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Preface

This elementary text is intended for anyone interested in combinatorial
methods in modern particle physics. Advanced concepts are only mentioned
when there is some chance at a simple explanation. There is a development
of ideas through the book, but hopefully each chapter is also reasonably well
contained. All diagrams and tables are embedded in the text along with the
equations.

At the heart of particle physics is the problem of emergence. As of
2013, nobody really understands what this is, but there is however general
agreement that the answers involve the concept of motive. Throughout
the book, our aim is to understand a little about motives, not from the
standard mathematical point of view, but using a physicist’s intuition. This
can be done at an elementary level, because the underlying philosophy is a
constructive one, meaning that theorems about motives should depend on
their concrete construction. Motives are about both geometry and number
theory, and hence about knots.

Unfortunately, there are many relevant topics that cannot be covered.
The essential physical ideas do not appear before chapter 6, but are an
integral part of the methods discussed. If the reader really wants to skip
the abstract nonsense on a first reading, they may do so. The whole book
is typeset in LATEX, using mostly XY-pic for diagrams. It was written with
no feedback, essentially no resources, and no doubt many errors remain.

Thanks to wikipedia for an endless supply of free information. It cannot
all be acknowledged. During the blogging years there were many conver-
sations with keen theorists, notably Carl Brannen, Michael Rios, Louise
Riofrio, Alejandro Rivero and Tony Smith. This work was made possible
by the kindness of Kerie and Allan. It also owes a great debt to Graham
Dungworth, whose ceaseless online enthusiasm and clarification of the new
cosmology has provided invaluable insights.

c© Marni Dee Sheppeard 2013.
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1 Introduction

The task of emergent geometry is to recover the rich mathematical structures
underlying quantum field theory and general relativity. This means no less
than unveiling classical geometry itself, in an axiomatic setting capable of
transcending the limitations of set theory. Much progress has been made in
recent decades, and the foundations of category theory are now essential to
any serious endeavour in theoretical physics.

This basic text covers a range of combinatorial and categorical techniques
lying behind the modern approach. These begin with the discrete permuta-
tion and braid groups, but the overall aim is to understand a constructive
continuum, wherein the complex numbers and other division algebras ap-
pear in the motives of a universal cohomology. A motive is a gadget much
beloved by mathematicians, although nobody really understands what it is.
To a physicist, cohomology is an algorithm for cutting spaces down to their
essential physical content. In a quantum universe, we would also like to do
the reverse: start with measurement, and build the geometry defined by its
logic. This means that concrete diagrams are interpreted not as classical
spaces, but rather as symbols representing measurement questions. In field
theory, Feynman diagrams are replaced by diagrams for twistor spaces.

We now know for certain that a motivic formulation of particle physics
exists. Modern twistor methods for scattering amplitudes use motivic meth-
ods, as do studies of renormalisation algebras. Amplitudes for n particles
are computed on a space whose dimension appears to increase with n, sug-
gesting the increasing complexity of abstract information rather than an
external reality of a fixed number of dimensions.

In order to explain clearly the choice of topics here, it is necessary to take
a firm point of view on the physics. Our position on the Lagrangian is the
following. The local theory is exactly the Standard Model, with Majorana
neutrinos and no proper neutrino oscillations. The only observable local
states come from this SM Lagrangian, and they are enumerated by a special
set of ribbon diagrams. In the non local theory: the neutrinos, the Higgs
boson, and in fact all neutral particles, may exhibit novel features. There is
a natural spectrum of mirror fermions, but no additional bosons, suggesting
that mirror fermions are merely a non local aspect of baryonic matter.

The algebraic structure of the local SM Lagrangian is outlined in [1]
using adjoint actions for the division algebras. In this scheme, the unbroken
SU(2) × U(1) symmetry comes essentially from the algebra H ⊗ C. The
octonions are responsible for color SU(3) symmetry. Here we focus mostly
on the complex numbers and the quaternions, but we insist these fields
occur only in a way that respects the underlying structure of all the division
algebras.

With emergence, we can start with the broken symmetries, which from a
measurement perspective are more fundamental. Right handed states need
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not be singlet states, since the states are not defined with respect to the
classical gauge symmetry, itself an emergent structure.

Including right handed (mirror) neutrinos, we can speak about standard
Dirac neutrinos. At first sight there is no see-saw mechanism, since the
right handed neutrinos do not set a large mass scale. On the other hand, a
dual mass scale may define an effective see-saw. The mirror neutrino scale
in the non local theory is identical to that of the left handed triplet, fixing
the temperature of the CMB at T = 2.725 K. These mirror neutrinos are
only observed in their manifestation as CMB photons. They come from a
land of supersymmetric information, which dissolves the distinction between
fermions and bosons. Every electroweak boson may be viewed as a Fourier
dual to a fundamental lepton state: W± from e±, γ from νL, and Z from a
composite of three right handed lepton states.

Although we speak about the possibility of mirror dark matter, it is un-
clear whether a mirror Lagrangian serves any useful purpose. It is natural
to consider the right handed mirror neutrino as the only additional particle,
and to disallow localisation for all other mirror states. However, since the
dark matter problem is thoroughly addressed by mirror matter proposals,
we consider it in the final chapter. Motivated by the mirror neutrino CMB
photon, one might view all physical electroweak bosons as transformed mir-
ror states, since the Fourier supersymmetry transform may be applied to
the mirror sector. More radically, perhaps the mirror fermions stand for
known particles: the protons and neutrons. In these two cases, there is no
dark matter, and general relativity must be abandoned on large scales. This
is quite plausible, since the non local ribbon diagrams display a preon as-
pect to any particle, and one imagines zooming in and out of a complicated
network of bunched, knotted strands.

The particle states are specified by the most basic ribbon diagrams in
three dimensions. As quantum numbers, spin and rest mass must emerge
algebraically in a natural way from such diagrams, along with the Poincare
group symmetries. The diagrams concretely display the two values of spin
and three of rest mass. As each ribbon strand twists, it represents two spin
states coupling to create mass. The three ribbon strands represent the three
mass states, interacting on the non local stage as they propagate.

This self representation of a propagator is a motivic process. In tradi-
tional quantum field theory, motives already play an important role [2][3],
wherein renormalisation is studied using algebras of Feynman diagrams.
Motives were originally described by Grothendieck [4], who pioneered the
study of higher dimensional categories [5] with arithmetic structure. For us,
motives are an instruction set for building geometries out of quantum infor-
mation. Their homological character is apparent in the algebraic structure
of this information.

As pointed out by Street [5], the axioms of homology may be interpreted
in almost any category. Recall the basic idea of singular homology, with
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coefficients in Z [6][7]. A well behaved topological space M is triangulated
to provide the combinatorial data for the computation of invariants. Usually
M has a fixed classical dimension, so that all its pieces are triangular n-
simplices. An m-chain is a linear combination, with coefficients in Z, of the
m dimensional simplices of M . The sign of an integer coefficient may be used
to orient cells. In this way, an edge between two faces contributes positively
to one face and negatively to the other, canceling out in a boundary sum.

If M is a category, rather than a set, a simplex is naturally oriented [5].
Oriented simplices are little categories in their own right. When the vertices
are labeled {0, 1, · · · , n} they denote an ordinal n in N, with inclusion maps.
Every edge is modeled by a fundamental 0 → 1 arrow. To a category
theorist, this arrow is the very foundation of topology, because the simplest
topological space consists of one point and the empty set [8]. In the category
of topological spaces, there is a unique arrow from this space to any other
space.

Categories are not algebraically trivial. Already by dimension three, it
is an arduous task to enumerate their axioms [9], let alone work with them.
And yet, the axioms are specified by simple polytopes. How do these all fit
together? This is the subject of higher dimensional arithmetic, where trees
replace counting numbers. Some things are simpler in higher dimensions.
For instance, while it is difficult to count the partitions of an ordinal n ∈ N,
the noncommutative partitions of n, which distinguish 1 + 2 and 2 + 1, are
easy to count: there are always 2n−1 of them. This equals the number of
basic states for n− 1 qubits.

In a category, a binary tree node usually represents an arrow A⊗A → A,
which is perhaps a multiplication for an algebra A. Dual to arrows in a 2-
category we have line diagrams, and these are thickened into ribbon networks
in categories with duality structures. If algebra is hiding in the ribbons, there
is no need to look to an ad hoc category of algebras to find the numbers
one needs. Everything is made of ribbons, and motivic functors are morally
endofunctors.

The fundamental particle states are drawn as ribbon graphs in chapter
(7). Our job is to understand ribbons well enough to see beyond dimension
3. Since a ribbon is itself a picture of the continuum, we need to know
exactly what this abstract embedding space represents, else the continuum
has snuck in by hand yet again.

One might restrict one’s attention to a one dimensional continuum, since
nice spaces may be filled with curves, as first noted by Peano [10]. A mod-
ern example is Thurston’s fractal curve for filling the two dimensional sphere
[11]. When two ribbon edges twist about each other, they define a surface
without the surface really being there, since the ribbons form a braid dia-
gram built only with line elements.

In category theory, the power of space filling first appears in dimension 3,
with the dimension raising Crans-Gray tensor product [12]. But dimension
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3 is special because it is the realm of knots. There is a topology with respect
to which the integers Z are three dimensional, and many mathematicians
hope that knots will explain this mysterious fact. Knots are Wilson loops
in a three dimensional quantum field theory known as Chern-Simons theory
[13]. It does not bother us that spacetime appears to be four dimensional,
because in twistor physics it is really a three dimensional complex space.
Once we understand this complexification in terms of the spinors of the
ribbon strands, we are back to the real dimension 3 again. Ribbons with
full twists are doubled knots, specifying two copies of R3 for the complex
structure.

Abstractly, the use of category theory for mass matrices goes back to the
1980s, when twistor theorists attempted to put mass into the Klein-Gordon
field equation using higher dimensional sheaf cohomology [14]. Their partial
success hinged on a coupling of two massless fermion objects, which is now
seen in the pairing of edges along a ribbon strand. This tells us that the
crucial leap from H1 to the H2 cohomology comes from a doubling of the
number of strands in a braid diagram, from B3 to B6.

Our first application of these ribbon graphs is to the rest mass phe-
nomenology of Koide matrices. The diagrams shed some light on the phase
parameters, leaving only a scale factor for each mass triplet. Even these
scales display remarkable coincidences. For instance, the charged lepton
triplet requires a scale factor that equals the dynamical quark mass. The
data also hints at a quark lepton complementarity.

So how do we actually measure differences in inertia? Consider a mass
spectrometer, with a magnetic field used to separate a fixed velocity beam
of charged electrons, muons and tau particles. The masses are measured
by the radius of curvature, as the beam is split into three streams, marking
three points on the detector. This is analogous to the two way split of a spin
measurement for an electron. Altogether, the six detection points for mass
and spin represent some basic element of emergent geometry. These are the
six points that we work with in ribbon diagrams for measurement processes.
Dimension building in categories is supposed to take care of everything else.

Spin brings to mind Newton’s spinning bucket, and Mach’s principle
for motion with respect to the distant cosmos [15]. Imagine first an ideal
liquid in a perfect bucket, so that when the bucket is at rest relative to the
human observer, the medium of fluid particles creates a flat surface inside
the bucket. When the bucket spins, the surface appears to be curved. Our
observer does not see the individual particles of the fluid, or the motion
of the perfect bucket, but rather one of two static states: a flat surface or
a curved surface. Only under the hypothesis of particles do these static
observations correspond to rest and circular motion respectively.

Similarly, a static braid diagram is supposed to represent the motion of a
collection of point particles along a braid strand. But this does not occur in
any universal, macroscopic time. There can be no universal arrow of time,
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as Boltzmann taught us [16]. Rather, it is the clocks of quantum processes,
determined by our experimental apparatuses and questions, that tick along
braid circuits. When we ask for a rest mass diagram, we include a set of
three interacting objects, even though these do not propagate together in
our own corner of spacetime.

In other words, the universe is observer dependent. One might call this
an anthropic perspective, except that the aim is to make quantitative predic-
tions. Every observer has access to multiple types of clock, be it laboratory
ticks based on the motion of the sun, or the temperature of the cosmic
microwave background radiation.

Thermodynamics appears in the observer’s environment, and as a mat-
ter of principle temperature and mass will be closely related, in addition to
their inverse relation according to the Bekenstein-Hawking law for black hole
radiation. Recall that a direct correspondence between mass and tempera-
ture is the key to Planck’s original derivation for the black body spectrum
[17], where the hypothesis of quanta hinged on Wien’s displacement law.
This is the key to the CMB mirror neutrino correspondence. The mirror
neutrino mass triplet specifies the present CMB scale, along with one future
and one past temperature. In this way, the rest mass triality extends the
scale matching of duality into a notion of present for the observer. It is the
thermal environment itself that determines the emergence of cosmic time.

Today, black hole thermodynamics in M theory is investigated using
quantum information theory [18][19] and twistor physics [20]. Quantum
black hole entropies are given quantitatively in terms of generalised matrix
invariants via the black hole qubit correspondence. These invariants are
the same as those used to classify entanglement classes for n qudit systems,
under the assumption of local operations and classical communication.

The entanglement of particle pairs is also crucial to the twistor meth-
ods of N = 4 Yang-Mills theory and N = 8 supergravity [21][22][23]. In
these recent developments for gravity, one studies the breaking of conformal
symmetry by the so called infinity twistor, which sets a mass scale. As-
sociated to the compactification of complexified Minkowski spacetime, this
object gives twistor space its elegant projective structure. To a category
theorist, abstract conformal field theories are the study of ribbon graphs
[24][25]. Compactification issues become concrete, combinatorial problems
for polytopes, and these are precisely the polytopes that appear in modern
twistor techniques.

These polytopes appear in chapter 5, after introductory comments on
sets, matrices, quantum information and duality. Chapter 6 introduces
twistor scattering theory, and we move onto particle ribbon graphs in chap-
ter 7. This is followed by a little further development of the motivic ideas. In
the last chapter, we summarise the critical situation in relativistic cosmology
from the perspective of non local mirror matter.
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2 Numbers and Sets

Number constructivism starts with the idea that a real number should be
much more than an element of a set. In mathematics, number fields are often
given a priori, without much regard for the underlying set theoretic axioms.
Manifolds are modeled on number fields as if the notion of continuum is
naturally specified. Physically, this is an unsatisfactory state of affairs.
Numbers are, after all, the outcomes of measurement, and the relations
between them are contingent upon our theoretical frameworks.

Category theory offers a natural way to add structure to numbers. A
counting number n ∈ N is both the cardinality of an n element set and
the dimension of a category. When n stands for a set with n elements, the
permutations of the set become part of the structure of the number n.

We use cycle notation for permutations σ in the permutation group Sd

on d objects. For example, σ = (312) in S3 is the cycle



0 0 1
1 0 0
0 1 0


 . (1)

As an operation that acts on a set, a permutation matrix selects one element
of the set with each row. This has an interpretation in terms of binary logic,
since one can either select an element X or not select it, and hence the
choice between 1 or 0.

With two such valuations one often uses the terms true and false. A
system of logic evaluates propositional statements, which are built from an
alphabet of objects and operations on these objects, including the truth
valuations. We would like to think of all numbers as symbols for some
quantum logic. In Boolean logic, one permits the binary operations AND
(denoted by the symbol ∧) and OR (denoted ∨). Since these operations are
binary, there are only four basic statements involving them. For ∨ these are
1 ∨ 1 = 1, 1 ∨ 0 = 1, 0 ∨ 1 = 1 and 0 ∨ 0 = 0, which is summarised in the
matrix table

∨ :
(

0 1
1 1

)
, (2)

where the matrix index always starts with 0. The operation ∨ is commuta-
tive, since X ∨ Y = Y ∨X, so an extension of the matrix tables to a larger
index set of objects always results in a symmetric matrix. Negation ¬ is a
unary operation that interchanges 0 and 1. Combining ∧ and ¬ we have the
table

∧¬ :
(

0 0
1 0

)
. (3)

The allowed letters 0 and 1 define the alphabet of the logic [8]. Every such
2× 2 matrix, and there are 16, is in principle a truth table for an operation.
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Such operations may then be used to define a matrix multiplication, since
this requires only an abstract + and × on the underlying symbols.

Example 2.1 The finite field F2 has addition and multiplication tables

+ :
(

0 1
1 0

)
× :

(
0 0
0 1

)
(4)

which generate ordinary matrix multiplication over F2.

Example 2.2 The Boolean logic tables

∨ :
(

0 1
1 1

)
∧ :

(
0 0
0 1

)
(5)

specify a matrix product, for matrices with 0 and 1 entries, such that there
are 11 projectors satisfying P 2 = P . These are

(
0 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 1
1 1

)
, (6)

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
0 1

)
.

Projectors in an algebra are physically important. They appear in the
planar diagram algebras that we study here [26], where the creation of a loop
represents a scalar factor δ in the relation P 2 = δP . There are often only
a finite number of them, because we are interested in restricted coefficient
sets.

Although our finite alphabets are sometimes labeled by ordinals {0, 1, 2,
· · · , n}, they are given generally by variable elements {X, Y, Z, · · · }. A bi-
nary operation for an n element alphabet gives an n × n matrix table of
truth values, as in the example




XX XY XZ
Y X Y Y Y Z
ZX ZY ZZ


 . (7)

Similarly, a ternary operation would specify an n × n × n array. Partial
domains for operations allow a generalisation to n1×n2×· · ·×nk rectangular
arrays. The dimension l of an array, if it is fixed, is the word length of the
components. In what follows we focus mostly on square matrices, namely
the truth tables for words of length 2.
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2.1 The Word Monoid

Polynomials are a lot like numbers. They can be added and multiplied, and
usually inherit the distributivity of the coefficient field. The existence of
noncommutative geometry suggests looking also at noncommutative poly-
nomials. These are closely connected to quantum path spaces, since a mono-
mial like XZX is interpreted as a sequence of noncommutative operations.

A noncommutative monomial is a single word in the letters of a given
alphabet. The number of letters d determines the dimension d of a discrete
cubic path space, defined by marking one letter steps along each axis. Here,
d is usually the dimension of a quantum state space. When d = 2, we think
of states of a qubit [27].

The word monoid is the collection of all finite noncommutative monomi-
als, with concatenation of words as a noncommutative product. The qubit
words are graded by the diagonals of the path square.

??
??

??
??

?

??
??

??
??

??
??

??
??

?

??
??

??
??

??
??

??
??

??
??

??
??

?

Y

Y Y

Y Y Y

X XX XXX

XY XXY

(8)

where both XY and Y X end at the same point. Similarly, the qutrit words,
in a three letter alphabet, sit on the triangular diagonal simplices of a path
cube. oooooooooooooooo

oooooooooooooooo

yyyyyyyyyyyyyyyyyy

rrrrrrrrrrrrrrrr

uuuuuuuuuuuuuuuuu

??
??

??
??

??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

? •

JJJJJJJJJJJJJJJJJJ

•

11
11

11
11

11
11

wwwwwwwwwwwwwwwwww
KKKKKKKKKKKK

//
//

//
//

/

LLLLLL

..
..

.

XXXZZZ

Y Y Y

(9)

The edges of the triangle at word length l are divided into l pieces. In
general, this creates triangular simplices with ruled edges. The first few
simplices for qutrits are labeled so that the ten sets of unordered monomials
on the tetractys contain a total of 27 paths. In general, the length 1 words
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in a d letter alphabet form a standard triangular simplex in dimension d−1.

•

®®®®®®®®®®®

•

33
33

33
33

33
3

•
X Y

Z

•



•

11
11

11
11

11
11

1

••

• •

XX Y Y

ZZ

XY
Y X

XZ
ZX

Y Z
ZY

•

®®®®®®®®®®®®®®®®®

•

33
33

33
33

33
33

33
33

•• •
•• •

• •

XXX XXY XY Y Y Y Y
(3) (3)

XY Z(6)

ZZZ

XXZ

XZZ

(3)

(3)
ZY Y

ZZY

(3)

(3)

(10)

Measured simplices of longer word length will be used in the construction
of interesting polytopes, starting in chapter 5.

The entire word monoid is graded in a table indexed by both l and
d. There are no repeated words, because we assume that letters carry a
knowledge of what alphabet they belong to. The first column of the monoid,
for l = 1 letter, gives the standard simplex of dimension d − 1. The l = 2
column gives the halved simplices with d2 paths. For the qutrit tetractys
and beyond, we have the further option of bracketing words, distinguishing
(XY )Z and X(Y Z). We talk about (d − 1, l) simplices, where d − 1 is the
simplex dimension and l numbers the divisions along an edge.

A divided simplex is canonically coordinatised in the integer lattice Zd.
Since the monomials in a diagram are of homogeneous degree, the sum of
degrees over the letters in the word is always a constant. For the length two
words in three letters, we then choose six vectors in Z3 that correspond to
the degrees of X, Y and Z in each monomial. These are (2, 0, 0), (0, 2, 0),
(0, 0, 2), (1, 1, 0), (1, 0, 1) and (0, 1, 1).

A (d − 1, l) path simplex in path space is naturally expanded into the
noncommutative cubic array. For example, the (2, 3) tensor cube looks like

XXX

xxqqqqqq
&&MMMMMM

²²

XXY

&&MMMMMM

²²

Y XX

xxqqqqqq

²²

Y XY

²²

XY X

xxqqqqqq
&&MMMMMM

XY Y

&&MMMMMM Y Y X

xxqqqqqq

Y Y Y

(11)

where we have shown how the cube can be oriented by X → Y . See what
has happened here. The path space gives both (d − 1, l) divided simplices
and (l, d − 1) divided cubes. The two integers of the grading are swapped
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between simplices and cubes. A tensor cube is a model for a matrix or array,
like in (7). Arrays may be decomposed into symmetric and antisymmetric
parts, as in (

XX XY
XY Y Y

)
+

(
0 0

Y X −XY 0

)
. (12)

The square arrays pick out two numbers, in this case 3 and 1, that parti-
tion d2 into triangular simplices. One of these simplices accounts for the
commutative path set. The second may be drawn inside the first using the
midpoints of the divided simplex. For d = 4 this extends to an octahedron
with vertices XY , Y Z, ZW , XZ, XW and Y W .

Remark 2.3 It turns out that any knot diagram can be represented as a
word in four letters, on the surface of the universal ribbon graph of Ghrist
[28]. Knots are embedded in this special branched surface as loops around
four attractor holes, with crossing points at the branches. Such a branched
surface is non orientable, in the sense that one can pass from one side of the
ribbon to the other at the branch line without passing across a ribbon edge.

The noncommutative monomials on a divided simplex correspond one
to one to a set of commutative monomials, as follows. Use the canonical
coordinates to specify the powers of l variables p1, p2, · · · pl. For example,
at d ≥ 2 the words 000, 001, 011 and 111, along with permutations, give the
monomials 1, {p1, p2, p3}, {p1p2, p1p3, p2p3} and p1p2p3 respectively. This is
the cube of set inclusions, or the list of divisors of n = p1p2p3 in N. The
order of the letters in the noncommutative word specifies the variable choice,
and the letter value denotes the power. In this way, divisors for any n ∈ N
of the form (p1 · · · pl)d−1 are listed on a qudit tensor cube, and arithmetic
is then the subject of qudits.

Observe that a square matrix is typically a projector. For two complex
conjugates p and p, the 3× 3 divisor matrix becomes




1 p p2

p |p|2 |p|2p
p2 |p|2p |p|4


 =




XX XY XZ

Y X Y Y Y Z

ZX ZY ZZ


 , (13)

using the vectors (1, p, p2)T and (1, p, p2). This contrasts with the real num-
ber case of vectors like (X,Y, Z) for the matrix index. The 2×2 complex case
underlies the spinor decomposition for twistor physics, with (X, X, Y, Y )
standing for four independent complex variables. In the word monoid, this
2× 2 matrix is a submatrix of the 4× 4 matrix for 4-dits.

2.2 Continua and Quantum Numbers

Since we don’t like unnecessary set theoretic axioms, such as the axiom
of choice, sets are always zero dimensional categories. If the geometry and
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algebra of interest looks more than zero dimensional, then we know that sets
won’t do. The central problem of constructive arithmetic is to understand
the extension from the countable rationals Q to the complex numbers C.
Even Q is a difficult beast, with many finite number field extensions for
which there is no unique factorisation, until one goes to the theory of ideals.

Continuum fields like R and C require dissection into categorical struc-
tures of uncountable dimension. This is a very concrete idea, because we
can begin with countable subsets. For instance, as everyone knows, the sixth
complex root of unity ω6 = exp(2πi/3) is actually the infinite sequence

ω6 = 1 + 1 + 2 + 5 + 14 + 42 + · · · (14)

of integer Catalan numbers [29][30]. As we will see, these Catalan numbers
count rooted planar binary trees, and ω6 is the cardinality of this infinite set
of trees.

We can then do arithmetic using the first infinite cardinal, usually called
ω. In the surreal number tree [31] construction for R, ω appears after an
infinite number of steps along one side of the surreal number tree. De-
spite appearances, there are no infinities around in the computations, which
depend only on the correct rules for manipulating functions in ω and its
infinitesimal inverse ω−1. The surreal tree root marks the number 0, which
branches to ±1. Then ω is the infinite sequence (+ + + + + · · · ), and ω−1

is the sequence (− − − − − · · · ), where a sign marks the direction of the
chosen branch. Immediately after 1 we obtain 3/2 and 1/2, and thereafter
one uses the difference ±2−n at step n + 1. Only the dyadic numbers are
obtained in a finite number of steps, but all the reals appear at step ω. In
the surreals, this branching process continues beyond ω, to polynomials in
ω and ωω and beyond.

Returning to matrices, we can start with the binary entries 0 and 1,
gradually adding further numbers as information structures require them.
The basic permutation

(21) =
(

0 1
1 0

)

can represent the number −1, since (21)2 = I2. Thus k × k matrices with
entries in {0,±1} can be written as 2k × 2k matrices with entries in {0, 1}.
For instance, the Pauli matrix σZ becomes the controlled NOT gate for
two qubits [27]. The permutation (2341) similarly represents the complex
number i, so that 2 × 2 matrices with entries in {0,±1,±i} could be ex-
pressed as 8 × 8 matrices with entries in {0, 1}. Pauli matrices would then
be permutations in S8.

The entire set of complex numbers requires an uncountable matrix index!
Fortunately, in practice we never work with all complex numbers at once.
Rather than write out larger and larger binary matrices, we sensibly consider
small sets of complex d× d matrices with special properties. We will often

13



restrict to those of circulant form for d = 2 and d = 3, since these are
combinations of the permutation matrices.

The modular group SL(2,Z) permits a deformation into the complex
numbers such that the matrices are still interpreted as integers, known as
q-numbers [32][33][34]. A complex parameter q 6= 0 defines the q-number

xnyq =
qn/2 − q−n/2

q1/2 − q−1/2
(15)

for n usually in N. As q → 1, the classical number is recovered. The sum of
such numbers is given by

xmyq + xnyq ≡ q−n/2xmyq + qm/2xnyq, (16)

and for n ∈ R, a copy of the ordered reals is obtained. For n ∈ Z, the
q-number xnyq is a polynomial in x2yq with integer coefficients [32][33]. So
in some sense, every number is a polynomial!

In general, such numbers are used to deform commutative or cocom-
mutative Hopf algebras. In particular, recall the Lie algebra sl(2,F). It’s
irreducible representations Rk are given by the commutative, homogeneous
polynomials of degree k in two variables X and Y [32][33], giving a plane.
The natural deformation of the plane (X, Y ) introduces a relation

Y X = qXY. (17)

The deformed matrices Mq(2) acts on this plane as follows. These matrices

T =
(

a b
c d

)
(18)

satisfy the quantum relations

ab = q−1/2ba, ac = q−1/2ca, bd = q−1/2db, (19)

cd = q−1/2dc, bc = cb, ad− da = −(q1/2 − q−1/2)bc.

The quantum plane variables (X,Y ) define a complex variable z = Y X−1.
As with classical fractional linear transformations, one may construct an
action of T on a polynomial φ(z). In particular, we can restrict to those
matrices in Mq(2) with quantum determinant ad− q−1/2bc = 1.

The matrix entries may be thought of as functions on the group, making
them elements of the deformed Hopf algebra. Dually, one deforms the uni-
versal enveloping algebra of a Lie algebra. Such algebras typically exist for
any q ∈ C\0, but for roots of unity the representation categories have nice
properties. When C is constructive, we care about each individual choice
for q. For example, choosing the cubed root of unity q = ω3, the number
x2yq equals

√
3i. This introduces integers from the quadratic field Q(

√−3),
and we begin to suspect that everything is an integer in disguise.
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2.3 Union, Disjoint Union and Cohomology

For a mathematician, motives are supposed to provide a universal theory for
cohomological invariants. To a physicist however, the invariants themselves
are responsible for the emergence of classical spaces. It is surely a chicken
and egg problem, trying to say that a torus has a hole without looking at
the torus. Presumably one must look at a picture of a torus, but as a symbol
rather than a complete classical space. Anyway, we need some idea of what
cohomology is about.

Let A1 ∪A2 denote the union of two sets A1 and A2, and A1 ∩A2 their
intersection. We write A1

∐
A2 for the disjoint union. For a three element

set {0, 1, 2}, the subsets are illustrated on the cubic lattice of set inclusions

{}
xxqqqqqqq

&&MMMMMMM

²²

{2}
&&MMMMMM

²²

{0}
xxqqqqqq

²²

{0, 2}

²²

{1}
xxqqqqqq

&&MMMMMM

{2, 1}
&&MMMMM

{1, 0}
xxqqqqq

{0, 1, 2}

(20)

ending in {0, 1, 2}. Note that this cube is very similar to the commutative
monomial cube from the word monoid, given variables p0, p1 and p2, but
instead of primes we multiply finite sets. To a category theorist, a finite set
is simply a weaker representation of its own cardinality in N.

The six elements at path length 2 actually give two copies of {0, 1, 2} on
taking the total disjoint union, so somehow one copy is taken away to recover
the union {0, 1, 2}. This is like the omission of the factors n/p on division by
the divisors p of n. Observe that the disjoint union here is definitely bigger
than the resulting union. Now consider the principle of inclusion exclusion.
Although often expressed in terms of cardinalities, we can write

A ∪B ∪ C = A
∐

B
∐

C −A ∩B −B ∩ C − C ∩A + A ∩B ∩ C (21)

for three sets, where it is understood that the cardinality of A
∐

B equals
|A|+ |B|. In general

⋃

i

Ai =
∐

Ai −
∑

i,j

Ai ∩Aj +
∑

i,j,k

Ai ∩Aj ∩Ak − · · · (22)

These alternating sums of intersections are responsible for the alternating
sums that appear in Čech cohomology [35][36], which uses open covers of
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a classical manifold. A classical cover of open sets Ui for a space M is a
good cover if all intersections Ui ∩ Uj are either empty or contractible. For
example, the Riemann sphere CP1 requires three open sets. Two is not
sufficient, because an equatorial intersection is not contractible to a point.
In this example, all possible intersections up to U1 ∩ U2 ∩ U3 give the cube

U1 ∩ U2 ∩ U3

uulllllll
))RRRRRRR

²²

U2 ∩ U3

))RRRRRRRRR

²²

U1 ∩ U2

uulllllllll

²²

U2

²²

U1 ∩ U3

uulllllllll

))RRRRRRRRR

U3

))SSSSSSSSSSS U1

uukkkkkkkkkkk

M

(23)

which is indexed by the original cube above. All arrows are again inclusions.
For all good covers, the nested intersections define such a cube. Tracing a
path backwards from M , one may encounter an empty intersection Ui∩· · ·∩
Uk. In that case, all objects above Ui∩· · ·∩Uk must be empty. Thus a cube
is partitioned into two pieces: a top part marked with empty sets and the
base with non empty ones. This binary partition is part of the topological
data defining M . Since the basis directions on the cube represent the sets
Ui in the cover, the objects at each node of the cube are fully specified once
a basis is chosen. For example, the matrix

(
0 U1

U2 U1 ∩ U2

)
.

gives the incidence data for a general cover containing two open sets. The
lattice of open sets for M is clearly a category, which we call L(M). A
reversal of the inclusion arrows, to set restrictions, defines the opposite cat-
egory L(M)∗. A presheaf on M is a functor F from L(M)∗ into an algebraic
category, such as the category of abelian groups.

For any such presheaf F , the 0-cochains of Čech cohomology [35] are the
maps that send Ui to an element in F (Ui). Then the 1-cochains come from
Ui ∩ Uj , and so on. The inclusion maps on the lattice induce a sequence
of homomorphisms in the algebraic data, and the coboundary operator δ
from d-cochains to (d + 1)-cochains is defined as usual by an alternating
sum. For d = 0, δ ≡ F (i1)− F (i2) on the two inclusion arrows i1 and i2 for
Ui ∩ Uj → Ui. That is, for two open sets U and V there are inclusion maps

U ∩ V
//
// U

∐
V

//
// U ∪ V (24)
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where a map on the left chooses one of the two sets, ignoring the other. Clas-
sically, there is only one inclusion on the right, but we permit the possibility
of distinct inclusions for noncommutative objects U and V .

The Mayer-Vietoris principle for the de Rham cohomology of manifolds
uses the differential form functor, applied to the sequence (24). What is the
useful intuition behind Mayer-Vietoris? When the differential form functor
F is applied, it gives a reversed sequence of restriction maps

F (U ∪ V ) // F (U)⊕ F (V ) // F (U ∩ V ) (25)

where the double map is absorbed into the algebraic splitting F (U)⊕F (V ).
Clearly there should be more differential forms in F (U ∪ V ) than in the
disjoint F (U)⊕ F (V ), which has no joining information. This is really the
point of considering U ∪ V as a larger object.

When F is a 1-functor there is no way to avoid the set like properties of
unions, but we will not be restricting the categorical dimension. Consider,
for instance, the sequence of inclusions

∐
ijk Ui ∩ Uj ∩ Uk

//
//
//
∐

ij Ui ∩ Uj
//
//
∐

i Ui
// M (26)

on a cube, which form a simplex, in this case a tetrahedron. In the word
monoid, the vertices become the four qubit objects XXX, XXY , XY Y and
Y Y Y and the inclusions end with the unique map Y 0 → Y 1 from XXX.
The qubit diagrams are permitted to live in a higher dimensional category,
where the faces of the tetrahedron contain 2-arrows.

2.4 A Category of Relations

Please refer to Appendix A for the basic definitions of categories. This is
our first categorical interlude. In the category Set of all sets, the inclusion
of disjoint union in union is given in a coproduct diagram

{} ! //

!

²²

A

²²
a

¾¾7
77

77
77

77
77

77
77

77

B //

b ))TTTTTTTTTTTTTTTTTT A
∐

B
i

%%JJJJJJJJJ

A ∪B

(27)

where ! is the unique inclusion of the empty set in any set. The coproduct
property of

∐
states that for any maps a and b, there exists an inclusion i.

When one does not adopt Set as a base category, this assumption may be
weakened. Actually, we should start with an even better category of sets.

Let a finite index set be denoted J . It has cardinality n = |J |. An n×n
matrix of zeroes and ones is a map J × J → Ω. For example, when n = 3
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the permutation (231) picks out the elements (X,Y ), (Y, Z) and (Z, X) in
J×J . That is, (231) sends the vector (X,Y, Z) to the vector (Y, Z,X). This
is a one to one function J → J , but the use of a relation J ×J → Ω is closer
to the idea of a truth table.

Every square matrix may be viewed as a map J × J → T for some set
T of allowed truth values. The reason for choosing 0 and 1 as truth values
is that these actually correspond to the cardinalities of the empty set and a
one element set, respectively. More generally, for arbitrary relations, T can
have any cardinality.

The choice of 0 or 1 as a means of selecting a subset J of K may be
expressed using a diagram of functions between sets, where χ is the char-
acteristic function that sends elements of J to 1 and the other elements to
0.

J //

!
²²

K

χ

²²
1

t
// Ω

(28)

In the diagram, the set 1 is any one element set, and the function t picks
out true, namely the element 1 in Ω. The vertical arrow ! is unique, because
there is only one function into a one element set. This diagram lives in the
category Set, which is then a topos [37][8]. Similarly, the category Rel of
sets and relations contains the square

(J × J)× (J × J)
r1×r2 //

!
²²

K ×K

χ

²²
1 ' 1× 1

t
// Ω

(29)

where any one point set is isomorphic to the Cartesian product of two one
point sets. When J × J is a subset of K, via both r1 and r2, the square
commutes, in the sense that both paths lead to the same relation (J×J)2 →
Ω.

When K = Ω, the relations ri stand for matrices of zeroes and ones, and
χ is a basic 2 × 2 table. We would like r1 × r2 to be a tensor product of
matrices, with respect to χ, because |J × J | = |J |2.
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3 Duality and the Fourier Transform

Engineers and physicists learn that complex numbers are perfect for describ-
ing the properties of waves, but in emergent geometry waves do not give an
ideal picture of what happens when quantum objects interact. In the word
monoid, complex numbers were associated to the distinction between the
letters X and X, which appear when a projector is interpreted as a density
matrix for a qudit state.

Consider the case of a qubit space. In a real plane, (1, 1) and (1,−1)
are eigenvectors for the real Pauli matrix σX , which represents a spin mea-
surement in the direction X. Together they give an orthogonal basis for the
plane. These eigenvectors form the columns of the 2×2 Hadamard gate [27]
of quantum computation,

F2 =
1√
2

(
1 1
1 −1

)
. (30)

When it acts via conjugation F2MF2
† on a matrix M , this is the quantum

Fourier transform in dimension 2. Unlike in higher dimensions, where Fd
4

is the identity, F2
2 is already the identity I2. This is another way of saying

that we need a complex i in dimension 2, so that iF2 shares the defining
property of the higher dimensional transforms.

The quantum Fourier transform is the analogue, for a discrete set of non-
commuting points, of the classical Fourier transform. Classical duality for
the Fourier transform uses a rich notion of duality from harmonic analysis,
and this may be formulated in the language of categories as Stone duality
[38]. Such concepts are central to categorical attempts at unifying spaces
and algebras in a motivic context.

The next section introduces the quantum Fourier transform, and the fol-
lowing section the important arithmetic concept of mutually unbiased basis.

3.1 The Quantum Fourier Transform

As usual, the indices of a finite matrix take values i, j ∈ 0, 1, 2, · · · , d−1. The
primitive dth root of unity exp(2πi/d) will be denoted ωd. The d dimensional
Fourier transform Fd defines a matrix transform FdMFd

† on a d× d matrix
M . It is usually given by [27]

(Fd)ij =
1√
d
(ωd)ij . (31)

The choice of ωd rather than ωd is arbitrary, as is the choice of row and
column order. That is, there are a total of 2d2 matrices that we might have
written down for Fd. All are elements of the unitary group U(d), since FdF

†
d

equals the identity matrix Id.
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Let Dd be the democratic probability matrix with entries all equal to
1/
√

d. For example,

D3 =
1√
3




1 1 1
1 1 1
1 1 1


 .

The elementary matrix Eij , with only one non zero entry equal to 1 in the
position ij, is given by Eij = Fd(Dd) for one of the d2 choices for Fd, at a
fixed ordering for the complex roots. This gives a decomposition of all square
matrices in terms of multiples of the democratic matrix. The democratic
matrix Dd is itself a unit for the Schur product of matrices, defined entrywise
by (AB)ij = AijBij .

A quantum Fourier series is a d×d 1-circulant matrix, which is specified
by its first row, with each successive row a right cyclic shift, by one step, of
the first row. For d = 3, it is given by a1I + a2(231) + a3(312). The Fourier
transform of such a circulant is a diagonal matrix, as in

1
2

(
1 1
1 −1

)(
a b
b a

) (
1 1
1 −1

)
=

(
a + b 0

0 a− b

)
(32)

for the simplest 2× 2 case. Thus a Fourier series is a linear combination of
cyclic permutation matrices from Sd. Inversely, the Fourier transform of a
diagonal matrix is a 1-circulant matrix.

Observe that the entries of Fd only take values in the complex dth roots
of unity. When d+1 is a prime power, these d roots represent the d non zero
elements of the field Fd+1 with d+1 elements, along with their multiplication
table. When d = 3, we choose

F3 =
1√
3




1 1 1
1 ω3 ω3

1 ω3 ω3


 (33)

and its complex conjugate F †
3 . For d = 3 there exist both 1-circulants, for

the odd elements of S3, and 2-circulants, for the even permutations in the
S2 subgroups. Including the determinant zero 0-circulants, there are always
d classes of circulant. For d = 3, let

x =




0 1 0
0 0 1
1 0 0


 p =




1 0 0
0 ω3 0
0 0 ω3


 . (34)

Observe that xp = ω3px. This is a Weyl commutation relation [39], usually
written with an ~. It also expresses the noncommutativity of a quantum
plane (x, p) with q a root of unity. Cycles of x define three points for the
space, and there are 3 forms for the momentum p, giving a six point phase
space.
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The matrix Fd is the character table for the finite abelian cyclic group
with d elements. This group is generated by a 1-circulant in Sd, and the
Fourier series is a sum over the cyclic group. Such a d× d circulant is then
an element of the group algebra CSd for the permutation group Sd. These
Hopf algebras appear in appendix C. In much of what follows, we would like
to restrict attention to circulant matrices.

3.2 Unitary Bases and Decompositions

The normalised Pauli spin matrices

σX =
1√
2

(
0 1
1 0

)
σY =

1√
2

(
0 i
−i 0

)
σZ =

1√
2

(
1 0
0 −1

)
(35)

define three directions in laboratory space. These matrices, along with the
identity I2, form a basis for the quaternions H, in the form

Q = x0I2 + x1σX + x2σY + x3σZ =
1√
2

(
x3 + x0 x1 + ix2

x1 − ix2 x3 − x0

)
. (36)

When the xi are complex, (x0, x1, x2, x3) is a point in complexified Minkowski
space C4, with x0 playing the role of time. This 2× 2 form leads naturally
to twistor geometry [40][41]. We will always take Minkowski space to be
in matrix form. The Pauli matrices are used to create projectors that are
normalised forms of I2 + σi,

X =
1
2

(
1 1
1 1

)
Y =

1
2

(
1 i
−i 1

)
Z =

(
1 0
0 0

)
. (37)

A noncommutative path with the same end points, such as XY ZX, is an
analogue to a loop in a commutative space. The loop is directed because
Y Z 6= ZY . A point X is a kind of trivial loop. Observe that the product
XY ZX equals exp(−πi/4)X. In order to cancel the anomalous phase in a
loop, and maintain a law XY ZX ' X, each of X, Y and Z is multiplied by
the basic phase ω24 = exp(πi/12).

The classical fundamental group π1(M, x) of a space M is the group of
all path loops based at a point x, with loop reversal as an inverse. The rule
XY ZX ' X for noncommutative paths is then a statement of contractibil-
ity, saying that loops can be shrunk without hitting any obstacles. This rule
is no longer strict, because there is a scale factor of 1/2

√
2 on traversing the

loop.
The Pauli matrices are themselves a noncommutative analogue of the

cubed roots of unity, in the sense that

1 + ω3 = −ω3 ω3 + 1 = −ω3 ω3 + ω3 = −1 (38)
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may be turned into a product rule. The Pauli group [27] for one qubit is the
group generated by {I2, σX , σY , σZ} with coefficients in {±1,±i}.

Each Pauli matrix has a pair of eigenvectors, one for each eigenvalue
±1/2. The eigenvector pair forms the columns of another 2 × 2 matrix.
Since an eigenvector is unchanged under multiplication by a complex scalar,
there are many equivalent forms for such operators.

The three eigenvector matrices form what is known as a set of mutually
unbiased bases for dimension d = 2 [42][43][44]. Any two members M1

and M2 of the set have the property that the inner product 〈v1|v2〉, for an
eigenvector v1 in M1 and eigenvector v2 in M2, is always of norm square
1/d. For example, take the eigenvectors (1,−1) and (1, 0), and remember
the normalisation factor of 1/

√
2 for (1,−1). The Pauli matrices provide a

maximal set of d + 1 = 3 such bases for dimension 2.
The d + 1 mutually unbiased bases [43][44] in prime power dimension

d = pk are given by a d× d matrix set {Fd, Rd, Rd
2, · · · , Rd

d}, where Rd is
a unitary circulant matrix. First,

R2 =
1√
2

(
1 i
i 1

)
. (39)

We can use R2
8 = I2 to specify the three mutually unbiased bases {F2, R2, I}

in dimension 2, since
R2

2 = eiπ/4σX

has a zero diagonal, and so provides essentially the same eigenvectors as the
identity I2. In dimension 3 a convenient choice is

R3 =
1√
3




1 ω3 1
1 1 ω3

ω3 1 1


 (40)

for ω3 the cubed root of unity, so that R3
3 = I3 up to a phase i. The set of

four mutually unbiased bases is {F3, R3, R3
2, I}. The circulants {R3, R3

−1, I}
represent multiplication in the finite field F4. The Fourier matrix F3 rep-
resents the zero in the weak sense that F3R3 is another form of F3. The
general circulant Rd in odd dimension d is

(Rd)ij =
1√
d
(ωd)(k−j)(j−k+1)/2 (41)

for i, j ∈ {0, 1, · · · , d − 1} [45][46]. When d = 1 any phase defines a basis
that is mutually unbiased with respect to another phase, since phases always
multiply to a number of norm 1. In this way, C is clearly of uncountable
dimension. However, we imagine that two bases are sufficient to characterise
the one dimensional space. These should be F1 and I1 = 1, where F1 must
be i in order to have the Fourier property.
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Let us look closer at the Pauli bases in dimension 2. The diagonal
element 1 of R2 will be generalised to a rotation parameter. The R2 matrix
is defined by the phase t = ±π/2, which is special as a fixed point under the
map t 7→ −1/t. With the normalisation factors taken as given, the general
circulants in CS2 are written as

R2(r) ≡ R(r) =
(

r i
i r

)
(42)

for r ∈ R+. This is the general Fourier transform of a diagonal
(

z 0
0 z

)
(43)

for z a complex number, under the scaling invariance z 7→ λz with λ real.
With the normalisation convention we are free to put the ratio of real to
imaginary parts into the parameter r. Such an R2(r) is no longer unbiased
with respect to F2 and I2, but instead stands for a general 2× 2 probability
matrix.

When r > 1, (R(r))2 has non zero diagonal elements r2 ≡ r2−1, as does
the nth power (R(r))n. However, as n → ∞ the parameter rn approaches
zero, because it goes as r/n. The recursion is given by

rj+1 =
rrj − 1
rj + r

(44)

where r = r1. Thus (R(r))∞ looks like R2
2. Observe that the sequence is

monotonic if and only if r ≥ φ, where φ ∼ 1.618 is the Golden ratio. Since
an infinite number of time steps was never a problem for tortoises or hares,
we can repeat the process and observe that

(R(r)∞)4R(r) = R(r). (45)

Thus for any r ≥ 1, R(r) has an infinite cyclicity. Moreover,

(R(r))∞+1 =
(

r i
i r

)(
0 i
i 0

)
=

( −1
r i
i −1

r

)
(46)

so the parameters r < 1 appear naturally after the first infinite number of
steps. When r < 1, there is no convergence in the R(rj), as is easily seen by
looking at the first few terms of the sequence. However, the pseudoidentity

R(0) =
(

0 i
i 0

)
=

(
r i
i r

) ( −1
r i
i −1

r

)
(47)

relates the two parameter types. Note that r ∈ {0,±1} sets up a binary
alternating sequence.
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The Pauli matrices provide a basis for the Lie algebra su(2) of trace-
less Hermitian matrices. The group SU(2) is obtained by exponentiating
elements of the Lie algebra. A 1-circulant

(
0 x
x 0

)
(48)

in su(2), where x ∈ R, is exponentiated to a unitary circulant of the form
(

cos(x2) i sin(x2)
i sin(x2) cos(x2)

)
. (49)

This corresponds to the parameter r = cot(x2). The inverse parameter −1/r
arises from the tangent of −x2, which comes from pure imaginary elements
of the form (

0 ix
ix 0

)
. (50)

Unlike in the Lie algebra su(2), the Pauli matrices are each playing different
roles in information theory. Note that σX is the only 1-circulant. What is
special about σX? For any d ≥ 2, the analogous 1-circulant Vd = (234 · · · d1)
always has an eigenvector set giving the columns of Fd. The eigenvalues
happen to be {ωd, ωd

2, · · · , 1}. So σX is dual to F2, the only non circulant
in the canonical set of mutually unbiased bases. The mixed circulant set
{σX , R2, I2} then accounts for all Pauli matrices and their unbiased bases,
in the sense that R2 is dual to σY and I2 dual to σZ . Similarly for any prime
power dimension.

3.3 Honeycombs and Hermitian Matrices

The eigenvalues of complex Hermitian n × n matrices M are given by the
Fourier transform FnMFn

†. Given two such matrices A and B, their eigen-
value sets are related to the eigenvalues of C = A+B in an interesting way.
Let λA be the set of n eigenvalues for A, and similarly for λB and λC . We
say that these sets are in a relation [λA, λB, λC ] if

A + B + C = 0. (51)

A theorem of Tao and Knutson [47] shows that [λA, λB, λC ] holds if and only
if there exists a honeycomb graph for the eigenvalue sets. These are planar
graphs built with line segments on each of six possible directions, as in the
example ?? ÄÄ

ÄÄ ??

CCCCCCCC

{{{{{{{{

?? ÄÄÄÄ ??
DDDDDD

zzzzzz
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which is the dual graph to the tetractys. The semi-infinite lines always
run off in the three directions shown, but the internal diagram need not be
entirely trivalent, if some edges are contracted. Any valency from 2 to 6
is possible. The real eigenvalues λi specify the constant coordinates for the
rays in one of the three special orientations, once the plane takes coordinates
(x, y, z) such that x + y + z = 0. Thus the example shown is a honeycomb
for 3 × 3 matrices. The vertices must satisfy the zero tension rule: the
sum of coordinate vectors around the vertex must be zero, up to allowed
multiplicities. For trivalent vertices, this means that all edges at a vertex
have the same multiplicity x. For instance

x((0, 1,−1) + (1,−1, 0) + (−1, 0, 1)) = 0. (52)

There is only one constant coordinate in each of the special directions, as
the lines are specified by shifting the other two coordinates.

So the quantum Fourier transform maps the triplet of Hermitian matrices
(A,B, C) to its honeycomb graph. In chapter (7), rest mass triplets are
parameterised using 3× 3 Hermitian matrices. We attempt to characterise
their parameters using the tetractys honeycomb.
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4 The Ordinals and Discrete Duality

The globule 2-arrows that make up a 2-category are pasted both horizontally
and vertically, and this is also depicted with rooted trees with two levels.
Such two level trees represent higher dimensional 2-ordinals, and similarly
with globules in any dimension n. As ordinals, globule diagrams give any
category an arithmetic structure.

The basic globule 2-arrow is a symbol for various dualities, such as the
exchange of points and lines for a one dimensional geometry. The string
and ribbon diagrams that form the subject of this text are dual to arrow
diagrams in a two or three dimensional category. We are mostly interested
in structures with three levels, where a string edge network passes through
points and sits amongst labeled areas in the plane.

Beyond duality there is triality, which is already known to be significant
to number theory. One aspect of categorical triality is an underlying triple
of dualities, thought of as edges on a triangle. Geometrically, two of these
are familiar: the interchange of points and lines in dimension 1, and the
interchange of points and faces in dimension 2. But what of the interchange
of edges and faces? Although ostensibly a piece of duality in dimension 4,
we would really like a three dimensional representation of this duality.

The following sections introduce the basic diagram elements for dual
structures, sticking only to what we need for later chapters. Mostly, it
is about planar trees. In perturbative quantum field theory, trees are the
lowest order Feynman diagrams, which now obtain their algebraic structure
from categorical algebra.

4.1 The d-Ordinals

The ordinary ordinals n ∈ N are represented by single level planar, rooted
trees

0

****
····

1

////
²²²²

2

////
$$$$
½½½½
²²²²

3

· · ·
(53)

with n + 1 leaves. These are the 1-ordinals. A dual way to draw the 1-
ordinals is as a string

→
0

→→
1

→→→
2

· · · (54)

of arrows, where the tree root provides the n horizontal compositions. This is
the representation of ordinals on the tree of the surreal numbers, indicating
that higher ordinals are required for ordinary real numbers. Why does the
number 1 have two leaves? As a polytope, the two leaves will represent a
geometric point, because there is only one way to draw a binary tree with
two leaves. That is, this one tree set has cardinality 1. And there is only
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one area between the leaves, representing the trivial permutation group S1.
The single leaf tree is like an empty set of binary trees, with cardinality 0.

A d-ordinal is specified by a planar tree with d+1 node levels, including
the root [48]. For example, the trees

44444


****
····

¨̈
¨̈

¨̈
¨̈

¨

44444


****
····777777777

(55)

represent a 2-ordinal and 3-ordinal respectively. As the number of levels
increases so does the categorical dimension, as indicated by the equivalent
globule diagram. The 2-ordinal on the left becomes the pasting diagram

ÁÁ
ÂÂ ÂÂ
®¶ // @@ÂÂ ÂÂ
®¶

ÁÁ
ÂÂ ÂÂ
®¶ // (56)

with five edges on the tree giving the five 1-arrows, the tree root specifying
the horizontal composition, and the vertical composition occurring at the
higher node. Similarly, the right hand tree is a diagram with five 3-arrows
and three directions of composition.

The 2-ordinals are specified by strings of 1-ordinals (n1, n2, · · · , nk), since
a two level tree has k base edges at the root and each higher node has ni

leaves attached. The horizontal and vertical arrow compositions correspond
to the trees

???? ÄÄÄÄ

???? ÄÄÄÄ

(57)

with a root node or a higher node respectively. All 1-ordinals can be ex-
tended to 2-ordinals with the addition of a root edge. Addition m + n of
1-ordinals is then essentially recovered with vertical composition. Similarly,
all 1-ordinals can be extended by adding another leaf to every leaf. Then
horizontal composition recovers addition. The globule form of the two leaved
trees

##;;
ÂÂ ÂÂ
®¶

##;;
ÂÂ ÂÂ
®¶

¾¾
ÂÂ ÂÂ
®¶ // CCÂÂ ÂÂ
®¶

(58)

makes the composition rules clear. Note that horizontal composition

???? ÄÄÄÄ

/// ²²² ???? ÄÄÄÄ

/// ²²²◦ = OOOOOO
oooooo

???? ÄÄÄÄ

/// ²²²
/// ²²²

(59)
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preserves the number of lowest level edges, while vertical composition does
not. The globule representation turns the basic associator edge

44444


 

44444
444

44444


(60)

into an arrow between two dimensional pictures ((ab)c) and (a(bc)). Higher
dimensional representations of word association appear naturally, because
words are often shorthand for tensor products, such as a⊗ b⊗ c, which tend
not to be associative. Recall that in the axioms for a monoidal category,
where ⊗ is an arrow composition, the arrows between words are really 2-
arrows.

A globule picture for association raises the dimension yet again, but it
becomes too unwieldy to work with higher dimensions, unless the categorical
structure requires it. The most common form of monoidal category is a
symmetric monoidal one, where a⊗b is the same as b⊗a, but this is secretly
a four dimensional category, because the symmetry rule is an equation for 3-
arrows in the underlying braided monoidal category. The braiding structure
γab : a⊗ b → b⊗ a is itself another kind of categorical product [49].

The interplay of the two binary composition types for the 2-ordinals
appears in the special example of the Tamarkin tree [50][51], which is the
2-ordinal

OOOOOOOO
oooooooo

////
²²²²

²²²²

////
////

²²²²

(61)

representing the composition of six 2-arrows. When these 2-arrows represent
dual structure, the Tamarkin tree is an initial instance of a triple of duals.
This 2-ordinal indexes a six dimensional polytope, and was instrumental
in extending compactifications for classical configuration spaces beyond a
surprising six point anomaly [52].

4.2 Categorical Strings

Dualities are ubiquitous in the mathematics and physics of M theory. For us,
a basic duality interchanges a 0 and 1, whether that means geometric objects,
qubit states, or elements in an abstract representation of S2. Classically, in
dimension 2, Poincare duality swaps vertices for faces and edges for edges.
It sends a triangle to a trivalent vertex. In a 2-category, this duality turns
2-arrows f and g into little box points

A

ÁÁ
ÂÂ ÂÂ
®¶ f // @@

B

ÂÂ ÂÂ
®¶ g

A

B

f

g
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where it is understood that edges are directed downwards, and these edges
are 1-arrows. In the example drawn, the unique object is unmarked, but
objects are permitted to label areas in string diagrams. Thus the two un-
marked areas split by the string stand for source and target objects. Since a
monoidal category is really a bicategory, such strings are used to represent
its objects [53], with the concatenation

A⊗A

of strings standing for tensor product. In a string diagram, the multiplica-
tion A⊗A → A for an algebra object A is given by a basic trivalent vertex.
So trees can be interpreted as string diagrams after all.

In a braided monoidal category the strings may pass over and under one
another, but in the symmetric case an ambiguous crossing

99
99

99
99

¦¦
¦¦

¦¦
¦¦

is sufficient. In a higher dimensional category, arrows may be reversed at
any level, defining many distinct notions of duality. An adjoint dual f † to a
map f might be represented by a flipped box [54][55]

A

B

²²² f

A

B

/// f †

The † structure for a symmetric monoidal category satisfies f †† = f , coming
from an identity natural transformation in the adjunction. When we want
both dual objects and dual arrows, we need extra structure. Object duals
A∗ and B∗ induce another dual arrow f∗ : B∗ → A∗ given by both a left
right and an up down box flip.

A

B

²²² f

A

B

²²
² f∗

We can similarly define an f∗, so that the left right flip is covered. By fixing a
direction for processes in the plane, we are permitted two underlying discrete
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symmetries. These are rich enough to define interesting algebraic structures.
A † Frobenius structure [56][55] is a cocommutative comonoid object A with
∆A : A → A⊗A and ε : A → I, such that ∆A

†∆A = 1A and

∆A∆A
† = (∆A

† ⊗ 1A) ◦ (1A ⊗∆A).

The arrows ∆A : A → A ⊗ A and ∆A
† : A ⊗ A → A define dual trivalent

vertices

²² ÂÂ?
??

??

ÄÄÄÄÄ
ÄÄ

•
ÄÄÄÄÄ

ÄÄ
ÂÂ?

??
??

•
²²

(62)

in a category, subject to the Frobenius axioms. Using the category of finite
dimensional Hilbert spaces as a guide, the † Frobenius structures are in
one to one correspondence with orthonormal bases for the Hilbert spaces.
Thus quantum mechanical measurement bases may be used to build string
network diagrams. Mixing a † Frobenius structure with duals θA : A → A∗

allows a proper axiomatisation of bases, where we have θA∗ = θA
†. This

structure allows a symbol
A

²²• θA

A

OO

with a reversed pair of object arrows, and these are both reversed for the
adjoint. These arrows are in some sense time directions for quantum pro-
cesses. They permit the apparently acausal processes of standard protocols
[57] to be replaced with objects for which the process time flows in a given
direction.

In all such diagrams, the inputs and outputs fit on a one dimensional
line, creating a rigid concept of before and after for unitary processes. In
contrast, the diagrams of chapter 6 aim to capture the cyclicity of color
structure in Yang-Mills theories. The usual diagrammatic representation for
permutations, from n points to n points, will be replaced by a cyclic picture.
In this scheme, trivalent vertices would no longer belong to an ordinary
category, because the cyclicity must be taken seriously at the axiomatic
level. The search for cyclic structure begins with the duality of S2, for
which the twistor diagrams are the pieces of the Kauffman bracket (120).
In chapter (9) these objects are considered within a hierarchy of Sd and Bd

diagrams.

4.3 Fourier Dualities and Topology

The classical Fourier transform is associated to Pontrjagin duality [58], and a
more abstract duality between a category of locally compact abelian groups
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and a category of Hausdorff spaces [38]. Given a group G, its dual G∧ is the
set of characters G → S1 into the unit circle. The circle S1 is very special,
representing both an abelian group and a space. It extends the special role
of the two point set {0, 1} in the category Set. The object {0, 1} is also the
elementary one point topological space, including its empty set [8].

The Pontrjagin duality is a natural transformation η : (G∧)∧ ' G be-
tween the double dual of G and G. That is, for every arrow f : G1 → G2 in
the group category, there is a commutative square

G1
∧∧ f∧∧ //

ηG1

²²

G1
∧∧

ηG2

²²
G1 f

// G2

(63)

in the category of abelian groups. When the categorical dimension is not
restricted, all such dualities are weakened by higher dimensional arrows.
Our central example is the Fourier duality between Z and S1. For us, Z is
usually the braid group B2 on two strands, and it defines the fundamental
group π1(S1) for the circle.

Unlike this duality between distinct categories, a motivic duality functor
should ideally be an endofunctor C → C for some category C that has
objects that are both spatial and algebraic. That is, emergent geometry
expects all objects in nice categories to have topological properties analogous
to {0, 1} and S1.

Let us step back to the discrete Fourier transform, which was associated
to the quantum arithmetic of mutually unbiased bases. In dimension d,
there is an underlying space with d points, and the mutually unbiased bases
in dimensions d = pn are associated to the ring Z/Zpn . This suggests that
Z ' B2 secretly lives in dimension ω, and we have already assumed that
continua such as S1 are emergent. The Fourier duality of Z and S1 is
approached with the inverse limits Zp

Z/Zp → Z/Zp2 → · · · → Z/Zp3 · · · → Zp (64)

of the p-dit rings. The set Zp is the p-adic integers, and it defines the division
field Qp of p-adic numbers [59]. A p-adic integer is a sequence of elements
xn ∈ Z/Zpn such that for n ≤ m, xn = xmmodpn. Amazingly, Zp is an
uncountable set with the cardinality of the continuum.

The Fourier dual of Zp is the group of all pn-th roots of unity on S1

[60]. There are many interesting ways to embed the p-adic numbers into
the complex plane [61]. Quantum arithmetic is somehow carrying Z into C,
building S1 up by the rules of an underlying categorical Stone duality [38].
Note also that for a nice classical space X, p-adic cohomology H i(X,Zp) is
also defined as an inverse limit of the groups H i(X, (pn)) as n →∞.
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5 Trees, Polytopes and Braids

A rooted tree is an example of a one dimensional contractible space, if
embedded in some well behaved classical geometry. That trees have sin-
gularities does not concern us. On the contrary, everything is built from
trees. Before we look at the contraction of an edge as an axiomatic process,
we need to understand the combinatorics of trees. As good mathematicians
sometimes say, combinatorics is an honest subject, because everyone agrees
on what it means to count a finite set.

In this chapter we consider rooted, planar trees, mostly with binary
branchings. The choice of a root turns cyclic trees into d-ordinals. Reading
a tree downwards from the leaves, a binary node represents an operation
a · b. Many types of binary operation can occur. A bracketing (ab) of two
letters is the main example.

Permutations can be tree diagrams, when the permutation labels the
spaces between leaves. For example, a permutation in S3 acts on the ⊗
operations in the word a ⊗ b ⊗ c ⊗ d. Such a four letter word may be
bracketed in 5 ways, giving the vertices of the Mac Lane pentagon for weak
associativity, as a set of 5 trees with four leaves. The edges of the pentagon
correspond to a tree with one internal edge contracted, and the single face to
the unique tree with all internal edges contracted. Similarly, the polytopes
An−1 for trees on n leaves are the associahedra, which occur as categorical
axioms in dimension n− 2.

5.1 Permutations and Planar Trees

First consider the binary, rooted planar trees, where every node is distin-
guished by a unique vertical height. The empty permutation on the empty
set is represented by a single leaf. A two leaf tree

??
??

ÄÄ
ÄÄ1

represents the trivial permutation (1) on one object, because there is only
one node beneath the leaves. In general, a binary tree with n + 1 leaves
gives a permutation in Sn, as in the example

??
??

ÄÄ
ÄÄ

??
?? //

/
²²
²

??
??

ÄÄ
ÄÄ //

/
²²
²1 2 3

(132) (65)

where each entry in (132) is given by the appearance of a new area between
leaves, moving down the page. The permutation really acts on the nodes of
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the tree. Each permutation group Sd corresponds to a set of d! such trees.
The hexagon of S3 is the diagram

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??
??

??
??

??
??

??
??

?

?????????????????

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
2222

¯̄
¯̄

%%% ¼¼¼

44444


··
**

44444


444 

44444


 

44444
444

44444


·· ····


44444
******

44444


·· ½½½


44444
**$$$

44444


¯̄
¯
// 

44444
222²²

44444


 ¨̈
¨



44444
44777

(66)

indexed by the unique single level tree with 4 leaves, as was the pentagon
above. The other geometric elements of the hexagon, namely vertices and
edges, correspond to expansions of the root node into edges. Only two
expansions are required to turn a 4 leaf node into a full binary tree, and this
forces the dimension of the hexagon. An Sd diagram in dimension d − 1 is
known as a permutohedron polytope [62].

The associahedra polytopes Ad, also indexed by d ∈ N, are given by the
trees which do not distinguish node levels. For example, (132) and (312)
in S3 denote equivalent trees in A3, so that the six vertices of the hexagon
are reduced to the five vertices on the pentagon, by shrinking the one edge
that cannot be labeled with a trivalent node. For the categorical pentagon
axiom, see appendix A. The set of associahedra were originally introduced by
Tamari [63] and then by Stasheff [64], in the study of homotopy for classical
spaces.

If the permutohedron Sd is embedded in a Euclidean space, it defines the
convex hull of the vertices σ ∈ Sd. This parameterises the set of real, doubly
stochastic d× d matrices, or magic matrices, with constant row and column
sums. A physical probability matrix is of this kind, and we will always view
them as sums of permutations from Sd, so that they belong to the group
algebra.

A permutation is reducible to its signature class, which lists the signs of
the differences between consecutive entries. For example, (231) has signature
+−, which is shared by (132). The signatures label the vertices of a parity
cube. For S4, in dimension 3, the eight vertices are the components of a three
qubit state (and might label the electric and magnetic charges of a black
hole state in M theory [18]). To see the categorical importance of parity
cubes, consider the following categorification of the bracketing process.

An associahedron binary tree with d+1 leaves represents a full bracketing
of d + 1 objects, such as in ((a(bc)d)e). Using edges oriented by the basic
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(21) flip, four objects are bracketed in the steps shown in the cube on the
right.

−−−
xxpppppp

&&NNNNNN

²²

−−+

&&NNNNNN

²²

+−−
xxpppppp

²²

+−+

²²

−+−
xxpppppp

&&NNNNNN

−+ +

&&NNNNNN + +−
xxpppppp

+ + +

1234

xxppp
ppp

p
&&NNN

NNN
N

²²

12(34)

&&MMMMMM

²²

(12)34

xxqqqqqq

²²

(12)(34)

²²

1(23)4

xxqqqqqq
&&MMMMMM

1(234)

&&MMMMMM
(123)4

xxqqqqqq

(1234)

(67)

The signs are an alternative representation of the bracket choices, giving here
a parity cube P4. Observe that each face of the cube stands for one edge on
the hexagon (66). The cube is then a categorification of the hexagon, in the
sense that each geometric element is raised by one dimension. Categorically,
a face is now a pseudonatural transformation in a 2-category. The cube is
associated with three dimensional categories [9][65]. Every face except the
top face represents an associator edge (xy)z ⇒ x(yz) on the pentagon. The
double arrow that labels the face indicates its dimensionality, and this arrow
is the homotopy between the two paths that bound the square. Now the
top square

//

ÂÂ ÂÂ
®¶

²²

,,,, µµµµ

²²,,,, µµµµ //

$$$$
½½½½

$$$$
½½½½

(68)

breaks the Mac Lane axiom for monoidal categories [66], if it is not an
identity. This happens already on the S4 hexagon. Since permutations are
fundamental to us, and categorical dimensions are not arbitrarily restricted,
this square permits the deviation in tree node levels. When the vertical
direction on a diagram denotes a time variable, as it usually does in physical
applications, this Sd level splitting breaks the forward backward symmetry
of time.

In the next section, the three dimensional associahedron A4 is indexed
by rooted hexagons, geometrically dual to the trees with 5 leaves. Two
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vertices on this polytope are geometrically distinguished, namely the ones
that include a copy of the ambiguous level 4-leaved tree above. The 24
vertices of the S4 permutohedron are reduced to only 14 vertices on the
associahedron. There is also a sequence of polytopes that combines the
features of Ad and Sd. These are the permutoassociahedra [67], appearing in
chapter (9). In fact, any d-ordinal tree defines a categorical polytope.

Now every permutation matrix is associated to a rooted, binary tree.
The S2 edge associahedron

44444


 

44444
444

44444


(69)

may be thought of as the sum
(

1 0
0 1

)
+

(
0 1
1 0

)
=

(
1 1
1 1

)
= 2. (70)

In [68], Loday explains how the arithmetic of 1 + 1 = 2 works with trees.
For a contracted tree, where at least one node is not binary, the dimen-

sion of a permutation matrix may be reduced. This is a substitution process,
which eventually reduces any tree to the one level index tree d ∈ N, and the
trivial permutation (1). Letting a matrix entry 1 be generalised to k ∈ N,
the hexagon edges of (66) should become matrices with row and column
sums of 3. One solution is the unambiguous choice

44444


··
**

44444


444 

44444


 

44444
444

44444


·· ····


44444
******

(
2 0
0 1

) (
0 2
1 0

)(
1 0 1
1 0 1
0 2 0

)

(
1 0
0 2

) (
0 1
2 0

)(
0 2 0
1 0 1
1 0 1

)

(71)

where normalisation factors have been freely used. The 2 × 2 matrices are
reductions of the obvious 3×3 ones, reflecting the ordinal substitution from
S3 down to S2. Two trees do not reduce to 2 × 2 operators, and these are
the ones corresponding to full left right reflections. Then there should be a
reduction from the hexagon to the pentagon, and finally to a square of 2×2
trees, which is the parity square of signatures for S3. The sum of matrix
hexagon edges gives the democratic matrix

3 =
1
3




1 1 1
1 1 1
1 1 1


 , (72)
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which now represents the ordinal hexagon face. For any d, the vertices of
Sd clearly sum to the democratic matrix.

Since the two trees of type (65) are combined in the pentagon vertex
(132)+ (312), the pentagon face sums to the asymmetric probability matrix

1
10




3 4 3
3 4 3
4 2 4


 , (73)

where a canonical normalisation is now included. This embeds in a 4 × 4
matrix as a pentagon face of A4. Similarly, a square face on S4 is given by

(1234) + (2134) + (1243) + (2143) =
1
2




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 (74)

but on A4 we also include (4123) and (4213) to obtain the magic square

1
16




7 7 0 2
8 8 0 0
1 1 8 6
0 0 8 8


 . (75)

Finally, one can easily verify the parity square and cube matrices

1
8




3 2 3
2 4 2
3 2 3


 1

10




3 2 2 3
2 3 3 2
2 3 3 2
3 2 2 3


 . (76)

The up down reflection of a parity cube matrix corresponds to a left right re-
versal of the sign string, with all signs flipped. Flipping all signs corresponds
to the left right matrix symmetry.

And so ends our first attempt at uniquely specifying trees with matrix
objects. In the search for motives, we always want algebraic objects that
explicitly manifest the properties of their diagrams. These Sd objects do
not quite achieve this, since trees do not share the symmetries of matrices,
which represent maps from d to d objects.

5.2 Solomon’s Descent Algebra

The signature class for a permutation σ ∈ Sd is the string of d − 1 signs
given by consecutive differences in the ordinal string of σ. A collection of
signature classes determines a parity cube in dimension d− 1. For example,
the signature of (32145) is (−−++).
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Example 5.1 The eight signature classes of S4, and their orders, are
(−−−) (4321) 1
(−−+) (4312), (4213), (3214) 3
(−+−) (4231), (4132), (2143), (3142), (3241) 5
(+−−) (3421), (2431), (1432) 3
(+ +−) (1243), (1342), (2341) 3
(+−+) (3412), (1423), (1324), (2413), (2314) 5
(−+ +) (4123), (3124), (2134) 3
(+ + +) (1234) 1

There is an obvious source and target with which to orient the cube
edges and faces. Let ρ denote a signature class for Sd. Hρ is defined to be
the sum of all permutations in the class, which is an element in the group
Hopf algebra KSd, for any suitable K that contains zero and one. Solomon’s
theorem [69] is the statement that Hρ1Hρ2 is a linear combination of the Hρ

for Sd.

Example 5.2 For the S4 group algebra over N,

(−+ +)(−−+) = [(4123) + (3124) + (2134)][(4312) + (4213) + (3214)]

= (+−−) + (+−+) + (−−−)

Signature classes may also be labeled by ordered partitions as follows.
The element (++· · ·+) is the single component partition d, as in the ordinal
index. The descending (−− · · ·−) element is the longest partition 1 + 1 +
· · ·+ 1 of all ones. For S3 there are two remaining classes, (−+) and (+−),
each containing two permutations. These are the partitions 1 + 2 and 2 + 1
respectively. The minus signs are used to indicate a tendency for ones. The
more plus signs, the further one moves away from partitions built from ones.
We see then that noncommutative partitions are far simpler than partitions
in commutative arithmetic, which are difficult to count.

Atkinson [70] defines a matrix Mρ1ρ2 using any pair of ordered partitions
ρ1 and ρ2. The row sums are given by the ordinals in ρ1 and the column
sums by the ordinals in ρ2. For example, let ρ1 = 1 + 2 and ρ2 = 1 + 1 + 1.
Then there are three possibilities for the matrix Mρ1ρ2 , namely

(
0 1 0
1 0 1

)(
1 0 0
0 1 1

)(
0 0 1
1 1 0

)
(77)

These matrices specify coefficients in the products Hρ1Hρ2 . For example,
H1+2H1+1+1 = 3H1+1+1, where the three given matrices each donate a copy
of H1+1+1. The general rule, for an n×m matrix, is

Hρ1Hρ2 =
∑

M

HM11,M22,··· ,M1m,M21,··· ,M2m,··· ,Mn1,··· ,Mnm (78)
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where it is understood that zeroes are omitted. These matrices may be
helpful for computations in KSd and the algebra KPd.

Let KP∞ be the disjoint union of all descent Hopf algebras KPd, for
d ≥ 0, and let KS∞ be ⊕KSd. For most purposes, the ground field K is
taken to be Q. It is shown in [71] that Solomon’s descent algebra KP∞ is
a sub Hopf algebra of KS∞, for any ground field K. Moreover, KP∞, as a
Hopf algebra, is the image under a map (φψ)∗, where

• using left right signed leaves on binary trees, φd maps the associahe-
dron Ad to the parity cube, by noting the signs of interior leaves. The
dual φ∗ is the linear dual in the Hopf algebra.

• ψd is the reduction of Sd to Ad obtained by leveling the tree nodes.

In other words, there is an intimate link between Sd, its parity cube and
the intermediary associahedron. For a tree T in Ad, the inclusion ψ∗(T ) in
the Hopf algebra KS∞ is the sum

∑
σ of permutations corresponding to T .

This is like the matrix sums that appeared in the last section.
The descent algebra is an important property of probability matrices.

Note that such matrices are not elements of a linear matrix group GLn,
because they tend to have determinant zero. They are thus somewhat ne-
glected in the swamp of manifold mathematics.

5.3 Associahedra, Permutohedra and Polygons

A genus zero polytope in Euclidean dimension d−1 will define a categorical
axiom if it arises as an expansion set for a d-ordinal tree [48]. Instead of
trees, we could use the rooted polygons that are dual to the trees. For
example, the A3 polytope is the pentagon of chorded pentagons
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The number of chords on an index polygon clearly indicates the codimension
of the face. The nine face A4 polytope, without labels, looks like
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The square faces come from a chorded hexagon where the chord cuts the
hexagon in two. The 6 pentagonal faces are labeled by the other single
chorded hexagons, the 21 edges by hexagons with two chords, and the 14
vertices by hexagons with three chords.

The source of A4 is the tree (1234) and the target the tree (4321). This
choice orients all edges on A4, and fills every face with a 2-arrow that po-
tentially breaks the Mac Lane pentagon axiom. The set of all associahedra
for d ∈ N give an example of an operad (see appendix A).

Let us enumerate the codimension k faces of Ad. The number of vertices
on Ad is given by the Catalan number

Cd =
1

d + 1

(
2d
d

)
. (81)

This is seen by dualising rooted trees with d leaves and one root edge to
rooted polygons with d + 1 sides. The Catalan number counts the triangu-
lated polygons. It is further divided into Narayana numbers

Nd,k =
1
d

(
d
k

)(
d

k − 1

) d∑

k=1

Nd,k = Cd (82)

This partition of Cd groups trees according to the number of internal right
directed leaves, as in the signature class maps. For example, on A4 we have
N4,k ∈ (1, 6, 6, 1). The decomposition of A3 into Narayana sets is
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(83)

giving N3,k ∈ (1, 3, 1). This takes care of the maximal codimension. For
codimension k, the cardinality of the Ad face set is

Fd,k =
1

d + 1

(
d + k + 1

k + 1

)(
d− 1

k

)
. (84)
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This result was first proved by Cayley in 1891 [72][73].
There is much more to the A4 associahedron. The 21 edges are symmet-

rically divided into seven sets of the objects {a, b, c}, with each pentagon
carrying a label set of the form ababc, and each vertex carrying an {a, b, c}
triplet. A full triangulation of the 9 faces results in 24 triangles, defining 24
tetrahedra when a central vertex is added. Since this triangulation creates
36 edges, the Poincare dual polytope is the permutohedron S4.

For the permutohedron Sd there are d! vertices and d!(d − 1)/2 edges.
The permutohedron always tiles Rd−1, as do cubes and their decompositions.
The polytope S4
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is coordinatised neatly as follows. Think of the 24 permutations as integral
coordinates in R4, so that (2341) sits at (2, 3, 4, 1). These points clearly lie
on the R3 plane x1 +x2 +x3 +x4 = 10. This can be turned into the simplex
plane y1 + y2 + y3 + y4 = 0 by sending each digit n to (2n− 5)/2, giving a
vertex like (−1/2, 1/2, 3/2,−3/2).

The permutoassociahedron in dimension three has 120 = 5! vertices,
blending associator and braiding arrows by turning each vertex of S4 into a
pentagon. Other related polytopes include the cyclohedra [74], which bracket
objects on a loop rather than on a line. This is a natural polytope sequence
for theories that use cyclic tree diagrams, such as N = 4 Yang-Mills theory,
and it is also associated to knot invariants. It is denoted by polygons with
chord sets that are symmetric about a central axis.

Postnikov [62] defines the mixed Eulerian numbers, which come from vol-
umes for simplices within polytopes. For the permutohedron at the integral
vertices in Zd+1, the volume Vd equals (d + 1)d−1. This is a cardinality for
parking functions, which are defined below. One studies volume formulas for
general coordinates (x1, · · · , xd+1). A generalised permutohedron is defined
to be a sum ∑

I

αI∆I

over subsets I of the standard d-simplex in Rd+1, where ∆I is the subset of
faces of the simplex given by i ∈ I. These polytopes include the associahedra
and cyclohedra. A hypersimplex ∆k,d is the generalised permutohedron at
coordinates (1, 1, · · · , 0, 0, · · · , 0), that is with k ones and d − k + 1 zeroes.
Using hypersimplices, define a polytope Qd as a sum

Qd ≡ z1∆1d + z2∆2d + · · ·+ zd∆dd (86)
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where we write z1 = x1 − x2 and so on. Consider then the vectors c =
(c1, · · · , cd) for ci ≥ 0 such that

∑
ci = d. Let Vc be an integral volume for

the collection (∆1d
c1 , · · · , ∆dd

cd) of hypersimplices. These Vc are the mixed
Eulerian numbers of interest. Their properties include a decomposition

∑
c

Vc

c1! · · · cd!
= (d + 1)d−1 (87)

of the parking functions. The volume of Qd may now be expressed as

V (Qd) =
∑

c

Vc
z1

c1 · · · zn
cn

c1! · · · cd!
. (88)

The mixed Eulerian numbers include the classical Eulerian numbers Ekd,
defined for c = (0, 0, · · · , 0, d, 0, · · · 0), with the d in the kth position. Thus
the volume of ∆kd is Ekd/d!. In the special case that c satisfies

c1 + · · ·+ ci ≥ i (89)

for all i, then
Vc = 1c12c2 · · · dcd (90)

and there are Cd such vectors c. In other words, the vertices of the associahe-
dron Ad naturally embed into a divided simplex from the word monoid. The
Eulerian numbers appear in recent matrix structures for N = 8 supergravity
[21].

Example 5.3 When d = 4, the 14 c vectors that satisfy c1 + · · · + ci ≥ i
give volumes Vc that are graded by the Narayana numbers.

1 V4000 = 1
6 V1300 = 8, V3100 = 2, V3010 = 3, V3001 = 4, V2020 = 9, V2200 = 4
6 V1120 = 18, V1210 = 12, V1201 = 16, V2110 = 6, V2101 = 8, V2011 = 12
1 V1111 = 24

The c vectors show up in the factorisation of ordinary ordinals, recall-
ing the replacement of noncommutative monomials in the word monoid by
divisors. Consider homogeneous coordinates in Z4 for the parity cube. It is
necessary to add a coordinate when using strings of zeroes and ones, since
these vertices have distinct totals. We choose to put the extra variable at
the start of the vector, where it will only pick up a volume factor (90) equal
to 1. The resulting cube, labeled by integral volumes,

ÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄ

2110(6) 1111(24)

3010(3) 2011(12)

3100(2) 2101(8)

4000(1) 3001(4)

(91)
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clearly shows the factors of 24. Opposite corner pairs give multiplication
to the target 24. This process works perfectly on all parity cubes up to
dimension 4, where the target volume is 120 = 5!, since all ordinals up to
5 are prime powers. Actually, a parity cube can be used to list the divisors
of any square free n ∈ N, with the target representing n. For example, 10
fits onto the homogenised parity square, with paths through 2 and 5. For
numbers n that are cube free, it suffices to employ qutrit simplices.

5.4 Linear Orders and Forests

Any rooted planar tree defines a set of linear orders. Each node of a linear
order is a node on the tree, and the nodes are connected only by internal
edges from the tree. The leaves are all deleted. The n nodes are then labeled
by the numbers 1, 2, · · · , n, with each number used only once. This is how
tree nodes get labeled for Sn. The order restriction on the labels is that
they must decrease as one travels on a downward path. The linear orders at
n = 2 and n = 3 are then the diagrams

•
•2
1 •

•
•3
2

1 •

'''''

• ººººº

•2 3

1 •

'''''

• ººººº

•3 2

1 (92)

Consider the five vertex trees of the pentagon A3. Linear orders allow us to
distinguish the special tree (312) + (132) from the other four trees, and so
to recover the hexagon S3. There is a unique order 321 associated to each of
the four normal trees, but (312) + (132) has two distinct orders, each with
two leaves. Each order selects one of the permutations.

Given a forest, namely a finite union of disjoint rooted trees, one asso-
ciates unions of linear orders, one order for each tree in the forest. Forests
are graded according to the total number of nodes. To begin with, we con-
sider forests with no ordering on element trees. For n = 4, the forest orders
and their cardinalities are given by

••••24 •
•
•
•1

•
•
•4

• •
•12

•
•

•
•12

•• •
•

'''''

• ººººº

•2

•

'''''

• ººººº

•8

• •

'''''

•
•

ººººº

•

3

•

'''''

•
•

ººººº

•

3

•

'''''

• ººººº

••1

(93)

The set contains 70 objects. Without labels, such forests appear in the
Connes-Kreimer renormalisation algebra of rooted trees, as given in ap-
pendix C. The forest coefficient [75] on unlabeled forests is the integer de-
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fined by the product of cardinalities

f =
∏
v

|{w : w ≥ v}| (94)

where v is the node set and w ≥ v if it lies above it on a path. For example,
the vertical tree at n = 3 has f = 6, because the bottom node contributes
three nodes, the middle contributes two, and the top node only itself. At
n = 3, the sum of f values equals 12. The labeled orders also give a count
of 12 for n = 3 forests. Verify that these two counts are dual in the sense
that they swap pairs of forests.

A noncommutative analogue orders the tree set within the forest [76].
There are then five distinct forests at n = 3, rather than four, and 14 at
n = 4. These are again the Catalan numbers. Now choose an order from
left to right on nodes at a level within a forest. Verify that there are then 3
forests at n = 2, and 16 at n = 3.

•
•
•

123, 231, 312, 213, 321, 132

••• 111

•
•
•

221, 212, 122

•
•
•

112, 121, 211

•

'''''

• ººººº

•
311, 131, 113

Ignore left right tree flips for asymmetric trees. The horizontal point set
now has only one labeling, since it must be ordered 123. These diagrams
are known as parking functions [77][78]. Their count for general n is

pn = (n + 1)n−1

The correspondence between the order types and the standard parking func-
tions [79] at n = 3 is indicated below. The parking functions are permu-
tations of sequences i1i2 · · · in such that ik ≤ k. On the vertical tree, the
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parking function entries just label the nodes freely. The 111 forest starts at
1 again for each root. The 212 forest chooses 13 for the root labels, as does
121.

The number p3 = 16 is associated to the A4 associahedron in a nice way:
it counts the 3-simplices in a natural triangulation of A4. One could divide
A4 into 24 simplices, by triangulating each face and placing a new node
in the centre of the polytope, but a more efficient 16 simplex picture uses
parking functions. Consider first the pentagon A3. The 3 noncommutative
forests at n = 2 label three triangles on an oriented chorded pentagon [79].
One selects chords that aim for the target vertex.
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This also demonstrates the chording for a square. When all faces on the
oriented A4 are chorded in this manner there are 24 triangles, but only 16 of
them can be parking functions. These 16 triangles sit on the four pentagons
and two squares, as shown below.

The source vertex defines an S3 hexagon, because the six S3 triangles
meet at the source. Although the parking functions divide A4 into simplices,
one could consider the remaining 8 triangles in the 24 surface triangles, and
label them with the words

223, 232, 222 331, 313, 333 233, 323 (96)

bringing us to 24 out of 27 three qutrit words, now labeling simplices created
with the additional central point inside A4.
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A decorated rooted planar tree has labels on all external leaves, including
the root. Decorations take values in a fixed set S. Decorated forests are
disjoint collections of decorated trees. We define a tree splitting contraction
[80], which sends a decorated tree with n edges to one with n − 1 edges.
On an internal edge, it simply contracts the edge. On an outside edge it (i)
contracts the edge (ii) moves the label to the second vertex and (iii) splits
the tree at this vertex, giving all subtrees the same label from that vertex.
The contraction of a tree T at an edge e is denoted T/e.

Example 5.4 The (21) tree splits into two at T/b,

??
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?
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ÄÄ
Ä??

??
a b c

d

7→ ??
??
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?

ÄÄ
ÄÄ

ÄÄ
Ä

a b

d b

c

Example 5.5 The tree

•
•

• • • •TTTTTTTT
???? ÄÄÄÄ

jjjjjjjj

splits into four unary edges on the contraction of the root.

All tree contractions within an Ad polytope are internal edge contrac-
tions, which do not create disjoint forests, so the dimensional increases
within Ad are simple examples of splitting contractions.
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Let Te denote the set of all decorated forests, graded by the total number
of edges e. A differential d : Te → Te−1 is defined using the splitting
contraction [80]. It also requires an orientation for a tree T , defined on the
set of edges E. An orientation is written w = e1 ∧ e2 ∧ · · · ∧ em, where m
is the cardinality of E. This defines an orientation class in {+,−}. Given
any permutation σ ∈ Sm, the orientation eσ(1) ∧ · · · ∧ eσ(m) differs from +
by the sign of σ. Let iw be the contraction e2 ∧ · · · ∧ em. The differential is
given by

d(T,w) ≡
∑

e∈E

(T/e, iw). (98)

It satisfies d2 = 0. Under the disjoint union product and ⊗ on orientation,
it also satisfies the Leibniz rule [80]

d((T1, w1)(T2, w2)) = d(T1, w1) ·(T2, w2)+(−1)e(T1)(T1, w1) ·d(T2, w2). (99)

5.5 Three Dimensional Traces

A tracing operation belongs to the realm of categories with duals, since dual
objects permit arcs in a planar diagram. However, trees also allow traces.
When two trees are glued together as a composition 1 → m → 1, there is
only one input and one output to be traced. These are joined by a loop
segment, drawn in the plane. Because planar binary trees have trivalent
nodes, they always glue to form surface graphs in three dimensions. For
example, the gluing of an upside down (12) and a (21) from S2 gives the
tetrahedron graph
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in a planar form. Let us denote an upside down tree in Sd by σ∗, where σ
is the underlying permutation. A trace of two objects in Sd takes the tree
σ∗ and glues it to a tree τ . In another example, the trace of (23415) with
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(15432) gives a pentagonal prism
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A similar trace diagram in Sd gives a d-gon prism. Even for S2 there is the
squashed can prism
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For S3 the trace tr((312)∗, (231)) of 1-circulants is the triangular prism,
which is a product of two basic simplices from the word monoid: one qubit
edge and one qutrit triangle. Triangulations of this prism define the permu-
tohedron S4.

For rooted trees, one can also construct the reverse gluing, as in the
creation of a density matrix. This requires more than one joining string.
For example, an associator (21) → (12)

33
33

33
3

®®
®®
®®
®

44
44

®®®®®®®

3333333

3333

(103)

is glued using three strings, to give another form of the tetrahedron.
A general ribbon or multitree diagram has n inputs and n outputs, per-

mitting several types of trace. The standard trace always matches the upper
and lower points in order, a process that requires n joining strings. When
arcs are freely available in the category, we consider other traces [81]. A plat
trace can be defined when there are 2n strands, which is the case for ribbon
diagrams. Instead of tracing from the top of the diagram to the bottom,
strings are used to join top points and also to join bottom points. Most
simply, one connects according to (12)(34)(56) · · · ((n−1)n), using the same
connections at the top and the bottom of the diagram. We will also use a
cyclic plat trace, which joins the points according to (23)(45)(67) · · · (n1).
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Example 5.6
(104)

Three twists τ1
2τ3

2τ5
2 in B6 are given the cyclic plat trace, to form a three

component link.

5.6 Associated Braids and Knot Invariants

Permutations in Sd are usually represented by crossing strings, running from
d points to d points in the plane. A braid diagram

(105)

permits crossing information in the third dimension. The braid group Bn

on n strings composes two diagrams by joining one vertically to the other to
create a new braid. As in appendix B, let τi represent the diagram with a
crossing between the i-th and (i+1)-th strings, so that the left string passes
over the right string, as in the top half of the diagram above. Then τ−1

i is
the diagram with the opposite crossing. Each group Bn has d generators
{τ1, τ2, · · · , τn−1}. Along with τiτj = τjτi for |i − j| > 1, the group laws
state that

τiτi+1τi = τi+1τiτi+1 (106)

for all i. The braid group Bn can be represented by either n × n or (n −
1)× (n− 1) matrices. The latter choice respects the role of B3 as the cover
of the 2× 2 modular group PSL2(Z) of integer matrices up to ±1 [82]. The
modular group has the generators

t1 =
(

1 1
0 1

)
t2 =

(
1 0
−1 1

)
. (107)

These satisfy the braid rule t1t2t1 = t2t1t2, but this rule collapses under the
additional relation (t1t2)3 = I2.

The two natural representations of Bn are known as the Burau represen-
tations [83][84]. The Burau representation of dimension n has a generator
τi, sent to a 2× 2 block in the n× n matrix,

Ii−1 ⊕
(

1− t t
1 0

)
⊕ In−i−1 (108)

48



with entries in the polynomial ring Z[t, t−1], assuming t 6= 0. At t = 1 the
permutations in Sn are recovered. The (n − 1) dimensional representation
is obtained [84] by observing that the matrices above act on n-vectors to
leave invariant the vectors whose entries sum to zero. Two B3 generators
are then given by

τ1 =
( −t 0
−1 1

)
τ2 =

(
1 −t
0 −t

)
. (109)

The pattern for higher n is indicated by the central B5 generator

τ2 =




1 −t 0 0
0 −t 0 0
0 −1 1 0
0 0 0 1


 . (110)

In this representation, (τ1τ2)3 = t3I2, so it does not collapse to the modular
group if t 6= 1 or t 6= ω3. It is faithful for B2 and B3 but not for higher
dimensional n [83]. However, in analogy to the construction of all permuta-
tions from S2 flips, we hope to understand braids by looking particularly at
B2 and B3. The full set of B3 generators is

τ1 =
( −t 0
−1 1

)
τ1
−1 =

( −1/t 0
−1/t 1

)
(111)

τ2 =
(

1 −t
0 −t

)
τ2
−1 =

(
1 −1
0 −1/t

)
.

Braid diagrams are traced with one connecting loop for each braid strand,
attaching a top node to the bottom. This creates a closed knot or link
diagram.

Modern link invariants [85][86] specialise to the older Alexander polyno-
mial ∆L(t), and this may be recovered from the (n− 1) dimensional Burau
representation as follows. Let the unnormalised Alexander polynomial be
defined by

∆L(t) = (1 + t + · · ·+ tn−1)−1 det(1− L) (112)

where L is the matrix for the link L, formed from the τi generators. We
will see that the polynomial coefficient comes from a determinant for unknot
braids. Using B3, verify that the unknot invariant ∆L = 1 is obtained from
τ1τ2. The unknot invariant should also be obtained from a diagram of the
form (105), such as τ1

−1τ2, but this gives

∆L = (1 + t + t2)−1 · ((1 +
1
t
)t +

1
t
) =

1
t
. (113)

In order to find the correct normalisation factor, we consider now the newer
knot invariant, the Jones polynomial.
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The Jones invariant VL(t) is defined by a skein relation. If three distinct
links differ by only one crossing, there is a relation between their invariants.
Let Vτ stand for the invariant when τ sits at the distinctive crossing. Then
VL(t) is given by [85][84]

t−1Vτ1 − tVτ1−1 = (t1/2 + t−1/2)VI2 (114)

where the identity I2 stands for two vertical strands. We assume that the
unknot is normalised to V (t) = 1. This is recursive, because we can always
switch crossings in a messy knot to obtain a simpler knot, and evaluate
invariants using the simpler diagrams.

Example 5.7 The three B3 unknot diagrams, τ1
−1τ2, τ1τ2 and τ2, differ in

only one crossing. The generator τ2 is a two loop link, but the other one
loop diagrams must satisfy VL = 1. Thus VL for two loops is (t1/2 − t−1/2).

Example 5.8 The trefoil knot τ1
3 in B2

is computed using a few steps. Focus on changing the top right crossing. The
two skein alternatives turn the trefoil into either a Hopf link or an unknot.
We have computed the Hopf link VH = t1/2 + t5/2. The skein relation then
states that VT for the trefoil satisfies

(t1/2 + t−1/2)VT = t−1(t1/2 + t5/2)− t

implying that VT = 1+1/t+ t− t1/2− t3/2 + t2. One often chooses a variable
q = t1/2, and a form of the skein relation that pulls out the determinant
1 + 1/t + t. In that case, the trefoil polynomial takes the standard form
VT = q4 − q3 − q.

Fixing a value of VL for the unknot is in fact sufficient to prove that VL

is a link invariant. But what has happened to the matrix invariant? We
would really like an invariant that makes direct use of matrix representations.
Recall that the unknot τ1

−1τ2 gave ∆L = 1/t. Let us list all such two crossing
braids in B3.

τ1τ2 =
( −t t2

−1 0

)
τ1
−1τ2

−1 =
( −1/t 1/t
−1/t 0

)
(115)

τ2τ1 =
(

0 −t
t −t

)
τ2
−1τ1

−1 =
(

0 −1
1/t2 −1/t

)

τ1τ2
−1 =

( −t t
−1 1− 1/t

)
τ1
−1τ2 =

( −1/t 1
−1/t 1− t

)

τ2τ1
−1 =

(
1− 1/t −t

1 −t

)
τ2
−1τ1 =

(
1− t −1
1/t −1/t

)
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Observe that in order to obtain ∆L = 1 for all these unknots, it seems we
require a correction factor of tk, where k is the number of under crossings in
the braid diagram. Recall that the writhe w of a link is the difference j − k
between the number j of over crossings and the number k of under crossings.
An inverse braid b−1 has j and k swapped, so that w(b−1) = −w(b). This
suggests considering a corrected Alexander polynomial ∆̃L(t) = tx∆L(t) for
some x depending on w and n, so that all one loop unknot diagrams have
∆̃L(t) = 1. Since I2 and powers of the B3 generators all have ∆̃L(t) = 0,
a factor such as tj+k would not appear in b · b−1. But what about longer
braids in B3? The unknot τ1τ2

−1τ1
−1τ2 needs a factor of t, but it has k = 2.

This suggests instead the definition

∆̃L(t) = t−w/2+1∆L(t) (116)

which yields ∆̃L(t) = 1 for all the above braids. This is the correct normal-
isation for B3. For general n [84], we have the matrix invariant

∆̃L(t) = (−1)w−n+1t−w/2+(n−1)/2∆L(t). (117)

The Jones polynomial agrees with ∆̃L for B3 braids. For L ∈ B3 a knot, it
is given by

VL(t) = tw/2−1(1 + t + t2 + tw+1 − t · det(I − L)). (118)

At w = 0 this reduces to

VL
0(t) = 1 +

1
t

+ t− det(I − L) + 1. (119)

That is, the special determinant for unknots is canceled out and the nor-
malisation set at 1. Writhe zero knots have a simple skein relation for
evaluating VL

0(t) known as the Kauffman bracket [87] KL. This does not
give a true knot invariant in general, because it does not account for the
non planar writhe. Instead of two crossings, it uses both the I2 diagram and
its rotation by π/2, a two arc diagram. This mixture of two arc pictures
is fundamental to all the combinatorics in this book, because it will repre-
sent S2. The initial normalisation is 1, and additional loops carry a factor
of −(t1/2 + t−1/2). Using diagram pieces to denote the invariant itself, the
bracket says

= t1/4 + t−1/4 (120)

When suitably normalised, the Kauffman bracket becomes the standard
Jones invariant VL on multiplication by a writhe factor (−1)w(t)3w/4. One
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can see the three dimensional invariance problem by considering a braid
bτd

±1 in Bd+1, for any braid b. The addition of the extra crossing τd
±1

clearly does not change the actual knot, although it shifts w by ±1. Yet
such a move would alter the Kauffman bracket. Chapter 8 looks more closely
at the relation between the Kauffman bracket and the Jones invariant.

Soon after the discovery of the Jones polynomial, a two variable skein
relation was found. It is known as the homflypt polynomial PL(x, y) [88],
and generalises the previous invariants. Like VL, it uses two crossings and
an identity diagram, but one is free to change the coefficient of the identity
so that the skein rule becomes

xPτ + x−1Pτ−1 + yPI = 0. (121)

The homflypt invariant distinguishes the mirror image of a knot, since it is
defined by PL∗(x, y) = PL(x−1, y). It is also functorial, in the sense that
P for the connected sum of two knots K1 and K2 is the same as PK1PK2 .
This invariant is related to the natural ribbon graph invariant, the Bollobas-
Riordan polynomial [89].

Braids appear in the renormalisation Hopf algebras of the Standard
Model [90][91][92], when tree vertices are transformed into nonassociative
braid crossings. The braids contain extra information coming from loops in
a Feynman diagram, and this may be encoded in chords joining two strands
in a braid diagram. The Standard Model particle spectrum [93] is given as
a set of ribbon diagrams in chapter 7, using the writhe 0 unknots from B3.
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6 Twistor Scattering Theory

Instead of working with Feynman diagrams, twistor quantum field theory
begins with polytopes in an abstract space whose dimension appears to
increase with the number of particles entering into a scattering diagram.
Although based on a continuum theory, the new diagram techniques work
towards an emergent, combinatorial construction for the Standard Model.

In this chapter we look at these techniques for N = 4 planar Yang-Mills
theory and N = 8 supergravity. While these are not Standard Model theo-
ries, there can be no doubt of their relevance to the true non local formula-
tion for the Standard Model. However, whereas the stringy supersymmetry
usually provides additional variables for the background geometry, for us it
is merely indicative of arithmetic structure, and we focus here solely on the
crucial combinatorial ideas.

Twistor space is a transform of complexified Minkowski space M to the
complex projective space CP3 [40][41]. We start with the matrix form for a
point in Minkowski space, namely a qudit path matrix

P =
(

XX XY

Y X Y Y

)
=

(
x3 + x0 x1 + ix2

x1 − ix2 x3 − x0

)
, (122)

where (x0, x1, x2, x3) are the usual coordinates for Minkowski space. The
variables X and Y are spinors. For commutative variables X, Y · · · , the
determinant of P is clearly zero. This determinant is a lightlike interval for
the Lorentzian metric. Looking back at the word monoid, we see that P
comes from a 4-dit matrix, and noncommutativity is directly associated to
the metric.

For the twistor correspondence to work, the points ofM need to be com-
plexified, so that we may consider complex spinors. And M is compactified
with a lightcone at infinity. A so called infinity twistor is crucial to the in-
troduction of a mass scale in the N = 8 theory, and is the reason that mass
is associated to higher dimensional sheaf cohomology in classical twistor
geometry.

First, the group G = SL2(C) of unit determinant matrices acts by con-
jugation on P ,

g†
(

XX XY

Y X Y Y

)
g. (123)

Here SL2(C) is locally the Lorentz group, because it clearly preserves the
determinant

XXY Y −XY Y X = −x0
2 + x1

2 + x2
2 + x3

2. (124)

As the double cover of the Lorentz group, G permits the introduction of
the spinors. Twistor space T is defined by pairs of spinors λ and µ, so that
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a twistor Z = (λ, µ) can be a vector in C4. The transformation between
projective twistor space PT and Minkowski space is a span 1-arrow

F12(T)

xxqqqqqqqqqqq

&&MMMMMMMMMMM

M = F2(T) PT = F1(T)

(125)

in a category of flag manifolds [41], which are sequences V1 ⊂ · · · ⊂ Vn of
subspaces of a vector space. To begin with, PT is CP3, the one dimensional
subspaces of C4. Complexified Minkowski space M is a flag manifold when
viewed as a Grassmannian, namely the set of all 2-planes in C4. This is
what F2 means here.

Local coordinates for P may be expressed in Grassmannian form as a
4×2 matrix, [P, I2]. The projective space CP3 similarly has homogeneous 4-
vector coordinates [iPv, v], where v = [v0, v1] are homogeneous coordinates
for CP1, the Riemann sphere. A point in M is mapped under the span to
such a sphere in PT, which we think of as a celestial sphere. The coordinates
for F12 are [P, v], making it a five dimensional space.

The standard coordinates for T start with the spinor µ, which is usually
written with an index, as in µA′ = (µ0′ , µ1′). A twistor is then a spinor pair
Z = (λA, µA′) with distinct indices. One usually works with a dual pair of
twistor spaces, with a twistor W ≡ (µ, λ) dual to Z. When the spinors are
real, the conformal group acts simply as SL4(R) on R4, and this covers the
Lorentz group.

As 4-vectors, an independent Z and W define a two dimensional plane
in T. These planes form a fibre bundle over the Grassmannian manifold
Gr(2, 4). Recall that a fibre bundle over a manifold M is an arrow π :
E → M with fibre F such that M is covered with sets Ui and there are
homeomorphisms φi : E ' Ui×F on E restricted to Ui [35]. The transition
functions gij = φiφj

−1 on F take values in a structure group G.
A useful characterisation of the Grassmannian G(2, 4) lives in P(

∧2C4),
for the exterior algebra

∧2C4. The exterior algebra has basis 2-forms {v1 ∧
v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4} in terms of the basis vi for C4. A
Minkowski Grassmannian point [U, V ], with coordinates viewed as vectors in
C4, maps to the 2-form U ∧V [41]. This gives a set of complex vij satisfying
the Plücker relation

v12v34 − v13v24 + v23v14 = 0, (126)

where vij is shorthand for homogeneous coordinates in P(
∧2C4). Later on

we will see that Plücker coordinates are closely connected to the entangle-
ment classification for three qubits, where C6 is viewed naturally as a three
qubit state space.
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In general, the path matrix (122) is noncommutative, and perhaps a
projection in a 2 × 2 Jordan algebra. The matrix requires an alphabet of
four letters, so it is a submatrix of the length 2, d = 4 word monoid matrix




XX XY XX XY

Y X Y Y Y X Y Y

XX XY XX XY

Y X Y Y Y X Y Y


 . (127)

Geometrically, the 2 × 2 block P determines a square, fitting into the di-
vided tetrahedron simplex for {X, X, Y, Y }. Then the first two terms of the
Plücker relation (126) give the determinant of P , while the whole relation
comes from the tetrahedron.

The full twistor transform maps the solutions of simple massless field
equations on Minkowski space to cohomology classes on twistor space [94][41].
The long term difficulty in extending this functorial cohomology to massive
fields was a major motivation for studying universal motivic cohomology.
Classically, massive solutions to the Klein-Gordon equation are possible [14]
using a pair of massless spin 1/2 fields, which couple to form a non trivial
H2 sheaf cohomology. Such fermion pairs are drawn concretely in the ribbon
diagrams of the next chapter.

6.1 Scattering Amplitudes

In category land, traditional supersymmetry does not introduce further
physical states. It is rather a statement about the underlying number fields
of the theory [95]. In particular, saying that a theory has N = 4 super-
symmetry just means that it is expressed in quaternionic geometry. Twistor
theory currently focuses on the planar N = 4 supersymmetric Yang-Mills
theory, wherein we consider an S matrix for massless particle scattering,
such that each particle is characterised by a momentum p and helicity ±.
We can think of these particles as gluons.

The color stripped scattering amplitude components are M(λi, λi, hi),
where hi is the ± helicity and spinors are used to specify the momentum
[96][97][98][99]. These components fit into the full tree amplitude

An = gn−2
∑

Tr[T i1T i2 · · ·T in ]M(λi, λi, hi) (128)

which includes the T i matrices of the fundamental representation for color
SU(3). The helicity sign will be given by a left or right leaning tree leaf,
since helicity is secretly the handedness of a particle braid and the tree
orientation is a way of lining up the particles in color space.

Recall the Mandelstam variables for the s, t and u channels [100]
GGG
ww

w
www
GG

G1 2

34 s

TTTT

jjjj
jjjj
TTTT

1 2

34 t

OOO

ooo OOO
OOOoo

nnnn1 2

34 u
(129)
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with s + t + u =
∑

i mi
2. That is, s = (p1 + p4)2, t = (p1 − p2)2 and

u = (p1 − p3)2. In the zero mass limit s ' 2p1 · p4, and so on. The particle
momentum is now expressed in twistor variables as pi = λiλi, where in
general the two variables are independent. Momentum conservation

∑
i pi =

0 is used to define closed polygons of momenta in a dual twistor space, given
by n coordinates such that xi+1 − xi ≡ pi. These polygons are dual to the
tree diagrams that usually label the Ad polytopes, or a cyclic variant such
as the cyclohedra.

In what follows we restrict to real spinors [96]. Under an SL2(C) Lorentzian
transformation

λi 7→ φiλi λi 7→ φi
−1λi (130)

the amplitudes for a spin s particle should transform as

M(φZ,−) = φ2(s−1)M(Z,−) M(φZ, +) = φ−2(s+1)M(Z, +). (131)

The degrees here come from the anti self dual and self dual character of
the components, via cohomology. The amplitudes are expressed in terms of
basic invariants for the Lorentz group. These are

[λ1λ2] ≡ εij(λ1)i(λ2)j 〈λ1λ2〉 ≡ εij(λ1)i(λ2)j (132)

for the antisymmetric tensor ε. That is, one is in terms of W coordinates
and the other in terms of Z. In the amplitudes these invariants are often
abbreviated to [12] and 〈12〉, for particles 1 and 2. A Mandelstam variable
takes the form s = 〈14〉[14], and so on.

An n particle amplitude is abbreviated to M(123 · · ·n). The first non
trivial M(123 · · ·n) have two negative (resp. two positive) helicities, and
these are known as MHV (resp. MHV) amplitudes [101]. We write M(−−
+ · · ·+) for the helicity configuration. For the minimal three point MHV
configuration (+ +−), the amplitude is given by

M(+ +−) =
[12]3

[13][23]
δ(λ1λ1 + λ2λ2 + λ2λ2) (133)

including the momentum conservation delta function. Ignoring the delta
function, the four point MHV amplitude

M(−−++) =
〈12〉4

〈23〉〈34〉〈41〉 (134)

indicates the general MHV pattern. For k extra negative helicities, we have
the NkMHV amplitudes. The first interesting six gluon MHV amplitude
(−−+ + ++) equals simply

〈12〉4
〈23〉〈34〉〈45〉〈56〉〈61〉
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There is also a delta function for momentum conservation here, but this
is understood. Observe how the negative helicity homogeneity |2s− 2| = 4
appears in the numerator for the particles 1 and 2, giving the required phase
scaling. For a general MHV amplitude, the numerator is the same and there
are n − 1 invariants on the denominator. Note how the MHV amplitudes
are easily written in the Z variables, while the MHV ones use W .

These expressions for the MHV amplitudes originally arose from scruti-
nising concrete calculations using the Feynman method, when in the 1980s
Parke and Taylor [102] were surprised to find such a simple answer. More
recently, it has become clear that the twistor definition of the amplitudes is
vastly simpler than the original Feynman form [103]. The modern advantage
is our willingness to disallow spacetime locality its separate existence, and
focus instead on unitarity.

In [104], scattering was considered in terms of on shell processes, which
do not permit arbitrary momenta in internal loops. A BCFW shift selects
two legs, n − 1 and n, and interpolates the twistor variables for these legs.
For n particle tree amplitudes, this results in a rule [104][105]

M(123 · · ·n) =
∑
+,−

n−3∑

i=1

M±(n123 · · · i) 1
P (n, i)2

M∓((i + 1) · · · (n− 2)(n− 1))

(135)
where P (n, i) is the sum of momenta pn + p1 + p2 + · · ·+ pi. In other words,
there is a recursion rule that factorises an n point amplitude into a sum over
products of amplitudes for a smaller number of particles. The two particles
n − 1 and n have been singled out in this expression, breaking the cyclic
invariance. In a twistor diagram [106], the two legs obtain a BCFW bridge.

µµµµ

,,,, •◦____
n− 1 n

TTT...
(136)

The black dots will stand for the Z variables and the white dots for the W
[96]. In a general twistor diagram, the twistors define ribbon vertices [107]

• ◦
ÄÄ

ÄÄ
Ä

??
??

?
AA

AA

}}
}} (137)

where the anticlockwise and clockwise vertex orientation is given respec-
tively by the permutations (312) and (231). The boundary of an amplitude
diagram is again cyclic. The permutations (12) and (21) are also now ribbon
strips, with an orientation. A modern twistor diagram with n legs defines
a decorated permutation σ ∈ Sn [23][107]. For four legs, there is a kind of
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crossing flip

→

??? ÄÄÄ

ÄÄÄ ???

??? ÄÄÄ

ÄÄÄ ???

•

•◦

◦

•

•◦

◦
(138)

of Z and W nodes. A permutation in S4 defines four paths through the
diagram disc, giving 8 edges on the four legs of a planar ribbon graph. The
identity (1234) can be drawn with no crossing points

21

34

(139)

using ribbon edges that loop back to the same vertex. Thus the S2 permu-
tations are given by the pictures

(21) (12)
(140)

This is a crucial reinterpretation of the identity ribbon strip, because as
we will see in the next two chapters, the usual planar pictures for S2 are
precisely the other way around. This existence of a dual representation for
S2 suggests a study of interpolations between (21) and (12), giving elements
in a group algebra FS2. In another example, the permutation (3412) requires
a twistor square.

21

34

•◦
• ◦
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GG
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(141)

By convention, we choose to turn left at the white dots and right at the
black, and each leg has one incoming and one outgoing path. Then there
is always a ribbon segment associated to each edge of the internal diagram.
The permutation is uniquely determined by such a set of ribbon edges. An
S6 example is

3

1 4

6

2

5

◦
◦
•

◦

•
•

•

◦•◦

**
*

¨̈jjj
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***
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ÄÄÄÄÄ

JJJ
JJ

\\\\\

;;;;;

(142)
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where we see the six pentagons and three squares of the A4 associahedron,
except that the twistor object has 16 vertices and not 14.

These decorated permutations give a natural choice of Grassmannian
variables for a (k+2)×n matrix [107]. These are the G(k+2, n) Grassman-
nian homogeneous coordinates, where a (k + 2)× (k + 2) submatrix is fixed
at Ik+2. This generalises the Minkowski space G(2, 4) coordinates, which
now correspond to 4 particles in a (− − ++) configuration. Reducing the
number of legs with a BCFW type cut, a Minkowski point could be drawn
as a two leaved tree

//////

²²²²²²

− +

−+

(143)

with a double edged root. Recall that the unsigned tree stands for the unique
associahedron point A1. All sign configurations can be given by a tree so
that left leaning leaves get a minus sign and right leaves a plus. In other
words, the MHV rule, which says one must have at least two negative helic-
ities, comes down to the emptiness of associahedra below the fundamental
point. The three particle trees that are required for gravity then reduce to
a diagram with only one leaf, either left or right leaning, and this gives two
distinct representations of the empty set.

The columns of the Grassmannian matrix span a planar subspace of n
dimensional space. The homogeneity sets k + 2 columns to the identity
matrix, as in

M13 ≡
(

c12 1 c32 0
c14 0 c34 1

)
(144)

for the Minkowski space configuration (+ − +−). Mij is indexed by the
column choices, so that the remaining indices are used for the rows. In
total, there are

m =
(

n
k + 2

)

such matrix minors, the full set giving coordinates Mij for the projective
space Pm−1 via the Plücker map. The Plücker relation (126) holds between
the determinants of the six minors in the four point case. The interesting
part of the Grassmannian is positive [108][109], meaning that all minors are
positive.

For these Yang-Mills diagrams, there is a globule reduction rule known
as bubble deletion. This is the categorical rule (274)

◦
• = (145)
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often used for two distinct bases in a symmetric monoidal category. Finally,
the full recursion rule for an n particle l loop amplitude is given by a sum
over BCFW bridge tree factorisations along with on shell loop terms

l − 1

µµµµµµµ

,,,,,,,

•◦
n 1

TTTTTT
...

(146)

where the little loop has an ingoing λjλj momentum and outgoing −λjλj

one.

6.2 N=8 Supergravity

In the twistor formalism, there is a close link between the N = 4 theory
and N = 8 supergravity. The spin 2 tensors required for gravity are, in a
suitable sense, squares of the Yang-Mills ones [110][111]. This is known as
color kinematic duality. First, let the numerator of a term in a Yang-Mills
tree amplitude be expressed as cjnj , where cj are color factors related to the
structure constants of the Lie algebra. Duality imposes a relation between
the cj and nj . That is, given three terms that are related by the Jacobi rule


444− =GGww (147)

a relation c1 ± c2 ± c3 = 0 implies that n1 ± n2 ± n3 = 0 [111]. The
supergravity amplitudes have numerators like nj

2, namely two kinematic
factors. The three particle spin 2 amplitude is just M2, where M is the spin
1 Yang-Mills amplitude. The four point graviton amplitude [112] is

M(+ +−−) = GN
〈34〉4[12]4

〈14〉[14]〈12〉[12]〈13〉[13]
(148)

where GN is Newton’s constant. The denominator is an stu factor, using
the convention above. This is clearly a product of Yang-Mills M(− − ++)
and M(+ +−−) amplitudes, whereas the three point case

M(−−+) =
〈12〉6

〈13〉2〈23〉2 (149)

does not mix Z and W invariants.
Physical localisation in twistor scattering comes from the observation

that factors in internal propagators, such as (p1 + p2 + p3 + p4)−1, give
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singularities precisely when the internal particle is real. This is now an
extra condition on the amplitudes, and a strong constraint on the spin s.
For spin 2 there was an stu factor in the four point case. The only other
solution for a fixed s theory is a factor s−1 + t−1 + u−1, appearing in a spin
zero φ3 scalar field theory [112].

There is also a straightforward recursion rule for the gravity amplitudes.
Recent results include an exact tree level formula for the N = 8 theory. In
[21][23], the NkMHV kinematic invariants are defined by an n × n matrix
K(k + 2). This is paired with a matrix K for dual variables. We mention
the MHV case only. Define the phases [23]

φij =
[ij]
〈ij〉 i 6= j (150)

φii = −
∑

j 6=i

[ij]〈jx〉〈jy〉
〈ij〉〈ix〉〈iy〉

which are independent of the choices x and y, for momentum conservation
on the n points. Now let

cijk = (〈ij〉〈jk〉〈ki〉)−1. (151)

Then the n point amplitude is expressed in terms of the cijk and φij as a
new kind of determinant for the symmetric matrix Kij , which has entries
φij . One needs to delete 3 rows and 3 columns from Kij , namely ijk and a
complementary rst. These yield a (n − 3) × (n − 3) minor, called Φrst,ijk.
Let σrst,ijk be the permutation in Sn sending (ijk12 · · ·n) to (rst12 · · ·n).
Then the important part of the gravity amplitude is just

M ′(12 · · ·n) = (−1)n+1sgn(σrst,ijk)cijkcrstΦrst,ijk. (152)

Despite appearances, it does not depend on the permutations. The full
amplitude M(12 · · ·n) is essentially a product det(K)det(K) of such reduced
determinants [21]. The reduced determinant at NkMHV requires n− k − 3
contractions.

As a ribbon graph, the Jacobi rule 147 is similar to the braid skein dia-
grams when the internal propagators are cut out. The two propagator edges
are replaced by joins along the ribbons, and this looks like three S2 moves,
one for each diagram. A similar thing happens for the point particle line
diagrams, except that the internal edge is only replaced by the endpoints.
In this way, the Jacobi rule is dual to the Jones skein relation.

6.3 Grassmannians and Associahedra

With two rows in a k = 0 MHV Grassmannian matrix, there are (d−1)(d+
2)/2 + 1 minors Mij , for d = n− 1. Recall that (d− 1)(d + 2)/2 counts the
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number f1,d of codimension 1 faces of Ad. This is not the diagram corre-
spondence above between A4 and six points, which requires d = n−2. That
is, the categorical polytopes are contributing combinatorics at several levels
of the n particle scheme. This is an expected feature of motivic cohomology,
as in ordinary homology theories.

d 2 3 4 5 6 7
f1,d 2 5 9 14 20 27

To account for the one missing minor, we choose to ignore the sign configu-
ration (+−· · ·−+) that puts the two + helicities at the start and end. This
leaves f1,d signature classes for the permutation group Sn. For example, the
pentagon A3 has edges labeled by the five minors

//
//

//

²²
²²
²²

GGGGGGGGGGGG

wwwwwwwwwwww

−+ +−
+−+− −+−+

+ +−− −−++
(153)

This labeling is distinct from the canonical signs attached to the four leaved
trees at the vertices, where a minus sign belongs to a left leaning leaf. In
general, we now have a projection Sn+1 → An−1 that selects the signature
classes of MHV type. Similarly for the MHV case. These signatures are
vertices on the parity cube in the central dimension n. For codimension x
on Ad, the number of faces is

fx,d =
1
n

(
n− 2

x

)(
n + x
x + 1

)
(154)

in terms of n = d + 1. This selects minors for both n − 2 particles and
n+x particles, where x specifies k. The number of minors for k+2 negative
helicities and n particles is counted by lattice paths of length n. The paths
are drawn on a (k + 2) × (n − k − 2) rectangle. Alternatively, we can use
marked boxes in a rectangular Young diagram of the same shape.

Example 6.1 For the four particles that label the pentagon edges, omit
the empty Young diagram. The five remaining lattice paths are anchored at
the top right corner of the diagrams.

◦◦◦ ◦◦◦ ◦ ◦◦◦◦ ◦

These diagrams label the Minkowski space minors of Gr(2, 4).

Consider labeling the interior nodes of a signed binary tree so that each
edge has ends forming a ± pair [113]. On the dual polygons, this would
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correspond to labeling both outer edges and chords, so that all triangles in
the chorded diagram have mixed sign sets. That is, no triangles of form
(−−−) or (+ + +) are allowed. On the index hexagon for A4, this selects
the two points that meet three pentagon faces and no squares. Since square
faces will typically mark braid crossings, it is not surprising that they are
trivial in the planar theory. Let us attempt to assign such signs to the
pentagon of pentagons
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The horizontal chord in the top right pentagon must be a − by the triangle
rule. This forces the one other chord to be marked with a + sign. Moving
around four sides of the large pentagon, all chord signs are fixed by associator
edges. But then, as we return to the start, the last pentagon will have the
wrong signs on an internal chord. The required additional sign flip suggests
turning the pentagon into a hexagon; this is in general the extension to
permutation groups.

Observe that only three vertices of the pentagon have some freedom in
assigning signs to chords. These are all equivalent under cyclic shifts. In
the end, there is only one vertex for the (−−+−+) sequence and one for
(−−−+ +), and these configurations are counted by the Catalan number
C2, the vertices on an associator edge A2. As n increases, there are more
possibilities for the chordings, but the correct count of sign configurations
is always Cn.

Consider now the canonical leaf signs for helicity. Once again, let k + 2
be the total number of minus signs, and let r be the number of + signs. For
a given k, the number of terms in a scattering amplitude is given by the
Narayana numbers. Recall from chapter 5 that the collection of Narayana
numbers, for all possible k, sums to the Catalan number associated to n.
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For n points,

Cn−3 ≡ 1
n− 2

(
2(n− 3)
n− 3

)
(156)

for n ≥ 3. For example, at n = 5 we take the polygon with n− 1 = 4 sides,
and this has two possible chordings, giving C2. The Catalan numbers are
decomposed into Narayana numbers N(k, j) with Ck =

∑k
j=1 N(k, j). In

terms of n and r,

N(n, r) =
1

n− 3

(
n− 3
r − 1

)(
n− 3
r − 2

)
(157)

so that N(6, 3) = 3 recovers the three internal vertices of the pentagon A3.
The A3 signs are given in (83). After choosing a root, the other helicity
signs correspond to the direction of the leaves, with − for a left branching
and + for right. Since these signs are canonical, all the higher dimensional
cells of an Ad polytope are defined as usual.

6.4 Symbology and Polylogarithms

Multiple polylogarithms are ubiquitous in scattering theory. This large class
of functions satisfies numerous functional relations. Symbology [114][115][116]
is the process of mapping a given polylogarithm to a unique object in a cate-
gorical algebra so that the combinatorics of functional relations are respected
by this algebra. Polylogarithms are defined [117] recursively in terms of com-
plex parameters by

G(a1, a2, · · · , an−1;x) =
∫ x

0

dt

t− a1
G(a2, a2, · · · , an−1; t) (158)

starting with G(0) = 0 and G(x) = 1 for x 6= 0, and then G(0;x) = log x.
This class includes the classical polylogarithms Lin−1(x) = −G(0, · · · , 0, 1;x)
and nested sums such as

G(0, 0,
1
x3

, 0,
1

x2x3
,

1
x1x2x3

; 1) = (−1)3
∑

i1<i2<i3

x1
i1x2

i2x3
i3

i1
1i2

2i3
3 .

Sometimes the shorthand 0m is used for a string of m zeroes. In particular,
the multiple zeta values ζ(s1, · · · , sk) [118][119] for si ∈ N, called MZVs for
short, are given by G(0sk−1, 1, 0sk−1−1, · · · , 0s1−1, 1; 1). These MZVs occur
in the basic n point Veneziano amplitudes, which may be obtained through
cohomological integration on spaces described by the categorical polytopes
[120][121]. A multiple zeta value of depth j and weight n is a function of the
form

ζ(k1, k2, · · · , kj) =
∑

n1>n2>···>nk≥1

1

nk1
1 nk2

2 nk3
3 · · ·nkj

j

(159)
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for positive integers k1, k2, · · · such that n =
∑

ki. Higher order classical
polylogarithms [122] are defined iteratively as

Lin(z) =
∫ z

0
Lin−1(z)

dz

z

and in particular Lin(1) = ζ(n). The symbol S(G) associated to an MZV
will always be zero, due to the parameters occurring in G. For instance,
when some si ≥ 2 the MZV symbol contains at least one term equal to 1,
coming from a (0, 1) subsequence in the arguments, and this forces a zero
symbol.

By construction then, the symbol algebra is torsion free, meaning that
any occurrence of a root of unity, such as 1 itself, kills the symbol. This
reflects the simple fact that S(log x) = x with log 1 = 0. In particular, the
pole of the Riemann zeta function at s = 1, which equals −G(1; 1), has
symbol 0.

Since S(log x) = x, we may think of the symbol S(G) as a kind of
exponentiation map, which turns arithmetic sums into products. Moreover,
since S acts on functions, it might be viewed as a functor on a subcategory
of functions on {Cn}. The pointwise product G1G2 of two functions should
then be sent by S to a product for the symbol algebra. At the level of
universal algebra, the shuffle rule

x y ≡ x⊗ y + y ⊗ x (160)

interprets x y as S(log x log y) in the target category. This becomes a
functorality law for the symbol algebra.

Given a vector (a1, a2, · · · , an−1) of complex singularities, a general poly-
logarithm function G(a1, a2, · · · , an−1; x) of weight n−1 is referred to simply
as a polylog. The symbol S(G) [114][115] of a polylog G is an object in a
tensor algebra of functions in the parameters (a; x) ≡ (a1, a2, · · · , an−1; x) of
G. Words W of the form w1⊗· · ·⊗wk in the tensor algebra form an algebra
with respect to the shuffle product W1 W2 (see appendix C). In summary,
the full symbol algebra satisfies the following axiomatic properties.

• Functorality: S(G(a1, a2, · · · , aj ; x)G(a1, a2, · · · , ak; y))

= S(G(a1, a2, · · · , aj ; x)) S(G(a1, a2, · · · , ak; y)).

• Distributivity: function products split, as in U ⊗ (xy) ⊗ V = U ⊗
x⊗ V + U ⊗ y ⊗ V .

• Scale Invariance: since, for all λ ∈ C∗, G(λa; λx) = G(a;x) provided
a 6= 0, the symbol must satisfy S(G(λa; λx)) = S(G(a; x)).

• No Torsion: for ωn the nth root, U ⊗ ωn ⊗ V = 0, for all n ∈ Z.
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Functorality implies that

S(log x log y) = S(log x) S(log y) = x⊗ y + y ⊗ x. (161)

Here the symmetric expression x⊗y+y⊗x is associated to the concatenation
xy, since the exponential of log x log y is xy.

An example of a classical polylog is Li2(x) = −G(0, 1;x), which has
symbol −(1 − x) ⊗ x. Another example will be determined in the next
section by a set of three chorded, labeled polygons P . These new diagrams
use a special function assignment f , which sends the simplest two variable
globule diagram P (y; x) to

f(P (y; x)) = 1− x/y (162)

when y 6= 0, and to x otherwise [114][115][116]. Why this particular func-
tion? Firstly, the ratio x/y enforces scale invariance on all S(G). When y =
0, P (0;x) must recover S(log x) = x. The basic polylog −Li1(x) = G(1;x)
has symbol (1− x), since this is just log(1− x).

6.5 Decorated Polygons for Symbols

Decorated trees [80] appeared in section (5.3). Their dual polygons are
used to construct the symbol for a polylog. To each polylog G we assign a
decorated, rooted polygon P (G) following [80][123].

For an n argument polylog G(a1, a2, · · · , an−1; x) there is an n-gon with
halved sides, forming a 2n-gon with alternating black and white vertices,
such that the white vertices mark the midpoints on the sides of the orig-
inal n-gon. The sides of the n-gon are labeled with the arguments of
G(a1, a2, · · · , an−1; x), so that x marks a root edge. The orientation of
P (G), left or right, is specified by choosing a vertex at either the left or
right hand side of the root edge.

A maximal chord diagram is a set of n−2 non intersecting chords on the
2n-gon, with each chord joining one black and one white vertex, but not an
adjacent vertex, as in the figure
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where the top edge is a left oriented root edge, holding the x variable. The
symbol S(G) is constructed from the set of all maximal chord diagrams
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for P (G). To start with, at n = 3, there are three chorded triangles for
G(a, b; x). •
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In what follows, we assume a left orientation for the polygons, so that
labels are read in an anticlockwise direction. The chording turns the 2n-gon
into a polygon chopped into squares. Observe that this 2n-gon is dual to a
tree with ternary vertices. So accounting for the root, a hexagon for n = 3
would become a tree with five leaves, and two ternary nodes.

The polygon is decomposed using the splitting contraction of (5.3) on
the edge at the head of a chord. Thus the first chorded triangle, drawn
dually as trees, becomes

55
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55 ±±±±±±±
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a b

x

7→
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b

b

x
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a forest. The top label is taken from the root side of the globule. Using
trees dual to hexagons, and remembering the root, the three triangles for
n = 3 are labeled by the three square faces

333333

®®®®®®

/// ²²²
333333

®®®®®®

+++++

333 ®®®®®®

333333

¶¶¶¶¶

®®®
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of the A4 associahedron. For any n we obtain index diagrams for certain
codimension n − 2 faces of A2n−2, which are always of dimension n − 1.
There are n!/2 such faces, which can be seen inductively. Fixing one initial
chord, there are (n − 1)!/2 ways to cut the remaining (2n − 2)-gon by the
remaining chords. There are then n rotations of each such diagram.

Given a maximal chord diagram, there are associated linear orders with
n−1 vertices. These are the internal orders of the dual decorated tree. Each
vertex is labeled with a pair (u, v) of variables from the decorated diagram,
representing a rooted globule with sides u and v. For the triangles, there
are two vertices in the unique order,

•
•

(x, b)

(b, a)

•
•

(x, a)

(a, b)

•
•

(x, b)

(x, a) (167)

with globule labels determined as above, by contraction. Observe that each
vertex on a linear order is a node on the dual tree. The orders are simply
paths through the dual tree, with the root node at the top.

There remains only a sign problem in the symbol construction. This uses
the orientation that was required for the differential on trees, as in chapter 5.
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The symbol obtains a factor of (−1)k, where k is the number of backwards
arrows, as follows. Orient every chord on the polygon with an arrow head
at the white vertex. An arrow is backwards if its tail starts at a vertex to
the right of its head, with the string of edges read clockwise from the root
vertex and ending with the root edge. For example, only the first triangle
has a backwards chord. Finally, the symbol for G(a, b; x) is

S(G(a, b; x)) = −(1−x

b
)⊗(1− b

a
)+(1−x

a
)⊗(1−a

b
)+(1−x

b
)⊗(1−x

a
), (168)

reading the function assignments, as in (162), from the linear orders. For
general polygons, the symbol is obtained via a sum over all maximal sets P ,

S(G) =
∑

P

(−1)k
∑

orders

f(u1, v1)⊗ · · · ⊗ f(un−1, vn−1) (169)

using the above algorithm.

Example 6.2 The 12 octagons for G(a, b, c;x) are given by chord rotations
of the three diagrams
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There are three diagrams with V shaped linear orders, which have symbol
terms of the form

−f(b, x)⊗ f(a, b)⊗ f(c, b)− f(b, x)⊗ f(c, b)⊗ f(a, b)

−f(c, x)⊗ f(a, x)⊗ f(b, c)− f(c, x)⊗ f(b, c)⊗ f(a, x)

f(b, x)⊗ f(a, x)⊗ f(c, b) + f(b, x)⊗ f(c, b)⊗ f(a, x)

and the other 9 diagrams contribute terms like f(a, x)⊗ f(b, a)⊗ f(c, b).

In general, there is also is a contraction differential that defines a dif-
ferential graded algebra of polygons with a ∧ product, where the symbol
belongs to the associated ⊗ coalgebra. This is known as the bar construc-
tion [124][80][125]. Polygon differentials are closely related to the comulti-
plication for the Hopf algebra of rooted trees, underlying renormalisation
theory. In the symbol calculus, the polygon label set (a1, · · · , an−1;x) de-
fines a polygon cocycle. With both algebra and coalgebra structures, the
polygons form a commutative Hopf algebra. It is commutative because the
disjoint union of trees is taken to be commutative, but this could be modified
to noncommutative forests.
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Only a few basic function types occur in symbol terms. Essentially, these
are listed by the permutation group S3 [123],

x =

(
1 0 0
0 1 0
0 0 1

)
1
x =

(
0 0 1
0 1 0
1 0 0

)

1
1−x =

(
0 1 0
0 0 1
1 0 0

)
x

x−1 =

(
0 1 0
1 0 0
0 0 1

)

1− 1
x =

(
0 0 1
1 0 0
0 1 0

)
1− x =

(
1 0 0
0 0 1
0 1 0

)
(170)

where function substitution is the group operation. For example, substi-
tuting 1/x into the variable in 1/(1 − x) gives x/(x − 1). This means that
(231)(321) = (213). The sum of all six functions gives the ordinal 3, just
like the sum over S3 determines the 3×3 representation of 3. The coidentity
1/x is the inverse of x as an up down matrix reflection, and similarly for
the other functions. Recall that such a matrix symmetry is captured by the
permutation signature classes, with signature string reversal and sign flip-
ping. In terms of logarithms, this symmetry is the additive inverse between
log x and − log x.

This substitution form of S3 is the same as the S3 action on the argument
z of the j-invariant for elliptic curves [126]. That is, each function in z is
also a ratio in terms of roots of a cubic polynomial. For example, for (312)
we can take z/(z − 1) = (e2 − e3)/(e2 − e1). Recall that the ribbon graph
for the j-invariant is the two loop curve in the complex plane with trivalent
nodes at ω6 and its conjugate. There are also special bivalent points on the
real line, defining a triangle on R∪∞. This is the source of the S3 symmetry.

Remark 6.3 In one complex dimension, a closed string diagram is a surface
of genus g. Surfaces with n marked points may be viewed as ribbon dia-
grams. An abstract conformal field theory is defined as a categorical struc-
ture for ribbon graphs [24][25], requiring mainly the pentagon and hexagon
laws. These are most easily understood by turning the surface diagrams
into line graphs [127], where the number of loops in the graph corresponds
to the genus g. The pentagon rule is then the basic associahedron rule for
four leaved trees, cut out of the surface graphs. In a conformal field theory,
one labels the tree edges with graph data. This extends the composition on
the pentagon and hexagon to matrix rules.

As smooth surfaces, ribbon graphs have no automatic internal edges, but
we permit branched surfaces, defined using ribbon vertices. Chords drawn
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on a ribbon strand across a vertex
********

········

'''''

ººººº
//

/
(171)

secretly turn the ribbon back into a tree graph, using associated lines. Such
ribbon vertices may be glued into branched surface diagrams, and these are
interesting as universal templates for knots, removing the need for a third
dimension.
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7 The Ribbon Particle Spectrum

In the Standard Model, the Higgs mechanism [128] introduces mass genera-
tion for both the electroweak gauge bosons and all fermions appearing in the
Lagrangian. A particle with the properties of a Higgs boson was discovered
in 2012 by the ATLAS [129] and CMS [130] experiments at the LHC.

Yet despite this success, we know that the correct description of elec-
troweak symmetry breaking is not entirely a local one. We expect both
spacetime and gauge symmetries to emerge from a richer arithmetic struc-
ture for the information of quantum states. In this chapter, ribbon graphs
are used to list the fundamental particles. Unlike diagrams for a local field
theory, these graphs are not meant to be directly associated to a spacetime
or momentum space.

Fortunately, ribbon graphs retain some aspects of gauge symmetry, as
representations of finite groups. But the representation types that appear
can differ from those of the local Lagrangian, which one imagines is recon-
structed in the world of infinite dimensional matrices, where the continuum
resides. The ribbon graphs make both left and right handed fermions into
adjoint representations, in analogy to the bosons. This highlights a novel
kind of supersymmetry [131], for which the Standard Model fermions corre-
spond one to one to boson states under a quantum Fourier transform.

The best evidence for this ribbon structure lies in the Koide phenomenol-
ogy for rest masses. Although there is no immediately obvious representa-
tion of the Higgs boson as a ribbon graph, it is possible that a composite
description of the Higgs exists, as favoured in many approaches. Note that
the observed Higgs mass mH = 126 GeV was predicted some years ago by
Dharwadker and Khachatryan [132] using the simple formula

mH =
1
2
(mW+ + mW− + mZ) = mW +

mZ

2
, (172)

which is discussed below. The running of mass under renormalisation does
not prohibit algebraic relations between the masses. We expect the emergent
theory to pick out special scales in a different way to the Standard Model,
wherein mass values depend on empirical parameters. Yukawa couplings for
the Lagrangian are then, in principle, secondary to the ribbon description
of Koide mass matrices, wherein rest mass appears as an eigenvalue of a
circulant Hermitian matrix. That is, although the simple Lie symmetries
of the Standard Model require spontaneous symmetry breaking, nature has
already selected the broken symmetry, and this may be amenable to another
description.

There are U(1) charges appearing explicitly in the diagrams below, in the
twists of ribbon strands. We start with the assumption that this represents
electromagnetic charge, but the interplay of different U(1) symmetries turns
up naturally in ribbon networks. In James Clerk Maxwell’s original paper
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on electromagnetism [133], such twist loops were supposed to define vortices
in the aether. This classical aether is absent when the ambient ribbon space
is no longer associated to space itself, but vortices remain a useful insight
into gauge construction.

The ribbon spectrum [93] represents the most fundamental set of lo-
calised IR states, according to observation rather than the rules of classical
geometry. The only additional states that must be considered are mirror
neutrino states. These occur naturally within the basic ribbon set, which
uses braid crossings in order to distinguish matter from mirror matter. Al-
though a full zoo of mirror particles is possible in the braid scheme, and
gravitationally interacting mirror matter is a leading candidate for dark
matter, a natural ansatz does not permit localisable mirror matter. If it
exists as dark mass, as discussed in the final chapter, it is not an indepen-
dent entity. On the contrary, the mirror world is supposed to balance our
thermodynamic arrow of time with its contracting universe. Both halves of
this cosmos define the true vacuum, and rest mass itself requires the pairing
of one baryonic and one mirror state. Chirality for massive particles is then
maintained by the handedness of the baryonic component.

One intriguing possibility is to view the mirror matter as the proton sec-
tor: electrons are mirrored by antiprotons, positrons by protons, and quarks
by the components of leptons. In this case, the ribbon set gives exactly the
observable low energy states, and there can be no particle-like dark matter or
dark energy. This means that general relativity fails to describe the cosmos
on large scales, a possibility quite consistent with current observations.

To begin with, we ask the simple question: what happens with the neu-
trinos? Due to neutrino oscillations, there are up to 24 possible states,
including generation, mirror, flavor and antiparticles. Most simply, we as-
sume that the four electroweak states for a given flavor give standard Dirac
mass terms [134] using the right handed states. Since neutrinos are massive,
these right handed states must exist. In the ribbon diagrams, as for the
charged leptons, these are not singlet states, which is interpreted to mean
that mirror neutrinos participate in the non local weak interaction, and are
not truly sterile.

7.1 Braids and Ribbons

We consider both the Burau representations for Bn, particularly B3 and B6,
and also matrix representations arising directly from the diagrams.

The special knots in B3 are the non identity odd cycles for S3, which do
not reduce to B2 or B1 objects. We choose the writhe zero knots in the set
{τ1τ2

−1, τ2τ1
−1, τ1

−1τ2, τ2
−1τ1. The alternative is to consider braids with

only positive or negative crossings, which correspond to unlinked knots. This
option doubles the braid set considered below, but without substantially
altering the construction.
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Since a given B3 braid is only permitted positive or negative charges, but
not both, the mirror particle set is defined by switching the B3 crossings.
The w = 0 condition on the selected braids may be viewed as a restriction
to rotations out of the page, from the symmetric point where the crossings
are fused.

Our braided ribbons will always be double knots in B2n, meaning that
there is an underlying knot in Bn. Since ribbon twists are separated from the
braiding in Bn, the reversal of crossings in Bn can occur while maintaining
the direction of the ribbon twist, and this gives the mirror states. Full ribbon
twists will define a unit of electromagnetic charge [93]. The sign convention

+ − (173)

follows the B2 convention, and the magnitude of charge q on each strand is
set at 1/n, where n is the total number of ribbon strands in a diagram. At
a basic interaction vertex, at most ∆q = ±1 is exchanged between particles.
Note that whereas B2 is generated by a half twist, charge generates Z ' B2

with a full twist. It would be better to label a half twist with the integer
1, and let a full set of three twists stand for q = 6. However, this disagrees
with the physical convention.

Ribbons appear because we need the structure of a tortile tensor category
[135], or more general structures of this kind. These are braided ⊗ categories
for which the braiding is compatible with the existence of dual objects. Some
definitions are given in appendix A.

Recall the Burau matrix

τ2 =




1 −t 0
0 −t 0
0 −1 −1


 , (174)

in B4, which is similar to the central τn generator for all B2n. Note that
the top two rows look like τ2 in B3 and the bottom rows like τ1. There is
a transformation that sends τ2 in B4 to τ2

−1 by shifting the B3 τ2 down
to its mirror τ1

−1 and similarly shifting the B3 τ1 up. That is, crossing
flips are related to actual matrix flips in this algebraic representation. This
is the kind of behaviour that we demand from any algebra associated to
constructive diagrams. In what follows, crossing flips are usually reduced to
complex conjugation, as in the 1× 1 Burau representation.

Particle ribbons naturally use two phase parameters, in analogy to the
two variable homflypt polynomial (121) or its related ribbon graph invari-
ants. We think of the particle braids as a basis for all ribbon diagrams.
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7.2 The Single Generation Spectrum

In the Koide phenomenology, rest masses will emerge algebraically from the
operators attached to ribbon diagrams. One set of ribbon particle diagrams
looks like one generation of massless fundamental states.

Historically, the important Lie groups are SU(n) for n = 1, 2, 3, and
their fundamental, adjoint and trivial representations. For an SU(2)×U(1)
symmetry, the four dimensions of the adjoint representation predict the
existence of four gauge bosons. When the symmetry is appropriately broken
by the Higgs mechanism, these bosons become the photon γ and the massive
W+, W− and Z0 bosons.

This traditional formulation considers gauge freedom for all points in the
continuum spacetime used to specify field operators. In the contrasting mod-
ern view, locality is the secondary consideration, and spacetime geometry
should emerge from the quantum information of processes in an abstract
circuit space. So we first ask, what is a basic axiomatic analogue of the
important Lie group representations?

Cayley’s theorem [136] for groups, relying only on the basic group ax-
ioms, says that every finite group has a representation in permutations,
through action on itself by (right) multiplication. This is the discrete ana-
logue of an adjoint representation.

The permutation groups Sn also have the usual fundamental represen-
tation in n × n matrices. Consider the first few permutation groups. S1 is
the trivial group, given by the 1 × 1 matrix with entry 1. Then S2 has a
2 × 2 fundamental representation. Since S2 has only two elements, this is
also an adjoint representation. The two special representations first split for
S3. It’s fundamental representation is 3×3, while the adjoint is in S6, given
by 6× 6 matrices.

To see what happens in S6, consider the diagrams for S3. Recall that S3

is generated by two basic crossings, (21) and (32), subject to the rule (τi)2 =
1 for each generator. Since we allow a braiding to relax this symmetry
condition, we begin straight away with braided ribbon diagrams, in Bn.
The underlying S3 permutation is maintained as a string map from three
points to three points. A (32) generator and the identity, in S6, look like

(23)

(123) = 1

(175)

for a suitable choice of basis. Observe that the ribbons must be twisted for
S3 to be correctly represented. A matrix for the (32) diagram in S6 is given
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by

M(32) =




0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0




(176)

in a basis with 3 × 3 blocks. The twist on the left hand ribbon appears in
the M41 and M14 flip, while the larger ribbon crossing is given by a flip on
2× 2 blocks. For S4, the adjoint representation would have 24 dimensions.
Each string in S4 is turned into six strands in S24, and each set of six strands
is limited to an S3 diagram. In this way, any Sn element is turned into a
diagram that respects the factors of n!.

Returning to S3, we must extend the 6×6 permutation matrices to braid
group objects. Each diagram crossing corresponds to a flip map in S2, but
the block size of the flip depends on the level of the crossing within the
Sn hierarchy. So for S3 we need two crossing labels, say ω and

√
φ. The

seven single crossings of the (32) diagram become seven label pairs, which
we insert into the matrix as in

M(32) =




0 0 0 ω 0 0
0 0 0 0 0 ωφ
0 0 0 0 ωφ 0
ω 0 0 0 0 0
0 0 ωφ 0 0 0
0 ωφ 0 0 0 0




. (177)

It is convenient to consider these labels as complex phases, so that the con-
jugate phases ω and φ represent under crossings. Then the symmetry rule of
Sn is recovered when all phases equal ±1. That is, there is a sign ambiguity
in the usual permutation representation, since we are free to include a factor
of −1 in the generators.

An irrational phase might give a representation of the full braid group,
because ωd never returns to 1. One may verify that the flip generators in
places i and i + 1 satisfy σiσi+1σi = σi+1σiσi+1. However, (σiσi+1σi)2 is a
multiple of the identity, namely ω4I. At an eighth root of unity ω8 we then
have a reduction to the modular group. For now we work with the rational
truncations.

A rational phase sets a limit on the allowed number of full twists in a
ribbon, at any level. Starting with S3, we only allow one full ribbon twist,
since this is sufficient to represent all elements in S3. To distinguish an
over from an under double twist, we require that ω2 is distinct from ω−2.
The choice of sixth root ω6 for all crossings would make a full twist equal
either ω3 or ω3. But then the half twist −ω6 is the same as a full twist ω3.
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Since this disrespects the underlying permutation, we go to the 12th root
ω12 instead.

In [93], the set of odd A3 diagrams in S3 is used, as it is here. These
are the true B3 braids. The cycle (231) is called left handed, while (312)
is right handed. The annihilation of such fermion braids, one left and one
right handed, gives the identity (123), which is a photon. When all three
ribbon strands have a double twist, the particle is a charged lepton, with
electromagnetic charge given by the direction of the twist. If all ribbons
in the B3 identity are twisted, we have the W± bosons. With this S6

representation, all particle representations have become self acting adjoint
ones.

The trivial representation is always a single strand from B1. In principle,
any braid becomes a B1 braid when all the strands are grouped together by
the association operation. This suggests, loosely speaking, that a doublet
for the Lagrangian is joined to a singlet in a pairing map Bn ×Bn → B1.

In [131] it was shown that the fermions {e±, νL, νR} may be considered a
(twisted) Fourier transform of the electroweak bosons {W±, γ, Z}. The twist
carries braiding information for B3, while the 3× 3 quantum Fourier trans-
form essentially acts on the underlying permutations, carrying the charge
information as a constant. This perfect Fourier supersymmetry introduces
no new particles to the Standard Model zoo, except for the right handed
neutrinos. Traditional supersymmetry does not contribute local states, and
enters only in the mathematics of the division algebras.

So for the (312) braid in B6, with phases for both the B3 and B2 com-
ponents, a positron matrix is given by




0 0 0 0 0 ωφ
0 0 0 ω 0 0
0 0 0 0 ωφ 0
0 0 ωφ 0 0 0
ω 0 0 0 0 0
0 ωφ 0 0 0 0




. (178)

For the neutrinos, we take ω = ±1. The quarks [93] are given by diagrams
with a mixture of twisted and untwisted ribbons, which correctly accounts
for quark charge and color. If we untwist the 3 × 3 block in (178) by the
twist factor 


φ 0 0
0 1 0
0 0 φ


 (179)

on the left, we return to the underlying circulant matrix [131].
In summary, with ordered sign lists denoting ribbon charges, a single

generation may be given by the following list of braids from B6. One is free
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to flip the B3 crossings to obtain an equivalent set of mirror states.

e−L = [τ2τ
−1
1 , (−−−)] e+

R = [τ1τ
−1
2 , (−−−)] (180)

e+
L = [τ−1

2 τ1, (+ + +)] e−R = [τ−1
1 τ2, (+ + +)]

νL = [τ2
−1τ1, (000)] νR = [τ1

−1τ2, (000)]
νL = [τ2τ

−1
1 , (000)] νR = [τ1τ

−1
2 , (000)]

uL = [τ2τ
−1
1 , (+ + 0)] uR = [τ1τ

−1
2 , (−− 0)] R

uL = [τ2τ
−1
1 , (+0+)] uR = [τ1τ

−1
2 , (−0−)] G

uL = [τ2τ
−1
1 , (0 + +)] uR = [τ1τ

−1
2 , (0−−)] B

dL = [τ−1
2 τ1, (00+)] dR = [τ−1

1 τ2, (00−)] R

dL = [τ−1
2 τ1, (0 + 0)] dR = [τ−1

1 τ2, (0− 0)] G

dL = [τ−1
2 τ1, (+00)] dR = [τ−1

1 τ2, (−00)] B

W− = [I2, (−−−)] W+ = [I2, (+ + +)] γ = [I2, (000)]
Z1 = [I2, (−+ 0)] Z2 = [I2, (+0−)] Z3 = [I2, (0−+)]

In the above, we have decomposed the neutral Z boson into three pieces, as
in [131]. Although the mixed charges are forbidden for observed states, this
splitting permits the introduction of the right handed neutrino, since the
three right handed leptons may be transformed to these Z boson preons. In
other words, the three lepton singlets from the Standard model Lagrangian
become a triplet associated to B3. In this way, we might view the unique
boson mass as a sum of three equivalent preon masses. This scheme balances
to an equal boson fermion count, under the Fourier supersymmetry. The
mirror neutrinos are the only extra states required. A left and right pair
of fermion matrices, along with a multiple of the annihilation photon, will
specify a Koide Hermitian mass matrix.

Since the ribbon twists are an essential part of the permutation repre-
sentation, we would like to build all fundamental states out of the charged
lepton states. We allow the neutrinos, since these are obtained by select-
ing opposite charges on the even cycle components. They are also easily
obtained by composing a charged lepton braid with a W± boson diagram.
Note also that the neutrinos could be given by the fundamental representa-
tion in B3, rather than in B6. Neutrality is then enforced by the shrinking
of a ribbon to a line, and then no braid compositions have been employed in
the definition of either leptons or their Fourier transform, the electroweak
bosons. This completely covers the local observable electroweak spectrum,
using exactly the trivial, fundamental and adjoint representations for S3. In
summary, a basic set of four (left handed) leptons on (231) may be assigned
phases:

e− e+ ν νm

ω, φ ω, φ 1, φ 1, φ
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where the subscript m denotes the mirror state. There is a similar right
handed set using the permutation (312).

It is the mixing of twisted and neutral strands for quarks that remains to
be clarified. The up quarks have two charged strands and one neutral one.
The known algebraic structure of quarks uses the nonassociative octonions,
as in appendix D. If we use instead the braid association operation to reduce
neutral ribbons to a line, as for the B3 neutrinos above, then all quarks
reduce B6 objects to braids in B4 or B5.

Given the hierarchy of Sn representations, such an association operation
is actually essential for maintaining the levels within complicated diagrams
for Sn, when n ≥ 3. By so bracketing the ribbon edges in B6, we can turn
any B6 braid back into a B3 one. For neutral particles, no information is
lost. With the quark reductions to B4 and B5, all braid groups up to B6

occur in the fundamental state information.
Quarks may be assigned the appropriate matrix in either B6 or in a lower

dimensional representation. In contrast to the lepton case, the quark braids
of [93] and [131] do not have a Fourier transform that is a braid matrix.
Nonetheless, the known quark phases of mass matrix phenomenology are
simple fractions of the charged lepton phases [137][138][139][140], which are
noted below. This suggests that all Koide phases arise from the ribbon
diagrams.

7.3 CPT and the Higgs Mechanism

Hypothetically, if the quark CKM mixing matrix is a function of the circu-
lant mass operators, as in [141], one might have a unique factorisation into
circulants, which may then be used to create asymmetric Yukawa matrices
from the diagonal of Koide values. However, the braid picture suggests that
we should begin with higher dimensional matrices. In electroweak symme-
try breaking, there is a 4 × 4 adjoint representation required for the 2 × 2
rotations by θW ∼ 0.5 and π/4 [142]. In the finite permutation groups,
S4 has its ribbon adjoint in dimension 24, which is then the minimal braid
dimension for studying the Higgs mechanism. Each of the four strands in
B4 become six strands, as (Z, γ) and (W+,W−) are each represented by a
pair of B6 braids.

On such 24× 24 matrices, θW and the π/4 rotation each act on 12× 12
blocks. There is an 18 × 18 block for the massive bosons (W+,W−, Z). If
this boson triplet is projected to a scalar triplet, there should be a 3 × 3
manifestation of Dharwadker’s Higgs boson underlying the Koide matrices.
Although its connection to the full gauge theory still requires clarification,
the observation is noteworthy. Consider the decomposition of the Hermitian

78



matrix

M = µb




x 1 1
1 x 1
1 1 x


 + iµf




0 y −y
−y 0 y
y −y 0


 (181)

into real and imaginary parts. The real part specifies a (W+,W−, Z) de-
generate mass triplet, with x = sec θW . The imaginary part represents an
annihilation triplet, with the massless photon on the diagonal. Since pho-
tons are the only massless states, this is an essentially unique way to view
the Koide matrix.

In general, a 3 × 3 Hermitian matrix requires one real and one phase
parameter, up to the scale factor. We would like to understand how the
Koide phases arise from the ribbon graph representations. Since the bosons
all arise from the twisted Fourier transform [131], it suffices to consider the
triplet mass splittings of the fermions. The universal 2/9 phase for the
leptons must be associated to the underlying B3 braid, since this is the only
common element between neutrinos and charged leptons.

How do the braid crossings relate to the important discrete symmetries of
the theory? In the Standard Model, a discrete symmetry acts on spacetime,
and has certain consequences for different fields. Here, however, the diagram
is supposed to represent either material or spatial degrees of freedom, since
these are not independent. Thus we allow basic moves on the ribbon diagram
to directly specify special discrete transformations.

The conjugation of all phases, whatever their quantitative origin, de-
notes charge conjugation symmetry C. This is why the B3 crossings for the
positron are the opposite from the electron ones, allowing for the existence
of the mirror set. Parity P should be associated to the left to right transfor-
mation. With the mirror neutrinos, full parity symmetry is restored. The
π/12 phase that distinguishes neutrinos from charged leptons must come
from a cancelation of left right phases in the charged lepton case. This spe-
cial neutrino phase is like a minimal braid phase for S4 states, counting the
24 dimensions of a simple state space. It distinguishes the mass matrices of
neutrinos and mirror neutrinos [143].

The flip of B3 crossings, while maintaining charge, should be a time
reversal operation T , because this conjugation is achieved when reading the
diagram upside down, noting that microscopic time flows down braid strands
in quantum processes. This time, however, is not to be identified with the
usual coordinate time. Now given a CPT exactness, the combination of the
C flip and the T flip implies some association between P and the ribbon
charge phases. This is expected, since the three strands in B3 do abstractly
index the spatial directions X, Y and Z. Since T itself swaps particles for
mirror particles, the abstract time reversal presumably has a cosmological
origin.

In summary, the low energy phase assignments for the leptons are given

79



in the table.

lepton projectors Koide phase
e− +− −2/9
e+ −+ +2/9
ν −− −2/9− π/12
ν ++ +2/9 + π/12

νm ++ −2/9 + π/12
νm −− +2/9− π/12

At this point, the name projector is somewhat arbitrary. These signs might
be taken from the octonion operators of appendix D, but alternative mech-
anisms should occur in the braid context. Here, parity non conservation
has prevented the secondary phase cancelation for the neutrinos. The given
phases recover the empirical rest mass triplets, with a separate choice of
scale factor for the charged and neutral cases [137][138][139][140].

Note that the left and right electrons appear to take on canceling π/12
phases, while there is only one such phase for a neutrino. The dimension
24 also counts the basic particle list in Dharwadker’s scheme [132]. When
the total phase differs only by a sign there is no difference in the rest mass
triplet, accounting for both particles and antiparticles. That is, a conjugate
pair of phases determines the Hermitian matrix.

Although it is still unclear, the universal 2/9 phase most likely stands
for a count of 6 out of 27 qutrit paths on the tetractys, such as the paths
that contain all three directions X, Y and Z. Recall that these six paths
themselves form a copy of S3. When three particle ribbons come into a
vertex with nine ribbon strands, one finds this internal hexagon

?? ÄÄ

ÄÄ ??

CCCCCCCC

{{{{{{{{

?? ÄÄÄÄ ??
DDDDDD

zzzzzz

at the centre of the ribbon picture. Such a ribbon diagram would replace the
basic massless vertex of twistor diagrams, which uses only one ribbon strand
per leg. The tripling of ribbon strands is essential to both the electroweak
SU(2) symmetry and the color degree of freedom.

Since the tetractys nodes represent the commutative reduction of 27
noncommutative paths for three qutrits, and the hexagon covers the 2/9
fraction at the central vertex, we take seriously the idea that this qutrit
path object is somehow responsible for the Koide phase. Recall that the 27
paths in the letters X, Y and Z are the three dimensional analogue of the
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matrix index 


XX XY XZ
Y X Y Y Y Z
ZX ZY ZZ


 (182)

underlying the Koide circulants. For example, concatenation by X on the
left gives the block




XXX XXY XXZ
XY X XY Y XY Z
XZX XZY XZZ


 , (183)

coming from a two qutrit corner of the word simplex. In this matrix there
are only two paths, XY Z and XZY , on all three letters. But taking the
three distinct concatenations, we cover all off diagonal entries in a 3 × 3
matrix using S3. These paths represent the six paths around a cube, which
replaces the S3 hexagon in dimension 3.

In appendix D we note the special role of the 3×3 matrix Jordan algebras.
It is interesting to compare our 27 qutrit paths with the basis for the 27
dimensional octonion algebra. The qutrit paths provide a ternary analogue
of the two noncommuting variables for the quantum plane. The octonion
units are usually put onto a qubit cube, which sits along one edge of the
tetractys graph. But these three edges meet at the corner vertices, forcing us
to mix the 1 and e7 units for the three copies of O, and to borrow paths from
the central vertex. This is exactly what happens in the octonion particle
scheme [1].

A more symmetrical way of selecting eight basis paths is to use the
concatenations in (183), eliminating the XXX path. This puts XXX,
Y Y Y and ZZZ on the diagonal of the Jordan matrix. The quarks are
then shared around a pair of sides on the tetractys. This has interesting
phenomenological consequences.

Our so called CPT transformations are associated to phases that don’t
match the π rotations of actual ribbons in the diagram. This might be
interpreted as a conic deficiency for a point on the central line through a
ribbon strand, as the ribbon edges rotate. Such phase deficiencies stand
for curvature in three dimensional gravity, as described by braid diagrams
[144][13]. From a holographic perspective, this is the correct dimension
for spacetime. However, the ambient braid space should not be identified
with a macroscopic kind of spacetime, since it does not play this role in
modern scattering theory. Instead, macroscopic spacetime comes from a
pairing between our baryonic world and the mirror world, starting with a
six dimensional pair of braid spaces.

Any network of knotted ribbon particles with internal loops then specifies
an observable. Ribbon graphs are categorically dual to polytope axioms
for categories of roughly three dimensions. We need nonassociative braid
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diagrams in order to keep track of the levels, and so both the ribbon surface
and the ambient space are expected to play a role in determining emergent
geometry.

In the Koide matrix picture, the Higgs expectation value should be re-
sponsible for the scale factor µb/µf of (181). Dharwadker et al [132] correctly
predicted such a Higgs boson mass mH = 126 GeV in 2009, with the relation

mH =
1
2
(mW+ + mW− + mZ) =

mZ

2
(1 + 2 cos θW ), (184)

where θW is the Weinberg angle. This is a Koide eigenvalue with parameter
x = 1 and a zero boson phase. The geometry of [145] is hypothesised
to come from a particular Steiner system [146] known as the Witt design.
This special set, called S(5, 8, 24), is a collection of 759 length 8 subsets,
known as octads, of a 24 letter alphabet, such that every 5 element subset
of S(5, 8, 24) is contained in exactly one octad. It may be constructed using
the 24 dimensional parity cube, which is associated to a state space for 24
qubits, where 0 and 1 give the characteristic function for subsets of 24.

First, put all the length 24 binary strings in lexicographic order. Then,
from the top, delete any string that does not differ in at least 8 places from
any previous one. The resulting 4096 strings form the extended binary Golay
code [147]. The strings with exactly 8 plus signs are the 759 = 3×253 octads.
Later on, we will consider this code in the guise of the permutoassociahedron
axiom.

This geometry is thought to be related to the four color mapping theo-
rem, which states that any proper map in two dimensions requires no more
than four colours. Mathematicians have hypothesised [148] that this max-
imum of 4 corresponds to the quantum algebra limit given by the braid
parameter δ2 at t a root of unity. Since this parameter can be expressed in
the form 4 cos2 θ, it clearly has a maximal value of 4.

A rest mass quantum number is viewed via a Stern-Gerlach type exper-
iment, analogous to the measurement of spin [121]. A mass spectrometer
separates a fixed velocity beam of mixed mass particles into three streams,
separated by the ambient magnetic field. These streams have become the
three strands that label the three points of our discrete braid space. Mass
and spin together define a six point basis for the particle diagrams.

All this hinges on the assumption that the unbroken SU(2)×U(1) gauge
symmetry of the Standard Model Lagrangian also has a description in terms
of braid algebras.

7.4 Electroweak Quantum Numbers

Let us consider the electroweak quantum numbers, algebraically [149]. Start
with B3, or rather the underlying S3. Take the group algebra for S3, with
complex coefficients. The matrix representation for the odd cycles is given
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by the circulant permutations (123), (231) and (312). An element of the
subgroup algebra is then

G1 =




a/2 b c
c a/2 b
b c a/2


 (185)

for a, b, c ∈ C, such that c = ±b for a left right pair. As above, we work
with the assumption that such circulant matrices are fundamental to elec-
troweak symmetry breaking [150]. The even permutations in S3 stand for an
operation that fixes one object. To maintain invariance between the three
directions, all three 2-circulant coefficients must be equal. This is then an-
other 1-circulant. They can then contribute to the electroweak quantum
numbers only using

G2 =
u

3




1 1 1
1 1 1
1 1 1


 , (186)

for a parameter u ∈ C. The copy of S2 underlying B2 has objects σX and
I2. These may be used to create a 6× 6 element of the Hopf algebra CS6,

G ≡ G1 ⊗ I2 + G2 ⊗ σX , (187)

where two copies of G1 form the diagonal blocks. From [149], we impose the
measurement projector condition G2 = G to obtain equations for a, b, c, u.
The solutions give exactly the weak hypercharge Y = a and weak isospin
T3 = u for the leptons and quarks, such that the U(1) charge quantum
number is given by the Gell-Mann Nishijima formula

q = T3 +
Y

2
. (188)

Y T3 Y T3

eL
− −1 −1/2 eL

+ +1 +1/2
eR

− −2 0 eR
+ +2 0

νL −1 +1/2 νL +1 −1/2
νR 0 0 νR 0 0
uL +1/3 +1/2 uL −1/3 −1/2
uR +4/3 0 uR −4/3 0
dL +1/3 −1/2 dL −1/3 +1/2
dR −2/3 0 dR +2/3 0

7.5 The Burau Representation and Mirror Circulants

In B3, an eL
−eR

+ annihilation

× (189)
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occurs in either the baryonic or mirror sector, both diagram sets being re-
quired for massive states. Including left and right handed particles, there are
then eight possible braid diagrams associated to charged lepton annihilation.
How do these objects interact algebraically?

Consider the simplest possible 2× 2 Burau representation for both eL
−

and its mirror partner. Formally, these objects add
(

1− 1/t −t
1 −t

)
+

( −t 1
−t 1− 1/t

)
=

(
1− t− 1/t 1− t

1− t 1− t− 1/t

)

(190)
to a basic 2 × 2 circulant. In other words, rather then viewing such a
circulant as a sum of permutations in S2, we could view it as a braid sum
for B3. Then when 2 × 2 objects appear in B3, they have a truly three
dimensional representation.

Any mirror pair gives such a circulant in the group algebra CS2. The
scalar δ2−1 = 1−t−1/t defines an interesting choice of braid parameter δ =
i(t−1/2− t1/2). With the substitution t 7→ −t, this becomes δ = t1/2 + t−1/2.
At a root of unity t, this parameter corresponds to unitary representations
of B3 [84].

The circulant was constructed with one choice for t, but the conjugate t
should play an equivalent role in any crossing symmetric diagram. Taking
all four possibilities together, we obtain instead

−
(

2(t1/2 − t−1/2)2 + 2 (t1/2 − t−1/2)2

(t1/2 − t−1/2)2 2(t1/2 − t−1/2)2 + 2

)
. (191)

Circulants are also constructed for the larger representation below. As an
R2(r) rotation matrix, the circulant (190) corresponds to a parameter r =
i(1− t− 1/t)/(1− t), so that

t =
1
2
± 1

2

√
1− 4/(1− ir). (192)

In particular, at the identity value r = 0 we have t = ω3. At such a modular
group value t ∈ {ω6, ω3}, the I2 component can be either 0 or 2, and the off
diagonals reduce to multiplicative generators of the cyclic group C6, which
can be embedded in S6. As permutations, C6 rightfully requires a 6 × 6
representation. Actually, the (234561) matrix can be decomposed into the
form H1 ⊗ I2 +⊗H2σX , with

H1 =




0 1 0
0 0 1
0 0 0


 H2 =




0 0 0
0 0 0
1 0 0


 . (193)

These are not circulant, but insisting on a nearby 2-circulant for H2 and
a 1-circulant for H1 uniquely defines a dual permutation (651324) in S6,
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such that the group algebra sum (234561) + (651324) is the matrix H ≡
(231) ⊗ I2 + (321) ⊗ σX . This matrix has the nice property that H2 is the
binary negation of H, meaning that all zeroes and ones are interchanged.

The ribbon twists require a representation of B2 ' Z. Let the Burau
representation generate m ∈ Z with (−Q)m, where Q is a one half ribbon
twist. Then a full twist is Q2m, and the strand charge is m/3. We now need
to identify strands in the matrices, but this occurs naturally in the full n×n
representation for Bn, where generators are given by 2× 2 crossing blocks.
For charge, the twist generator becomes

(
1−Q Q

1 0

)2m

(194)

where m ∈ {0,±1}. Three charges form three blocks of a 6×6 matrix for the
double knot. The two copies of B3 must also use the 3 × 3 representation.
The canonical choice is to select rows and columns to match the double knot
strands, so that the braid b is embedded as b⊗ I2. Alternatively, permuting
with (142536), we can place two copies of b along a diagonal, as I2⊗ b. This
is easier to work with. For example, the eL

+ mirror B3 braid is

τ2τ1
−1 =




1 0 0
0 1− t t
0 1 0







0 1 0
1/t 1− 1/t 0
0 0 1


 (195)

and the full 6× 6 particle operator should be



1 + Q2 −Q 0 0 Q−Q2 0 0
0 1 + Q2 −Q 0 0 Q−Q2 0
0 0 1 + Q2 −Q 0 0 Q−Q2

1−Q 0 0 Q 0 0
0 1−Q 0 0 Q 0
0 0 1−Q 0 0 Q



× (196)




0 1 0 0 0 0
1/t− 1 2− t− 1/t t 0 0 0

1/t 1− 1/t 0 0 0 0
0 0 0 0 1 0
0 0 0 1/t− 1 2− t− 1/t t
0 0 0 1/t 1− 1/t 0




so that charge acts on the ribbons at the base of a braid. The charge
operators are

(+) :
(

1 + Q2 −Q Q−Q2

1−Q Q

)
(−) :

(
1/Q 1− 1/Q

1/Q + 1/Q2 1 + 1/Q2 − 1/Q

)
.

(197)
When Q = 1, we get the 6 × 6 identity, and when t = 1 the permutation
(231). Note that we can also use Q = ∞ as a valid charge operation, letting
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Q take values in CP1. The 6× 6 particle determinant has no dependence on
the parameter t.

Now consider the 2× 2 circulants constructed from the larger represen-
tation. The mirror matching works by exchanging τi for τn−i

−1. The 2× 2
generators τ and τ−1 give circulants

(
1− t 1 + t
1 + t 1− t

) (
1− 1/t 1 + 1/t
1 + 1/t 1− 1/t

)
. (198)

The first matrix corresponds to an R2(r) matrix for the root of unity

t =
−ir − 1
ir − 1

. (199)

That is, t = cos 2x + i sin 2x when r = tanx. Let φr = tan−1(1/r). Then
the special braid parameter δt ≡ t1/2 + t−1/2 equals −2 sin φr and δ−t =
−2 cos φr. Summing the positive and negative contributions of (198), we
obtain the circulant

(
δ−t

2 δt
2

δt
2 δ−t

2

)
=

(
(1− t)(1− 1/t) (1 + t)(1 + 1/t)
(1 + t)(1 + 1/t) (1− t)(1− 1/t)

)
. (200)

The products (1±t)(1±1/t) are perfect polynomials, because like the number
four, their product equals their sum. One can substitute any polynomial
into t, and δ2 remains perfect. At the trigonometric values this matrix is a
probability matrix, when multiplied by a factor of 1/4. The Schur square
root is the unitary circulant

−i

2

(
cosφr i sinφr

i sinφr cosφr

)
= −i sinφrR2(−r). (201)

Observe that (199) is the fractional linear transformation −F2 on ir, where
F2 is the Hadamard gate [27]. It sends r ∈ {0, 1,∞} on the line R+ to
{0, π/2, π} on the unit circle.

7.6 Neutrino and Quark Mixing

The charged leptons, in increasing order of mass, are the electrons (e±),
muons (µ±) and tau (τ±) particles. To each of these electroweak states there
is a corresponding neutrino state, namely νe, νµ and ντ , but the neutrino
mass states are a mixture of the electroweak states. That is, neutrinos are
observed to oscillate as they propagate [151][152]. The mass states are called
ν1, ν2 and ν3. Neutrino mixing between the electroweak and mass states is
given by a non trivial 3× 3 unitary transformation, in analogy to the quark
CKM mixing matrix.

The propagating mass states supposedly transition from one to the other
with a probability that depends on the distance L from the source, and
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the energy E. For two or three states, using reasonable assumptions, the
probability Pi→j is expressed as the square of an amplitude, such as

Ai→j =
3∑

k=1

Vik
∗Vjk exp(−imi

2L/2E), (202)

given a complex mixing matrix Vij . The unitary 3× 3 MNS matrix for neu-
trinos gives the observed transition amplitudes for the three known states
[153]. In contrast, the unitary CKM matrix for quarks [154] contains am-
plitudes 


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (203)

that depend on both the up and down quark triplets. We usually write
V = UuUd

†, for left handed states. It is the factors of V and its right
handed complement that diagonalise the Yukawa matrices for the Standard
Model Lagrangian.

The Jarlskog invariant J(V ) [155] measures CP violation in terms of
the complex entries of the CKM matrix, in a phase convention independent
way. It is usually derived from a given four parameter form for the matrix,
but in [141] it was noted that the rotation parameters alone come close to
giving the correct empirical values for both J and other physical phases.
Since this agrees with the cyclic ansatz for mass operators, we note here
some empirical results.

Each 3 × 3 mixing matrix must respect unitarity, whereby the sum of
norm squares for each row and column equals 1, conserving probabilities
[156]. That is,

∑
i VijVik

∗ = δjk and
∑

j VijVkj
∗ = δik. We write each

rotation factor R2(r) as a 3× 3 circulant, essentially a phase locked element
of SU(2) × U(1). As a one parameter matrix, it specifies a U(1) element.
Each factor belongs to the group algebra CS3, coming from the underlying
braids.

The determinant condition on an SU(2) matrix is the same as the uni-
tarity condition. Thus the only way to select an SU(2)× U(1) matrix that
is a circulant sum is as the sum of a real diagonal and an imaginary off
diagonal 2-circulant. The required 3× 3 R2 factors are then of the form

R12(r) =




r i 0
i r 0
0 0 1


 R23(r) =




1 0 0
0 r i
0 i r


 R31(r) =




r 0 i
0 1 0
i 0 r




(204)
giving a three parameter mixing matrix

V = NR12(a)R23(b)R31(c), (205)

where a, b and c are real, and

N−2 = (a2 + 1)(b2 + 1)(c2 + 1) (206)
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is the required normalisation factor. As a circulant sum, V then takes the
form

V = N




abc −a− c −b
−b abc −a− c

−a− c −b abc


 (207)

+iN




bc ac− 1 ab
ac− 1 ab bc

ab bc ac− 1


 .

This is the general form for the cyclic decomposition, because one is always
free to scale the imaginary entries of Rij to unit norm. Such matrices are
always magic, in the sense that rows and columns have a constant sum.

Neutrino mixing is close to, but not equal to, the tribimaximal proba-
bility matrix [157][158]




1/3 1/3 1/3
1/6 1/6 2/3
1/2 1/2 0


 (208)

This matrix has many complex representations, including F3F2. It takes cir-
culant mixing parameters (a, b, c) = (1,

√
2, 0). When one parameter is zero

there is necessarily a zero probability. Observationally, for both neutrinos
and quarks, all the parameters a, b and c are observed to be non zero, and
thus there will be CP violation in both sectors [141].

Using the mirror circulant construction, each mixing parameter has a
corresponding braid parameter t = ±(r − i)(r + i), which is a root of unity.
This phase converts a mixing factor to a determinant 1 matrix. The overall
phase for all three factors is

φV ≡
√

(a + i)(b + i)(c + i)
(a− i)(b− i)(c− i)

. (209)

For the CKM quark mixing matrix, the conjugate numerator and denom-
inator are near to ±π/24, so that φV = π/12 + x for a small parameter
x ∼ 0.0035.

Neutrino experiments are not yet sufficiently accurate to pinpoint the
parameters precisely. However, strong evidence for a non zero θ13 in neutrino
mixing has come to light in recent years [159][160][161]. The accurate Daya
Bay result [161] corresponds to an angle of around 9◦. Current estimates for
the other two angles are 34.0◦ ± 1.1 (θ12) and 45◦ ± 7 (θ23) [162]. Current
constraints, including the ∆m2 values, are:

∆(m12)2 = 7.59± 0.2× 10−5 eV2

∆(m31)2 = 2.43± 0.13× 10−3 eV2

sin2 2θ13 = 0.092± 0.017
sin2 2θ23 > 0.92
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Observe that θ13 +θ12 ' θ23. If the large mixing phase is 47 = 90−θ13−θ12,
then the three phases satisfy a cyclic set of additive relations

9 + 34 = 47 (210)
47 + 9 = 34
34 + 47 = 9

under the 90◦ tangent rule. Thus the three phases give a 1-circulant, where
the third column vector is considered a sum of the first two. A more cyclic
representation in terms of the total angle

90 = 9.0 + 34.0 + 47.0 (211)

sums all three vectors to obtain the democratic probability matrix. With
these angles, all in agreement with the data, the neutrino mixing probabili-
ties from V are roughly given by

|Vν |2 =




0.01 0.48 0.51
0.60 0.17 0.23
0.39 0.35 0.26


 . (212)

Consider now the quark CKM matrix. Recent experimental estimates [154]
of the unsquared CKM amplitudes, for a complex matrix VCKM, are given
by




0.97427± 0.00015 0.22534± 0.00065 0.00351± 0.00015
0.22520± 0.00065 0.97344± 0.00016 0.0412± 0.0011
0.00867± 0.00030 0.0404± 0.0011 0.999146± 0.000046


 (213)

which is closely approximated by the three parameter product

VCKM = NR12(a)R23(b)R31(c) (214)

for a = −0.231, b = 24.3 and c = 0.00347. These parameters correspond to
the Euler angles of the standard parameterisation, but are now also respon-
sible for crucial phases.

Since a product of two rotation matrices is unordered, we interpret the
three factor ordering as a noncommutative aspect of triality, directly respon-
sible for CP violation. Note also that all unitary matrices in U(3) have a
neat parameterisation using magic matrices. In [163], Gibbs proved that
any 3× 3 unitary matrix U could be written in the form

U =




ψ1 0 0
0 ψ2 0
0 0 ψ3


V




φ1 0 0
0 φ2 0
0 0 φ3


 (215)

for a magic matrix V along with phase diagonals. Since rephasing has no
affect on the Jarlskog invariant J , a magic matrix must somehow determine
CP violation. A more general proof was considered for unitary matrices in
any dimension by S. Lisi [164], using braids.

89



7.7 The Koide Rest Mass Phenomenology

The leptons and quarks have the observed rest masses [165] as given in the
table.

m (MeV/c2)
e− 0.510998910(13)
µ− 105.6583668(38)
τ− 1776.84(17)
d 4.1 - 5.7
u 1.7 - 3.1
s 100± 30
c 1290± 110
b 4190± 180
t 172900± 1500

and the neutrino states satisfy the current bounds noted above [162].
As a triplet of real numbers, a diagonal rest mass matrix is Fourier

transformed to a Hermitian circulant. Alternatively, a Hermitian circulant
matrix gives directly a triplet of rest mass eigenvalues. The off diagonal
entries, responsible for mass splitting, are characterised by a single complex
phase. We assume that the (231) phase comes from a baryonic state, while
the conjugate (312) phase is due to a mirror partner.

First, recall the inverse pair of 3× 3 circulant mutually unbiased bases

R3 =
1√
3




1 ω3 1
1 1 ω3

ω3 1 1


 R3

−1 =
1√
3




1 1 ω3

ω3 1 1
1 ω3 1


 . (216)

Note that R3
2, which is the natural increment from R3 in the cyclic group,

is the inverse only up to a factor of i. Thus R3 is really a 12th root of
I3. However, bases are equivalent up to multiplication by a complex scalar.
Along with I3 and F3, these are the 3 × 3 analogues of the Pauli unbiased
bases, appropriate for describing real measurements with three outcomes.
We need a Hermitian matrix, so one must sum R3 and R3

−1 with the same
coefficient, to obtain the simplest mass matrix

H =




2 ω6 ω6

ω6 2 ω6

ω6 ω6 2


 . (217)

The Schur square root of H

HS =



√

2 ω12 ω12

ω12

√
2 ω12

ω12 ω12

√
2


 (218)
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contains the basic arithmetic phase π/12, along with the basic r parameter√
2. Using any multiple of I3 and conjugate phase multiples of R3 and R3

−1,
we have a general Hermitian circulant. Note that the special matrix H is
fixed under the projection operation H 7→ H2. Testing a general diagonal
parameter x and phase φ 6= 1, simple algebra shows that only the sixth roots
have fixed points, at x ∈ {2,−1} for ω6 and x ∈ {−2, 1} for ω3. However, if
we let φ vary on iteration, then x = x(φ) can be fixed by maps H 7→ Hn, in
which case φ will eventually return to itself. At the special value x =

√
2,

φ ' 4π/23 rad fixes H 7→ H3. Although perhaps irrelevant, this phase 4/23
appears in chapter 10 as an entropic probability for three unary fermion
states.

The well known Koide formula [137][138] for the three charged lepton
rest masses at low energy correctly predicted the τ mass in the 1980s, and
has since been applied to neutrino triplets and hadrons by Brannen [139].
This formula arises from a triplet of eigenvalues for a circulant

√
M at some

scale µ,

√
M =

√
µ(I3 + z(231) + z(312)) =

√
µ




x φ φ

φ x φ

φ φ x


 , (219)

where z is complex, x−1 = |z| and φ = arg(z). The eigenvalues are then

√
mi =

√
µ(1 + 2|z| cos(arg(z) +

2πi

3
)), (220)

for i = 1, 2, 3. The square root best displays the following empirical data.
Both charged leptons and neutrinos have mass triplets fitted with x ' √

2.
As discussed in [139][166] and previous sections, the charged lepton phase
is 2/9, while the neutrino states are assigned a phase 2/9 + π/12. Although
the meaning of low energy masses for quarks is unclear, we also consider
Koide fits for the quark data. In fact, the minimal scale of observation for
the quarks could be considered a quark analogue of the low energy regime.
This idea is justified by the data.

The charged quark triplets are roughly fitted using phases 2/27 for the
up triplet and 4/27 for the down triplet. Since the universal 2/9 came from
the B3 braiding of the neutrinos, and not from charge, we obtain the 2/27
from the single neutral strand that is required for an up quark. The quark
|z| value is related to the lepton value by basic trigonometry [167][168], with
the lepton triangle inscribed inside the up quark one. This is

f(4/27) ≡ |z| = 1√
2

sin(ω12
5 − 4/27)

sinω12
.

Moreover, the natural charged lepton scale is given by µl = 313.8 MeV,
which equals the dynamical quark mass mp/3. More recently it was observed
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[140] that the alternative (b, c, s) quark triplet fits the lepton value of x =
√

2
with a phase close to 6/9. This suggests three copies of a neutrino, and
indeed there is a tripling of scales to 3µl = mp, the proton mass, now
directly paired to the tripling of the 2/9 phase. What is the origin of the
(b, c, s) selection? One possibility is the subdivision of the tetractys into
three pentagons, which each sit about a corner of the tetractys, so that
(b, c, s) gives the quark vertices for one pentagon. The other pentagons
would then be the (u, d, s) and (d, b, t) triplets, and the first of these is
included in the table below.

The fundamental Koide scale parameters are empirically related to the
proton mass mp, except for the neutrinos. Including mirror neutrinos, the
table below summarises the Koide parameters and theoretical mass values
that best match the empirical data. We choose as a basic scale the proton
mass mp. All triplets fit current observational constraints, and the Koide
eigenvalues would therefore suggest precise predictions for these masses if a
basic set of triplets could be selected.

2/x φ (rad) µ m

e−
√

2 2/9 mp/3 0.51095
µ− 105.65
τ− 1776.82
u f(4/27) = 1.76 2/27 24mp 2.0
c 1249
t 171546
b

√
2 2/3 mp 4190

c 1356
s 92
u f(2/9) = 1.92 1/3 24mp/1836 2.5
d 5.0
s 97.4
ν1

√
2 2/9 + π/12 10−11mp 0.00038

ν2 0.0087
ν3 0.0497

ν1
m

√
2 2/9− π/12 10−11mp 0.0006

ν2
m 0.00117

ν3
m 0.0581

Although the Koide relation holds at the scales considered, it is not yet
clear how the parameters evolve with scale running. Observe that these
triplets suggest a neat pattern at both low energy and the pole mass, with
one charge accounting for the low energy phases and another for the best
quark triplets. The inscribing length f(2/9) replaces the 4/27 phase with
the phase 2/9. The product

√
3f(

√
2) of up and down parameters is roughly

3.049, which is the side length of the Koide up quark triangle in the (r, φ)
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plane [167]. The lepton triangle has side length
√

6, which is similarly a
product of the

√
2 and

√
3. The 1836 is of course chosen to resemble the

proton electron mass ratio, for a scale of 24me. In the eigenvalue space R3,
the lepton Koide vector is rotated by π/4 from the (1, 1, 1) vector [169]. This
(1, 1, 1) vector sits at the centre of the word monoid tetractys, when it is
viewed as a simplex.

A total phase conjugation does not alter the rest mass triplet, so only
two mismatched phase components can generate distinct mirror states. The
mirror neutrino

√
M has a 2/9 − π/12 mirror phase. With this phase,

one easily verifies that the central mirror mass state corresponds precisely
[170][143] to the current CMB temperature of 2.725 K, at 0.00117 eV. As
discussed in the final chapter, in a quantum universe the CMB is not merely a
cosmic relic of essentially arbitrary temperature, but a concrete observation
of photon partners to the mirror neutrinos. Wherever they arise in the sky,
the photons must have an energy near the rest mass peak. Thermodynamic
equilibrium exists for the mirror neutrinos, perhaps because in our early
universe the mirror world was coming to its end.

The columns of the tribimaximal matrix (208) may be used to list the
Koide eigenvalues (220) for the

√
2 parameter, in the form

1 +
√

2 cos(θ +
2πk

3
) (221)

for k = 1, 2, 3, using the cosine rule for two phases. With a normalisation of√
3
−1

we have

λ1 =
1√
3
− 1√

6
cos θ − 1√

2
sin θ (222)

λ2 =
1√
3
− 1√

6
cos θ +

1√
2

sin θ

λ3 =
1√
3

+
√

2√
3

cos θ + 0.

for any phase θ. This is an interesting connection between Koide masses for
the

√
2 parameter and mixing phenomenology. We can view the tribimax-

imal matrix as a concrete link between neutrino mixing and mass, in the
case that CP violation and dynamics in general are neglected. This matrix
has long been considered in a chiral limit [171], where it arises in association
with rank one mass matrices M = aF3DF3

†, for D the democratic matrix
and F the Fourier transform. Letting ψi, for i = 1, 2, 3, be the democratic
eigenstates, one has lepton mass states [171]

e =
1√
2
ψ1 − 1√

2
ψ2 (223)

µ = − 1√
6
ψ1 − 1√

6
ψ2 +

√
2√
3
ψ3
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τ =
1√
3
ψ1 +

1√
3
ψ2 +

1√
3
ψ3

in terms of the transpose of the form above. Observe that the signs are the
same in both forms, so that these eigenstates justify the Koide rest mass
formula. Moreover, as explained in [171], these lepton states are essentially
the same as those for the chiral limit of the neutral pseudoscalar mesons,
in terms of the (u, d, s) quark triplet. In the table above, this triplet neatly
bounds the charged lepton triplet with the scale ratio f(2/9).
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8 Knots and Ribbon Graphs

The aim of motives is to find a category Mot that describes a special class
of spaces. Motives should provide a universal type of homology and coho-
mology, so that for any category of spaces there is an arrow that sends the
universal cohomology to the usual one. Unfortunately, this universality is
usually discussed in a 1-categorical sense. To a physicist, however, motives
are about the emergence of classical geometry from quantum information,
which takes place in arbitrary dimension. We need to consider noncom-
mutative and nonassociative geometries, which appear to be essential for
building classical spaces.

To start with, we seek the right diagram categories. Algebras for knots
are a big clue about the structure of Mot. In the following few sections
we look at the Temperley-Lieb category TL of planar diagrams, and its
connection to twistor diagrams.

A Temperley-Lieb generator on two points is a diagram in (140). How-
ever, the arc diagram represents (21) in the Temperley-Lieb algebra, while
it gives the identity (12) in the planar twistor diagrams [106][107]. And
(21) for twistors is the identity for the Temperley-Lieb algebra. This basic
confusion between (12) and (21) is fundamental to the construction of knot
invariants from algebras of this type.

The planar twistor diagrams for n > 2 are built with 4(n − 2) ribbon
vertices, including the boundary legs. An extension to true braided ribbon
diagrams will require a cyclic structure for braids. A particle braid in B3 is
usually drawn acyclically with three top inputs and three bottom outputs.
But a cyclic trace could be used to create open ribbon legs. For example,
τ1
−1τ2 on the points {1, 2, 3} is paired with two extra crossings to create a

zero writhe ribbon vertex out of the figure eight knot.

1
2

3

(224)

This is not a twistor vertex, because the edge paths are no longer cyclic, due
to the half twist on leg 1. A three crossing vertex can only create a trefoil
knot in B2. As a traced braid on B3, this would lead to a separated loop at
one leg. Since knotting should be related to the essential entanglement of
particle states, the figure eight knot is a minimal three way linking diagram.

The figure eight knot is hyperbolic, in contrast to the trefoil knot, which
is a torus knot [172]. Its complementary space in dimension three may
be constructed from two ideal hyperbolic tetrahedra. This knot gives the
smallest of all hyperbolic volumes. The complement of the figure eight knot
also has the property that its ribbon template diagram contains all knots, as
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a branched surface. This is the so called universal template of Ghrist [28],
which uses four letters for knot monomials, just like DNA.

The figure eight knot is a writhe zero knot. Consider again the writhe
zero links in the standard braid group presentation. For a ∈ Z, consider the
w = 0 braid words ti,a

± ≡ τi
aτi±1

−a in Bn. This includes the fundamental
particle braids at a = ±1. In Bn, there are 4(n − 2) braids of the form
ti,±1

±. Observe that all w = 0 links in Bn are given as words in the ti,a
±,

since a general braid word τi1
a1τi2

a2 · · · τik
ak satisfies

∑
ai = 0. For instance,

τ1
2τ3

−1τ2
−1 is expanded to τ1

2τ3
−2τ3

1τ2
−1. Another example is τ1τ4

−1 in
B5.

(225)

Double knots in B2n can have the writhe augmented by any n ∈ Z via the
addition of a ribbon twist within B2n. Therefore any link in Bn has a w = 0
ribbon representation.

8.1 The Temperley-Lieb Algebra

The Catalan numbers Cd, which enumerate the vertices of the associahedra,
also give the dimension of the Temperley-Lieb algebra TLd+1 [173]. The
diagram representation of TLd+1 has d generators ei, i = 1, · · · , d, such that

ei
2 = δei eiei±1ei = ei (226)

eiej = ejei |i− j| ≥ 2

for δ ∈ C. The first relation is a weak projection rule, and the last relation
is an orthogonality rule for such projectors, perhaps thought of as acting
on some Hilbert space [26]. This connection to quantum mechanics was the
original clue that algebras of this kind could be used to build knot invariants.

An element of TLd+1 is a string diagram from d + 1 points to d + 1
points in the plane, such that non crossing arcs and loops are permitted.
Composition in TLd+1 is given by the vertical gluing of diagrams, as for
braids. The generators of TL3 are

e1 e2

(227)

When a loop is created in a diagram, it acts as the scalar δ. This can be
seen in the relation ei

2 = δei. The identity 1 is, by definition, the same as
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a braid identity. The other two loop free diagrams in TL3 are

s t

(228)

The pair e1e2 and e2e1 define a basis for TL3, since for instance e1e2 ·e2e1 =
δe1. This basis is enumerated by C2 = 2.

Compare this to the d + 1 leaved trees that define the vertices of Ad.
We use the permutations in Sd to determine a diagram word. For example,
(231) is mapped to e2e3e1. Now observe how (132) and (312) reduce to the
same Temperley-Lieb diagram on the A3 pentagon.

///////

²²²²²²²

¶¶
¶ ++

+

= (229)

The TLd pictures correspond directly to trees. Place a node on each down-
ward arc in the picture, as it is built from generators. These are the tree
nodes. Then one only needs to draw lines connecting nodes to other nodes
on arcs below it, and include the arc segments going to the top.

Altogether there are 14 loop free pictures in TL4. This equals C4, the
vertex number for the next associahedron, A4, just as there were C3 = 5
diagrams in TL3. In other words, there is a second way to match trees to
arc pictures, so that A3 comes from TL3, rather than TL4.

The algebra TLd is generalised to arc pictures from d to k points, for
distinct d and k. Let TLd,k denote the vector space with basis given by
all possible arc diagrams, equipped with formal addition of diagrams. We
restrict the coefficients to rational functions in Laurent polynomials in δ,
with coefficients in Z.

It is easy to check that the algebra TLd gives a representation of the
positive braids in the braid group Bd under the correspondence

τi 7→ δei − 1 (230)

as follows. Plug τi = f(t)ei − 1 into the braid group relation τiτi+1τi =
τi+1τiτi+1. Comparing the two sides forces f(t)2 = δf(t), so that f(t) = δ
unless f(t) = 0. The negative generators τi

−1 appear to require an inverse
(ei

2 − 1)−1, but this is not obviously in TLd. Inverses are discussed further
below.

A nice choice of parameter is δ = (t1/2 + t−1/2), so that δ2 = 2 + t + 1/t,
wherein we see the Alexander determinant for the writhe zero unknots in
B3. When t = ωn there is a unitary representation of Bd, and then δ2 =
4 cos2 π/n [84].
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Observe that the identity diagram in TL2 and the generator e1 look
like the arc pictures in the Kauffmann bracket (120). This is important,
because the Kauffmann bracket motivates a categorification of polynomial
knot invariants. What does it mean to categorify polynomials? Recall that
a categorification of a number was a set, or vector space. The polynomial
invariant should be derived from diagram spaces, just as numbers give car-
dinalities of sets. This idea is the basis of Khovanov homology for links
[174][175].

But we already have a space of planar diagrams associated to knots,
namely TLd. Actually, it is better to think in terms of a category TL,
which has ordinal objects d ∈ N and arrow sets given by TLd, along with
algebras TLd,k giving arrows d → k, which are arc pictures from d to k.
Then we can also work with the union

∐
d Bd of all braid groups.

Let us look for obvious diagram inverses within a single TLd. Consider
an arrow 2 → 2 which uses TL2,4 and TL4,2 to cancel the half loops of e2 in
TL4.

(231)

It provides an inverse for e2, but only via conjugation, and one obtains I2

rather than I4. One always obtains an identity In, where n is the number of
through strands in a diagram. This n grades the Temperley-Lieb algebras
into subalgebras TLd,k,n for n ≥ 0. In order to obtain an identity arrow
4 → 4, we might conjugate with elements of TL4,2 and TL2,4, but even this
cannot provide a true inverse.

Since we have large categories, we look for inverses in another copy of
the Temperley-Lieb algebra. In a category, we can invent products between
distinct algebras. This large category is now permitted to contain TLd

algebras for distinct values of δ.
Consider B3, for which the two generators e1 and e2 give the positive

generators τ1 and τ2. In the Burau representations, the inverse τ1
−1 came

from a distinct generator τ2
∗, using a t 7→ 1/t transformation for the matrix.

This suggests working with two mirror copies of TL3, so that the second
copy provides the correct site for the inverse braid crossing. Let the mirror
category TL∗ be the union of all TLd,k

∗, so that ei
∗ exists as a generator

object in it. Then we choose the correct maps

τi
−1 7→ δ(1/t)en−i

∗ − 1 (232)

into TL∗, which is equipped with the mirror parameter δ(1/t). The condi-
tion τiτi

−1 = I now states that

I = (δ(t)ei − 1)(δ(1/t)en−i
∗ − 1). (233)
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A product between a TL and TL∗ object has been used here. With this
product, the full braid group Bn is formally represented by crossing free
diagrams. At the unitary values, where δ(t) = δ(1/t), we have the simple
rule

δeien−i
∗ = ei + en−i

∗ (234)

for the mixed algebra product. In B2 = Z, for the symmetric value δ = 2,
the group then collapses down to F2.

In general, the mirror conjugation shifts the Burau matrix τi to τn−i
−1,

just as it transforms the corresponding braid diagram. Using the TL and
TL∗ product, for any Bn,

(δ(t)en−j
∗ − 1)(δ(1/t)ej − 1) (235)

must pick out n identity strands. To each term we apply a Kauffman bracket
(120), using the t 7→ 1/t inversion on the second term. By design, the result-
ing braid rule occurs at one generator site. Substituting the two brackets
into the product, we have

f(t)I2 = g(t) + h(t) (236)

with

f(t) = 2 + δ(t)−1t1/2 + δ(1/t)−1t−1/2 (237)
g(t) = t−1/4 + δ(t)−1t1/4 h(t) = t1/4 + δ(1/t)−1t−1/4

At the special unitary values δ = t1/2 + t−1/2, f becomes δ + 2. This is a
local Jones type skein rule.

Remark 8.1 Let q = t1/2 = exp(2πi/r) be a root of unity braid parameter,
so that δ2 = 4 cos2 π/r. The set {0, 1, · · · , r − 2} may be considered a set
of spin labels for the ribbon functor that describes quantum computation
[176]. This functor associates a k qubit state space to a disc marked with 3k
points, where a basic set of three points represents a trivalent vertex. Such
vertices are pieced together to form spin networks [177].

8.2 Bn and Khovanov Homology

In Khovanov homology [174][175] one has two choices for replacing each knot
crossing, namely the two Kauffman uncrossings in TL2. Under the above TL
to tree algorithm, e1 is the unique two leaved tree, which is the 1-ordinal 1.
The identity gives an empty tree, because there is nowhere to draw a node.
Then an arrow I2 → e1 represents the fundamental inclusion of the empty
set in a one point set. It is often written 0 → 1, so that multiple crossing
choices are denoted by sequences like 001 or −−+. These are vertices on a
parity cube.
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Given a link L with l crossings, Khovanov homology first writes down
all possible diagrams with Kauffman objects in place of each crossing. That
is, it takes the set of Kauffman bracket terms for all crossings in L. For
example, when L is the trefoil knot τ1

3 in B2, there are 8 smoothings given
by the parity cube vertices [175]

000 111
011 101 110 001 010 100

(238)
Each smoothing is assigned a polynomial in t1/2. From the Temperley-Lieb
algebra, there is a factor of δ = t1/2 + t−1/2 for each loop in the traced
diagram. This is multiplied by (−1)ktk/2, where k is the number of 1 digits.
This gives terms

(t1/2+t−1/2)2, −t3/2(t1/2+t−1/2)3, 3t(t1/2+t−1/2)2, −3t1/2(t1/2+t−1/2),
(239)

where there is a copy of the term for each object. Then all terms are summed
together to obtain

−t3 + t2 + t + t−1. (240)

The w = 0 unknot determinant is subtracted, giving −t3 + t2 − 1. There
is also an overall factor of t for the writhe w = 3, recalling that the writhe
factor turns the Kauffman bracket into the Jones polynomial. Finally, we
obtain the standard form of the Jones polynomial for the trefoil knot,

Vτ3 = t + t3 − t4. (241)

The Khovanov diagram space is a categorification of the Jones polynomial,
because we derived the polynomial from it in much the same way that or-
dinals come from counting sets. This homology can distinguish knots that
are not distinguished by VL.

The true Khovanov invariant is a sequence of graded modules, each com-
ing from the diagram set at a given k. The shift map 0 → 1 is the funda-
mental flip operation on Kauffman pictures, and it defines the arrows of the
parity cube. The Khovanov axioms use an abstract loop space V , which has
the quantum dimension δ. It allows the gluing of two loops via a reverse
flip, m : V ⊗ V → V , and the separation of a loop ∆ : V → V ⊗ V . On
trees, these are the standard bialgebra vertices.

The {Ad} and Sd operads give oriented polytopes in every dimension
d ∈ N. The Temperley-Lieb algebra has given us at least two ways to
picture Sd and Ad. A permutation either (i) acts on the nodes of a tree with
d + 1 leaves, associated to TLd+1, or (ii) comes from the d strands of Bd in
TLd. Case (i) uses point objects and case (ii) uses one dimensional edges or
strings. Categorically, there is a shift operation d−1 from TLd+1 to TLd.
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Remark 8.2 The tree differential of (5.3) also reduces the number of leaves
by 1. It creates disjoint unions of rooted trees, and these underlying forest
objects naively belong to multiple copies of the associahedron. However,
in chapter 5 we saw that noncommutative forests are also counted by the
Catalan numbers Cd.

8.3 Chorded Braids

Consider the (codimension 1) faces on A2m for 2m = w + 1, where w is the
writhe of a positive knot with w crossings. These faces are specified by the
two node trees with node valency m + 2.

To a positive writhe w knot in B2 there is associated a chorded braid
diagram [92]. This is essentially a Feynman diagram with w loops, created
as follows. For the trefoil knot, insert two horizontal chords on the braid,
connecting the first strand with the second.

a1 a2

b1 b2

7→ a1 a2

b1

b2

(242)

Ensure that at least one crossing lies between a pair of chords. The traced
knot defines a planar loop with the two chords attached, forming a three
loop diagram. Start at a1 and trace a path along the braid to determine
the positions of the vertices. There are two possible chordings on the trefoil.
For harder knots, crossed chords are necessary [92]. For B2 torus knots of
odd writhe, there are m = (w + 1)/2 chords. This corresponds to the leaf
count of m + 1 at one node on the A2m tree. These leaves count the loops
in the Feynman diagram, or rather the number of cuts required to reduce it
to a tree.

Such knotty Feynman diagrams are associated to the numerical zeta
value ζ(w). This is also obtained from Ad using motivic methods, as dis-
cussed below.

8.4 Ribbons and Moduli Spaces

The pointlike nature of arrow sources and targets is associated to the point-
like nature of particles in the Feynman formalism. But lines are thickened
to ribbons in the twistor formalism. The Riemann sphere CP1 with three
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punctures is drawn as the interior of the flat ribbon diagram

(243)

where the outside line is a loop about ∞, and the other loops traditionally
mark the points 0 and 1. Although the continuum appears to be packed into
the ribbon picture, we view ribbons as abstract geometric objects, prior to
the existence of C itself.

There is a fundamental reason for introducing ribbon graphs. Recall
that for the associahedra Ad, the tree nodes correspond to the bracketing
of letters in a word, such as (a ⊗ (b ⊗ c)). Consider the basic associator
(12) → (21) of section (5.5). Ideally, this associator should be a loop rather
than an edge, because it describes a homotopy. Using the ribbon diagram
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(244)

the cyclic plat trace gives a picture of a Riemann sphere CP1 with 5 punc-
tures, imagining the inside of the ribbon as the surface. What does this have
to do with the associahedra?

Consider the complex equivalence classes of 5-punctured Riemann spheres,
allowing for the degenerate cases where punctures collide. This defines a
compactified moduli space M0,5 [178]. Now the real number points of the
moduli space M0,5, which is a combinatorial gadget associated to points
on the circle RP1, define a two dimensional space that is tiled [179] by 12
copies of the A3 pentagon. In general, there are (d + 1)!/2 copies of the Ad

polytope in the moduli space tiling.
But the A3 pentagon is the basic axiom for associativity in monoidal

categories! In other words, the shape of our punctured sphere is encoding
information about the structure of all punctured spheres. With the tree line
diagram, the cyclic trace would yield only a tetrahedron.

Similarly, the cyclic trace for the unique two leaved diagram (1) → (1)
gives a picture of a 3-punctured sphere, and M0,3 is a point. This point is
the A1 associahedron. The empty polytope A0 now corresponds to a basic
ribbon strip, traced into a single loop. As a complex space, this is the disc,
which models open regions of a complex curve. So in thickening trees to
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ribbons, we obtain actual pictures of complex spaces, but in some sense
their decomposition into ordinary open sets is completely empty!

The real points of the moduli compactification looks at configurations of
points on RP1. It smooths the moduli by adding points that represent the
limiting case of collisions between points, which work to reduce the number
of points in the configuration. These collisions are drawn as bubble offshoots
of the original RP1, introducing strings of loops or, rather, glued polygons.
And glued polygons may be viewed as chorded polygons. This is where the
Ad associahedra come in [179].

This polytope tiling for moduli spaces is used to describe relative co-
homology invariants that happen to correspond to the n point Veneziano
amplitudes [120][121]. These quantities are expressed in terms of the mul-
tiple zeta values. The chords of the n-gon are labeled (ij) and each chord
indexes a variable uij , which is a function

M0,n → CP1\{0, 1,∞}
derived from simplex coordinates ti. These are cross ratios

uij ≡ [ii + 1 | j + 1j] =
(zi − zj+1)(zi+1 − zj)
(zi − zj)(zi+1 − zj+1)

(245)

such that the first three points z1, z2 and z3 are sent to 1, ∞ and 0 respec-
tively, and the remainder are relabeled as ti. So for n points there are n− 3
simplex coordinates, where a simplex is chosen with 0 < t1 < · · · < tm < 1.

Example 8.3 For n = 5, there is an edge simplex with coordinates t1 and
t2. The five chords give

u13 = 1− t1 u24 =
t1
t2

u35 =
t2 − t1

t2(1− t1)
u41 =

1− t2
1− t1

u52 = t2

defining an affine space of dimension n(n− 3)/2 = 5.

Each uij determines a differential form ωij = d loguij . The face of the
associahedron An−2 is given by an equation uij = 0. This polytope corre-
spondence creates pullbacks of differential forms on the lower dimensional
associahedra, so that integrals are decomposed into an iterated expression.
These multiple zeta value invariants form a rational algebra [118].

Let si = (p1 + · · · + pi)2 give the sum of external momenta pj . We
introduce new coordinates xi defined by ti = xixi+1xi+2 · · ·xn−3 [120], and
also hyperplanes αij ≡ xi − xj . The Veneziano integrals then take the form

Bn =
∫ 1

0

n−3∏

i=1

dxi x
−α(si+1)−1
i

∏

1<i<j<n

(1− xi−1xi · · ·xj−2)−pipj (246)

where the α(si) and the pipj are integers.
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Example 8.4 Consider seven point amplitudes. This requires 14 affine
coordinates uij representing the chords of a heptagon.

u13 = 1− t1 u14 =
1− t2
1− t1

u15 =
1− t3
1− t2

u16 =
1− t4
1− t3

u24 =
t1
t2

u25 =
t2
t3

u26 =
t3
t4

u27 = t4

u35 =
t3(t1 − t2)
t2(t1 − t3)

u36 =
t4(t1 − t3)
t3(t1 − t4)

u37 =
(t1 − t4)
t4(t1 − 1)

u46 =
(t1 − t4)(t2 − t3)
(t1 − t3)(t2 − t4)

u47 =
(t1 − 1)(t2 − t4)
(t1 − t4)(t2 − 1)

u57 =
(t2 − 1)(t3 − t4)
(t2 − t4)(t3 − 1)

The full motivic integral is

B7 =
∫ 1

0

4∏

i=1

dxi x
−α(si+1)−1
i (1− xi)βi

∏

1<i<j<n

(1− xi−1xi · · ·xj−2)−pipj

Here, βi gives an integer ghost term. Such ghost elimination is crucial
to the derivation of the dimension d = 26 for bosonic string theory. As
in appendix C, dimension 26 in M theory becomes the dimension of the
traceless Hermitian elements of the exceptional 3 × 3 Jordan algebra over
the octonions. Alternatively, it is the 27 paths of the three qutrit simplex
under a rule of the form XXX + Y Y Y + ZZZ = 0.

If the RP1 punctures stand for ribbon legs, a basic four leg vertex has
a one dimensional moduli space tiled by three associator edges A2, forming
a triangle {0, 1,∞}. These A2 are given by the S2 trees, now described by
Temperley-Lieb diagrams with the edge extrapolating between I2 and e1.
The bubble graph

•
•

•

•

•
(247)

for four points on RP1 has three places to put the second circle, representing
the collision of two points. This is like putting two legs together in a BCFW
type factorisation, reducing the four valent particle graph to two trivalent
factors.
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9 Bootstrapping Adjoint Actions

Ribbon graphs can create a powerful range of algebraic structures. Networks
of such graphs define observables for a field theory, in which propagators can
concretely represent the state information for a real particle. The diagrams
may be interpreted geometrically, algebraically or logically. Since QCD tells
us that particles are not fundamental, we imagine zooming in and out of the
diagram, perhaps blowing up a strand to include further information.

We see that the crucial structures have representations in dimension 3,
where polytopes of arbitrary complexity and genus may be drawn. Usually,
with the ordinals for instance, the dimension of the underlying category is
lifted with n. An infinite sequence of polytopes in increasing dimension turns
a category like Set into an infinite dimensional category, rather than a zero
dimensional one. But with braids, a dimension is encoded in the number of
strands in the diagram. The hierarchy of adjoint representations for Sn in
Bn! may be used to build complicated nonassociative link diagrams, all in
dimension 3.

On the basic permutohedron polytope, a point vertex σ ∈ Sn has no
structure. What we would like is for each vertex to concretely depict the
ribbon permutation that it represents, so that a polytope is more self refer-
ential than a collection of trees. This seems feasible, except that the number
of legs n on a twistor graph gives a valency one higher than the dimension
of the polytope. But then everything is blown up into a trivalent graph in
dimension 3, suggesting that for n = 3k one could group particle legs onto
an edge of the graph. Starting with S4 in dimension 3, there are then 8
strands grouped onto an edge of a trivalent vertex, hinting at a concrete
representation of triality.

We think of link and ribbon invariants for these diagrams as motivic
invariants. Instead of tetrahedral simplices, a tetrahedron is modeled by a
nonassociative link shaped into a tetrahedron. Everything should be mod-
eled by links and ribbons, and their canonical representations.

Here we merely introduce a few more self referential aspects to the geom-
etry of permutations. The next section indicates how even S2 can smooth
out the basic diagrammatic representation of duality, and the following sec-
tions move on to the critical dimension 3.

9.1 Duality with S2

For S2, the adjoint representation has two elements. The identity sends
every σ ∈ S2 to itself, while the flip σ swaps elements of S2. These four
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arrows give the diagram

1
!!
σaa (248)

of a two object category. The partitioning of the arrows into the two maps
of the representation is the partition into geometric points and lines.

But how should we really draw S2? In (140) both 1 and σ are themselves
diagrams on two strands. As a twistor picture σ gets the identity braid,
which is the swap of the usual braid representation. The identity is the
double half loop diagram. The two arrows in (248) should become a top
and bottom trace for this pair of diagrams, so that arrows look just like
points. The cyclic plat trace, on top, is an identity diagram, while the
localised trace is a double half loop. The category now looks like

(249)

and the distinction between points and lines is blurred. This begins to
resemble the smoothings of (238). Demanding that both of the objects and
both of the arrows in S2 are distinct, we always obtain a diagram with two
loops. There are four ways to draw such a diagram, and all are essentially
equivalent.

A concrete realisation of S2 is then a choice of oriented plane for the
two loop picture. When selecting two lines for the top and bottom of the
braid pictures, we divide the loops into object diagrams (points) and arrow
diagrams (lines). And only with the orientation does duality exist.

Now the four distinct function boxes for arrows in a category with du-
alities might be replaced by the four loop diagrams, which are similarly
oriented. Rather than connecting object strands to an arbitrary black box,
a pair of object strands at the edges of a ribbon is permitted to loop just
above and just below the box, without connecting to the loops inside. All
diagrams become objects in a Temperley-Lieb algebra, with boxes drawn in
by hand around function objects. In this way any diagram in the category
becomes a sea of loops. Everything is built with scalars.

We should remove the restriction on arrows in (248), and allow any pair
of traces, because the adjoint representation has an identity element with
two identity arrows. It is now possible to obtain from one to three loops.
But this is not the same set of loops as in the homology (238) for the trefoil
knot, since there are four two loop pictures, two one loop ones, and two with
three loops.

106



9.2 The Permutoassociahedron

The polytopes of interest might be constructed recursively as follows. In the
edge S2, replace each endpoint with a triangle. This results in two possible
polytopes: the triangular prism in dimension 3 or the 4-valent octahedron
in dimension 4. Stick with the octahedron, because each face is a triangle.
Now replace each vertex of the octahedron with a square. This gives the S4

permutohedron in dimension 3, with 24 vertices. Replacing each vertex of
S4 with a pentagon, we obtain the permutoassociahedron
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in dimension 3. The true S5 polytope in dimension 4 has the same vertices,
but requires extra edges to make the graph 4-valent. The permutoassociahe-
dron is not merely S5, since the pentagons have introduced nonassociativity
as an axiom.

It is easy to construct an S6 type polytope in dimension 3, replacing
every vertex of the permutoassociahedron with a hexagon, since trivalent
vertices may always be replaced by hexagons using the tetractys dual. This
means placing three strands on every edge of the original polytope. If these
strands are ribbons, we can cover this polytope with particle diagrams.

On the 4-valent octahedron, each vertex becomes a four leg ribbon graph,
with an internal square loop. This square loop itself gives the square that
we needed to blow the octahedron up into the permutohedron S4. But on
S4 each trivalent vertex cannot give us four ribbon legs, which is why we
need, say, 24 strands in three groups of 8.

9.3 The Klein Quartic and S5

The permutoassociahedron (250) on the tetrahedron may be used to visualise
the genus 3 Klein quartic. First, let us count the vertices, edges and faces.
The 24 vertices of the Klein quartic are the 24 heptagons created by gluing
the 24 pentagons to neighbouring squares.

The genus 3 quartic has 84 edges and 56 faces, as follows. Each of the
four large tetrahedron corners carries 21 edges and 14 points, because

21 =
18
2

+
12
2

+ 6, 14 =
12
2

+
12
2

+
6
3
.
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That is, each edge on the inner or outer ring of heptagons will contribute
twice, when the 8-gons are shrunk to nothing and the remaining 12-gons and
9-gons are glued pairwise. The internal heptagon edges are removed so that
only six edges remain on the ring. The 12-gons are glued so that bivalent
vertices meet trivalent ones. In this way, the resulting surface is entirely
trivalent. Most vertices contribute twice. However, at a given tetrahedron
corner, the six points that meet at the heptagon ring, an 8-gon and a 12-gon,
will count three times, since the 8-gon brings two points together and the
gluing adds another point. These points resemble the triple pentagon points
on an A4 associahedron, and the other points on the heptagon ring are like
the other 12 points of A4.

In order for trivalency to be maintained, the four tetrahedron rings must
be misaligned. The shrinking of an 8-gon brings together one bivalent and
one trivalent vertex, at each of the two interior joins. Similarly, the resulting
9-gon has alternating bivalent and trivalent nodes, so it is twisted in its
gluing to another 9-gon.

The Klein quartic is helpful in constructing the large Mathieu group
M24 [181]. This large finite group is generated by only two permutations
of the 24 heptagons. These permutations respect the symmetries of a cu-
bicuboctahedron. This shape is easy to find on the 120 vertex tetrahedron.
It has six squares (s), eight triangles (t) and six octagons (o), but in our
dual setting these all appear at vertices on the heptagon rings, where each
vertex is a triangle on a chorded polygon: six for an octagon, and so on.
The heptagons come in two types: either the hidden pentagon peaks on a
12-gon or an 8-gon. These alternate around the loop of heptagons. On this
loop we superimpose another two type sequence abbaab: type a has vertices
in the order (ooossot), and type b the order (oosooot). The M24 generating
permutations are

1. flip all diagonals on the o and s polygons

2. a three cycle permutation on 21 heptagons, such that s7 = 1. This
fixes three heptagons, or rather one vertex on the glued graph. This is
one of the two generators for PSL2(2, 7). The other one, also in M24,
is a rotation by 2π/3 about the same point, with eight cycles of length
three.

The group M24 is closely related to the binary Golay code, and the
Steiner system, that was mentioned in chapter (7) in relation to the Koide
Higgs matrix.

9.4 Nonassociative Braids

If points and lines are blurred beneath duality, what of faces in a triality with
points, lines and faces? For ribbons in an ambient space, nonassociativity

108



of the strands is able to swap the interior of the ribbon for the outside, as
in the process

where the dashed lines here denote a boundary to the braid region, or a
gluing to a cylinder. A nonassociative braid group is given by the standard
generators σi along with a second set ai that denote the bracketing of two
strands. The additional relations are [180]

σiaj = ajσi aiσj−1σjai aiaj−1 = ajai (251)

σi+1σiai+1 = aiσi σiσi+1ai = ai+1σi

when j ≥ i+1. General nonassociative braid diagrams can partition a region
into the interior and exterior of the ribbon graph. For example, a ribbon
tetrahedron (with no twists) can send its vertices to its faces by regrouping
the strands, since there are both four vertices and four faces. This sends
open strings (the ribbons) to closed strings (on a 4 punctured sphere).

The nonassociative braid groups underlie categories that are governed
by permutoassociahedra axioms. These are true 2-ordinal polytopes, mixing
the Sd and Ad polytopes.

109



10 Entanglement and Entropy

The black hole qubit correspondence [18][19] is a detailed relationship be-
tween black hole entropy formulas in M theory and measures of entanglement
for multiple qudits. For example, extremal BPS solutions have eight charges,
a magnetic (p0, p1, p2, p3) and an electric (q0, q1, q2, q3). These correspond to
the eight coefficients of an unnormalised three qubit state ψijk, so that the
black hole entropy is given by

S =
π

2

√
−∆(ψijk) (252)

where ∆(ψ) is Cayley’s hyperdeterminant [73]. The hyperdeterminant is a
natural generalisation of a matrix determinant for the 2×2×2 qubit tensor
cube. In the next section, we see how this invariant is connected to twistor
geometry [182].

An acceptable measure of quantum entanglement must respect the equiv-
alence relations of the physical system. These are taken to be either the
local operations with classical communication (LOCC), or stochastic lo-
cal operations (SLOCC). Here locality means that transformations act on
each qudit separately [183]. For an n qubit system we usually consider a
SLOCC group GL2(C)⊗n, where GL2 acts locally on each qubit. For a
general mixed qudit Hilbert space on n objects, the SLOCC group will be
GLk1(C) ⊗ · · · ⊗GLkn(C). We are also interested in determinant zero ma-
trices, which shift the entanglement class, and are related to the underlying
categorical structure.

The axioms of category theory can direct certain choices for entangle-
ment measures, which are by no means yet settled. In some schemes, an
entanglement class can contain both separable states and maximally en-
tangled ones! Here we consider only maximally entangled states, meaning
n-partite n qudit systems. For example, for three qubits there are two tri-
partite classes, one bipartite and one totally separable class. For four or
more qubits, an entanglement measure may require a free parameter, every
value of which defines a distinct class. Insisting on restricted coefficient sets
at least limits the cardinality of such entanglement groupings.

The interesting invariants may be constructed using secondary polytopes
[73], introduced below. These polytopes are indexed by finite geometries,
associated to the word monoid. For example, the two qutrit word monoid
simplex is geometrically a hexagon, and its allowed triangulations recover
the associahedron A4 via the usual chordings of hexagons.

10.1 Entanglement with Trees and Jordan Algebra

The lowest dimensional associahedron is the geometric point A1, which we
draw as two leaves attached to a double root with two minus and two plus
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signs.
//////

²²²²²²

− +

+−
(253)

This will be a symbol for the unique non trivial entanglement class for n = 2
particles from a two state system.

Recall that the 2n particle scattering amplitudes include helicity config-
urations with n negative and n positive helicities, for n ≥ 2. Given 2n legs

on a diagram, there are clearly h =
(

2n
n

)
ways to assign these ± signs to

the legs. This is n + 1 times the Catalan number Cn. It is also the number
of minors in the n×2n matrix of Grassmannian coordinates, where an n×n
block has been fixed at In. These minors are a basis for Ch.

When n = 2, the Minkowski space Grassmannian gives a basis for
∧2(C4)

and the six minors vij satisfy the Plücker relation

V = v12v34 − v13v24 + v23v14 = 0. (254)

In [182], the minors for n = 2 and n = 3 are used to study entanglement for
n fermions with two single particle states (− and +). When n = 2, there is
only one true bipartite entanglement class, given by V 6= 0. A measure of
this entanglement is given by

η ≡ 8|V | ∈ [0, 1]. (255)

When V = 0, the two particle system is separable. This means that V can
be written in the twistor form vij = ZiWj −WiZj for two 4-vectors Z and
W .

When n = 3, there are 20 = 4C3 minors in the 3×6 Grassmanian matrix
[182]. We call them Vijk, where as before the index ijk labels the selected
columns. The triple root trees

-----

´´´´´

///
−− +

+ +−
(256)

form an associator edge, with its MHV and MHV source and target. This
C2 = 2 will count the number of tripartite entanglement classes for n = 3.
The first entanglement measure is |T123| ∈ [0, 1], defined as follows. Let Vijk

also denote the numerical coefficient of vi ∧ vj ∧ vk in the full state. Since
the ijk index tracks the choice of ± signs, let the source s = V123 and target
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t = V456. The remaining 18 3-forms fit into two helicity conjugate 3 × 3
matrices [182],

A =




V156 V164 V145

V256 V264 V245

V356 V364 V345


 B =




V423 V431 V412

V523 V531 V512

V623 V631 V612


 . (257)

The measure is defined by

T123 = 4[(Tr(AB)− st)2 − 4
√

det(AB)
−1

Tr(A†B†) + 4s detA + 4t detB].
(258)

This is chosen to be twice the quartic form q(x) for the Freudenthal triple
system C⊕C⊕J⊕J associated to the 3×3 matrix Jordan algebra J , where

x =
(

s A
B t

)
(259)

and A and B are in J . Some definitions are given in appendix D. Consider
now the special case of diagonal A and B. This gives eight dimensional
vectors

V = V123 + V156 + V264 + V345 + V423 + V531 + V612 + V456, (260)

which specialise further to a three qubit state when indices from {1, 2, 3}
are replaced by 0, and {4, 5, 6} by 1. In this case, the entanglement measure
is given by Cayley’s hyperdeterminant ∆ for a 2× 2× 2 three qubit tensor
cube, to be discussed further in the next section [73]. Then T123 = 4∆(V ),
where

∆(V ) = V123
2V456

2 + V612
2V345

2 + V531
2V264

2 + V423
2V156

2 (261)
−2V123V456(V612V345 + V531V264 + V423V156)

−2(V612V345V531V264 + V531V264V423V156 + V423V156V612V345)
+4(V123V345V156V264 + V456V423V531V612).

Unlike for qubits, the three fermions are distinguishable by their indices
using the six letter alphabet. Consider now an example where T123 = 0, but
the entanglement is still tripartite [182]. Let Φ be the normalised state with
V123 = 1/

√
3, V456 = 0, B ≡ 0 and

A =
1√
3




1 0 0
0 0 0
0 0 1


 . (262)

How do we distinguish this state, known as a |W 〉 state, from a T123 6= 0
one? With the Jordan algebra J , one can define a dual state Ṽ . This turns
out to be

Ṽijk = 3εabcdefVibcVajkVdef , (263)
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which may be thought of as a triality inspired dual. In the example, Φ̃ is
non zero, and this counts as a second entanglement measure. Let Φ̃, s̃, t̃
and Ã all be zero, but B̃ non zero. Let C(A)T by the transpose cofactor
matrix of A. Then

B̃ = 3sC(A)T =
3

3
√

3




0 0 0
0 1 0
0 0 0


 , (264)

from Ṽ531 = V156V123V345. The 1/3 coefficient comes from the single nonzero
Cij determinant. We also have

T123 = −cεabcdefVabcṼdef , (265)

for a normalisation constant c. This shows the origin of the quartic terms
in ∆(V ). So T123(Φ) is zero precisely because of the complementarity of A
and its cofactor matrix, but it is constructed from two non zero components,
and the existence of a dual signifies an entanglement class distinct from the
T123 6= 0 class.

We could also specialise T123 to a three unary state system, using (1, 4) 7→
X, (2, 5) 7→ Y and (3, 6) 7→ Z. This is a qutrit. The hyperdeterminant ∆
then becomes an expression in the 1-circulant three qutrit words, say for
XY Z the identity,

∆ = (1− 4VXY Z
2)(VZXY

2 + VY ZX
2) (266)

−2VZXY
2VY ZX

2 + 8VXY Z
2VZXY VY ZX .

If these 1-circulants are used as a basis for a 3 × 3 Hermitian matrix with
diagonal VXY Z = xI3 and off diagonal complex phases φ and φ, then we
have a normalised state such that T123 = (4/3)(tan2 φ)(4x2 − 1).

For the three qubit state Υ with coefficients aijk, consider a coordinate
fix of a000 = 1. Cayley’s hyperdeterminant is then reduced to

∆(Υ) = a2
111 + a2

100a
2
011 + a2

010a
2
101 + a2

001a
2
110 (267)

+4(a011a110a101 + a111a100a010a001)
−2(a100a011a111 + a010a101a111 + a001a110a111

+a100a010a101a011 + a010a001a110a101 + a100a001a110a011).

In [184] it was noted that the entanglement condition ∆(Υ) = 0 is equivalent
to an ordinary determinant D = a111 for the 3× 3 matrix

M(Υ) =




a100

√
a100a010 − a2

110

√
a100a001 − a2

011√
a100a010 − a2

110 a010

√
a010a001 − a2

011√
a100a001 − a2

101

√
a010a001 − a2

011 a001


 .

(268)
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The entries are written so that the set of aijk are the six 2×2 minors. When
∆(Ψ) 6= 0 the determinant D differs from a111, which then characterises the
entanglement. Note that this matrix is really a two qutrit rather than three
qubit matrix. It matches the path array when the parity 110 terms are zero,
as for the |W 〉 state. In that case, the qutrit state is (

√
a100,

√
a010,

√
a001),

and none of the matrix entries are zero. The |W 〉 state, with D = 0, char-
acterises null twistors, as shown in [20]. This now follows directly from the
2 × 2 minors of the qutrit matrix, which are essentially the Minkowski ele-
ments in SL2(C). In contrast, the GHZ state is given by M(Υ) ≡ 0, with
a111 6= 0. This requires the twistor variables Z and W to specify distinct
null directions.

The two tripartite classes given above (T123 6= 0 and Ṽ 6= 0) are known
respectively as the GHZ and |W > states for three qubits [185]. A bisep-
arable state is given by the example 1/

√
2(V123 + V156) and a GHZ state

by

Ψ =
1√
3
(
√

2V135 + V246). (269)

The four entanglement classes for three qubits do not distinguish the three
labeled biseparable sets, such as (AB)(C).

10.2 Categorical Entanglement

Does the Catalan number Cn−1 count the number of n-partite classes for
n fermions? In terms of categorical structure, it was shown in [186] that
the two tripartite classes for three qubits, W and GHZ, correspond to two
kinds of commutative Frobenius algebras on C2 in the symmetric monoidal
category of qudit Hilbert spaces. These give the two trees for C2.

Take trivalent nodes for the multiplication m and comultiplication ∆,
and truncated strings •

• (270)

for the unit η : I → A and counit ε : A → I respectively. The compatibility
condition looks like

•
ÄÄ

ÄÄ
ÄÄ

Ä

•??
??

??
?

ÄÄ
ÄÄ

ÄÄ
Ä

=
OOO

OOO

•oooo
oo

oooooo
•OOOOOO

(271)

stating that the order of nodes does not matter. For diagrams with no loops
one can then introduce the shorthand

Smn = •OOO
OOO JJJ
JJ

ooo
ooo· · ·

oooooo
ttttt
OOOOOO· · · (272)
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for a vertex from m to n strings. In particular, S02 and S20 give the arc
diagrams of duality, so that we may consider a straightening law

=
(273)

involving an arrow A → A ⊗ A ⊗ A → A. This is part of the structure
of a compact category [187], for which writhe pieces are unimportant. The
category of finite dimensional Hilbert spaces is an example of a compact
category, with duals A∗. This straightening law underlies the protocol for
quantum teleportation [188]. Now the GHZ and W states may be given
respectively by [186] the laws

•
• = •

• =
•
• (274)

noting the scalar loop for the W state. A so called induced tripartite state
is given by the diagram S03 •





44
44

4

(275)

which we see is just an A2 index tree. The diagram calculus of such GHZ and
W states in a symmetric monoidal category captures multipartite entangle-
ment for any number of qubits. However, for qutrits and beyond, symmetric
monoidal categories cannot be the whole story, since the An polytopes are
expressing coherence laws for higher and higher dimensional categories.

10.3 Secondary Polytopes and Hyperdeterminants

The associahedra and permutohedra are examples of secondary polytopes
[73]. In this section we see how secondary polytopes can generate the deter-
minant type invariants.

For any finite set S of n points in an embedding space Rk, let C(S) be
the convex hull of the set, possibly with points in its interior. We consider
triangulations with vertices in S, including the hull edges. For example, four
points in the plane with one central point define two possible diagrams.

²²
²²
²²

//
//

//

• //
//

//

²²
²²
²²

ÄÄ
ÄÄ ??

?? (276)

Observe that a square configuration of four points would not have allowed a
central subdivision. For the square configuration, the triangulations would
be the chorded source and target of A2. Thus the geometry of the points
dictates the diagram set. We only allow certain nice triangulations, as indi-
cated in the examples below.
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Given an allowed triangulation T for any S, let ξT : S → R be the
characteristic function defined by the sum

ξT (p) =
∑

{σ:p∈σ}
Vol(σ) (277)

over simplices σ in T . The volumes will be neatly normalised so that an
underlying field is not crucial to the combinatorial arguments. Let RS be
the vector space of all ξT for all T . The dimension of RS is just n.

The secondary polytope Σ(S) is the convex hull in RS of all vectors ξT for
all triangulations T . For the four point configuration above, the normalised
volume vectors are (3, 3, 3, 0) and (2, 2, 2, 3), giving a secondary interval
between these points. The dimension of Σ(S) is n − k − 1, since every
cone over T in RS shares a k + 1 dimensional subspace with every other,
determining the codimension for Σ(S).

Example 10.1 The A4 associahedron polytope in R3 is determined by the
14 triangulations of the planar two qutrit simplex, which is a squashed
hexagon.
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The area of a minimal piece inside any triangulated configuration is
normalised to 1. This procedure is dual to the one that assigns integral
volumes to vertices, as in chapter 5. Zero area triangles are permitted along
a simplex edge. These volumes take values V ∈ {2i23i3 · · · lil} for ik ≤ d−1,
so that for A4, the volumes are 0, 1, 2 or 4.

Example 10.2 Consider the three qubit parity cube, at n = 4. Squashed
into the path interval, it has four triangulations, matching the interval par-
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titions (1, 1, 1), (1, 2), (2, 1) and (3). Recall from chapter 5 that these par-
titions label the vertices of the parity square. The four vectors of this sec-
ondary polytope are (3, 3, 3, 3), (1, 2, 2, 1), (1, 3, 2, 2) and (2, 2, 3, 1).

Example 10.3 The permutohedra Sd are secondary polytopes for the tri-
angular prism ∆1 ×∆m−1 in Rm, for a simplex ∆m−1 [73], where ∆1 is the
interval. The prism clearly has 2m points, so the secondary polytope is of
dimension m − 1, for d = m. For example, the hexagon S3 of dimension 2
comes from the six point prism ∆1×∆2. The ξT vectors form 2×m matri-
ces, using the prism decomposition. For the permutation (d(d− 1) · · · 1) in
Sd, one may take a triangulation such that the ξT vectors are (d− k + 1, k),
and the other ξT are permutations of these vectors. This is the simplest
example that uses a product of basic simplices.

Recall that divided simplices are canonically coordinatised. For example,
the two qutrit labels from the word monoid give its coordinates: (2, 0, 0),
(0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1) and (0, 1, 1). Coordinates in Zd come
from the monomial indices of the word monoid [73]. The homogeneity of a
monomial means that all points lie in a hyperplane

x1 + x2 + · · ·+ xn = d. (278)

Let S sit in the integral lattice Zk, so that p ∈ S is a commutative mono-
mial Xp = X1

i1 · · ·Xk
ik with k variables. That is, the integer vectors have

become exponent vectors. When k = 2 let S be the monomials XiY j for
i ∈ {1, 2, · · · , mi} and j ∈ {1, 2, · · · ,mj}. For any mi×mj matrix M defin-
ing a form

∑
MijX

iY j , the S-discriminant is either 1, when mi 6= mj , or
equal to the determinant detM when M is square. For the trilinear XiY jZh

there is a hyperdeterminant for any form

mi∑ mj∑ mh∑
MijhXiY jZh.

The Cayley hyperdeterminant ∆(V ) for qubits is a 2×2×2 example. Recall
that ∆(V ) is quartic by the triality of (263). Triality on A4 itself is made
manifest by the simplex triangulations. Look at the 21 = 3 × 7 edges,
indicated by triangulations that may omit a boundary triangle. Two of
these edge sets come with a left right reflection asymmetry, leaving only 5
diagram types.
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Simplex volumes should take values Vc ∈ {2c23c3 · · · dcd} for ck ≤ n− 1,
as in chapter 5 [62]. Observe that the c vectors for C4 = 14 are canonical
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coordinates for four 4-dits. The tetrahedral four 4-dit simplex then contains
an integral A4 polytope, just as one corner of the tetractys contains the
pentagon A3.

Let S be a generating set in the integer lattice Zk. The secondary poly-
tope for S is known as the Chow polytope for the toric variety defined by S.
In this case there is a principal S-determinant for S, such that a triangula-
tion T is associated to a coefficient

cT = ±
∏

σ∈T

Vol(σ)Vol(σ). (280)

As noted in [73], the expression
∏

i V
V is the same as

exp(
∑

Vi log Vi) (281)

where
∑

Vi log Vi is in the form of a negative entropy, and Vi is a probability.
Such a probability concretely measures the likelihood of ending up in a
particular triangle, where this likelihood increases with volume.

Example 10.4 Consider the two qutrit word monoid simplex. When a
minimal triangle is normalised to area 1, the 14 cT take the values 1, 4 or
16. The renormalised probabilities over all 14 vertices of A4 are then 1/92,
1/23 and 4/23.

Planar square lattice paths in steps X and Y ending at a point (m,n),
and so of total length m + n, correspond to the (m,n) shuffles in Sm+n.
The paths XY and Y X therefore stand for the (1, 1) shuffles in S2, which
is all of S2. The shuffle polytope Nm,n [73] has amongst its vertices all the
(m,n) shuffles in the permutohedron Sm+n. Thus N1,1 is the edge S2. The
polytope N3,3 determines an invariant for two cubic polynomials

f(z) = X0 + X1z + X2z
2 + X3z

3 g(z) = Y0 + Y1z + Y2z
2 + Y3z

3 (282)

whose coefficients Xi and Yj define integral coordinates in R8. The vertices
of N3,3 specify terms in the invariant.
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11 Non Local Cosmology

The dark mass energy problem is unavoidable when one assumes that general
relativity is the correct theory for gravity on cosmological scales. From the
emergent viewpoint there is no reason to make a commitment to GR, but
in this chapter we outline a mirror matter perspective in the context of
standard cosmological techniques, for completeness. Observational data is
typically analysed from the perspective of GR, or some small modification
of it. At present, the empirical success of the ΛCDM model points to the
correctness of GR only on small scales, where it has been tested in numerous
experiments.

The ΛCDM model insists that the CMB dipole is due to our motion
in the local galactic group, with respect to a CMB frame. But according
to Mach’s principle, there is only one special inertial frame: one for which
the distant universe is not rotating [189]. The distant universe should be
completely at rest with respect to us. This forces us to interpret the local
dipole as the motion of a local photon source within the average CMB. But
if all CMB photons arise from the same physical mechanism, these sources
must tell us something fundamental about gravity. One might object that
all photons must come from the distant universe, but this is an assumption
of ΛCDM type cosmologies. The physical universe is quantum, and we only
observe the photons when they are absorbed.

Here we interpret the CMB homogeneity in terms of the rest mass of
a mirror neutrino. If the neutrinos set a mass unit, the ratio of different
mass scales can change as we look back in cosmic time. That is, the ratio of
baryon to neutrino scales will decrease with look back time, as the masses
tend to zero at a conformal boundary. Since baryonic matter is then lighter
in the past, photons are emitted with an observed redshift. This means
that CMB photons can maintain their frequency in a static universe with no
Big Bang, from any emission point within the observable universe, without
contradicting the redshift of distant sources.

So we do not need to imagine an expanding spacetime. On the other
hand, we can just as easily extrapolate the neutrino scale back to a hot-
ter universe in sync with the usual temperature redshift dependence. The
CMB photons are then redshifted, but only because the neutrino mass scale
increases in step. If the galactic redshifts are then attributed entirely to
expansion, we can say that the mass ratios are fixed for all time.

A novel viewpoint on the CMB might also be justified by holography,
which takes all information internal to a classical spacetime and places it
at a boundary. The mathematics of the AdS/CFT correspondence vali-
dates such a holographic principle for information in the twistorial N = 4
supersymmetric Yang-Mills theory, but the role of holography in emergent
geometry remains unclear. In an observer dependent cosmology, where our
Big Bang is unique only to our own teleological past, and is an illusion at
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that, neither cosmological nor event singularities carry a universal existence.
In this context, the underlying boundary may be viewed as a projection of
observer constraints for the imagined interior space.

In a ribbon theory built with chiral particle graphs we naturally include
matter and antimatter, and also the mirror set. It is important to un-
derstand that the mirror sector can have nothing to do with conventional
supersymmetry, which completely ignores the concept of emergent geometry.
There is no reason at all to attribute extra local states to the mirror braids.
Rather, we may think of the mirror states as atoms of spacetime. The
standard cosmology of mirror matter introduces an identical mirrored La-
grangian to that of the Standard Model, including a second bosonic sector
[190][191], but the non local physics of ribbons tells us something differ-
ent about mirror matter. The mirror world is intimately tied to our own,
through the two directions of thermodynamic time that are responsible for
the generation of local mass.

Initially, we can imagine mirror matter inhabiting a space behind our
classical horizons, in a spacetime that contracts as ours expands, generating
the true static, timeless universe. In this way, theories of black hole dark
matter may approximate the behaviour of mirror matter using relativistic
theories, and cosmic censorship becomes the rule that we do not inhabit the
mirror world.

In particular, Riofrio [192] explains the CMB homogeneity using a vari-
able speed of light picture, based on an FRW metric. This scheme couples
particle pair creation with black hole dark matter to derive an exact baryonic
mass fraction of Ωb = 1 − 3/π, as noted below. Penrose’s conformal cyclic
universe [193] is another relativistic cosmology that proposes a black hole
dark sector. Its gluing of conformal boundaries requires a transformation of
scale factors, which somewhat resembles the dualities of M theory. Although
this classical picture requires each aeon in an infinite set of cycles to grow in
scale, a quantum framework is free to loop back on itself, since a spectrum
of energies is generated for each classical point. In the end, cosmology must
be quantum.

Classically, one usually singles out a conformally flat spacetime such as
de Sitter space. Although empty of traditional matter, we need not consider
such metrics as empty spacetimes. As relativistic observers, we have only one
cosmos, with one baryonic and one dark sector. We know from observation
that the overall geometry is flat. This could be a de Sitter geometry or some
other FRW geometry with a curvature k = 0, but it might not be possible
to properly account for the mirror matter within the same geometry that
is obeyed by the baryonic sector, in which case the dark component of the
baryonic cosmos is merely an effective description for the mirror degrees of
freedom. Given mirror contraction, it seems likely that a bimetric theory
will have more success than GR.

Morally, the cosmological constant should be Λ = 0, because many argu-
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ments tie Λ to a quantum deformation parameter. This is the case in [192].
However, Riofrio actually requires a varying ~ over cosmic time, suggesting
a sequence of Λ values, perhaps all canceled in some bimetric scenario.

We let M represent either a Planck mass or a total mass for the observ-
able universe, and t is the cosmic time. As in the older steady state models,
we will imagine that M increases with t, so that M → 0 at a critical time
in our cosmic past. Since M → 0 is a condition that might apply anywhere,
we consider it a quantum boundary condition, associated to the quantum
vacuum from which all matter is born [192]. The universal mass that we
observe is a reflection of our complexity as observers.

As noted by Dungworth [170], as our spacetime expands with respect
to our cosmic arrow of time, the mirror world should contract. We observe
this as a clumping of dark matter over time, generating gravitational en-
tropy. This inclusion of a second world is necessary for the restoration of
time symmetry in microscopic physics, for which there can be no absolute
time direction [16]. Although microscopic time is reversible in the Standard
Model, its usual application to cosmology introduces an essential arrow for
time. Since the important dualities of M theory link the largest and smallest
scales, there is then a basic inconsistency in the ΛCDM picture, between the
time directed world and a time unordered one.

Mirror neutrinos are special, capturing the essence of the mirror time
reversal, manifesting themselves as CMB photons. Short lived mirror neu-
trinos must have uncertain rest masses, but the corresponding photon energy
is peaked at the theoretical rest mass under Wien’s law, which is precisely
the observed CMB temperature of T = 2.725 K [170][143].

The CMB is the perfect black body spectrum for bosonic states, whereby
any fermionic aspect to the information has been squeezed out by its space-
time restriction. The CMB represents the thermodynamic equilibrium that
the mirror world reaches, as it bumps against our own. There is no need
for inflation, because the homogeneity of the CMB is entirely due to the
precise neutrino rest mass. There is no horizon problem. The slight lack of
scale invariance can also be attributed to the light neutrino mass. Neutrinos
mediate gravity non locally, and there are no gravitational waves. IceCube
can observe high energy neutrinos, traveling extremely close to c, since zero
velocity mirror neutrinos are partnered to light speed laboratory neutrinos.
This specifies a characteristic acceleration of around cH0, assuming that our
Hubble time is closely linked to neutrino gravity. This acceleration appears
in the phenomenology of modified Newtonian dynamics.

11.1 Modified Newtonian Dynamics

Modified Newtonian dynamics [194][195] suggests that new forms of matter
are not the correct resolution to the dark matter problem. Instead, there ex-
ists a fundamental constant a0, an acceleration, such that bodies on galactic
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scales undergoing accelerations a ¿ a0 no longer obey Newton’s law. These
bodies instead obey the MOND rule

a =
√

MGa0

R
, (283)

where M is a galactic mass, R the radius of the orbiting body and G is
Newton’s constant.

MOND theories usually assume that general relativity no longer holds
for small accelerations. Here, however, we consider that relativity and New-
tonian mechanics might still apply, at least in certain circumstances. The
empirically successful MOND rule must then be viewed as a Newtonian
law in disguise. This may be achieved by allowing the galactic mass M to
evolve with large distances. This evolution of baryonic mass is meant only
as a simple model for the inclusion of mirror mass. For a distant observer,
the galactic mass appears to grow as a local observer recedes from its centre,
just as our universal mass increases in cosmic time.

The observational evidence begins with galactic rotation curves, which
exhibit peculiarly high velocities at outer radii [195]. The standard ΛCDM
model cannot fit the details of rotation curves, and it also fails on many
other points, such as the polarised nature of satellite galaxy groups and the
variation of dark matter content within galaxies. These Tully-Fisher rela-
tions [197][195] give a tight correspondence between apparent dark matter
content and galaxy luminosity.

In the baryonic form of the relations, there is a tight correlation Mb ∼
V 4 between galactic baryonic mass and the flat limiting speed of galactic
rotation. The only way [195] an FRW framework can accommodate the
Tully-Fisher law is if the dark matter surface density exactly balances out
the baryonic density at large radii. This coincidence really forces a close link
(no pun intended) between the apparent baryonic and dark matter densities.

Under the evolving mass hypothesis, the MOND law (283) for a mass
M0 may be interpreted as a Newtonian law for a mass M1. Equating the
two laws,

M1G

R2
=
√

M0Ga0

R
(284)

we find that

M1 =

√
M0a0

G
R (285)

in the MOND regime. This increase in apparent mass with radius mimics
the relativistic behaviour of black hole mass. It suggests that the region
interior to the body’s orbit is filling up with mass as the body recedes, at
least from the perspective of a distant observer. This is analogous to an
M ∼ t rule for black hole cosmologies [198][192].
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11.2 AdS, dS and FRW Cosmologies

In the standard ΛCDM picture, an FRW cosmology mixes dark energy,
dark matter, radiation and baryonic matter components. Although almost
certainly inadequate for dealing with the quantum universe, we augment
this model in a brief discussion here. The ΛCDM model is empirically
valid for small angular scales, where causal contact poses no observational
dilemma. It fails most notably at large angular scales, where we might
expect appreciable effects from the non local cosmology.

The anti de Sitter and de Sitter metrics play a special role in alterna-
tive cosmologies, contrasting with the usual power law relation for the FRW
scale factor a(t). The de Sitter geometry is neatly expressed as a five dimen-
sional space in six dimensions, the dimension of twistor space. AdS space in
dimension 5, on the other hand, appears in the bulk string theory associated
to the four dimensional N = 4 supersymmetric Yang-Mills theory, with its
superconformal symmetry. AdS space is of some interest here, because the
inclusion of a Schwarzschild black hole in AdS space is a natural way to
break conventional supersymmetry and to endow the boundary theory with
a finite temperature [199]. For the four dimensional N = 4 theory [199] this
temperature is equal to

√
3|Λ|−1/β, where β is the period of the time co-

ordinate τ in the string theory metric. In some sense, then, de Sitter space
accounts for the imaginary temperatures of a mirror world. We are always
working on the boundary, and not with string theory, but a pairing of the
dS and AdS geometries is suggested as a mechanism for mass generation,
breaking the conformal symmetry with the complex temperature.

In contrast, the standard ΛCDM model uses an FRW metric with a
power law for the scale factor a(t) as a function of time. It maintains flatness
with a dark energy density ΩΛ as well as an ordinary matter component,
whose density falls off as R−3 as the universe expands. The total density
Ω is set to 1 for a flat universe. The usual fractional densities are: Ωγ for
photons and neutrinos, Ωb for baryons, ΩΛ for dark energy and Ωm for the
sum of baryonic and dark matter. We will also allow a classically nonsensical
M ∼ R evolving mass component ΩR, which we employ as a means to obtain
a flat geometry without any ordinary matter on large scales.

The FRW metric for a flat, homogeneous spacetime on the largest scales
is given by

ds2 = −c2dt2 + a(t)2(dr2 + r2dΩ2), (286)

where the variable t denotes the cosmological passage of time and a(t) is the
scale factor. Define the t dependent Hubble parameter by H ≡ ȧ/a. One
usually sets a(t0) = 1 at the present time.

The basic equations governing standard cosmology [200] can either be
derived from this metric, or from Newtonian mechanics. Including a space-
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time curvature constant k, we have

ȧ2 = −k +
λ

a
+

1
3
ΛR2, (287)

where λ is a constant, and Λ is the cosmological constant. At k = λ = 0,
and with Λ > 0, one obtains the de Sitter solution,

a(t) = exp(ct
√

3Λ−1). (288)

For this solution, the Hubble parameter H is the constant c
√

3Λ−1. We
consider an FRW density parameter ρ, as in

H2 =
8πG

3
ρ, (289)

where G is Newton’s constant. For de Sitter space, ρ is essentially the inverse
of the cosmological constant, meaning that it must remain constant in time.

The second classical equation for the density is the fluid equation, which
assumes a locally reversible expansion,

ρ̇ + 3H(ρ +
p

c2
) = 0 (290)

for a pressure p. Whether a reversible dS = 0 expansion is an acceptable
assumption for cosmic time is a debatable point. Anyway, here it merely
specifies the hypothetical nature of pressure for various matter components.
Using general relativity, the fluid equation follows from local energy con-
servation, which is classically beyond question. However, the existence of a
thermodynamic arrow of time suggests taking at least two copies of FRW
spacetime, as in the dS/AdS pairing.

In Friedmann’s equation (289) we need to consider different density func-
tions, for the different components of mass energy. The usual choices are
the first three items on the list

1. non relativistic matter: ρ ∼ a−3, a(t) ∼ t2/3

2. radiation: ρ ∼ a−4, a(t) ∼ t1/2

3. cosmological: constant ρ, ρc2 = −p

4. evolving mass: ρ ∼ a−2, a(t) ∼ t.

Ordinary matter was used in [192] to derive Ωb = 1 − 3/π, as follows. The
critical density is

ρ =
1

6πGt2
. (291)

This is compared to an initial density ρ0 = M/V prior to baryonic matter
creation, based on the universal mass M and the toric volume V = 2π2a3.
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We have ρ0 = (2π2Gt2)−1. The ratio ρ/ρ0 gives 3/π for the dark sector
density, in good agreement with WMAP. Note that a(t) ∼ t1/3 leads to a
similar result.

In the fourth component, since M ∼ a, the density inside a volume a3

goes like a−2. That is, M ∼ t again. Here the Hubble parameter goes like
t−1. This contrasts with the standard flat geometry, in which a(t) ∼ t2/3

contributes a scaling of 2/3 to H. Note also that with M ∼ t, the density
behaves like a surface density. Although seemingly odd, this case is worth
considering. Using (287), it leads to a very strong constraint on the cosmic
time,

Λt3 − 3t + 3λ = 0. (292)

This is a cubic with at most three distinct solutions for t, unless Λ is a
function of time. Classically this is ridiculous, but phenomenologically we
are quite free to step outside GR.

The equation of state parameter w is defined by p = wρc2. For evolving
mass, we then have w = −1/3. This contrasts with w = 0 for an ordinary
matter component, and w = −1 in the case of a constant energy density.
Note that before the observation of an apparent universal acceleration, and
the requirement for ΩΛ in the ΛCDM model, it was generally accepted that
any type of matter should obey the strong energy condition: ρc2 + 3p ≥ 0.
The clear violation of this principle is itself a serious problem for the ΛCDM
picture.

Under the evolving mass scenario, the age of the universe is measured
directly by the inverse Hubble constant H0

−1. When a(t) is a power law,
ρ always goes as t−2, but the different matter components have distinct
constant coefficients. In particular, we now have

ρR =
3

8πGt2
ργ =

3
32πGt2

=
ρR

4
. (293)

In this scenario, when there is no standard matter component, the Hubble
parameter takes the form

H = H0

√
ΩΛ + ΩR(1 + z)2 + Ωγ(1 + z)4, (294)

where z is the spectral redshift and H0 the present Hubble constant. When
there is no ΩΛ component, and we neglect radiation, this Hubble law reduces
to H = H0(1+ z). Up to numerical factors, this is just the temperature law
T = T0(1 + z) for the CMB. This form of Hubble evolution corresponds to
the behaviour of a particle detector near the event horizon in de Sitter space
[201].

For a relativistic, ideal gas at temperature T , ρ ∼ T 4. When this applies
to ργ , then a ∼ T−1. In this case, the evolving mass must satisfy M ∼
T−1. This is just the behaviour of a black hole mass with respect to the
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temperature of its Hawking radiation [202]. The Hawking law

8πGkT

~c3
=

1
M

, (295)

with Boltzmann’s constant k and Planck’s constant ~, is a strong motivation
for relating rest mass to temperature. We now say that all mass is created
by the quantum gravitational vacuum through pair creation in Hawking
radiation. Either evolving mass or Riofrio’s pair production [192] result in
a M ∼ t law [192], indicating the T ∼ t−1 relation.

Combining (295) with (285) we infer a temperature dependence for the
critical acceleration a0. Observationally, a0 is indeed of the order cH0. For
the critical acceleration a0 = 1.2 × 10−10 ms−2 the Hubble constant would
be 4×10−19 s−1. Using the law t ∼ 1/H for evolving mass, this corresponds
to a universal age of around 80 billion years. This is exactly four times the
value of 20 billion years obtained for the evolving mass FRW metric.1 Using
this estimate, Newton’s formula M = a0r

2/G for the universal mass gives
M ∼ 1053 kg. This is equivalent to around 1012 galaxies, in agreement with
observation.

Currently, the CMB data is analysed using the ΛCDM scheme. The re-
cent Planck collaboration results [203] for this model obtain an optimal ΩΛ

of around 0.68. The six parameter model gives a very good fit for high mul-
tipoles in the CMB sky, but there is noticeable tension in the low multipole
data, as previously predicted using evolving mass arguments [192][193].

Planck’s Hubble constant H0 also differs significantly from astrophysical
estimates using the cosmic distance ladder. Models with further standard
parameters do not greatly improve the fit. According to the Planck analysis,
there are roughly three species of relativistic neutrino in the early universe,
in agreement with the Standard Model of particle physics. It is reasonable
to conclude that something like ΛCDM is a good empirical model for small
angular scales, but that quantum cosmology will be required to obtain a
clear understanding of the data.

The Hubble constant discrepancy might be alleviated by the evolving
mass hypothesis. Observe that one can only underestimate H0 for low z if
the terms in (294) are low powers in (1+z). In particular, for a true Hubble
constant of H0,A, the respective cosmologies give the ratio

H0
2

H0,A
2 =

ΩΛ′ + (1− ΩΛ′)(1 + z)2

ΩΛ + (1− ΩΛ)(1 + z)3
(296)

where we assume that ΩΛ is roughly the same as ΩΛ′ and radiation is ne-
glected.

1A radiation epoch could lower this high age to something around 15 billion years, a
little above the accepted ΛCDM value.
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11.3 Observational Notes

Dark matter was not predicted by theorists, but observed first in the anoma-
lous rotation of galaxies by Zwicky [204] in the 1930s. It has since become
clear that basically all galaxies show a flat rotation curve at high radius
[205], apparently in line with the hypothesis that extra mass lies in the
galactic halo [206]. However, no dark mass has been detected in our own
environment, except possibly in the form of black holes.

The dark energy component was hypothesised after the observation of
dimming for distant supernovae, which act as standard candles for distance
measurement [207][208]. It is now usually attributed to the cosmological
constant term in Einstein’s equations, responsible for ΩΛ. However, the
supernovae data are fitted without dark energy in Riofrio’s scheme [192].

Another cornerstone of cosmology is the evolution of structure forma-
tion [209]. Traditionally, this is analysed with a strictly classical image of
colliding galaxies and star formation in an a priori spacetime. Large scale
structure is associated to the so called initial perturbations, seen in the cos-
mic microwave background radiation. In this framework, it takes billions of
years from the Big Bang for complex spiral galaxies to form, and yet they
are observed at high redshift.

Direct detection dark matter experiments have now ruled out many
WIMP scenarios [210][211]. There remains the oscillation results of DAMA
[212] and other experiments, which observe a variation in event rates with
a phase that is correlated with Earth’s relative galactic motion, rather than
solar system motion. This might be explained with traditional mirror matter
[190], but it now seems more likely that neutrino gravity is directly respon-
sible for the keV scale nuclear recoils, via full neutrino absorption. In non
local gravity, scattering is not a viable interaction between the dark and
baryonic worlds.

Recently, Alexander obtained an interesting evolving equation of state w
from a neutrino condensate ansatz [213]. An evolving w has the advantage of
alleviating the evolving mass constraints, and is feasible provided that there
is a long epoch of roughly constant w. This again suggests that neutrinos
are closely related to the cosmic microwave background radiation [170][143].

11.4 Mirror Neutrinos and the CMB

Our cosmic time is measured by the temperature of the cosmic microwave
background. Thus the increasing universal mass M is inversely proportional
to a temperature T . This is a statement of Hawking’s law, wherein a black
hole mass M is inversely proportional to a Hawking temperature. This finite
universal mass is now characterised by the rest mass of a mirror neutrino.

In chapter 7, the ±π/12 Koide phase conjugation gave both a neutrino
mass triplet and a mirror neutrino one. The central mirror state corresponds
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precisely to the current CMB temperature T0 = 2.725 K, equal to 0.00117
eV under Wien’s law [170][143]. There are two other mirror mass states in
the triplet, one at a future cosmic time and one in the distant past. That
is, the mirror neutrinos mark out the minimal three time points required to
describe the mass quantum number. All other Koide states correspond to
temperatures that are hotter than the present CMB.

In principle, mirror neutrinos are inaccessible as fermions, but they are
observed in the form of CMB photons. The CMB is a perfect black body dis-
tribution. The probabilistic state variables that determine Planck’s bosonic
law can always be interpolated to a fermionic regime by expanding the avail-
able set of states. In this way, the underlying statistical information is more
fundamental than the boson fermion distinction, and fermions are just those
particles with a sufficiently sparse state distribution. With the positions of
mirror neutrinos strongly limited in our spacetime, only the bosonic states
are observed.

The mirror neutrino hypothesis cures the so called horizon problem:
CMB photons can arrive from anywhere within our universe, their temper-
ature given precisely by the fermion rest mass. In the expanding picture,
the temperature varies as T = T0(1 + z), and this law is well tested by
astrophysical observation over a wide range of redshifts. This forces us to
identify the Koide neutrino scale with the evolution of z, so that at least
the mirror neutrinos are extremely heavy in our early universe, perhaps rep-
resenting primordial black holes. However, when balancing expansion with
contraction, so that the early universe is dominated by mirror mass, we can
attribute spectral redshifts to the lower atomic masses at early times. That
is, the temperature is considered constant. We do not need to imagine that
spacetime stretches photons!

One usually uses the current constraints on ∆m2 values [160] for neutri-
nos to obtain the Koide phase φν = 2/9+π/12 as an empirical result. With
the CMB hypothesis, however, we can fix the Koide scale using the present
value of T0, and the exact arithmetical phases then predict precise masses
for the ordinary neutrinos. This assumes that both neutrino triplets have
the same mass scale of

∑
mi = 0.06 eV. Recalling Planck’s derivation of the

black body law, we have Wien’s law

mc2 = 4.965114 · kT, (297)

where the dimensionless constant comes from differentiating Planck’s law as
a function of wavelength and solving the transcendental equation exp(−x) =
1− x/5. The central mirror neutrino rest mass of 0.001166 eV agrees with
the temperature T0, using accurate values for c and k. At this temperature,
the standard neutrino rest masses take the values

ν1 = 0.0506 eV ν2 = 3.824× 10−4 eV ν3 = 0.0089 eV (298)
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at µν = 0.009973 eV. This gives the range

∆m2
atm = 2.478± 0.002× 10−3 eV2 ∆m2

sol = 7.885± 0.002× 10−5 eV2,
(299)

in rough agreement with current constraints. Recently, the MINOS experi-
ment [160] has narrowed the range of ∆m2

atm to very near 2.48× 10−3 eV2.
These oscillation results are open to clarification by future experiments, as
is the question of a correlation between the CMB sky and anomalies in
oscillation results.

11.5 Discussion

The holographic principle [214] places quantum information at horizons,
which are typically one dimension lower than the spacetime they inhabit.
In the non local cosmos, the distinction between interiors, exteriors and
boundaries is complicated. Branched ribbon surfaces in dimension 3 can fill
space without defining an interior or exterior. Their edge boundaries define
an interior for the ribbon surface, but in braids on a cylinder, for instance,
these interiors can be swapped for the exterior. Since these subtleties are
tied to the space generating properties of matter, they cannot be ignored in
attempts to draw the classical picture.

A mathematical foundation for non local cosmology must include the
physical dualities of M theory. Duality arises firstly in the thickness of a
ribbon strand, which introduces string diagrams to twistor physics. It is also
the distinction between 0 and 1 for qubits. But these symmetric categorical
structures require no braid crossing information. Physical duality, on the
other hand, is a statement about energy scales. Whether a representative
for distances or couplings, the only natural unit is that of energy. And it is
when we take three dualities together that we begin to create dimension 3.
These are the S, T and U dualities of M theory.

When M ∼ t is a cosmological law, cosmic time also displays dualities.
We interchange our thermodynamic arrow of time for the one in the time re-
versed mirror world. Our long lived baryonic matter has sharp mass states,
while short lived mirror states cannot be localised in our spacetime. Once
both energy and time display duality, quantum mechanical uncertainty be-
comes the balance between dualities. Locally we see three spatial directions
and one time direction, and the spatial directions correspond to the three
dualities of M theory, but in twistor theory one can also consider three time
directions.

An observer selects two natural clocks. The cosmological clock estimates
the elapsed time since the observer’s imaginary Big Bang, with a measure-
ment of the CMB temperature T . The laboratory clock uses the local dy-
namics of a few massive objects to define an orbital tick. Each clock covers
the full range of energy scales. Our cosmological clock measures time from
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the timeless M → 0 limit to the present, and possibly into the future. The
laboratory clock keeps time for both low and high energy local experiments.
Duality is not enough to account for the present, because it is triality that
marks the past, present and future.

Implicitly, dual clocks occur already in black hole thermodynamics. In
black hole complementarity [215][216], quantum information resides in both
the particle states and in the local environment. For particles, one expects
m ∼ T , while Hawking radiation suggests an inverse T dependence. As
Riofrio [192] notes, the M ∼ t rule is just Kepler’s law for the universal
mass M ,

GM = tc3, (300)

where t marks this passage of cosmic time. We might attribute the missing
factor of π in Kepler’s law to the difference between the cosmic radial time
and the time defined by an orbital clock. This factor of π now differentiates
the rational and non rational Koide phases for neutrinos.

When the observer’s past universal mass M is interpreted as a black
hole mass, then the Hawking temperature T , as a measure of cosmic time,
appears in a modified form of (300),

1
t

=
8πkT

~
=

c3

GM
, (301)

with k Boltzmann’s constant. At the CMB temperature, we then have
8πT ' 0.03 eV, which is close to the tripled neutrino mass scale 3µν . This is
the natural neutrino scale, since 3µl is the proton mass. This is an additional
coincidence between neutrinos and the CMB. The neutrino masses, in their
thermal bath, define a limit for black hole evaporation.
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A Category Theory

Categories are the foundation of relational mathematics. A set is a zero
dimensional category, because everything in a set is an element, pictured as
a pointlike object. A one dimensional category C, or 1-category for short,
has both zero dimensional objects and arrows between objects. If the head
of an arrow meets the tail of another, they compose to form another arrow
in C. That is, an arrow f has source and target objects. Instead of equa-
tions relating elements of sets, categories relate arrows using commutative
diagrams. For example, the square

A
h //

f

²²

B

k

²²
C g

// D

(302)

says that gf = kh, if it commutes, and A, B, C and D are source and target
objects. Diagrams of any shape are possible. A 1-category C is associative
on arrows, so that h(fg) = (hf)g, and it always contains at least identity
arrows 1A : A → A for every object A, that represent the object at the
arrow level.

Since categories replace sets, we need maps between categories. A func-
tor F : C → D sends objects A to objects F (A) and arrows f , g to arrows
such that F (gf) = F (g) ◦ F (f). This is the covariant rule. A contravariant
functor satisfies F (gf) = F (f) ◦F (g). We can also say that a contravariant
functor is a covariant functor Cop → D from the opposite category Cop,
which is the same as C with all arrows formally reversed.

Example A.1 VectF is the category of vector spaces over the field F. Every
vector space V is an object in the category. The arrows are the linear maps
between vector spaces.

Example A.2 Set is the category of all sets, with functions as arrows. The
empty set is an initial object, since it is included in any other set in only
one way. A one element set is terminal. All one element sets A and B are
equivalent, because the unique maps ! in the squares

A
! //

1A

²²

B

1B

²²
A B

!
oo

B
! //

1B

²²

A

1A

²²
B A

!
oo

ensure that they commute. The two element set Ω = {0, 1} in Set gives it
the structure of a topos [8]. In particular, Ω allows characteristic functions
A → Ω, which send some elements of A to 1 and others to 0, thereby defining
a subset of A using an arrow.
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Note that two objects A and B are equivalent when there exist two
arrows f : A → B and g : B → A such that both fg = 1B and gf = 1A

hold. Arrows can be equal, but distinct objects can only be equivalent.
Why categories? Many familiar structures are already categories. For

instance, a group is a 1-category with only one object. Arrow composition
is the group operation and every arrow has an inverse. The axioms of
a category have automatically given the group its identity, and a group
homomorphism is nothing but a functor between two groups. A groupoid is
any category in which every 1-arrow is invertible. This extends groups to
categories with multiple objects.

So the category Grp of all groups is really a category of categories,
containing all one object categories with inverses, and all functors between
them. Now comes the interesting part. Categories of categories have another
level of structure, namely 2-arrows between the 1-arrows. Let F and G be
functors with the same source and target categories. These 2-arrows are
natural transformations η : F ⇒ G, given by a collection of arrows ηA in the
target category, such that for every f in the source category the squares

F (A)
F (f) //

ηA

²²

F (B)

ηB

²²
G(A)

G(f)
// G(B)

(303)

all commute. The 2-arrows are two dimensional pieces of a diagram, filling an
area between two 1-arrows. Such 2-arrows may compose both horizontally
and vertically, as in a globule

ÁÁ
ÂÂ ÂÂ
®¶ // @@ÂÂ ÂÂ
®¶

ÁÁ
ÂÂ ÂÂ
®¶ // (304)

piece of a 2-category. Natural transformations were originally introduced
for cohomology, since cohomology is a functor from a category of spaces
to the algebraic category that gives the invariants. Now a 2-category is
a collection of objects, 1-arrows, 2-arrows and identities, such that every
equation on 1-arrows can be weakened by 2-arrows between the paths.

There is no reason to stop at dimension 2. Categories are naturally
defined for any ordinal dimension n. Things get much more interesting in
dimension 3, with the appearance of tricategories [9][65]. Up to dimension
2, all categories are essentially strict. This means that every bicategory is
equivalent, at the level of 2-arrows, to an ordinary 2-category [66]. Bicate-
gories will be discussed below.
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A.1 Limits and Universality

As for sets, categories can have natural closure conditions, such as the exis-
tence of certain limiting objects [187][37]. A limit in a 1-category is defined
over any diagram D in the category. It is an object L, with an arrow from
L to each object in D, such that given any other object Q in the category,
and arrows from Q down to D, there is always a unique arrow Q → L so
that the whole diagram commutes.

Thus the pullback limit of a pair of arrows, f and x, if it exists, is a
unique square in a set of diagrams

Q

h

''OOOOOOOOOOOOOOO

k

ºº/
//

//
//

//
//

//
//

ÂÂ?
??

??
??

?

L //

²²

A

f

²²
Z x

// B

given by the following condition. For any pair of arrows h and k, there is a
unique arrow Q → A such that the diagram commutes. Note that an arrow
L → B also exists by composition.

Example A.3 Pullbacks characterise the behaviour of the differential form
functor in the de Rham cohomology of manifolds. Given f : Rm → Rn, there
is a pullback f∗ from 0-forms on Rn to forms on Rm, defined by f∗(w) = wf
[35]. The pullback f∗ extends to all differential forms.

Similarly, a colimit is an object C, along with arrows from D to C, so
that for any other object Q and arrows from D to Q, there is a unique
C → Q making the diagram commute.

Example A.4 The direct limit of a sequence {Xi}.

C

· · ·Xi
//

11cccccccccccccccccccccccccccccccccccccccccccccccccccccc Xi+1
//

22ddddddddddddddddddddddddddddddddddddddddddd Xi+2
//

22fffffffffffffffffffffffffffffffff
Xi+3

//

44hhhhhhhhhhhhhhhhhhhhhhh · · · // Xn

>>}}}}}}}

Limits are instances of universality: the idea that a single object essen-
tially contains the structure of a larger piece of the category. In particular,
motives are supposed to be a universal cohomology theory in some category
of functors. However, the 1-categorical limit concept is too limiting, not
least because a category of functors is already a 2-category! We need higher
dimensional limit concepts. On that note, observe that there is a unique
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limit only in the sense that all limits must be equivalent. Let us look then
at equivalences between categories.

Let 1C and 1D be the identity functors on two categories C and D.
There is an adjunction F a G, for functors F : C → D and G : D → C, if
there exist natural transformations η : 1C ⇒ GF ⇒ and ε : FG ⇒ 1D. It
helps to draw out the arrows. In simple cases, F and G may compose to the
identity itself.

Example A.5 F and G are both the same functor ∨ : Vect → Vect,
namely the duality functor on a category of vector spaces. There is a natural
equivalence (V ∨)∨ ' V between the double dual of a vector space and itself.

Example A.6 Let K be a finite extension of the number field F defined
by the splitting property. For example, C splits quadratics over the reals.
Let S be some subset of K. The field F(S) closes S under the field opera-
tions. This gives a lattice of extensions between F and K. To any such nice
extension K/F we consider the group of automorphisms of K which fix the
elements of F. This is the Galois group Gal(K/F). For example, Gal(C/R)
is the two element group, containing the trivial automorphism and complex
conjugation. The subgroups of Gal(K/F) are in one to one correspondence
with the extensions between F and K. This is an adjunction between the
lattice of extensions and the subgroups.

A monad is an endofunctor T : C → C with natural transformations
µ : T 2 ⇒ T and η : 1C ⇒ T such that µ(Tη) = µ(ηT ) and

T 3
Tµ //

µT

²²

T 2

µ

²²
T 2

µ
// T

(305)

Note how this axiom resembles associativity for a binary product. Every
adjunction defines a monad with T = GF . Monads define T -algebras, which
are pairs (X,h) for X an object in C and h : TX → X the algebra structure,
so that Th · h = µXh [66].

A multicategory allows arrows with multiple sources.

''OOOOOOOOOOOO

ÂÂ?
??

??
??

²² ÄÄÄÄ
ÄÄ

ÄÄ
Ä

wwoooooooooooo

²²

(306)

On such tree diagrams the arrow orientations are often omitted, and it is
understood that processes occur downwards on the tree. An operad is a
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multicategory on one object [217]. That is, for every n ∈ N there is an
object X(n), including an identity 1 in X(1), so that the collection has a
composition

X(n)×X(k1)×X(k2)× · · · ×X(kn) → X(k1 + k2 + · · ·+ kn) (307)

given by an associative x · (x1, x2, · · · , xn) such that x · (1, 1, · · · , 1) = x.
This last identity rule extends n leaves on a tree by a secondary leaf. Simi-
larly, the generic composition uses the tree X(n) as a base for grafting the
other components. Special sequences of polytopes of real dimension n form
operads, and these are an important theme of the book. Operads are often
defined with a permutation group action, but the weaker definition is more
suited to noncommutative geometries.

A.2 Monoidal, Braided and Tortile Categories

In category theory, coherence of a structure means providing a finite set
of axioms that are sufficient to force commuting diagrams wherever neces-
sary. The primary example is Mac Lane’s proof of coherence for monoidal
categories [66], which are examples of bicategories.

A bicategory B is the general form for two dimensional axioms, as in
categories of 1-categories, functors and natural transformations. Thus it
contains 0-arrows, 1-arrows and 2-arrows, along with weak identities 1A for
all 0-arrows A, and a left identity λf and right identity ρf for all 1-arrows
f . The 1-arrows and 2-arrows from A to B form a 1-category B(A,B). The
identities satisfy

A

f

ÄÄ~~
~~

~~
~~

~~

f

²²

____ks
ρf

B
1B

// B

A

1A

ÄÄ~~
~~

~~
~~

~~

f

²²

____ks
λf

A
f

// B

(308)

It turns out that any bicategory is weakly equivalent to a 2-category, where
all the λf and ρf are strictly identities. For objects A, B and C, there is a
functor

⊗ : B(B, C)×B(A,B) → B(A, C) (309)

and associator 2-arrows ψfgh : f ⊗ (g ⊗ h) → (f ⊗ g)⊗ h such that

ψfg1(f ⊗ ρg) = ρf⊗g ψ1fgλf⊗g = λf ⊗ g ψf1g(f ⊗ λg) = ρf ⊗ g. (310)

The interchange law for 2-arrows ψ, φ, ψ′ and φ′ states that (ψ⊗φ)(ψ′⊗φ′) =
ψψ′ ⊗ φφ′, interchanging the two inner arrows. That is, the composition of
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four 2-arrows
A

²²

// B

²²

// C

²²
A

²²

//

ÂÂ ÂÂ
®¶ φ
′

B

²²

//

ÂÂ ÂÂ
®¶ ψ
′

C

²²
A //

ÂÂ ÂÂ
®¶ φ

B //

ÂÂ ÂÂ
®¶ ψ

C

(311)

should give a 2-arrow in B. Here, the 2-arrows are globules, defined from one
source object to one target object. This may be generalised to the concept
of double category, based on square building blocks.

A bicategory with one object is a monoidal category. Since there are
only two non trivial levels of arrow, it may be described using objects and
1-arrows with extra structure, understanding that the objects are really the
1-arrows and the 1-arrows are really 2-arrows. The identity on the one
object is usually denoted I, and acts as a unit for ⊗. The objects can be
composed using this monoidal product ⊗. The bicategory interchange law
becomes the Mac Lane pentagon axiom [66]

((A⊗ (B ⊗ C))⊗D)
ψ // (A⊗ ((B ⊗ C)⊗D)) ψ ,,YYYY

(((A⊗ B)⊗ C)⊗D)

ψ 22eeee

ψ
--\\\\\\\\\\\\\\\\\ (A⊗ (B ⊗ (C ⊗D)))

((A⊗ B)⊗ (C ⊗D)) ψ

11bbbbbbbbbbbbbbbbb

(312)

Rather than keep track of the same set of objects all the time, this law
is abbreviated to bracket sets. A bracketed object is replaced by a binary
rooted tree with four leaves. For instance,

??
??

ÄÄ
ÄÄ

??
?? //

/
²²
²

??
??

ÄÄ
ÄÄ //

/
²²
²

(313)

stands for the object ((A⊗B)⊗ (C ⊗D)).

Example A.7 The category Set with Cartesian product × is a monoidal
category. So is VectF with tensor product ⊗.

In these standard examples, the tensor product is symmetric. But it
turns out that the condition of symmetry for ⊗ is a four dimensional struc-
ture. The three dimensional structure that underlies this commutativity is
that of a braided monoidal category. Like monoidal categories, these have
only two non trivial levels of arrow, but now there is one 0-arrow and one
1-arrow. The extra trivial level adds the structure of a braiding, which is a
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collection of arrows γAB : A⊗B → B ⊗A such that the hexagon

A⊗ (B ⊗ C)
γA(BC)// (B ⊗ C)⊗A

ψ

((RRRRRRRRR

(A⊗B)⊗ C

ψ
66lllllllll

γAB⊗1C ((RRRRRRRRR
B ⊗ (C ⊗A)

(B ⊗A)⊗ C
ψ

// B ⊗ (A⊗ C)
1B⊗γAC

66lllllllll

(314)

and another hexagon with inverse associators ψ−1, commute [49]. Braids
are actually just that: knotted string diagrams. String diagrams are geo-
metrically dual to the usual arrow diagrams, because a string stands for an
object A, while a node on a string is an arrow. Thus a braid arrow γAB is
a braid crossing

A B

B A

(315)

and γBA is the opposite crossing, taking B over A. A tortile braided
monoidal category C has a dual object A∗ for every object A in C, and
twist maps θA : A → A that twist the object pairs, now represented by
ribbons. As explained in [135], ribbons are necessary to make a braiding
compatible with the existence of duals. We can assume that A∗ is a right
dual, since in tortile categories this automatically makes it a left dual also.
From the adjunction A a A∗ there is a unit and counit

ηA : I → A∗ ⊗A εA : A⊗A∗ → I (316)

where I is the monoidal identity. These are drawn as arcs

η ε
(317)

so that I is an empty diagram. The arrow (1A ⊗ ηA)(εA ⊗ 1A) should be
the identity 1A, as should (ηA ⊗ 1A∗)(1A∗ ⊗ εA). For every A, the twist θA

satisfies the compatibility condition

A⊗B
γAB //

θA⊗B

²²

B ⊗A

θB⊗θA

²²
A⊗B B ⊗AγBA

oo

(318)

In string diagrams, this just says that the braiding of ribbons does not
interfere with the ribbon twists. Tortile categories introduce both ribbons
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and arc segments. Usually only full twists are permitted on ribbons, so that
ribbon diagrams are doubled braids, with a unique underlying braid [135].

The definition of tortile tensor category includes the condition θA∗ =
(θA)∗. That is, if a ribbon A is twisted, the twisting on the dual object
A∗ must define the dual of the twisted A. This is because A and A∗ are
connected by a ribbon arc, and the twists can propagate along a ribbon

(319)

to the other side. A single braid crossing within a ribbon diagram, thought
of as a double knot, adds ±1 to the writhe of the braid. Recall that a braid’s
writhe w is the sum j − k, where j is the number of over crossings and k
the number of under crossings. This quantity is important in the definition
of knot and link invariants. For a double knot, the twist number is given by

θK =
1
2
(j − k) (320)

This is always an integer, since two ribbons create four braid crossings when
they cross. The total number of twists n and w together give an equivalence
between double knots, because w/4+n is conserved under ambient isotopy in
R3. We can see this by observing that a writhe component on the underlying
knot is turned into a full twist.

DD
DD

DD
DD

D

DD
DD

DD
DD

ÄÄ
Ä

ÄÄ
ÄÄ

vvvv wwww
= (321)

A ribbon functor is a functor between ribbon categories that preserves
the essential structures. In particular, modular functors are used to model
quantum computation [176].

In general, the categorical dimension is not restricted. Even the ⊗ struc-
ture will be broken by physical considerations in dimension 3. It is too la-
borious to write out the rules for categories with more than two or three
levels of arrow, so one must focus on basic geometric elements, namely trees,
braids and ribbons.

A.3 Tricategories and Higher Dimensions

In 1995, Gordon, Power and Street found a coherence theorem for tricat-
egories [9]. It shows that not every tricategory is triequivalent to a strict
3-category, with simple identity arrows. Although the definition is essen-
tially unique, its precise form is still a mystery. One axiom is given by the
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A4 polytope, which generalises the Mac Lane pentagon to dimension 3. In-
stead of strict natural transformations, the category provides 2-arrows to fill
in the squares. A convenient concept is the pseudonatural transformation,
where the square filling arrows are assumed to be invertible. For example,
given objects A, B, C and D and bicategories of arrows T (A,B) between
them, there is a pseudonatural transformation

T (A,B)× T (D, A)× T (C, D) ⊗×1 //

ÂÂ ÂÂ
®¶1×⊗

²²

T (D,B)× T (C, D)

⊗
²²

T (A,B)× T (C,A) ⊗
// T (C,B)

(322)

on the ⊗ composition functor. Since a tricategory has three dimensional
arrows, diagrams of composed pseudonatural transformations are subject to
modification 3-arrows. For example, the cube

T 4

11⊗
}}||

||
|| ⊗11

!!B
BB

BB
B

1⊗1
²²

T 3

⊗1 !!B
BB

BB
B

1⊗

²²

T 3

1⊗
}}||

||
||

⊗1

²²

T 2

⊗

²²

T 3

1⊗
}}||

||
|| ⊗1

!!B
BB

BB
B

T 2

⊗ !!CC
CC

CC
T 2

⊗}}{{
{{

{{

T

(323)

is filled with a modification. A weak identity axiom is given by the (left)
triangular prism 3-arrow

T 3

²² !!B
BB

BB
B

T 2

==||||||

²²

//T 2

!!CC
CC

CC
T 2

²²
T

=={{{{{{
// T

(324)

with faces filled by 2-arrows. Although tricategories are not all strict, they
are all triequivalent to a special tricategory Gray of 2-categories with a
Gray tensor product [218].
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A.4 The Crans-Gray Tensor Product

Distributivity is at least a three dimensional structure, because the two
binary operations lift the axioms to dimension three. Thus categorical op-
erations, like knots, guide us towards a three dimensional picture for the
integers Z. In [12], Crans noted that a natural tensor product for higher
dimensional categories was not dimension preserving. In particular, the
horizontal composition of two 2-arrows gives a 3-arrow, just as branched
2-surfaces contain three dimensional knots. A generic category of dimension
≥ 2 has such dimension raising compositions, so that beyond dimension 3,
space is automatically generated from the algebra of surfaces.

To begin with, the Gray tensor product breaks interchange. Put two
objects U in C1 and V in C2 into a formal pair (U, V ). Let gi be a 1-arrow
in C1 and fj a 1-arrow in C2. Then the formal pairs (gi, 1Vi) and (1Uj , fj)
satisfy (g1, 1V )(g2, 1V ) = (g1g2, 1V ) and (1U , f1)(1U , f2) = (1U , f1f2). Now
for each pair f and g there is only an isomorphism σfg : (1U , f)(g, 1V ) ⇒
(g, 1V )(1U , f). That is, the diagram

U

1

²²

// V

1

²²

// W

1

²²
U

1

²²

//

ÂÂ ÂÂ
®¶ α

V

1

²²

//

ÂÂ ÂÂ
®¶ 1

W

1

²²
U //

ÂÂ ÂÂ
®¶ 1

V //

ÂÂ ÂÂ
®¶ β

W

(325)

may be different, via an isomorphism, from the diagram

U

1

²²

// V

1

²²

// W

1

²²
U

1

²²

//

ÂÂ ÂÂ
®¶ 1

V

1

²²

//

ÂÂ ÂÂ
®¶ β

W

1

²²
U //

ÂÂ ÂÂ
®¶ α

V //

ÂÂ ÂÂ
®¶ 1

W

(326)

When the crucial four 2-arrows sit on the faces of a tetrahedron, σfg is the
resulting internal 3-arrow. When the Mac Lane pentagon is broken on the
six faces of a parity cube, one can fill the cube with a cyclically invariant
3-arrow. In general, the composition of a p-arrow and a q-arrow results in a
(p + q − 1)-arrow.
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B Braid Groups

To Maxwell, electromagnetism was a theory of circular vortices in the aether
[133]. Later in the 19th century, Lord Kelvin proposed knotted vortices as
atoms for space. Knots had already been studied by great mathematicians
like Gauss, who first defined a linking number invariant. The first true knot
invariant is due to Alexander, in the late 19th century. Little progress was
made on finding invariants that were good at distinguishing knots until 1983,
and the appearance of the Jones polynomial [85]. This invariant displayed
quantum mechanical structure, and was followed shortly thereafter by a two
variable analogue, the Homflypt polynomial [88].

The link invariants are defined in chapter 5. Here we introduce the basic
knot groups. The braid group Bn on n string pieces has n− 1 generators τi,
for i = 1, 2, · · · , n − 1. Each generator represents a crossing that goes over
from the top left, and the inverse τi

−1 is the braid that goes under instead.
A braid b ∈ Bn is a word in these generators. Since B1 has only one string,
which cannot knot itself, B1 is the trivial group 1. With only one over (+1)
and one under (−1) crossing, B2 is isomorphic to the integers Z. For B3,
we have

τ1 τ2

(327)

The group multiplication is given by adjoining a braid to the bottom of
another braid, so that τ1τ2 6= τ2τ1. For all n, the group relations are

τiτi+1τi = τi+1τiτi+1 for i = 1, 2, · · · , n− 2 (328)
τiτj = τjτi for |i− j| ≥ 2

The group Bn embeds in any Bm for m ≥ n with the selection of n strands
within Bm. We then talk of B∞, which all includes all possible braid dia-
grams. A braid b ∈ Bn has an underlying permutation in Sn, given by the
connection of endpoints at the top of the diagram to points at the bottom, so
that σ ∈ Sn forgets the crossing information. For Sn one adds the symmetry
relation

(σi)2 = 1 (329)

for all i. A braid diagram is a projection onto the plane of a diagram in
three dimensions. A link is formed by tracing the braid diagram, by joining
each top point to the same point at the bottom of the diagram, as in the
B3 example

oooooo

OOOOOO

(330)
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which is unknotted in three dimensional space. The trace can form links
with any number of loops. By convention, a knot is a one loop link. Markov
[219] showed that a traced braid is equivalent to a link, in the sense that
two distinct braid representations of the same link in three dimensions are
simply related to each other by conjugation.

A link is deformed into an equivalent link by ambient isotopy in dimen-
sion 3. If we are not allowed to flip knot pieces around in the third di-
mension, braids are only equivalent up to planar isotopy. The Reidemeister
moves [220]

=

R1 R2

=
(331)

=

R3
define the equivalence relation between different braid diagrams.

Example B.1 The Hopf link

Example B.2 The trefoil knot

is chiral, being distinct from its mirror image.

Example B.3 The unique four crossing knot is the achiral figure eight knot.

This is the first true B3 knot, since the trefoil is represented by τ1
3 in B2.

It has the braid word τ1τ2
−1τ1τ2

−1.
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The unknot, trefoil and figure eight knots are all prime with respect to
the connected sum [221]. This operation K1]K2 cuts a small piece from the
two knots K1 and K2, and rejoins the knots at these points.

(332)

That is, it flips two vertical arcs to two horizontal arcs. This is a fundamental
binary operation on planar string diagrams. The collection of all knots along
with connected sum form a monoid, with unit the unknot. There is no
canonical listing of prime knots by ordinals from the monoid N, but braids
are ordered in a complex way [180].

Let j be the number of positive crossings in b ∈ Bn and k the number
of negative crossings. The writhe w of a link is the integer w = j − k. For
the trefoil, w = +3, whereas the mirror trefoil with reversed crossings has
w = −3.

Braid strands may be replaced by ribbon segments, allowing ribbon
twists. A ribbon diagram with only full twists still has an underlying link
picture [135], obtained by shrinking all ribbons to strands. As in appendix
A, in a ribbon category a writhe component on the underlying link is turned
into a full ribbon twist

DD
DD

DD
DD

D

DD
DD

DD
DD

ÄÄ
Ä

ÄÄ
ÄÄ

vvvv wwww
=

(333)

Observe that a braid crossing, as represented on the plane, consists of
three string pieces: one over string and two under strings. The crossing can
be used to represent a product a ◦ b = c of the two under string segments.
Algebras of such link arcs are known as racks or quandles [222]. The Rei-
demeister moves define their rules. Finally, there is a category Br of all Bn

braid groups, with objects n ∈ N and arrow sets Bn for n → n.
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C Elementary Algebra

An algebra is usually a vector space over a field equipped with a binary,
associative product m(a, b) on the vectors. The field provides additive and
multiplicative inverses. In constructive number theory, we are more inter-
ested in diagram algebras. An element of the algebra is a formal sum of
basis diagrams, and the coefficients belong to a restricted set, not necessar-
ily forming a field.

Products are defined using composition of diagrams, and more than one
product may exist. For example, braid diagrams are composed vertically
as braids, and also horizontally by concatenation into a larger braid group.
If this is done with no coefficients, we imagine a coefficient field with one
element. Given any diagram representation for the permutation group Sd

on d objects, a group algebra of formal combinations of σ ∈ Sd is a diagram
algebra. Such algebras are often also bialgebras or Hopf algebras, which are
defined below.

In order to be useful, diagrams should have an interpretation in category
theory. A one dimensional category consists of directed edges, or 1-arrows,
but we often start with undirected edge diagrams that encode parts of the
categorical structure. With rooted trees, for instance, there is an obvious
choice of direction: downwards from the branches to the root.

A monoid is a set with a binary composition a ◦ b, which is to say a 1-
category with only one object, the source and target of all 1-arrows. Arrow
composition is literally the gluing of arrows

→→→ · · · (334)

in a diagram segment of the category, so that the composed path itself defines
an arrow in the category. To begin with, binary operations are associative.
This says that the two paths in

a, b, c
m×1c //

1a×m
²²

a ◦ b, c

²²
a, b ◦ c // a ◦ b ◦ c

(335)

commute, where m is the binary composition map C×C → C on the category
C. Weakened associativity comes from higher dimensional arrows, starting
with a 2-arrow filling this square. We should always think of ψabc : ((a ◦
b) ◦ c) ⇒ (a ◦ (b ◦ c)) as being at least two dimensional. Usually, bracketed
objects such as ((a ◦ b) ◦ c) are represented by tree diagrams, and ψabc is a
transformation of trees. As the number of product structures grows, so does
the categorical dimension.
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C.1 Bialgebras and Hopf Algebras

Multiplication takes two objects a and b and returns m(a, b) at the root of
the tree.

?????
ÄÄÄÄÄ

a b

m(a, b)

(336)

Dually, comultiplication sends one object to two.

ÄÄ
ÄÄ

Ä
??

??
?

a

∆(a) = x⊗ y

(337)

One usually speaks of the whole algebra as an object in a category, and
unpackages the structure from there. An ordinary algebra object A in a
category C comes with a multiplication map m : A ⊗ A → A, such that
associativity

A⊗A⊗A
m⊗1A //

1A⊗m

²²

A⊗A

m

²²
A⊗A m

// A

(338)

holds. Often there is also an object I in C, such that there exists a unit
arrow η : I → A with the property that η ·m : I ⊗A → A is essentially 1A,
and similarly for m · η. Comultiplication obeys coassociativity

A⊗A⊗A A⊗A
∆⊗1Aoo

A⊗A

1A×∆

OO

A
∆

oo

∆

OO (339)

and comes with a counit ε : A → I. In a category of vector spaces, the
object I is the base field. A bialgebra object A has both a multiplication m
and comultiplication ∆, such that

A⊗A
m //

∆×∆

²²

A

∆

²²
A⊗A⊗A⊗A

m×m
// A⊗A

(340)

Example C.1 A Frobenius algebra is a bialgebra object A with (m, ∆) and
natural transformations η : I → A and ε : A → I, such that (m, η) forms a
commutative monoid and (∆, ε) forms a cocommutative monoid, and

(1⊗m)(∆⊗ 1) = ∆m
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A Hopf algebra H is a bialgebra, along with an arrow S : H → H called
the antipode [223]. The antipode satisfies

H ⊗H
S⊗1H // H ⊗H

m

##GGGGGGGGG

H

∆
;;wwwwwwwww

ε

))SSSSSSSSSSSSSSSSSSSS H

I

η

55kkkkkkkkkkkkkkkkkkkk

(341)

Example C.2 Given a field F, the group algebra FC3 over the three element
group C3 = {(0), (1), (2)} is the set of all formal linear combinations v =
a0(0) + a1(1) + a2(2). Here C3 is represented using mod 3 arithmetic. The
field operations extend to products and scalar multiples for elements v and
w. On FC3 there is a coproduct ∆(g) = g ⊗ g and counit given by the
constant 1 on C3. The antipode is defined by S(g) = g−1 when g is in C3,
and it extends by linearity. Following the diagram above, (S⊗1) gets g ·g−1,
which multiplies to (0) in C3. Any group defines such a Hopf algebra.

Example C.3 [224] The renormalisation algebra is closely related to the
Hopf algebra of rooted trees. A basis object is a rooted tree. The algebra H
is a vector space over all such trees, using coefficients in Q. The product is
generated by the disjoint union of two trees, producing a forest. The empty
tree e gives the unit, sending λ ∈ Q to λ, and the counit maps every non
empty tree to 0, and e to 1. The comultiplication uses tree cuts, that split
a tree into two pieces by removing one edge. An admissible cut set for a
tree T is such that any path from a leaf down strikes at most one cut. For
example,

•
???• ÄÄÄÄ

•
∆ = •

???• ÄÄÄÄ
•⊗1 + 1⊗ •

???• ÄÄÄÄ
•+ 2• ⊗ •

• + • • ⊗ •
where lone tree nodes are included. The single left and right cuts give the
factor of 2. In general, ∆ satisfies ∆(e) = e⊗ e and

∆(T ) = T ⊗ e + (I ⊗R+)∆(R−(T ))

where R+ is the operation of grafting two trees by attaching them to two
extra base edges, and R− is the inverse operation that removes the two root
edges. The antipode for the same example is

•
???• ÄÄÄÄ

•
S = − •

???• ÄÄÄÄ
•+ 2 • •

• − • ••
The minus signs pick up the even number of cuts. Each cut, including the
empty cut, can be represented by a box around the smaller piece so that
the diagrams correspond to nested boxes. This generalises nested boxes
around single path trees, which are the same as sequences of bracketings. In
renormalisation, subdivergences are subgraphs of Feynman graphs, defined
by the partition boxes.
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C.2 Shuffles and Lattice Paths

The Hopf algebra ZSd for the permutation group Sd is of particular interest
to us. A permutation σ in Sd, which acts on the sequence (123 · · · d), is a
shuffle [71] if

1. σ−1(1) < σ−1(2) < · · · < σ−1(m)

2. σ−1(m + 1) < σ−1(m + 2) < · · · < σ−1(m + n)

for m+n = d. That is, the sequence σ−1 breaks up into two strictly ordered
pieces, one of length m and one of length n. Altogether, there are

(
m + n

m

)

(m,n) shuffles. Note that when m = n, this is similar to the Catalan number
Cn. For fixed m and n, the sum over all shuffles of type (m,n) in Sd is an
element hmn in the Hopf algebra ZSd. For example, for m = 2 and n = 1,
h21 = (123) + (132) + (312).

Let smn be a permutation in Sd that lets (s1 · · · sm) ∈ Sm act on the first
m objects and (sm+1 · · · sd) ∈ Sn act on the rest. Then the group algebra
product hmnsmn is thought of as a product of the partial permutations in
Sm and Sn. For example, h21 · (213) = (213) + (231) + (321). This is a
graded product for the infinite direct sum ⊕ZSd over all d.

The (m,n) shuffles are in one to one correspondence with paths on a
cubical planar lattice [73]. The point (0, 0) is the source and (m,n) the
target, defining a block of mn lattice squares. The variables σ−1(k) within
the shuffle are used to label horizontal steps if k ≤ m, and vertical steps
for k > m. Shuffles are often written as words in two letter types, as in
X1Y1X2Y2 for m = n = 2.

C.3 Matrix Tensor Algebra and Distributivity

In a typical category, the ⊗ product is the side by side concatenation of
diagrams. In matrices, the tensor product increases the dimension. These
two facts agree only if the number of braid strands somehow indicates the
algebraic dimension. Since matrices are fundamental constructive arrays, we
would like to view ⊗ products in terms of the dimension raising properties
of matrix products.

For two n× n matrices J and K, the Schur product S is given entry by
entry as Sij ≡ Jij · Kij . This is a kind of word concatenation, as in the
example (

XX XY

Y X Y Y

)
=

(
X X
Y Y

)
◦S

(
X Y

X Y

)
(342)

for a dual pair of vectors (resulting in a Jordan algebra projection). For a
general square matrix, if the entries are projections (Pij)2 = Pij , then the
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Schur product clearly defines a matrix projection. The Schur product is a
submatrix of the tensor product. Recall that the tensor product A ⊗ B of
two 2× 2 matrices A and B, usually with commutative entries, is defined as
the 4× 4 matrix




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22


 . (343)

This generalises to any pair of square matrices.
Consider a category with the three composition types ., ⊗ and ⊕. Let .

give horizontal composition and ⊗ vertical. As with matrices, the category
also contains objects In for n ∈ N that act as identities for the . product.
Then the object (A⊗ Im)(In ⊗B)

A

B

In

Im

usually specifies a unique object A ⊗ B by the bicategory interchange law.
Similarly for B ⊗ A. What about ⊕ in the third dimension? Using matrix
dimensions as a guide, observe that (A⊕B)⊗ (B ⊕A) should distribute to

(A⊗B)⊕ (B ⊗A)⊕ (A⊗A)⊕ (B ⊗B),

whereas (A⊗B)⊕(B⊗A) would be (A⊕B)⊗(B⊕A) if basic interchange held.
That is, basic distributivity is breaking interchange in the third dimension

µµµµµµµ µµ
µµ
µµ
µ

µµ
µµ
µµ
µ

A

B

µµµµµµµ µµ
µµ
µµ
µ

µµ
µµ
µµ
µ
A

B

by creating the AA and BB terms. Distributivity is fundamentally a three
dimensional structure. In a higher category, a distributive law is a natural
transformation λ : ⊗⊕ → ⊕⊗ between two operation endofunctors, such
that λ · (⊗)R = (⊗)L and

⊕⊗⊕ // ⊗⊕⊕

$$III
III

III

⊕⊕⊗

99sssssssss

%%LLLLLLLLL ⊗⊕

⊕⊗
λ

44iiiiiiiiiiiiiiiiiii

(344)
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commutes, along with similar laws for a source ⊕ ⊗ ⊗. Observe that λ
resembles a braiding.

Already with ⊗ and ⊕ we have a string of adjunctions for distributivity
[230][187]. If Mon is the category of monoids with ⊗ and Ab is a category
of additive groups with ⊕, then there is a category Ring that inherits the
two operations through the four adjunctions in the square

Ring⊗⊕

%%JJJJJJJJJ

yyrrrrrrrrr

Mon⊗

99rrrrrrrrr

&&MMMMMMMMMM Ab⊕

eeJJJJJJJJJ

yysssssssss

Set

ffMMMMMMMMMM

99sssssssss

(345)

and a distributive law gives an arrow inside the square, which is nominally
a 3-arrow filling a tetrahedron. As a string diagram, the usual distributive
axiom is naturally symmetric, allowing strings to slide past one another
through a vertex. A braiding gives a choice between the usual law and a
broken distributivity, with the axiom taking the form

6= (346)

Note that only a pair of opposite crossings on the left will block the string
slide. Each crossing is a braiding λ⊗⊕ on the two functor objects. Since our
physical spaces emerge from such particle braid structures, broken distribu-
tivity for arithmetic is a fundamental feature of real quantum processes.

The Jacobi rule (147) for Lie algebras is often expressed as a triplet of
tree diagrams, each with three leaves. The (s, t, u) Mandelstam variables
act on these three particles (234), once the leg (1) is fixed at the root. The
three particles are permuted using the 1-circulants in S3. A braided version
of the Jacobi rule replaces the S3 permutations by a braid triplet in B3. Such
a braided Jacobi rule is now a form of broken distributivity, introducing a
distinction between left and right handedness.
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D The Division Algebras

Dixon’s book [1] describes the symmetries of the Standard Model particles
using algebras over the four division algebras: the reals R, complex numbers
C, quaternions H and octonions O. Almost all the essential elements of the
SM Lagrangian come from transformations involving two dimensional spaces
over C⊗H⊗O, as briefly outlined below.

The gauge group SU(2) is associated as usual to the quaternion units
qj , for j = 1, 2, 3. A U(1) arises from the appearance of the complex unit i.
Finally, the color SU(3) appears as a subgroup of G2, the automorphisms
of O. The nonassociative octonions O [225] are real linear combinations

a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 (347)

of 1 and the seven other units ei. The products eiej satisfy [226]

eiej = −δij + εijkek

where the antisymmetric εijk has norm 1 on the seven lines of a Fano plane

•
ÄÄ

ÄÄ
ÄÄ

•

ÄÄÄ

??
??

??
??

??

•

••
•

•

µµµµµµµµµµµµ

,,,,,,,,,,,,((
((

((
(

¹¹
¹¹
¹¹
¹2 1

5
3

4

6

7

and εijk is chosen to be positively oriented on the cycles

615 534 426 673 471 572 213.

The projective Fano plane is the seven lines in the cube F2
3. The line

orientation is recovered from an oriented cube with faces of type

//

²² //

OO (348)

and the central e7 placed at the source and target. It uses the labeling

2

¡¡¢¢
¢¢

¢
7oo

²²

¡¡¢¢
¢¢

¢

6 //

²²

1

²²

4

OO

¡¡¢¢
¢¢

¢
3oo

7 5

@@¢¢¢¢¢
oo

(349)
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By definition, the conjugate of a ∈ O is a0 −
∑7

1 aiei. The norm of a ∈ O is
N(a) ≡ aa, satisfying N(ab) = N(a)N(b).

The bioctonions C⊗O are the complexification of O defined using com-
plex coefficients [227], such that the complex unit i commutes with all ei.
It has an octonion conjugate and a complex conjugate a0 +

∑
aiei. The

bioctonions contain the split octonion algebra [226]. This may be defined
using the 2× 2 rational matrices

A ≡
(

x a
b y

)
A ≡

(
y −a
−b x

)
(350)

with x, y in Q and a, b in a three dimensional space. The matrix product is
(

x1 a1

b1 y1

)(
x2 a2

b2 y2

)
=

(
x1x2 + a1 · b2 x1a2 + y2a1 − b1 × b2

x2b1 + y1b2 + a1 × a2 y1y2 + b1 · a2

)
.

(351)
The 8 basis elements of the split algebra are then given by

u0 =
(

0 0
0 1

)
u0 =

(
1 0
0 0

)
(352)

ui =
(

0 0
ei 0

)
ui =

(
0 −ei

0 0

)

for ei the three octonion units e1, e2 and e3. Then AA = AA equals (xy−a ·
b)I2. There are two copies of the split octonions in C⊗O, with the second
one given by iuj .

Observe that the unit multiplication tables for C, H and O may be
defined using addition for the finite fields with 2, 4 and 8 elements. For C,
this table is the 2× 2 Fourier matrix F2, with the negative entry specifying
the rule i · i = −1. The 4× 4 and 8× 8 matrices are also Hadamard [1].

D.0.1 Particles from R⊗ C⊗H⊗O
In [1], one defines particle states as follows. To each flat space or spacetime,
of type R0,n or R1,n respectively, there is associated a Clifford algebra of
dimension 2n or 2n+1 generated by the relations

γαγβ + γβγα = 2ηαβI

with respect to the metric ηαβ. We are especially interested in the space
R0,9, because its algebra is

TL ≡ RL ⊗ CL ⊗HL ⊗OL (353)

associated to a left adjoint action. The OL action is actually associative,
but the algebra TL(2) of 2× 2 matrices over TL is not.
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CL is the Clifford algebra for R0,1, HL the algebra for R0,2 and OL

the algebra for R0,6. We choose the quaternion basis qj = −iσj , for Pauli
matrices σj . Then for R3,0 we obtain the Pauli spinor algebra CL ⊗HL. Its
basis is {1, iqj , qj , i}. Let x =

∑
xjqj ∈ H, so that that xj are real. Define

λ± =
1
2
(1± ix) (354)

satisfying λ+ + λ− = 1 and xλ± = ∓iλ±. Any element A of the Pauli
algebra decomposes into a pair of spinors Aλ+ + Aλ−.

Now TL is the tensor product of the Pauli algebra with OL. Thus OL

is responsible for the six extra internal dimensions. For T = C⊗H⊗O we
first define

ρ± =
1
2
(1± ie7) (355)

so that ρ+ρ− = 0. Then for quaternions x and y, define

∆0 ≡ 1
4
(1 + ix)(1 + ie7) = λ+ρ+ (356)

∆1 ≡ 1
4
(1− ix)(1 + ie7) = λ−ρ+

∆2 ≡ 1
4
(1 + iy)(1− ie7) = λ+ρ−

∆3 ≡ 1
4
(1− iy)(1− ie7) = λ−ρ−.

The ∆i resolve the identity,
∑

∆i = 1. Let X = X0 +
∑7

1 Xaiea be an
element of C ⊗ O. The ρ± act on the left on O so that ρ+(X0 − iX7) is a
singlet and

ρ+[(X1 − iX5)e1 + (X2 − iX3)e2 + (X4 − iX6)e4]

a triplet under SU(3). For the full algebra C ⊗ O, one also obtains the
conjugate representations. This is color for the leptons and quarks and
their antiparticles. Finally, tensoring with H one obtains four copies of the
representations, giving the SU(2) doublets for the leptons and quarks.

To obtain the correct U(1) symmetries and to understand spontaneous
symmetry breaking, we require another set of operators, but everything
works in the algebra T . A state Ψ is then an object in T 2 that behaves
nicely with respect to the total U(2) × U(3) symmetry of the actions that
define an inner product for T . That is, it is a combination of the ∆m. The
spacetime Clifford algebra for R1,9 is the 2× 2 matrices over TL, isomorphic
to C(32). The (left handed) particles are now given in the table.

ν ρ+Ψρ+λ+ ν ρ−Ψρ−λ−
e− ρ+Ψρ+λ− e+ ρ−Ψρ−λ+

u ρ+Ψρ−λ+ u ρ−Ψρ+λ−
d ρ+Ψρ−λ− d ρ−Ψρ+λ+
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The sign subscripts clearly label the eight vertices of a parity cube for three
qubits.

D.0.2 Jordan Algebras

Although not necessary for the particle description above, in many applica-
tions of the octonions in physics one studies the matrix Jordan algebras. A
(formally real) Jordan algebra Jn [225] has a nonassociative product a ◦ b
such that

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2. (357)

We are interested in the 3 × 3 matrix Jordan algebras over R, C, H, O
and CO. These are the 3× 3 Hermitian matrices with commutative Jordan
product a ◦ b ≡ (ab + ba)/2.

The 2× 2 Hermitian matrices over O also form a Jordan algebra, and it
has projections (

XX XY

Y X Y Y

)
(358)

for (X, Y ) in O2 of norm 1. By definition, the projective line OP1 is the set
of all 2 × 2 projections P such that the trace of P equals 1. This agrees
with the projective lines FP1 over the other fields. The 3 × 3 algebra over
O gives a Moufang plane OP2 [228]. The line OP1 is basically the sphere
S8 ' O ∪ ∞, just as CP1 is the sphere S2. The matrices in SL2(O) give
the spin group Spin(9, 1), which is the double cover of the Lorentz group
in dimension 9. As above, the group SL2(O) acts on O2 as a left handed
spinor representation, just as for the twistor SL2(C).

The 2× 2 algebra over O appears in the 3× 3 algebra under the isomor-
phism [225]

J3(O) ' J2(O)⊕O2 ⊕ R ' R3 ⊕ V8 ⊕ S8
+ ⊕ S8

−.

Here V8, S8
+ and S8

− are the three components of triality for the octonion
number field. S8

+ and S8
− are right and left handed spinor representations.

Triality is the trilinear map

t : V8 × S8
+ × S8

− → R (359)

associated to the multiplication structure of the division algebra. Trialities
with norms are always specified in terms of spinors, since they give repre-
sentations of Spin(n). All three components are just R8 as vector spaces.
An automorphism of the triality is a triplet (f1, f2, f3) of norm preserving
maps such that

t(f1(v1), f2(v2), f3(v3)) = t(v1, v2, v3)
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for all vi. The automorphisms of O form the Lie group G2, and this is
contained in the triality automorphism group Spin(8). The outer auto-
morphisms of Spin(8) form the permutation group S3, which allows any
permutation of the spaces V8, S8

+ and S8
−.

For the full bioctonion algebra J3(CO) we define a trilinear form by [229]

T (a, b, c) ≡ (a, b ◦ c) =
1
2
(a, bc) +

1
2
(a, cb) (360)

where (x, y) is the inner product tr(x ◦ y), and the last step uses ordinary
matrix product. The complex 3× 3 matrices form a subalgebra of J3(CO).
There is also a commutative Freudenthal product

a× b ≡ a ◦ b− 1
2
tr(a)b− 1

2
tr(b)a +

1
2
tr(a)tr(b)I3 − 1

2
(a, b)I3 (361)

and associated cubic form

(a, b, c) ≡ (a, b× c) = (a× b, c). (362)

Then the determinant of a ∈ J is given by det(a) = (a, a, a)/3. It is known
as the cubic norm of a.

Let Dij denote the minor determinant at position ij in any n × n
complex matrix D. The cofactor matrix Cij has entries (−1)i+jDij for
i, j = 1, 2, · · · , n. The adjugate is the transpose D∗ ≡ Cij

T . There is then a
bilinear form on matrices in J3(C) given by [182]

β(A∗, B) = 3(A,A, B). (363)

The Freudenthal triple system for J (F) is the larger algebra

F⊕ F⊕ J ⊕ J

with elements 2 × 2 matrices A as in (350), such that x, y ∈ F and a and
b are J . For J the 3 × 3 complex matrices, the Freudenthal triple is a 20
complex dimensional space. The quartic form of the system is

q(A) ≡ 2(β(a, b)− xy)2 − 8β(a∗, b∗) + 8x det(a) + 8y det(b). (364)

Under a suitable equivalence relation on the Freudenthal triple system for
complex matrices [182], any matrix in the algebra may be transformed into
elements with b = 0, y = 0 and x = 1, and a diagonal a in the set




0 0 0
0 0 0
0 0 0







1 0 0
0 0 0
0 0 0







1 0 0
0 1 0
0 0 0







1 0 0
0 1 0
0 0 k




for k ∈ C. In this case, the quartic form often reduces to 8det(a), which
takes values in {0, 8k}.
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As above, SU(3) color appears as a subgroup of G2. It makes the split
octonions u0 and u0 into singlets and the ui and ui a triplet and antitriplet
[1][226]. Octonion structure is thus crucial to a definition of quark states.

The automorphisms of J3(O) are the Lie group F4, which is generated
by a pair of traceless Hermitian matrices over O. This is a 52 = 2× 26 di-
mensional group. It has an SU(3)×SU(3) flavor color subgroup, associated
to the decomposition

26 7→ (8, 1)⊕ (3, 3)⊕ (3, 3). (365)

The 78 dimensional exceptional group E6 is associated to the matrix group
sl(3,O). There is a 27 dimensional representation of the group E6, which
has decomposition [226]

(3, 3, 1)⊕ (3, 1, 3)⊕ (1, 3, 3) (366)

under SU(3) × SU(3) × SU(3). The last factor is the color symmetry and
the (3, 3) part accounts for the leptons. Since we can associate any such
matrices to a 3 × 3 word matrix for two qutrits, the cyclicity of the E6

decomposition is the symmetry of the triangle simplex.
The last section suggests a future study of 3 × 3 matrices over the full

C⊗H⊗O algebra, where C⊗H is the noncommutative coefficient set. The
Hermitian objects then live in a 216 real dimensional space, with a (1, 3)
spacetime algebra along the diagonal and the three (1, 9) components off
diagonal.
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