–

path of length greater than 2.

Affirmation of membership in the class of distance-hereditary graphs can be
obtained using a linear time algorithm [64, 162]. They have a nice character-
ization in terms of a certain decomposition tree [38, 64, 122] which allows
efficient algorithms for many problems, see, e.g., [120, 51, 163]. This decom-
position tree can be obtained in linear time [36, 64].

Notice that distance-hereditary graphs cannot have antiholes, since this
would imply the existence of an induced hole or an induced P5, which is a
house. This demonstrates that they are perfect.

Theorem 8.7 ([118]). A graph is distance hereditary if and only if every cycle
of length at least 5 has at least 2 crossing chords.

Recall that Meyniel graphs are those graphs in which every cycle of length at
least 5 has at least 2 chords. A fortiori distance-hereditary graphs are Meyniel.
By Theorem 2.6 on page 14 we obtain that probe distance-hereditary graphs
are slim, hence perfect.

We present another proof showing that probe distance hereditary graphs
are perfect. Recall that the class of weakly chordal graphs is defined as the set
of graphs without an induced hole or antihole.

2 Chronicled in [26], this was observed by Damaschke. A circle graph is the intersec-
tion graph of a set of chords in a plane circle.

3 See also [101]. The linear time recognition algorithm described in [101] based on
item 2 in Theorem 8.6 seems to contain an error, which was corrected in [64].

8.1 Preliminaries 91

Theorem 8.8. Probe distance-hereditary graphs are weakly chordal. The two
classes do not coincide.

Proof. Let C be a hole. If C has two adjacent probes, in any embedding the
two neighbors must be nonprobes that are adjacent in any embedding, oth-
erwise there is a hole in the embedding. If C is a C5, this creates a house.
Otherwise, the two other neighbors of the nonprobes must be probes. Thus
either a domino, a house or a hole is created.
Assume the probes and nonprobes alternate. Hence C is an even hole. Con-
sider two probes at distance 2. Hence, in any embedding, all induced paths
must be of length 2. But this is impossible, since the other path between the
probes in C contains at least three edges in any embedding.
Since an antihole has independence number 2, it can have at most two non-
probes. Adding an edge to the antihole leaves (at least) a house since deleting
an edge in a hole leaves a path of length at least 5 which is the complement
of a house.

r
r

r
r

r
r

r
r

r
r

r
r

r
r
rB

B
B
BB

�
�
�
��

b
b

bb

"
"
""

�
��

@
@@

Fig. 8.2. Two weakly chordal graphs which are not probe distance hereditary.

We show that the weakly chordal graphs depicted in Figure 8.2 are not
probe distance hereditary.
Consider the graph on the left in Figure 8.2. By Lemma 8.12 below, a domino
must have exactly two nonprobes which are at distance 3. There is no possible
choice for the nonprobes in the graph on the left in Figure 8.2.
The universal vertex in the graph on the right must be a probe by Corol-
lary 8.10 below and its neighborhood must be embedded as a cograph. By
Theorem 3.2 on page 22 a P6 is not a probe cograph. ut

To get acquainted with the class of probe distance-hereditary graphs we
start with some easy observations.

Lemma 8.9. If G is a probe distance-hereditary graph, and if G has a vertex x
such that its neighborhood N(x) is not a cograph, then x must be a probe in any
distance-hereditary embedding of G.

Proof. Assume G is probe distance hereditary. If x is a nonprobe, then all
its neighbors must be probes. Hence N(x) must be P4-free, otherwise N[x]

contains an induced gem in any embedding. ut

92 8 Distance Hereditary Graphs

Corollary 8.10. The universal vertex of a gem is a probe.

The next lemma shows that also any induced house can be assigned a desig-
nated vertex.

Lemma 8.11. If G has an induced house, then the simplicial vertex in the house
is a nonprobe.

Proof. A house can have only two nonprobes. If they are two vertices of the
square, then adding an edge creates a gem, which is a contradiction. ut

Lemma 8.12. If a probe distance-hereditary graph has an induced domino D
then in any embedding of G, D has exactly two vertices at distance 3 which are
nonprobes.

Proof. Any maximal independent set in a domino has either 2 or 3 vertices.
Assume it has 3 nonprobes. Then the three nonprobes have pairwise distance
2. If only one edge is added, this creates a house. If two or three edges are
added in the embedding it creates a house or a gem. Hence a domino has
two nonprobes. If they are at distance 2, a house is created in the embedding.
Hence there are exactly two nonprobes at distance 3. ut

Corollary 8.13. If G is probe distance hereditary and D is an induced domino
then the two vertices that have degree 3 in D are probes.

8.2 A partitioned probe Bandelt & Mulder

Recall from Theorem 8.4 that a distance-hereditary graph with at least an
edge has either a pendant vertex or a twin.

Definition 8.14. Let G = (P + N, E) be a partitioned graph. A pair of vertices
{x, y} is a probe twin if either:

1. x, y ∈ P and {x, y} is a module in G, or
2. x, y ∈ N and {x, y} is a module in G, or
3. x ∈ P, y ∈ N and N(y) − x = (N(x) − y) ∩ P.

Lemma 8.15. Assume x is a pendant vertex in G. Then G is probe distance
hereditary if and only if G− x is probe distance hereditary.

Proof. Consider an embedding of G− x into a distance-hereditary graph. Ob-
viously, adding x as a pendant vertex to the embedding does not introduce a
house, hole, domino, or gem. ut

8.2 A partitioned probe Bandelt & Mulder 93

Theorem 8.16 (The Partitioned Probe Bandelt & Mulder). A partitioned
graph G = (P+N, E) is partitioned probe distance hereditary if and only if every
connected induced subgraph with at least 2 vertices has a pendant vertex or a
probe twin.

Proof. Assume thatG is partitioned probe distance hereditary. We may assume
that G is connected. We show that G has a pendant vertex or a probe twin.
Let H be an embedding of G. Assume H has a pendant vertex x. Since G is
connected, x is also pendant in G. If H has a twin, say {x, y}, then {x, y} is
obviously a probe twin in G.
Assume that every connected induced subgraph of G has a pendant vertex or
a probe twin. Let x be a pendant vertex in G. By induction G−x is partitioned
probe distance hereditary. By Lemma 8.15 G is also partitioned probe distance
hereditary.
Assume G has a twin {x, y}. If at least one of them is a nonprobe then let y be
a nonprobe. By induction G − y is partitioned probe distance hereditary. We
may add y to an embedding of G−y as a twin of x. Since this does not create
a house, hole, domino, or gem, the graph is an embedding of G.
Assume G has a probe twin {x, y} which is not a twin. Assume x ∈ P and
y ∈ N. By induction G − y is partitioned probe distance hereditary. Let H′

be an embedding of G − y. Replacing y by the twin {x, y} in H creates an
embedding of G. ut

Theorem 8.16 delivers the goods for a fast recognition algorithm.

Theorem 8.17. There exists an O(n(n+m)) time algorithm for the recognition
of partitioned probe distance-hereditary graphs.

Proof. Obviously, finding a pendant vertex takes only linear time. Consider
the problem of finding a true twin in G. Sort the closed neighborhoods of
the vertices in lexicographic order. This can be done with a RADIX SORT in
O(n +m) time (see, e.g., [157, Theorem 1 on page 84] or [48, Chapter 8].
The closed neighborhoods of a true twin will appear consecutively in this
order. Finding a false twin can be done by sorting the open neighborhoods
of the vertices. A probe twin with vertices x ∈ P and y ∈ N can be found by
sorting the neighborhoods consisting of probes. ut

In all probability there is a more efficient algorithm, using results of, e.g., [64].
Instead of tracking this down we present an alternative recognition algorithm
in Section 8.4.

Remark 8.18. Obviously, by Theorem 8.6, cographs are distance hereditary.
Cographs can be characterized as those graphs for which every nontrivial in-
duced subgraph has a twin [26, Theorem 11.3.3]. It easily follows that there

94 8 Distance Hereditary Graphs

exists an O(n(n + m)) algorithm to recognize partitioned probe cographs.
This slightly improves the result of Theorem 3.7 on page 24.

8.3 Partitioned probe ptolemaic graphs

Definition 8.19 ([130]). A connected graph is ptolemaic if for every 4 vertices
x, y, u, and v:

d(x, y)d(u, v) ≤ d(x, u)d(y, v) + d(x, v)d(y, u)

A graph is ptolemaic if every component is ptolemaic.

Ptolemaic graphs can be characterized as those chordal graphs in which
every 5-cycle has at least 3 chords, or, as those chordal graphs in which all
chordless paths are shortest paths [26, 72, 180]. We will use the following
characterization of ptolemaic graphs.

Theorem 8.20 ([119]). A graph is ptolemaic if and only if it is distance hered-
itary and chordal.

Since holes, houses, and dominos are not chordal, ptolemaic graphs are
those chordal graphs which are gem-free. Since every sun has a gem, they are
properly contained in the class of strongly chordal graphs.

Lemma 8.21. Assume G is ptolemaic and let x be a vertex in G. The graph F
obtained from G by adding edges such that N(x) becomes a clique is ptolemaic.

Proof. Obviously, making a clique of N(x) does not create a chordless cycle
since G is chordal. Assume that F has a gem S. If x is a vertex of S then it must
be a simplicial. Deleting the edge between the two neighbors in S creates a
chordless cycle. If x is not in S then it is adjacent to a triangle or an edge in S.
Then deleting the edge creates a chordless cycle or gem with vertex x. ut

Definition 8.22. Let G = (P + N, E) be a partitioned graph. A pair of vertices
{x, y} is an ptolemaic twin if either:

1. x, y ∈ P and
i. {x, y} is a module in G and

ii. if x and y are not adjacent then N(x) is a probe clique, or
2. x, y ∈ N and {x, y} is a module, or
3. x ∈ P and y ∈ N and

i. N(y) − x = (N(x) − y) ∩ P and
ii. if x and y are not adjacent then N(x) is a probe clique.

8.4 Recognition of PPDH–graphs 95

We now easily obtain the following characterization.

Theorem 8.23. A partitioned graph G = (P + N, E) is partitioned probe ptole-
maic if and only if every connected induced subgraph of G with at least 2 vertices
has a pendant vertex or a ptolemaic twin.

Proof. Assume G is partitioned probe ptolemaic and let H be an embedding of
G. Let C be the vertex set of a connected induced subgraph of G and assume
|C| ≥ 2. By Theorem 8.20, the class of ptolemaic graphs is hereditary thus
also H[C] is ptolemaic. If x is a pendant vertex in H[C] then, since G[C] is
connected, x is also a pendant vertex of G[C]. Assume H[C] has a twin, say
{x, y}. Notice that, if x and y are not adjacent then NH(x) = NH(y) is a clique
since the graph is chordal. It is easy to check that {x, y} is a ptolemaic twin in
G[C].
Assume that every connected induced subgraph of G has a pendant vertex or
a ptolemaic twin. We may assume that G is connected. Let x be a pendant
vertex in G. By induction G − x has an embedding as a ptolemaic graph.
Since a gem or chordless cycle has no pendant vertex we may add x to the
embedding.
Assume G has a ptolemaic twin {x, y} with x, y ∈ P. By induction, the graph
G−y can be embedded as a ptolemaic graph. If x and y are adjacent then we
add y as a twin of x to this embedding. This creates no chordless cycle nor
any gem. If x and y are nonadjacent, then by Lemma 8.21 we may make x
simplicial in this embedding. We add y as a twin of x.
Assume G has a ptolemaic twin {x, y} with x, y ∈ N. By induction, the graph
G− y has an embedding into a ptolemaic graph. We add y to the embedding
as a true twin of x. This cannot create a gem or a chordless cycle.
Assume G has an ptolemaic twin with x ∈ P and y ∈ N. Consider an embed-
ding of G − y. If x and y are connected we can add y as a true twin of x.
Assume x and y are not connected. Let F be an embedding of G− y. Then by
Lemma 8.21 we may make a clique of NF(x). Add y as a false twin of x. ut

Theorem 8.24. There exists an O(n3) algorithm for the recognition of parti-
tioned probe ptolemaic graphs and for finding an embedding if there exists one.

Proof. Using a RADIX SORT a pendant vertex or a ptolemaic twin in a parti-
tioned graph can be found in linear time. ut

8.4 Recognition of PPDH–graphs

Without much ado we carry on with our next recognition algorithm. If X is
a subset of vertices in a partitioned graph G = (P + N, E) then we write
P(X) = X ∩ P and N(X) = X ∩ N.

96 8 Distance Hereditary Graphs

Definition 8.25 ([144]). Let G = (V, E) be a connected graph, and let V =

V1 + V2 be a partition of V such that |V1|, |V2| > 1. We call (V1, V2) a split of G
if N(V1) and N(V2) are completely adjacent.

If G has no split, G is called prime with respect to split decomposition. The
split-decomposition tree of G is formed by choosing any split (V1, V2) of G and
two vertices v1 ∈ N(V1) and v2 ∈ N(V2), and decomposing recursivelyG[V1+

v1] and G[V2 + v2]. Ma and Spinrad noted that distance-hereditary graphs are
completely decomposable with respect to split decomposition [144]:

Lemma 8.26 ([144]). Let G be a connected distance-hereditary graph with at
least 4 vertices. Then G has a split.

In the following we define the probe split of a partitioned probe graph as a
generalization of the split of a graph. We will use the probe split of partitioned
probe graphs to recognize partitioned probe distance-hereditary graphs. As
before, we say that two disjoint subsets of vertices A and B are completely
adjacent if every vertex of A is adjacent to every vertex of B.

Definition 8.27. Let G be a connected, partitioned graph with |V | > 3. Let V =

V1 + V2 be a partition of V such that |V1|, |V2| > 1. We call (V1, V2) a probe
split of G if

1. N(V1) and P(N(V2)) are completely adjacent, and
2. N(V2) and P(N(V1)) are completely adjacent.

The following proposition is immediate from the above definition.

Proposition 8.28. Let G be a connected partitioned probe graph. If (V1, V2) is
a probe split of G such that v1 ∈ P(V1), v2 ∈ P(V2), and (v1, v2) ∈ E, then for
all p ∈ P(V1) and q ∈ V2, (p, q) ∈ E if and only if (v1, q), (p, v2) ∈ E.

Let G be a connected partitioned probe distance-hereditary graph with |V |

> 3. Let H be an embedding of G. Because G is connected and H is ob-
tained from G by adding edges between nonprobes in G, also H is con-
nected. By Lemma 8.26, H has a split (V1, V2). We also have that every ver-
tex in P(NG(V1)) is adjacent to every vertex in NG(V2) and every vertex in
P(NG(V2)) is adjacent to every vertex in NG(V1). Thus (V1, V2) is a probe
split of G. We have the following lemma.

Lemma 8.29. LetG = (V = P+N, E) be a connected partitioned probe distance-
hereditary graph with |V | > 3. Then G has a probe split.

Lemma 8.30. Let G1 and G2 be two distance-hereditary graphs, with v1 ∈ G1

and v2 ∈ G2. Let G be the graph with V(G) = V(G1) + V(G2) − {v1, v2} and
E(G) = E(G1 − v1) + E(G2 − v2) + {(x, y) | x ∈ NG1

(v1) and y ∈ NG2
(v2)}.

Then G is a distance-hereditary graph.

8.4 Recognition of PPDH–graphs 97

Proof. Let H be any connected induced subgraph of G containing vertices u
and v. For simplicity, let V1 denote V(G1) − v1 and let V2 denote V(G2) − v2.
We must show that the distances from u to v are the same in G and in H.
Suppose u, v ∈ V1. BecauseN(V1) andN(V2) are completely adjacent to each
other, the shortest path connecting u and v, in G or in H, visits V2 at most
once, say at x ∈ V2 or at x ′ ∈ V2, respectively. Since G1 is distance hereditary,
and G1 is isomorphic to G[V1 + x] and to G[V1 + x ′], the path lengths must be
equal.
Similarly, a shortest path from u ∈ V1 to v ∈ V2 in G must visit each of
N(V2) and N(V1) exactly once, say at y ∈ N(V2) and at x ∈ N(V1). Suppose
the shortest path in H visits y ′ ∈ N(V2) and x ′ ∈ N(V1). Again since G1

∼=

G[V1 + x] ∼= G[V1 + x ′], the paths from u to x in G and from u to x ′ in H have
equal length. The same argument applies to the paths from y to v in G and
from y ′ to v in H. Therefore the path from u to v in H has the same length as
the shortest path in G. ut

Lemma 8.31. Let G be connected and assume that G is partitioned probe dis-
tance hereditary. Let (V1, V2) be a probe split of G. For i = 1, 2, let vi ∈
P(N(Vi)) if P(N(Vi)) 6= ∅ or let vi ∈ N(N(Vi)) otherwise. Then:

1. G[V1+v1] and G[V2+v2] are partitioned probe distance hereditary with their
probe and nonprobe sets inherited from G.

2. Let H1 and H2 be embeddings of G[V1 + v1] and G[V2 + v2], respectively, and
let H be the graph with V(H) = V(G) and E(H) = E(H1)∪E(H2)∪E∗ where
E∗ = {(x, y) | x ∈ NH1

(v1) and y ∈ NH2
(v2)}. Then, H is an embedding of

G.

Proof. The first statement follows from the fact that being a partitioned probe
graph of some hereditary graph class G is a hereditary property. We prove the
second statement. By Lemma 8.30, H is distance hereditary. For simplicity, let
Gi denote G[Vi +vi]. By definition, NGi

(vi) = NG(V3−i) for i = 1, 2. In H, by
definition of E∗, every vertex inNG(V1) is adjacent to every vertex inNG(V2).
Since (V1, V2) is a probe split of G, every edge in E∗ − E(G) connects a vertex
in N(NG(V1)) and a vertex in N(NG(V2)). Hence we only add edges between
two vertices in N(G) to obtain H from G. ut

To test whether a connected partitioned graph G is probe distance hered-
itary we first try to find a probe split of G. If G has no probe split, then G
is not partitioned probe distance hereditary by Lemma 8.29. Suppose G has
a probe split (V1, V2). As stated in Lemma 8.31, for i = 1, 2, we choose ver-
tices vi ∈ P(NG(Vi)) if P(NG(Vi)) 6= ∅ or vi ∈ N(NG(Vi)) otherwise, and
test recursively whether G[V1 + v1] and G[V2 + v2] are each partitioned probe
distance hereditary, with the inherited probe and nonprobe sets. If either of

98 8 Distance Hereditary Graphs

them is not partitioned probe distance hereditary, then G is not partitioned
probe distance hereditary by Proposition 8.28. If both of them are partitioned
probe distance hereditary, then by Lemma 8.31, we can obtain an embedding
of G from embeddings of G[V1 + v1] and G[V2 + v2]. Hence G is a partitioned
probe distance-hereditary graph.
We obtain the following theorem.

Theorem 8.32. Let G be a partitioned probe graph.
1. If G is disconnected, then it is a partitioned probe distance-hereditary graph if

and only if the subgraph induced by every connected component is partitioned
probe distance hereditary.

2. If G is connected with at least four vertices, then it is a partitioned probe
distance-hereditary graph if and only if G has a probe split (V1, V2) and both
G[V1 + v1] and G[V2 + v2] as defined in Lemma 8.31 are partitioned probe
distance hereditary.

Suppose we can determine whether a partitioned, connected graph G has
a probe split, and if so find one, in O(T(n)) time. Then the recognition of par-
titioned probe distance-hereditary graphs can be done in O(n × T(n)) time,
since a connected partitioned probe distance-hereditary graph can be decom-
posed into 3-vertex prime graphs in n − 3 decompositions. An embedding of
G can be computed in O(n × T(n) + n2) if G is partitioned probe distance
hereditary.

We show that the algorithm given by Cunningham [58] to find a split of
a directed graph can be modified to find a probe split of a partitioned probe
graph in O(n3) time if it exists.

Suppose (V1, V2) is a probe split of G. Since G is connected, at least one
of P(NG(V1)) and P(NG(V2)) is not empty. Suppose one of them is empty.
Then (V1, V2) is a split of G. On the other hand, suppose neither P(NG(V1))

nor P(NG(V2)) is empty. Let F be a spanning forest of G[P(G)] with the min-
imum number of components. Since P(NG(V1)) and P(NG(V2)) belong to
the same component of G[P(G)], there exists an edge (v1, v2) ∈ E(F) with
v1 ∈ P(NG(V2)) and v2 ∈ P(NG(V1)). For a vertex z ∈ V(G) − {v1, v2}, either
z ∈ V1 or z ∈ V2. Thus we can reduce the problem of finding a probe split
to a problem referred to as Problem PS: given an edge (v1, v2) ∈ E(F) (recall
v1, v2 ∈ P), pick another vertex z ∈ V − {v1, v2} and find, if one exists, a
probe split (V1, V2) with V1 containing v1 and z, and with V2 containing v2.
Algorithm 3 sketches the reduction and Algorithm 4 gives the details of an
algorithm for solving Problem PS.

To present Algorithm 4, we will make use of some terminology used
in [58]. If (v1, v2) ∈ E and p, q ∈ V, we say that P(v1, v2, p, q) holds if the
following condition holds.

8.4 Recognition of PPDH–graphs 99

Algorithm 3 Finding a probe split for a partitioned probe graph.
Input: A partitioned connected probe graph G with |V(G)| ≥ 4.
Output: A probe split (V1, V2) of G if one exists.
1: if G has a split then
2: Find a split (V1, V2) of G;
3: output (V1, V2) as a probe split of G and exit;
4: else
5: Find a spanning forest F of G[P(G)];
6: for each edge (v1, v2) ∈ E(F) do
7: arbitrarily choose a vertex z ∈ V(G) − {v1, v2}

8: if there exists a probe split (V1, V2) such that v1, z ∈ V1 and v2 ∈ V2 then
9: output (V1, V2) as a probe split of G and exit;

10: else
11: if there exists a probe split (V1, V2) such that v1 ∈ V1 and v2, z ∈ V2 then
12: output (V1, V2) as a probe split of G and exit;
13: end if
14: end if
15: end for
16: end if
17: Output a message showing that G has no probe split.

1. If (p, q) ∈ E then (v1, q) 6∈ E or (p, v2) 6∈ E, and
2. if (p, q) 6∈ E then (v1, q) ∈ E and (p, v2) ∈ E.

In other words, P(v1, v2, p, q) holds if the following statement does not hold.

(p, q) ∈ E ⇐⇒ (v1, q) ∈ E and (p, v2) ∈ E

For S ⊆ V we let S denote V(G) − S. Before proving the correctness of Algo-
rithm 4, we present the following lemma.

Lemma 8.33. Let G = (V = P + N, E) be a connected, partitioned graph, let
S ⊂ V such that |S|, |S| ≥ 2, and let v1 ∈ P(S), v2 ∈ P(S), and (v1, v2) ∈ E.
Then (S, S) is a probe split of G if and only if the following condition holds:
(∗) There do not exist p ∈ P(S), q ∈ S such that P(v1, v2, p, q) holds, nor p ∈ S,
q ∈ P(S) such that P(v1, v2, p, q) holds.

Proof. If (S, S) is a probe split, it is obvious from Proposition 8.28 that (∗)
holds. Suppose that (∗) holds, but that (S, S) is not a probe split. By symme-
try we may assume that there exist (a, b), (c, d) ∈ E(S, S), a ∈ P(S), c ∈
S, and b, d ∈ S, such that (a, d) /∈ E. Note that at least one of c and
d must be a probe. Since neither P(v1, v2, a, b) nor P(v1, v2, c, d) holds,
(a, v2), (v1, b), (c, v2), (v1, d) ∈ E. Since P(v1, v2, a, d) does not hold, at least
one of (v1, d), (a, v2) is not an edge of G, a contradiction. ut

100 8 Distance Hereditary Graphs

Algorithm 4 Test whether there exists a probe split (V1, V2) of a partitioned
probe G such that v1, z ∈ V1, v2 ∈ V2, (v1, v2) ∈ E(G) and v1, v2 ∈ P(G).
Input: A partitioned probe graph G, (v1, v2) ∈ E(G), v1, v2 ∈ P(G) and z ∈
V(G) − {v1, v2}.
Output: A probe split (V1, V2) of G such that v1, z ∈ V1, v2 ∈ V2 if any ex-
ists.
1: S← {v1, z}; S∗ ← {z};
2: while S∗ 6= ∅ do
3: Select p ∈ S∗;
4: S∗ ← S∗ − {p};
5: if p ∈ P(G) then
6: for q ∈ V(G) − S do
7: if P(v1, v2, p, q) holds then
8: S← S+ q; S∗ ← S∗ + q;
9: end if

10: end for
11: else
12: for q ∈ PG(V(G) − S) do
13: if P(v1, v2, p, q) holds then
14: S← S+ q; S∗ ← S∗ + q;
15: end if
16: end for
17: end if
18: end while
19: if |S| < |V(G)| − 1 then
20: Output (S, V(G) − S) as a probe split of G;
21: else
22: Output the message that G has no such probe split.
23: end if

We prove the correctness of Algorithm 4 by induction. Initially we assume
that there exists a probe split (V1, V2) such that S = {v1, z} ⊆ V1 and v2 ∈ V2.
By the induction hypothesis, {v1, z} ⊆ S ⊆ V1 and v2 ∈ V2. If we discover
p ∈ P(S), q ∈ S or p ∈ S, q ∈ P(S) such that P(v1, v2, p, q) holds, then we
know that q ∈ V1, since v1, p ∈ V1 and v2 ∈ V2 are fixed. It must be that
S+ q ⊆ V1. On the other hand, if no such p, q exist and |S| < |V(G)| − 1, then
(S, S) is a probe split. We have proved the following lemma.

Lemma 8.34. If Algorithm 4 terminates with |S| < |V(G)| − 1, then (S, S) is a
probe split of G. Otherwise G has no probe split (V1, V2) with v1, z ∈ V1 and
v2 ∈ V2.

It is easy to verify that Algorithm 3 can be implemented in O(n3) time. Thus
we have the following theorem.

8.4 Recognition of PPDH–graphs 101

Theorem 8.35. Recognition of a partitioned probe distance-hereditary graph
can be done in O(n4) time. If G is partitioned probe distance hereditary, an
embedding of G can be computed in O(n4).

By the discussion above, we obtain the following characterization of probe
distance-hereditary graphs.

Theorem 8.36. Let G = (P + N, E) = (P ′,N ′,P ′′ ,N ′′ , E) denote a partitioned
probe graph, with the further partition P = P ′+P ′′ and N = N ′+N ′′ . Then every
partitioned probe distance-hereditary graph G = (P + N, E) can be obtained as
follows.

1. The following graphs are partitioned probe distance hereditary:

({x},∅,∅,∅,∅) and (∅, {x},∅,∅,∅).

2. Let Gi = (P ′i,N ′i,P
′′

i ,N
′′

i , Ei), i = 1, 2, be partitioned and probe distance
hereditary, and let

E∗ = {(x, y) | x ∈ P ′1 and y ∈ P ′2} ∪ {(x, y) | x ∈ P ′1 and y ∈ N ′2}

∪ {(x, y) | x ∈ N ′1 and y ∈ P ′2} .

Then the following are also partitioned probe distance-hereditary graphs.
(a) (P ′1 + P ′2,N ′1 + N ′2,P

′′

1 + P ′′2 ,N
′′

1 + N ′′2 , E1 + E2),
(b) (P ′1 + P ′2,N ′1 + N ′2,P

′′

1 + P ′′2 ,N
′′

1 + N ′′2 , E1 + E2 + E∗), and
(c) (P ′1,N ′1,P

′′

1 + P ′′2 + P ′2,N
′′

1 + N ′′2 + N ′2, E1 + E2 + E∗).
3. There are no other partitioned probe distance-hereditary graphs.

For the cliquewidth parameter of graphs we refer to [55]. In case a
cliquewidth expression for a graph with bounded cliquewidth is available,
many NP-complete problems become tractable in polynomial time [55]. Un-
fortunately, obtaining a cliquewidth expression for graphs with cliquewidth
at most 4 is still an open problem. It was shown that the cliquewidth of a
distance-hereditary graph is at most 3, [56]. From Theorem 8.36, we easily
obtain the following corollary.

Corollary 8.37. If G is probe distance hereditary then the cliquewidth of G is at
most 5.

References

1. Anstee, R. P., Properties of (0, 1)-matrices with no triangles, Journal of Combina-
torial Theory, Series A 29 (1980), pp. 186–198.

2. Anstee, R. P. and Martin Farber, Characterizations of totally balanced matrices,
Journal of Algorithms 5 (1984), pp. 215–230.

3. Arikati, S. and C. Rangan, An efficient algorithm for finding a two–pair, and its
applications, Discrete Applied Mathematics 31 (1991), pp. 71–74.

4. Ausiello, G., A. D’Atri, and M. Moscarini, Chordality properties on graphs and
minimal conceptual connections in semantic data models, J. Comput. System Sci.
33 (1986), pp. 179–202.

5. Bacsó and Z. Tuza, Dominating cliques in P5–free graphs, Period. Math. Hung. 21
(1990), pp. 303–308.

6. Bandelt, H. J. and H. M. Mulder, Distance-hereditary graphs, Journal of Combina-
torial Theory, Series B 41 (1986), pp. 182–208.

7. Berge, C., Balanced matrices, Math. Programming 2 (1972), pp. 19–31.
8. Berge, C., Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
9. Berge, C., Motivations and history of some of my conjectures, Discrete Mathematics

165/166 (1997), pp. 61–70.
10. Berge, C. and C. Chvatal ed., Topics on Perfect Graphs, Annals of Discrete Mathe-

matics 21, 1984.
11. Berry, Anne, Jean–Paul Bordat, and Pinar Heggernes, Recognizing weakly chordal

graphs by edge separability, Nordic Journal of Computing 7 (2000), pp. 164–177.
12. Berry, A., J.-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger, A wide-range

algorithm for minimal triangulation from an arbitrary ordering. Technical Report,
LIMOS/RR-03-02, 2003.

13. Berry, Anne, M. C. Golumbic, and M. Lipshteyn, Recognizing and triangulating
chordal probe graphs. Technical Report, LIMOS/RR-03-8, 2003.

14. Berry, Anne, M. C. Golumbic, and M. Lipshteyn, Two tricks to triangulate chordal
probe graphs in polynomial time, Proceedings of the 15th ACM–SIAM Symposium
on Discrete Algorithms (2004), pp. 962–969.

15. Bertossi, A. A., Dominating sets for split and bipartite graphs. Information Process-
ing Letters 19 (1984), pp. 37-40.

16. Bhogle, S., Claude Berge, Current Science 83 (2002), pp. 906–907.

104 References

17. Bienstock, D., On the complexity of testing for odd holes and induced odd paths,
Discrete Mathematics 90, (1991), pp. 85–92.
Corrigendum in: Discrete Mathematics 102 (1992), pp. 109.

18. Blair, J. R. S. and B. Peyton, An introduction to chordal graphs and clique trees.
In: (A. George et al. eds.) Graph theory and sparse matrix computation Springer,
New York, 1993, pp. 1–29.

19. Bodlaender, H. L., A linear time algorithm for finding tree decompositions of small
treewidth, SIAM J. Comput. 25 (1996), pp. 1305–1317.

20. H. Bodlaender, T. Kloks and D. Kratsch, Treewidth and pathwidth of permutation
graphs, SIAM Journal on Discrete Mathematics 8 (1995), pp. 606–616.

21. Boliac, R. and V. V. Lozin, On teh clique-width of graphs in hereditary classes,
Proceedings ISAAC’02 LNCS 2518 (2002), pp. 44–54.

22. Bonomo, Flavia, Guillermo Durán, Min Chih Lin, and Jayme L. Szwarcfiter, On
balanced graphs, Mathematical Programming 105 (2006), pp. 233–250.

23. K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and
System Sciences 13 (1976), pp. 335–379.

24. Vincent Bouchitte and Ioan Todinca, Listing all potential maximal cliques of a
graph, Theoretical Computer Science 276 (2002), pp. 17–32.

25. Brandstädt, A., Classes of bipartite graphs related to chordal graphs, Discrete Ap-
plied Mathematics 32 (1991), pp. 51–60.

26. Brändstadt, A., V. B. Le, and J. P. Spinrad, Graph classes: A survey SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia, 1999.

27. Bretscher, A., D. Corneil, M. Habib, and C. Paul, A simple linear time LexBFS
cograph recognition algorithm, Proceedings WG’03, LNCS 2880 (2003), pp. 119–
130.

28. Brouwer, A.E., P. Duchet, A. Schrijver, Graphs whose neighborhoods have no spe-
cial cycles, Discrete Mathematics 47 (1983), pp. 177–182.

29. Buneman, P., A characterization of rigid circuit graphs, Discrete Mathematics 9
(1974), pp. 205–212.

30. Bürgisser, Peter, Michael Clausen, and Mohammed Amin Shokrollahi, Algebraic
complexity theory, Springer Verlag, Berlin 1997.

31. Burlet, M. and J. Fonlupt, Polynomial algorithm to recognize a Meyniel graph.
In (C. Berge and V. Chvátal, eds.) Topics on perfect graphs, Annals of Discrete
Mathematics, Vol. 21, North-Holland, Amsterdam, 1984.

32. Cameron, K. and J. Edmonds, Existentially polytime theorems. DIMACS, Ser. Dis-
crete Math. Theor. Comput. Sci. 1 (1990), pp. 83–100.

33. Capelle, Christian, Alain Cournier, and Michel Habib, Cograph recognition algo-
rithm revisited and online induced P4–search. Rapport technique 94073, LIRMM,
1994.

34. Chang, G. J., k-domination and graph covering problems, PhD thesis, School of OR
and IE, Cornell University, Ithica, NY, 1982.

35. Chang, G. J., and T. Kloks, On the number of minimal clique separators in a graph.
Manuscript 2004.

36. Chang, G. J., A. J. J. Kloks, J. Liu, and S.-L. Peng, The PIGs full monty - a floor
show of minimal separators, Proceedings STACS’05, LNCS 3404 (2005), pp. 521–
532.

References 105

37. Chang, G. J., T. Kloks, and S.-L. Peng, Probe interval bigraphs, Electronic Notes in
Discrete Mathematics 7 (2005).

38. Chang, Maw-Shang, S. Y. Hsieh, and G. H. Chen, Dynamic programming on
distance-hereditary graphs, Proceedings of ISAAC’97, LNCS 1350 (1997), pp. 344–
353.

39. Chang, M.-S., T. Kloks, D. Kratsch, J. Liu, and S.-L. Peng, On the recognition of
probe graphs of some self-complementary graph classes, Proceedings of the 11th

Annual International Conference COCOON’05, LNCS 3595, pp. 808–817.
40. Chvátal, V., On certain polytopes associated with graphs, J. Combin. Theory B 18

(1975), pp. 138–154.
41. Chvátal, Vašek, Irena Rusu, and R. Sritharan, Dirac-type characterizations of

graphs without long chordless cycles, Discrete Mathematics 256 (2002), pp. 445–
448.

42. Chudnovsky, M., K.–I. Kawarabayashi, and P. Seymour, Detecting even holes, Jour-
nal of Graph Theory 48, (2005), pp. 85–111.

43. Chudnovsky, M., N. Robertson, P. Seymour, and R. Thomas, The strong perfect
graph theorem. Preprint 2002.
http://www.math.princeton.edu/ mchudnov/perfect.pdf

44. Conforti, M. and G. Cornuéjols, Balanced 0,±1-matrices, bicoloring and total dual
integrality, Mathematical Programming 71 (1995), pp. 249–258.

45. Conforti, M., G. Cornuéjols, X. Liu, K. Vus̆ković, and G. Zambelli, Odd hole recog-
nition in graphs of bounded clique size. Preprint 2004.

46. Conforti, M., G. Cornuéjols, and R. Rao, Decomposition of balanced matrices, J.
Comb. Theory B 77 (1999), pp. 292–406.

47. Coppersmith, D. and S. Winograd, Matrix multiplication via arithmetic progres-
sions, Proceedings 19th ACM Syposium on Theory of Computing (1987), pp. 1–6.

48. Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest, Introduction to
algorithms, The MIT press, Cambridge, Massachusetts, 1990.

49. Corneil, D. G., M. Habib, J.-M. Lanlignel, B. Reed, and U. Rotics, Polynomial time
recognition of clique-width ≤ 3 graphs, Proceedings of LATIN’2000, LNCS 1776
(2000), pp. 126–134.

50. Corneil, D. G., H. Lerchs, and L. Stewart-Burlingham, Complement reducible
graphs, Discrete Applied Mathematics 3 (1981), pp. 163–174.

51. Corneil, D. G., and Y. Perl, Clustering and domination in perfect graphs. Discrete
Applied Mathematics 9 (1984), pp. 27-39.

52. Corneil, D. G., Y. Perl, and L. K. Stewart, A linear recognition algorithm for
cographs, SIAM Journal on Computing 14 (1985), pp. 926–934.

53. Cornuéjols, G. and W. H. Cunningham, Compositions for perfect graphs, Discrete
Mathematics 55 (1985), pp. 245–254.

54. Cornuéjols, Gérard, Xinming Liu, and Kristina Vus̆ković, A polynomial algorithm
for recognizing perfect graphs, Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’03), 2003.

55. Courcelle, B., The expression of graph properties and graph transformations in
monadic second–order logic. In: (Grzegorz Rozenberg, ed.) Handbook of graph
grammars and computing by graph transformations. Vol. 1: Foundations, 1997.

56. Courcelle, B. and S. Olariu, Upperbounds to the cliquewidth of graphs, Discrete
Applied Mathematics 101 (2000), pp. 77–114.

106 References

57. Cowan, D. D., L. O. James, and R. G. Stanton, Graph decomposition for undi-
rected graphs, 3rd South-Eastern Conference on Combinatorics, Graph Theory, and
Computing, Utilitas Math. (1972), pp. 281–290.

58. Cunningham, W. H., Decomposition of directed graphs, SIAM J. Algebraic Discrete
Methods 3 (1982), pp. 214–228.

59. D’Atri, A. and M. Moscarini, Distance-hereditary graphs, Steiner trees, and con-
nected domination, SIAM J. Comput. 17 (1988), pp. 521–538.

60. Dahlhaus, E., Chordale Graphen im besonderen Hinblick auf parallele Algorithmen,
Habilitation thesis, Universität Bonn, 1991.

61. Dahlhaus, E., Efficient parallel recognition algorithms for cographs and distance–
hereditary graphs, Discrete Applied Mathematics 57 (1995), pp. 29–44.

62. Dahlhaus, E., J. Gustedt, and R. M. McConnell, Efficient and practical modular de-
composition, Proceedings 8th ACM–SIAM Symposium on Discrete Algorithms (1997),
pp. 26–35.

63. Dahlhaus, Elias, Paul D. Manuel, and Mirka Miller, Maximum h-colorable sub-
graph problem in balanced graphs, Information Processing Letters 65 (1998),
pp. 301–303.

64. Damiand, G., M. Habib, and C. Paul, A simple paradigm for graph recognition:
Application to cographs and distance-hereditary graphs, Theoretical Computer Sci-
ence 263 (2001), pp. 99–111.

65. Dantzig, G. B., “Application of the simplex method to a transportation problem,”
in Activity analysis of production and allocation (T. C. Koopmans, ed.), Wiley, New
York, 1951.

66. Dirac, G., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961),
pp. 71–76.

67. Dragan, F. F. and F. Nicolai, LexBFS-orderings of distance-hereditary graphs,
Schriftenreihe des Fachsbereichs Mathematik der Universität Duisburg, Duisburg,
Germany, SM–DU–303 (1995).

68. Dragan, F. F., F. Nicolai, and A. Brandstädt, Convexity and HHD-free graphs, SIAM
J. Discrete Math. 12 (1999), pp. 119–135.

69. Dushnik, B. and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941),
pp. 600–610.

70. Even, S., A. Pnueli, and A. Lempel, Permutation graphs and transitive graphs, J.
Assoc. Comput. Mach. 19 (1972), pp. 400–410.

71. Farber, M., Characterizations of strongly chordal graphs, Discrete Mathematics 43
(1983), 173–189.

72. Farber, M. and R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg.
Discrete Methods 7 (1986), pp. 433–444.

73. Földes, S. and P. L. Hammer, Split graphs, Congressus Numerantium 19 (1977),
pp. 311–315.

74. Fulkerson, D. R. and O. A. Gross, Incidence matrices and interval graphs, Pacific
Journal of Math. 15 (1965), pp. 835–855.

75. Fulkerson, D. R., A. J. Hoffman, and R. Oppenheim, On balanced matrices, math.
Programming 1 (1974), pp. 120–132.

76. T. Gallai, Transitiv orientierbare Graphen, Acta Math. Sci. Hung. 18 (1967),
pp. 25–66.

77. Galinier, P., M. Habib, and C. Paul, Graphs and their clique graphs, Proceedings
WG’95 LNCS 1017 (1995), pp. 358–371.

References 107

78. Gasparyan, G. S., minimal imperfect graphs: A simple approach, Combinatorica
16 (1996), pp. 209–212.

79. Gavril, F., The intersection graphs of subtrees in trees are exactly the chordal
graphs, Journal of Combinatorial Theory, Series B 16 (1974), pp. 47–56.

80. Ghouila-Houri, A., Caractérisation des matrices totallement unimodulaires, C. R.
Acad. Sc. Paris 254 (1962), pp. 1192–1194.

81. Goh, L. and D. Rotem, Recognition of perfect elimination bipartite graphs, Infor-
mation Processing Letters 15 (1982), pp. 179–182.

82. Goldberg, P. W., M. C. Golumbic, H. Kaplan, and R. Shamir, Four strikes against
physical mapping of DNA, J. Comput. Biol. 2 (1995), pp. 139–152.

83. Golumbic, M. C., The complexity of comparability graph recognition and coloring,
Computing 18 (1977), pp. 199–208.

84. Golumbic, M. C., The complexity of comparability graph recognition and coloring,
J. Combin. Theory Ser. B 22 (1977), pp. 68–90.

85. Golumbic, M. C., Trivially perfect graphs, Discrete Mathematics 24 (1978),
pp. 105–107.

86. Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

87. Golumbic, M. C. and C. F. Goss, Perfect elimination and chordal bipartite graphs,
Journal of Graph Theory 2 (1978), pp. 155–163.

88. Golumbic, M. C., H. Kaplan, and R. Shamir, Graph sandwich problems, Journal of
Algorithms 19 (1995), pp. 449–473.

89. Golumbic, M. C. and M. Lipshteyn, Chordal probe graphs, Discrete Applied Mathe-
matics 143 (2004), pp. 221–237.

90. Golumbic, M. C. and U. Rotics, On the clique-width of some perfect graph classes,
International Journal of Foundations of Computer Science 11 (2000), pp. 423–443.

91. Golumbic, M. C. and R. Shamir, Complexity and algorithms for reasoning about
time: a graph theoretic approach, J. Assoc. Comput. Mach. 40 (1993), pp. 1108–
1133.

92. Golumbic, M. C. and Ann N. Trenk, Tolerance Graphs, Cambridge studies in ad-
vanced mathematics 89, 2004.

93. Gross, Jonathan L. and Jay Yellen, Handbook of graph theory and applications, CRC
Press, 2003.

94. Grötschel, Martin, Characterizations of perfect graphs, Mathematical Program-
ming Society Newsletter 62, (1999).

95. Grötschel, M., L. Lovász, and A. Schrijver, The ellipsoid method and its conse-
quences in combinatorial optimization, Combinatorica 1 (1981), pp. 169–197.
Corrigendum: Combinatorica 4 (1984), pp. 291–295.

96. Grötschel, M., L. Lovász, and A. Schrijver, Polynomial algorithms for perfect
graphs, Annals of Discrete Mathematics 21 (1984), pp. 325–356.

97. Haas, R. and M. Hoffmann, Chordless paths through three vertices, Proceedings of
the Parameterized and Exact Computation First International Workshop, IWPEC’04,
LNCS 3162 (2004), pp. 25–36.

98. Habib, Michel, Fabien de Montgolfier, and Christophe Paul, A simple linear-time
modular decomposition algorithm for graphs, using order extensions, Proceedings
SWAT’04, LNCS 3111 (2004), pp. 187–198.

99. Habib, M. and C. Paul, A simple linear time algorithm for cograph recognition,
Discrete Applied Mathematics 145 (2005), pp. 183–197.

108 References

100. Hajnal, A. and J. Surányi, Über die Auflösing von Graphen in vollständige Teil-
graphen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1 (1958), pp. 113–136.

101. Hammer, P. L. and F. Maffray, Completely separable graphs, Discrete Applied
Mathematics 27 (1990), pp. 85–99.

102. Hammer, P. L., F. Maffray, and M. Preissmann, A characterization of chordal
bipartite graphs. RUTCOR Research Report, Rutgers University, New Brunswick,
NJ, RRR, 1989, pp. 16–89.

103. Hammer, P. L. and B. Simeone, The splittance of a graph, Combinatorica 1
(1981), pp. 275–284.

104. Harary, F., J. A. Kabell, and F. R. McMorris, Interval bigraphs, Comment. Math.
Univ. Carolinae 23 (1982), pp. 739–745.

105. Hayward, R. B., Weakly triangulated graphs, Journal of Combinatorial Theory,
series B 39 (1985), pp. 200–208.

106. Hayward, R. B., Meyniel weakly triangulated graphs–I: co–perfect orderability,
Discrete Applied Mathematics 73 (1997), pp. 199–210.

107. Hayward, Ryan and Bruce A. Reed, “Forbidding holes and antiholes,” in Perfect
graphs (Jorge L. Alfonsín Ramírez and B. A. Reed, eds.), Wiley-Interscience Series
in Discrete Mathematics and Optimization, John Wiley & Sons, Chichester, 2001.

108. Hayward, R. B., J. S. Spinrad, and R. Sritharan, Weakly chordal graph algo-
rithms via handles, Proceedings 11th ACM–SIAM Symposium on Discrete Algorithms
(2000), pp. 42–49.

109. Hayward, H. B., C. Hoàng, and F. Maffray, Optimizing weakly chordal graphs,
Graphs and Combinatorics 5, ((1989), pp. 339–349. Erratum: Graphs and Combi-
natorics 6 (1990), pp. 33–35.

110. Hertz, A., Slim graphs, Graphs and Combinatorics 5 (1989), pp. 149–157.
111. Hoàng, C. T., Perfect graphs, PhD thesis, School of Computer Science, McGill

University, Montreal, 1985.
112. Hoàng, C. T. and N. Khouzam, On brittle graphs, Journal Graph Theory 12,

(1988), 391–404.
113. Chính T. Hoàng and Frédéric Maffray, On slim graphs, even pairs, and star-

cutsets, Discrete Mathematics 105 (1992), pp. 93–102.
114. Hoàng, Chín T., Frédéric Maffray, Stephan Olariu, and Myram Preissmann, A

charming class of perfectly orderable graphs, Discrete Mathematics 102 (1992),
pp. 67–74.

115. Hoàng, C. T. and R. Sritharan, Finding houses and holes in graphs, Theoretical
Computer Science 259, (2001), pp. 233–244.

116. Hoffman, A. J., A. W. J. Kolen, and M. Sakarovitch, Totally-balanced and greedy
matrices, SIAM J. Alg. Discrete Methods 6 (1985), pp. 721–730.

117. Hoffman, A. J. and J. B. Kruskal, “Integral boundary points of convex polyhedra,”
in Linear inequalities and related systems (H. Kuhn and A. Tucker, eds.), Princeton
University Press, Princeton, 1958.

118. Howorka, E., A characterization of distance-hereditary graphs, The Quarterly
Journal of Mathematics 28 (1977), pp. 417–420.

119. Howorka, E., A characterization of ptolemaic graphs, Journal of Graph Theory 5
(1981), pp. 323–331.

120. Hshieh, S.-Y., C.-W. Ho, T.-S. Hsu, M.-T. Ko, and G.-H. Chen, Characteriza-
tion of efficiently solvable problems on distance-hereditary graphs, Proceedings
of ISAAC’98, LNCS 1533 (1998), pp 257–266.

References 109

121. Hsieh Sun-Yuan, Chin-Wen Ho, Tsan-Sheng Hsu, Ming-Tat Ko, and Gen-Huey
Chen, Efficient parallel algorithms on distance-hereditary graphs, Parallel Process-
ing Letters, vol.9 (1999), pp. 43-52, 1999.

122. Hsieh, S.-Y., C.-W. Ho, T.-S. Hsu, M.-T. Ko, and G.-H. Chen, A faster imple-
mentation of a parallel tree contraction scheme and its application on distance-
hereditary graphs, Journal of Algorithms 35 (2000), pp. 50-81.

123. Iijama, K. and Y. Shibata, A bipartite representation of a triangulated graph and
its chordality, ICS 79-1, Dept. Of Comp. Sci., Genma University, 1979.

124. Jamison, B. and S. Olariu, On the semi-perfect elimination, Advances in Applied
Mathematics 9 (1988), pp. 364–376.

125. Jamison, B. and S. Olariu, P4-reducible graphs—a class of uniquely tree repre-
sentable graphs, Studies in Appl. Math. 81 (1989), pp. 79–87.

126. Jamison, B. and S. Olariu, A unique tree representation for P4-sparse graphs,
Discrete Applied Mathematics 35 (1992), pp. 115–129.

127. Jamison, B. and S. Olariu, Recognizing P4-sparse graphs in linear time, SIAM
Journal on Computing 21 (1992), pp. 381–406.

128. Jamison, B. and S. Olariu, A linear time recognition algorithm for P4–reducible
graphs, Theoretical Computer Science 145 (1995), pp. 329–344.

129. Johnson, J. L. and J. Spinrad, A polynomial-time recognition algorithm for probe
interval graphs, Proceedings 12th ACM–SIAM Symposium on Discrete Algorithms
(2001), pp. 477–486.

130. Kay, D. C. and G. Chartrand, A characterization of certain ptolemaic graphs,
Canad. J. Math. 17 (1965), pp. 342–346.

131. D. Kelly, Comparability graphs, in Graphs and Orders, (ed. I. Rival), D. Reidel
Pub. Comp., 1985, pp. 3–40.

132. Kloks, T., Treewidth - computations and approximations, LNCS 842, 1994.
133. Kloks, Ton and Dieter Kratsch, Computing a perfect edge without vertex elim-

ination ordering of a chordal bipartite graph, Information Processing Letters 55
(1995), pp. 11–16.

134. Ton Kloks and Dieter Kratsch, Listing all minimal separators of a graph, SIAM
Journal on Computing 27 (1998), pp. 605–613.

135. Kratsch, Dieter, A linear-time certifying algorithm to recognize split graphs. Un-
published manuscript 2005.

136. Kratsch, Dieter and Jeremy Spinrad, Between O(nm) and O(nα), Proceedings
14th ACM–SIAM Symposium on Discrete Algorithms (2003), pp. 709–716.

137. Leeuwen, J. van, Graph algorithms. In: J. van Leeuwen (ed.) Handbook of The-
oretical Computer Science, A: Algorithms and Complexity, Elsevier Science Publ.,
Amsterdam, 1990.

138. Lekkerkerker, C. and D. Boland, Representations of a finite graph by a set of
intervals on the real line, Fund. Math. 51 (1962), pp. 45–64.

139. Lerchs, H., On cliques and kernels. Technical Report, Department of Computer
Science, University of Toronto, 1971.

140. Lin, R. and S. Olariu, An NC recognition algorithm for cographs, J. Parallel Dist.
Comput. 13 (1991), pp. 76–90.

141. Lovász, L., A characterization of perfect graphs, Journal of Combinatorial Theory
Series B 13 (1972), pp. 95–98.

142. Lovász, L., Combinatorial problems and exercises, North-Holland, Amsterdam,
1979.

110 References

143. Lubiw, Anna, Doubly lexical orderings of matrices, SIAM J. Computing 16 (1987),
pp. 854–879.

144. Ma, T.-H. and Spinrad J., An O(n2) algorithm for undirected split decomposi-
tion, Journal of Algorithms 16 (1994), pp. 145–160.

145. Maffray, F. and M. Preissmann, A translation of Gallai’s paper: “Transitiv orien-
tierbare Graphen," in Chapter 3 of (Jorge L. Ramírez Alfonsín and Bruce Reed
eds.) Perfect Graphs, John Wiley & Sons, LTD, 2001.

146. McConnell, R. M. and J. P. Spinrad, Modular decomposition and transitive ori-
entation, Discrete Mathematics 201 (1999), pp. 189–241.

147. McConnell, R. M. and J. Spinrad, Construction of probe interval graphs, Proceed-
ings 13th ACM–SIAM Symposium on Discrete Algorithms (2002), pp. 866–875.

148. McDiarmid, C., B. Reed, A. Schrijver, and B. Shepherd, Non–interfering network
flows, Proc. 3th Scand. Workshop Algorithm Theorey, SWAT’92, LNCS 621 (1992),
pp. 245–257.

149. McDiarmid, C., B. Reed, A. Schrijver, and B. Shepherd, Induced circuits in planar
graphs, J. Comb. Theory Ser. B, 60 (1994), pp. 169–176.

150. McKee, T. A., How chordal graphs work, Bulletin of the ICA 9 (1993), pp. 27–39.
151. McKee, T. A., A new characterization of strongly chordal graphs, Discrete Mathe-

matics 205 (1999), pp. 145–147.
152. McKee, T. A., Strong clique trees, neighborhood trees, and strongly chordal

graphs, Journal of Graph Theory 33 (2000), pp. 151–160.
153. McKee, T. A., Chordal bipartite, strongly chordal, and strongly chordal bipar-

tite graphs, Discrete Mathematics 260 (2003), pp. 231–238. ERRATUM in: Discrete
Mathematics 272 (2003), p. 307.

154. McKee, T. A., Subgraph threes in graph theory, Discrete Mathematics 270 (2003),
pp. 3–12.

155. McKee, T. A., Requiring chords in cycles, Discrete Mathematics 297 (2005),
pp. 182–189.

156. McMorris, F.R., Chi Wang, and P. Zhang, On probe interval graphs, Discrete Ap-
plied Mathematics 88 (1998), pp. 315–324.

157. Mehlhorn, Kurt, Data Structures and Algorithms 1: Sorting and Searching, Mono-
graphs in Theoretical Computer Science. An EATCS series Vol. 1, Springer, 1984.

158. R. H. Möhring, Algorithmic aspects of comparability graphs and interval graphs,
in Graphs and Orders, (ed. I. Rival), D. Reidel Pub. Comp., 1985, pp. 41–101.

159. R. H. Möhring and F. J. Radermacher, Substitution decomposition for discrete
structures and connections with combinatorial optimization, Annals of Discrete
Mathematics 19 (1984), pp. 257–356.

160. Müller, Haiko, Recognizing interval digraphs and interval bigraphs in polynomial
time, Discrete Applied Mathematics 78 (1997), pp. 189–205.

161. Ngo, Hung Q. and Ding-Zhu Du, A survey of combinatorial group testing al-
gorithms with applications to DNA library screening, Proceedings of the DIMACS
Workshop on Discrete Mathematical Problems and Medical Applications (1999),
Providence, RI, Amer. Math. Soc.

162. Nicolai, F., Strukturelle und Algorithmische Aspekte distanz-erblicher Graphen und
verwandter Klassen, Dissertation Thesis, Gerhard Mercator Universität Duisburg,
1994.

163. Nicolai, F. and T. Szymczak, Homogeneous sets and domination: a linear time
algorithm for distance-hereditary graphs, Networks 37 (2001), pp. 117–128.

References 111

164. Nikolopoulos, Stavros D. and Leonidas Palios, Hole and anti-hole detection in
graphs, Proceedings 15th ACM-SIAM Symposium on Discrete Algorithms, SODA’04
(2004), pp. 850–859.

165. Nikolopoulos, Stavros D. and Leonidas Palios, Recognizing HHD-free and Welsh-
Powell opposition graphs, Proceedings WG’04, LNCS 3353 (2004), pp. 105–116.

166. Nikolopoulos, Stavros D. and Leonidas Palios, Recognizing HHDS-free graphs,
Proceedings WG’05, LNCS 3787 (2005), pp. 456–467.

167. Padberg, Manfred, Total unimodularity and the Euler subgraph problem, Opera-
tion Research Letters 7 (1988), pp. 173–179.

168. Paige, R. and R. E. Tarjan, Three partition refinement algorithms, SIAM J. Com-
puting 16 (1987), pp. 973–989.

169. Pelsmajer, Michael J., Jacent Tokaz, and Douglas B. West, New proofs for strongly
chordal graphs and chordal bipartite graphs. Preprint August 2, 2004.

170. Pnueli, Amir, Abraham Lempel, and Shimon Even, Transitive orientation of
graphs and identification of permutation graphs, Canad. J. Math. 23 (1971),
pp. 160–175.

171. Poljak, S., A note on the stable sets and colorings of graphs, Comment. Math.
Univ. Carolin. 15 (1974), pp. 307–309.

172. Pržulj, Nataša and Derek G. Corneil, 2-tree probe interval graphs have a large
obstruction set. Manuscript 2004.

173. Rose, D. J., Triangulated graphs and the elimination process, J. Math. Analys.
Appl. 32 (1970), pp. 597–609.

174. Rose, D. J., R. E. Tarjan, and G. S. Luecker, Algorithmic aspects of vertex elimi-
nation on graphs, SIAM J. Comput. 5 (1976), pp. 266–283.

175. Shannon, C. E., The zero–error capacity of a noisy channel, I.R.E. Trans. Inform.
Theory IT-2 (1956), pp. 8–19.

176. Sheng, L., Cycle free probe interval graphs, Congressus Numerantium 140
(1999), pp. 33–42.

177. Sheng, L., C. Wang, and P. Zhang, Tagged probe interval graphs. DIMACS, Rut-
gers Technical Report, 1998/98-12.

178. Simon, Klaus and Paul Trunz, A cleanup on transitive orientation, Proceedings
ORDAL’94, LNCS 831 (1994), pp. 59–85.

179. Skeide, Lars Severin, Recognizing weakly chordal graphs, PhD thesis, Department
of Informatics, University of Bergen, Norway, November, 2002.

180. Soltan, V. P., d-convexity in graphs, Soviet Math. Dokl. 28 (1983), pp. 419–421.
181. Spinrad J. P., Finding large holes, Information Processing Letters 39 (1991),

pp. 227–229.
182. Spinrad, J. P., Doubly lexical ordering of dense 0-1 matrices, Information Pro-

cessing Letters 45 (1993), pp. 229–235.
183. Spinrad, Jeremy P., Efficient graph representations, American Mathematical Soci-

ety, 2003.
184. Spinrad J. P. and R. Sritharan, Algorithms for weakly triangulated graphs, Dis-

crete Applied Mathematics 59 (1995), pp. 181–191.
185. Seymour, P., Decomposition of regular matroids, J. Combin. Theory Ser. B 28

(1980), pp. 305–359.
186. Tarjan, R. E. and M. Yannakakis, Simple linear time algorithms to test chordality

of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs, SIAM J. Comput. 13 (1984), pp. 566–579.

112 References

187. Tsukiyama, S., M. Ide, H. Ariyoshi, and I. Shirakawa, A new algorithm for gen-
erating all the maximal independent sets, SIAM Journal on Computing 6 (1977),
pp. 505–517.

188. Tyshkevich, R. I. and A. A. Chernyak, Canonical partition of a graph defined by
the degrees of its vertices, Isv. Akad. Nauk BSSR Ser. Fiz.-Mat. Nauk 5 (1979),
pp. 14–26.

189. Uehara, Ryuhei, Canonical data structure for probe interval graphs. Manuscript
2004/2/7.

190. Walter, J. R., Representations of rigid cycle graphs, PhD thesis, Wayne State Uni-
versity, Detroit, 1972.

191. Wolke, E. S., The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962),
pp. 789–795.

192. Zhang, P, Probe interval graph and its application to physical mapping of DNA.
Manuscript 1994.

193. Zhang, P, E. A. Schon, S. G. Fisher, E. Cayanis, J. Weiss, S. Kistler, and
P. E. Bourne, An algorithm based on graph theory for the assembly of contigs
in physical mapping of DNA, CABIOS 10 (1994), pp. 309–317.

194. Zhang, P., X. Ye, L. Liao, J. Russo, S. G. Fischer, Integrated mapping package - a
physical mapping software tool kit, Genomics 55 (1999), pp. 78–87.

195. Zhu, Dingzhu, Ding-Zhu Du, and Frank K. Hwang, Combinatorial group testing
and its applications, World Scientific Publishing Co. Inc., River Edge, NJ, 1993.

Index

2K2, 22
P4-reducible graph, 26
P4-sparse graph, 29
AT-free, 74
C-components, 41
C-edge, 41
C-equivalence, 41
G-decomposition, 61

probe, 62
Γ -free ordering, 53
Γ -relation, 60
LB-simplicial

quasi–, 40
Υ-chain, 63

canonical, 63
k-sun, 56
2-join, 11, 51
2-pair, 49
3-sun, 22
6-pan, 49

adjacent, 7
antihole, 8
asteroidal triple, 74

bag, 38
balanced bipartite graph, 51
balanced graph, 51
balanced matrix, 50
biclique, 53
biclique tree, 53
bicolorable, 41

bicolorable matrix, 51
bipartite graph, 11, 47
bisimplicial edge, 48

cap, 13
chord, 55
chordal bipartite graph, 47
chordal graph, 32, 37
chromatic number, 8
circle graph, 84
clique, 8
clique cover, 9
clique number, 8
clique tree, 39
closed neighborhood, 7
closed neighborhood of an edge, 47
co-pair, 49
cocomparability graph, 59
cograph, 21
color class, 47, 60

probe, 62
comparability graph, 60
complement of a graph, 7
complete bipartite graph, 47
component, 8

full, 8
connected, 8
cutset, 7
cycle, 7

chordless, 7

diamond, 58

114 Index

disjoint edges, 47
distance-hereditary graph, 83
distinct edges, 47
dominated vertex, 48
domino, 83
double star cutset, 11

edge, 7
embedding, 12
endvertex, 7
enhanced graph, 57

full component, 81
full star cutset, 48

gem, 83
graph, 7

Hajós graph, 30
Helly property, 37
hole, 8, 83

even, 8
odd, 8

house, 83

implication class, 60
probe, 62

independent set, 9
induced subgraph, 7
inversion graph, 69

join of two graphs, 21

kernel, 56

labeling, 71
linegraph, 11

matching diagram, 73
Meyniel graph, 13
modular decomposition tree, 75
module, 75

QT–, 65

neighbor, 7
neighborhood, 7
neighborhood of an edge, 47
nonprobe, 12

odd chord, 56
orientation, 60

quasitransitive, 61
transitive, 60

ornament, 26

parachute, 22
parallel node, 76
parapluie, 22
partial k-sun, 14
partially adjacent, 77
partitioned graph, 12, 40
partitioned probe graph, 12
path, 7

chordless, 7
pendant vertex, 83
perfect edge elimination ordering, 48
perfect elimination ordering, 39
perfect graph, 8
perfect matrix, 50
permutation diagram, 71
permutation graph, 69, 74
prime graph, 75
prime node, 76
probe, 12
probe graph, 12
ptolemaic graph, 87

quotient graph, 75

rising sun, 22

sandwich conjugate, 12, 75
scanline, 81
self-complementary class, 13
separator, 7, 81

minimal, 8, 81
minimal x, y-, 8, 81

series node, 76
simple elimination ordering, 56
simple vertex, 56
simplicial path, 48
simplicial vertex, 39
slim graph, 13
spider, 29

head, 29
thick, 29

Index 115

thin, 29
split, 89

decomposition tree, 89
probe, 90

splitgraph, 32
strong elimination ordering, 56
strong module, 75
strongly chordal graph, 50, 56
sun, 13, 56
symmetric closure, 60

totally unimodular graph, 51
totally unimodular matrix, 51
trampoline, 13, 56
transversal set, 75

tree decomposition, 38
width, 38

treewidth, 38
trivial module, 75
twin, 83

false, 83
probe, 86
ptolemaic, 88
true, 83

union of two graphs, 21

vertex, 7

weakly chordal graph, 23, 49, 84

