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Preface

This elementary textbook is for anyone interested in combinatorial meth-
ods in modern particle physics. Whenever advanced concepts are mentioned,
an attempt is made to give some explanation. It assumes some physics
knowledge, but not too much mathematics. There is a development of ideas
through the book, but hopefully each chapter is also of some use on its own.
All diagrams and tables are embedded in the text, just like equations.

At the heart of particle physics is the problem of localisation. As of 2012,
nobody really understands what this is, just as mathematicians lack a proof
of the famous Riemann hypothesis. There is however general agreement that
the answers to these big questions involve the concept of motive. Throughout
the book, our aim is to understand a little about motives, not from the
standard mathematical point of view, but using a physicist’s intuition. This
can be done at an elementary level, because the underlying philosophy is a
constructive one, meaning that theorems about motives should depend on
their concrete construction. Motives are about both geometry and number
theory, which means they must have something to do with knots. Of course,
there are also many relevant topics that cannot be covered.

The essential physical ideas do not appear before chapter 6, but are an
integral part of the methods discussed. The last chapter mentions several
interesting observations related to these methods. If the reader really wants
to skip the abstract nonsense on a first reading, they may do so.

The whole book is typeset in LATEX, using mostly XY-pic for diagrams. It
was written with essentially no resources and no library access, and no doubt
contains errors. The author is a theoretical physicist who has contributed to
professional research since 1987. In the years 1994-1997 she studied math-
ematical physics in Australia, focusing on knots, category theory and co-
homological field theories. In the years 2004-2009 she gave many technical
seminars on these topics and on their applications to twistor physics and
the new cosmology, when the subject was still extremely unpopular.

Thanks to wikipedia for an endless supply of free information. It cannot
all be acknowledged. This work was made possible by the kindness of Kerie
and Allan.

c© Marni Dee Sheppeard 2012.
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1 Introduction

Twentieth century physics was created in a world that envisions a clock-
work universe, where concrete objects inhabit a vast emptiness, ordained to
exist forever from the beginning. When general relativity was formulated,
the only suitable mathematics available was the Riemannian geometry of
classical continua. But this theory was inspired by the non local dynam-
ical principles of Mach and his circle. Many physicists scoff at Mach for
his determined anti-atomism, because atoms do exist after all, but the key
issue was always the clumsy separability of the atoms from the spaces they
inhabit. In local quantum field theories, the atomic nature of matter is de-
scribed by gauge fields on a spacetime continuum. These fields do not create
their own dynamical spacetime.

We now know for certain that an alternative exists. Modern twistor
methods for particle scattering amplitudes do not explicitly impose locality
on the basic combinatorial input that specifies particle data. Amplitudes
for n particles are computed on a space whose dimension increases with
n, suggesting the increasing complexity of abstract information rather than
an external reality of a fixed number of dimensions. Their structure is
completely reducible to combinatorial data.

The physical framework is that of M theory, although its reduction to
string theories is of no interest to us. Abstractly, the modern methods re-
volve around the concept of motive. A motive is a gadget much beloved
by mathematicians, although nobody really understands what it is. Tech-
nically, motives define some category of spaces, from which one hopes the
key to a universal cohomology theory will be revealed. What is cohomology
to a physicist? It is an algorithm for cutting spaces down to their essential
physical content. Today, physicists seek a mathematics to describe the emer-
gence of classical spaces from algebras of quantum measurement, so motives
cannot be based on purely commutative geometry, or a priori continua.

Motives already play a role in traditional quantum field theory [1][2],
where renormalisation is studied using the underlying noncommutative ge-
ometry. They were originally described by Grothendieck [3], who pioneered
the study of higher dimensional categories with arithmetic structure. In
this text, we assume that the universal cohomology is intimately related to
higher dimensional categories themselves. As pointed out by Street [4], the
basic axioms of cohomology may be interpreted in almost any category.

First let us recall the basic idea of singular homology, with coefficients
in Z [5][6]. A well behaved topological space M is triangulated to provide
the combinatorial data for the computation of invariants. Usually M has
a fixed classical dimension, so that all its pieces are triangular n-simplices,
or subsimplices of lower dimension. An m-chain is a linear combination,
with coefficients in Z, of the m dimensional simplices of M . The sign of an
integer coefficient may be used to orient cells. In this way, an edge between
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two faces contributes positively to one face and negatively to the other,
canceling out in a boundary sum. This cancelation allows the rule ∂2 = 0
for the boundary operator. The collection of all chains for M fit into a chain
complex

· · · → Cm → Cm−1 → · · · → C0 (1)

where the arrows are given by the boundary map, which sends a simplex
to a sum of its boundary elements. Similarly, a cochain complex is based
on a coboundary map, which increases the dimension of a cochain. For a
classical manifold M , the cochains may be the differential n-forms of de
Rham cohomology.

If M is geometrically a category, rather than a set, a simplex is naturally
oriented [4]. For example, the 2-simplex triangle

f1

ÂÂ?
??

??
??f2

??ÄÄÄÄÄÄÄ
f3

//

(2)

may denote a cohomological cocycle condition. Oriented simplices are little
categories in their own right. When the vertices are labeled {0, 1, · · · , n}
they denote an ordinal n in N, with inclusion maps. Every edge is modeled
by a fundamental 0 → 1 arrow. To a category theorist, this arrow is the
very foundation of topology, because the simplest topological space consists
of one point and the empty set [7]. In the category of topological spaces,
there is a unique arrow from this space to any other space.

Speaking of classical spaces, recall that the source free Maxwell’s equa-
tions may be expressed simply as cohomological conditions, dω = 0 and
d ∗ ω = 0, for a star operation defined with respect to the Lorentzian met-
ric. The 2-form ω has the components (EX , EY , EZ) and (BX , BY , BZ) of
the electromagnetic field. The star operation swaps these vectors around as
coefficients in ω and ∗ω. From the constructive point of view, it is electric
magnetic duality that creates the metric, and not the other way around.

In M theory, this duality becomes the S duality between strong and weak
couplings [8][9]. In the perturbative field theory we expect to see electric
charges, as observed in nature. Magnetic charges are the counterpart to
these fundamental states. The exchange of couplings is initially described
by the modular group SL2(Z) acting on a complex parameter. Under S
duality the gauge group G is sent to a dual group, known as the Langlands
dual. This process belongs in the domain of number theory rather than
representation theory, which is fortunate, because an emergent spacetime
requires emergent symmetries.

The modular group is itself extended to the diagrammatic braid group
on three strands. In the particle spectrum of chapter 7, we see that all
electric and magnetic charges are naturally accounted for by braided ribbon
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diagrams. The ribbons carry a U(1) charge, not unlike Maxwell’s origi-
nal intuition for vortices in the aether, remembering that this aether is an
abstraction.

The ribbons thicken line diagrams into surface diagrams, so a zero di-
mensional point becomes a one dimensional edge. Categories that look like
collections of points are sets, but now that means that sets are lying below
the very idea of topology. Actually, there are many reasons to give up on set
theory. In particular, the axiom of choice creates horrendously unphysical
paradoxes. The Banach-Tarski [10] paradox says that an orange can be cut
up in a certain way, and put back together as two oranges. Whether or not
quantum oranges have this property, a physicist requires real numbers that
behave themselves. Secondly, the category Set of sets is a topos, a structure
within which the real numbers do not even have a unique definition.

Giving up sets requires working with strictly categorical concepts. A
constructive view of number theory is essential. This is a relatively un-
derdeveloped subject, since constructivism has historically focused on real
analysis and number theorists on set theoretic mathematics. We will talk
about sets, but usually they will be finite and objects of a category.

In the late 19th century, Peano and Frege axiomatised basic arithmetic
[11][12]. Peano also defined the first space filling curve. A modern example
is Thurston’s fractal curves [13]. Spaces of higher dimension are also filled
with a one dimensional space, giving any continuum equal cardinality. But
in category theory, the power of space filling first appears in dimension
3, with the Crans-Gray tensor product [14]. Conveniently, we focus on
one dimensional curves in dimension 3, the subject of knots. The ambient
dimension is always taken to be a categorical one, so that we must work
with a collection of axioms that may be impossible to write down by hand.

There is a topology for which the integers Z appear to be three dimen-
sional. Many mathematicians hope that knots will explain this mysterious
fact. To physicists, knots are Wilson loops in a three dimensional quantum
field theory known as Chern-Simons theory [15]. It does not bother us that
spacetime appears to be four dimensional, because in twistor physics it is
really a three dimensional complex space. The complexification of knots is
the key to the emergence of causality.

In twistor theory, a non zero rest mass was studied in the 1980s [16]
using higher dimensional sheaf cohomology. In nature, rest mass takes on
quantised values. As a three valued quantum number, we investigate rest
mass using quantum information theory. In chapter 7 we look at the Koide
relations for the rest masses of the fundamental particles in the Standard
Model.

The kinematic rules governing mass operators are well accounted for by
N = 8 supergravity [17][18], which is described using twistor methods. In
[19][20] a full formula for the S matrix of supergravity at tree level is given,
using a tree matrix correspondence. This is a deeply motivic result, because
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the trees provide geometry alongside their own matrix algebra. Such a nat-
ural combination of geometric and algebraic data is the modern extension of
Descartes’ original creation of Cartesian coordinates. Although the matrices
initially contain unrestricted complex entries, the eventual aim is constrain
every possible number within its proper geometric context.

Both Descartes and Newton accepted an absolute physical space, herald-
ing the age of materialism, but they only did so reluctantly. In his Opticks,
Newton introduces an aether and considers the particle nature of light. His
objection to the wave hypothesis of the time was its premise of an inert
stage in which waves could propagate. In contrast, the aether was itself a
collection of the finest particles, with a tendency to disperse, not unlike a
dark energy fluid in the standard cosmology. Light was refracted through
its interactions with both matter and the aether, and empty space did not
exist.

In a truly quantum universe, where measurement events obtain an on-
tological status that wave functions cannot, one would like to reconsider
Newton’s action at a distance as a statement about separated bodies that
does not depend on a fixed background. Consider the first law: objects
tend to remain in a state of uniform motion. The two distinct objects being
dropped from a leaning tower, by Galileo, begin at rest with respect to each
other. According to the literal law, there is no reason for these two objects
to develop a separation, whether or not the Earth is present.

In general relativity, the equivalence principle ensures that the falling
mass and inertial mass are equal. But how do we measure differences in
inertia? In a modern laboratory, imagine that a mass spectrometer uses a
magnetic field to separate a fixed velocity beam of charged electrons, muons
and tau particles. The inertia of the heavier particles gives their trajectories
a larger radius. The masses are thus measured by the local rods and clocks
of the laboratory, via a circular motion.

If this inertia stands for a gravitational mass, what is the object about
which the mass orbits? The circular motion brings to mind Newton’s spin-
ning bucket. Imagine first an ideal liquid in a perfect bucket, so that when
the bucket is at rest relative to the human observer, the medium of fluid
particles creates a flat surface inside the bucket. When the bucket spins,
the surface appears to be curved. Our observer does not see the individual
particles of the fluid, or the motion of the perfect bucket, but rather one of
two static states: a flat surface or a curved surface. Only under the hypoth-
esis of particles do these static observations correspond to rest and circular
motion respectively.

According to Mach’s classical principle, the spinning occurs relative to
distant objects in the universe [21]. This implies that the gravitational mass
is being measured using rods and clocks that reach far beyond the human
laboratory. The equivalence principle becomes a statement of equality for
two very distinct laboratories, one local and one cosmic. Precision locality is
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a high energy concept, while cosmic distances are a low energy one, linking
the equivalence principle to the physical dualities of M theory.

Multiple time twistor physics has a long history, notably in the work of
Carr, Sparling [22] and Bars [23]. Most importantly, it allows us to discuss
the cosmological arrow of time without assuming the same perfect time
reversal symmetry afforded to laboratory clocks. The classical argument
that thermodynamics derives this arrow of time from statistical behaviour
does not hold water at a fundamental level, because the universe is not
classical, nor specified as a single quantum state.

In quantum gravity, the universe is observer dependent. Every observer
has access to multiple types of clock, be it laboratory ticks based on the
motion of the sun, or the temperature of the cosmic microwave background
radiation. Thermodynamics appears in the observer’s environment, and as
a matter of principle is interpreted using black hole geometry. Today, black
hole thermodynamics in M theory is investigated using quantum information
theory [24][25] and twistor physics [26]. Once again the subject is combina-
torial.

Black hole entropy is given quantitatively in terms of generalised matrix
invariants via the black hole qubit correspondence. These invariants are used
to classify entanglement classes for n qudit systems, under the assumption of
local operations and classical communication. The entanglement of particle
pairs is crucial to the twistor methods for N = 4 Yang-Mills theory. Re-
cent developments [19][20][27] have also illuminated the structure of N = 8
supergravity using matrix techniques.

Understanding gravity in twistor physics means a careful study of the
breaking of conformal invariance. We can also consider this from the point
of view of statistical mechanics. Near the critical points of phase transitions,
the divergence of a correlation length can correspond to the scale invariance
of a massless field theory. In particular, local conformal field theories in two
dimensions start with the conformal transformations of a two dimensional
world sheet. These form an infinite dimensional Lie group, composed of
both the holomorphic and antiholomorphic coordinate transformations. At
the quantum level the appropriate Lie algebra generators form the Virasoro
algebra V , with relations [28]

[Lm, Ln] =
c

12
m(m2 − 1)δm+n,0 + (m− n)Lm+n (3)

so that the full Lie algebra is V ⊕ V . The constant c is the central charge
associated to a central generator C. The generators L0 and L±1 form an
sl2(C) subalgebra.

When conformal field theory and two dimensional gravity were consid-
ered together, consistency demanded that c = 26. The continuum picture is
not of direct interest here, but these are the 26 dimensions of bosonic string
theory. The conformal bootstrap says that the fields φ(z, z) form an opera-
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tor algebra, which is closely connected to the categorical concept of operad.
The primary fields of interest have a vacuum creation property given by
Lnφ = 0 for n > 0 and L0φ = hφ, where h and c characterise modules for
V . Similarly for the antiholomorphic part. Now let a world sheet torus be
given by its modular parameter t on the upper half plane. Then there is a
partition function of the form [28]

Z(t) = Tre2πitL0e−2πitL0 (4)

for a simple Hamiltonian H = L0 + L0. The trace splits into a sum over
the primary fields, which have L0 eigenvalues h, and other fields. The
terms now include the phases exp(2πit(L0 − c/24)), from which we can
pull out the factor exp(−πitc/12). Roughly speaking, these are zero point
energies. Under the modular transformations there is then a phase factor
of exp(2πi(hj − c/24)) for each primary φj . Modular invariance demands
hj − hk ∈ Z.

At the critical value c = 1, there is a persistent phase expπi/12. This
central charge is the limiting case of a special discrete set c ∈ [0, 1] for
which the algebra modules are nicely behaved. This basic phase appears
throughout the book, in various guises.

To a category theorist, a conformal field theory is a study of ribbon
graphs [29][30]. The behaviour of the operator algebra is governed by the
axioms of braided ribbon categories. Intriguingly, all knotted strings in
three dimensions can be embedded into branched surface diagrams, using
the templates of dynamical systems theory [31][32]. The Lorenz attractor is
an example of such a template, when drawn as glued ribbon pieces. Thus an
extension of conformal field theory to branched surfaces should be associated
to the 2 + 1 dimensional field theories for knots [15].

In [33], Witten considers the c = 24k conformal field theories, for k ∈ N.
This results in a partition function that is basically the j-invariant. This
very special function is a complex map on the moduli space for four points,
namely CP1 without {0, 1,∞},

j(z) =
4
27

(z2 − z + 1)3

z2(z − 1)2
. (5)

It is really a function of an elliptic curve, because z can be expressed in
terms of the three roots of a cubic polynomial in six different ways, which
results in an action of the permutation group S3. In the world of moonshine,
the j-invariant has a Fourier expansion at the modular parameter t 7→ i∞,
as a series in q ≡ exp(2πit). The coefficients of this series are dimensions of
modules that show up in the bosonic string theory.

Today M theorists are interested in six dimensional field theories, since
this is the dimension of twistor space. Naively, one begins with three copies
of a massless 1 + 1 dimensional conformal theory, one for each generation.
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The generations are governed by triality, since rest mass is notably a three
valued quantum number. While many forms of duality are studied, triality
remains relatively mysterious.

In real dimension six there are three distinct complex moduli spaces for
Riemann surfaces, namely the genus zero case with six punctures M0,6,
along with M1,3 and M2,0. We imagine that this set exhibits a triality,
generalising the important relation between the two dimensional M1,1 for
elliptic curves and the punctured Riemann sphere M0,4 [34].

It turns out that moduli spaces are very amenable to categorical descrip-
tion. Moreover, a physicist can imagine a path integral over all geometries
to be a cohomological invariant for such index spaces. When moduli spaces
are combinatorial, this becomes more tractable than dealing with the usual
pathological spaces.

So the land of motives is a place where the numerical symbols that we
write down have many interpretations: as geometry and algebra, and as the
logic of observation itself. It is a place where arithmetic and combinatorics
obey new rules, and where continua only exist when all their sub geome-
tries have been constructively described. And it may be a place where the
measurement of gravity finally makes some sense.
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2 Numbers and Sets

Number constructivism starts with the idea that a real number should be
much more than an element of a set. In mathematics, number fields and
arithmetic are often given a priori, without much regard for the underlying
axioms. Manifolds are modeled on number fields as if the notion of con-
tinuum is naturally specified. Physically, this is an unsatisfactory state of
affairs. Numbers are, after all, the actual outcomes of measurement, and
the relations between them are contingent upon our theoretical frameworks.

Category theory offers a natural way to add structure to numbers. A
counting number n ∈ N is both the cardinality of an n element set and
the dimension of a category. When n stands for a set with n elements,
the permutations of the set become part of the structure of the number
n. Important structures in number theory should arise in the canonical
structures that appear whenever one raises the categorical dimension.

We use cycle notation for permutations σ in the permutation group Sd

on d objects. For example, σ = (312) in S3 is the cycle



0 0 1
1 0 0
0 1 0


 . (6)

For operations that act on sets, the matrix entries act to select one element
of the set with each row. This has an interpretation in terms of binary logic,
since one can either select the element X or not select it, and hence the
choice of 1 or 0.

Boolean logic has two valuations, namely true and false. These are often
represented by the numbers 1 and 0 respectively. The system of logic eval-
uates propositional statements, which are built from an alphabet of objects
and operations on these objects. In Boolean logic, one permits the binary
operations AND (denoted by the symbol ∧) and OR (denoted ∨). Since
these operations are binary, there are only four basic statements involving
them. For ∨ these are 1 ∨ 1 = 1, 1 ∨ 0 = 1, 0 ∨ 1 = 1 and 0 ∨ 0 = 0, which
is summarised in the matrix table

∨ :
(

0 1
1 1

)
, (7)

where the matrix index always starts with 0. The operation ∨ is commuta-
tive, since X ∨ Y = Y ∨X, so an extension of the matrix tables to a larger
index set of objects always results in a symmetric matrix. However, even
in Boolean logic there are operations that are not commutative. The unary
operation NOT sends X to ¬X, and in Boolean logic only one of X and
¬X can be true. Combining ∧ and ¬ we have the table for statements like
0 ∧ ¬0 = 0, (

0 0
1 0

)
. (8)
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Observe that 0 and 1 are letters in the alphabet that indexes a matrix.
Every such 2 × 2 matrix, and there are 16, is permitted as a truth table.
Operations in logic may then be used to define matrix multiplication.

Example 2.1 The finite field F2 has addition and multiplication tables

+ :
(

0 1
1 0

)
× :

(
0 0
0 1

)
(9)

generating ordinary matrix multiplication over F2.

Example 2.2 The Boolean logic tables

∨ :
(

0 1
1 1

)
∧ :

(
0 0
0 1

)
(10)

specify a matrix product, for matrices with 0 and 1 entries, such that there
are 11 projectors satisfying P 2 = P . These are

(
0 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 1
1 1

)
, (11)

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
0 1

)
.

Projectors P 2 = P reflect the real world process of quantum measure-
ment. When a product is represented by a string vertex, the dual diagram
for P 2 = P is the commutative triangle

P

ÂÂ?
??

??
??

P
??ÄÄÄÄÄÄÄ
P

//

(12)

When string networks are unlabeled, the assumption is that each string
represents the same object, and P 2 = P is only weakened through the
addition of higher dimensional cells, starting with the interior of the triangle.

Finite sets are sometimes labeled by ordinals {0, 1, 2, · · · , n}, and more
generally by variable elements {X,Y, Z, · · · }. The two element set Ω ≡ {0, 1}
characterises the logic of the category Set [7]. In general, a binary operation
for an n element set gives an n× n matrix table of truth values, as in




XX XY XZ
Y X Y Y Y Z
ZX ZY ZZ


 . (13)
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Similarly, a ternary operation would specify an n × n × n array. Partial
domains for operations allow a generalisation to n1×n2×· · ·×nk rectangular
arrays. Note that the dimension l of the array is the word length of the
components. The next few chapters focus on square matrices, which all
correspond to truth tables of word length 2.

2.1 The Word Monoid

Polynomials are a lot like numbers. They can be added and multiplied, and
usually inherit the distributivity of the coefficient field. The existence of
noncommutative geometry in M theory suggests looking also at noncommu-
tative polynomials. These are closely connected to quantum path spaces,
since a monomial like XZX is interpreted as a sequence of noncommutative
operations. A noncommutative monomial contains words in the letters of a
given variable alphabet. The number of letters d determines the dimension
d of a discrete cubic path space, defined by marking one letter steps along
each axis. In this book, d is the dimension of a quantum state space. When
d = 2, we think of states of a qubit [35].

The word monoid is the collection of all finite noncommutative monomi-
als, with concatenation of words as a noncommutative product. The qubit
words are graded by the diagonals of the path square.

??
??

??
??

?

??
??

??
??

??
??

??
??

?

??
??

??
??

??
??

??
??

??
??

??
??

?

Y

Y Y

Y Y Y

X XX XXX

XY XXY

(14)

where both XY and Y X end at the same point. Similarly, the qutrit words
sit on the triangular diagonal simplices of a path cube.

oooooooooooooooo

oooooooooooooooo

yyyyyyyyyyyyyyyyyy

rrrrrrrrrrrrrrrr

uuuuuuuuuuuuuuuuu

??
??

??
??

??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

? •

JJJJJJJJJJJJJJJJJJ

•

11
11

11
11

11
11

wwwwwwwwwwwwwwwwww
KKKKKKKKKKKK

//
//

//
//

/

LLLLLL

..
..

.

XXXZZZ

Y Y Y

(15)
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Note that the edges of the triangle at word length l are divided into l pieces.
The first few simplices are labeled

•

®®®®®®®®®®®

•

33
33

33
33

33
3

•
X Y

Z

•



•

11
11

11
11

11
11

1

••

• •

XX Y Y

ZZ

XY
Y X

XZ
ZX

Y Z
ZY

•

®®®®®®®®®®®®®®®®®

•

33
33

33
33

33
33

33
33

•• •
•• •

• •

XXX XXY XY Y Y Y Y
(3) (3)

XY Z(6)

ZZZ

XXZ

XZZ

(3)

(3)
ZY Y

ZZY

(3)

(3)

(16)

so that the ten sets of unordered monomials on the tetractys contain a
total of 27 paths. The length 1 words in a d letter alphabet form a standard
triangular simplex in dimension d−1. The measured simplices of longer word
length will be used in the construction of interesting polytopes, starting in
chapter 5.

The entire word monoid is graded in a table indexed by both l and d.
The first column, for l = 1 letters, gives the standard simplex of dimension
d − 1. The l = 2 column gives the halved simplices with d2 paths. For
the tetractys and beyond, we have the further option of bracketing words,
distinguishing (XY )Z and X(Y Z). We talk about (d−1, l) simplices, where
d− 1 is the simplex dimension and l numbers the divisions along an edge.

A divided simplex is canonically coordinatised in the integer lattice Zd.
Since the monomials are of homogeneous degree, the sum of degrees is always
a constant. For the length two words in three letters, we can then choose six
vectors in Z3 that correspond to the degrees of X, Y and Z in each monomial.
These are (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1) and (0, 1, 1). Canonical
coordinates will be used to study entropic volumes.

A (d−1, l) path simplex in path space is naturally expanded into a cubic
array. For example, the (2, 3) tensor cube looks like

XXX

xxqqqqqq
&&MMMMMM

²²

XXY

&&MMMMMM

²²

Y XX

xxqqqqqq

²²

Y XY

²²

XY X

xxqqqqqq
&&MMMMMM

XY Y

&&MMMMMM Y Y X

xxqqqqqq

Y Y Y

(17)

where we have shown how the cube can be oriented by X → Y . See what
has happened here. Path space gives both (d − 1, l) divided simplices and
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(l, d−1) divided cubes. The two integers of the grading are swapped between
simplices and cubes. A tensor cube is a model for a matrix or an array, like
in (13). Any diagram that decomposes into paths can be assigned a tensor
array. Arrays may be decomposed into symmetric and antisymmetric parts,
as in (

XX XY
XY Y Y

)
+

(
0 0

Y X −XY 0

)
. (18)

The square arrays pick out two numbers, in this case 3 and 1, that partition
d2 into two triangular simplices. One of these simplices accounts for the
commutative path set. The second may be drawn inside the first using the
midpoints of the divided simplex. For d = 4 this gives an octahedron with
vertices XY , Y Z, ZW , XZ, XW and Y W .

Any braid may be represented as a word in four letters, on the universal
ribbon graph of Ghrist [31]. Knots are embedded in this special branched
surface as loops around four attractor holes, with crossing points at the
branches. Although we look mostly at algebraic representations for braids,
the attractor word is always in the back of our minds.

2.2 Constructive Numbers

Since we don’t want any unnecessary set theoretic axioms, particularly the
axiom of choice, sets are merely zero dimensional categories. If the geometry
and algebra of interest looks more than zero dimensional, it almost certainly
should be. Continuum fields like R and C require dissection into infinite
dimensional structures. This is a very concrete idea. For instance, as every-
one knows, the sixth complex root of unity ω6 = exp(2πi/3) is actually the
infinite sequence

ω6 = 1 + 1 + 2 + 5 + 14 + 42 + · · · (19)

of integer Catalan numbers [36][37]. As we will see, the Catalan numbers
count planar binary trees, so ω6 is the cardinality of an infinite set of trees.
This suggests that complex numbers operate with multiple kinds of infinity.
We focus on infinite sets of trees and braids.

Moving beyond set theory, we can do arithmetic using the first infinite
cardinal, usually called ω. In the surreal number [38] construction of R, ω
appears after an infinite number of binary branchings on the surreal number
tree. At each branching node, one can take a + or − step. The tree root
marks the number 0, which branches to ±1. Then ω is the infinite sequence
(+ + + + + · · · ). Similarly, ω−1 is the sequence (−−−−− · · · ). After 1 we
obtain 3/2 or 1/2, and the rule thereafter uses the difference ±2−n at step
n + 1. Only the dyadic numbers are obtained in a finite number of steps,
and then all the reals appear at step ω. The number ω−1 behaves much like
an infinitesimal real. In the surreals, this process continues beyond ω, to
polynomials in ω and to ωω and beyond.
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To begin with, we think of z ∈ C as the sum of real and imaginary parts.
The complex i has various roles to play in what follows, and it will be handy
to keep track of it. For example, it is represented by the quantum Fourier
transform Fd in dimension d, which obeys Fd

4 = I whenever d > 2. Thus
z ∈ C is like a Fourier pair of objects. Ordinary complex vector spaces are
of no use to us, because a category of such spaces would take C as a given
set.

Quantum mechanically we work with measurement operators, rather
than vectors themselves, and finite dimensional vector spaces are charac-
terised simply by the ordinal d that is their dimension. The category of
ordinals and m× n matrices between them reminds us of FinSet, the cate-
gory of finite sets. Actually, a matrix is like a binary relation m× n → t to
the set t of allowed truth values. We start with the binary entries 0 and 1,
gradually adding further numbers as information structures are considered.
Observe that the basic permutation

(21) =
(

0 1
1 0

)

can represent the number −1, since (21)2 = I2. Thus k × k matrices with
entries in {0,±1} can be written as 2k × 2k matrices with entries in {0, 1}.
For instance, the Pauli matrix σZ becomes the controlled NOT gate [35].
The permutation (2341) also represents the complex i, so 2 × 2 matrices
with entries in {0,±1,±i} could be expressed as 8× 8 matrices with entries
in {0, 1}. The Pauli matrices then become permutations in S8. With this
scheme, the entire set of complex numbers would require an uncountable
matrix index! Fortunately, in practice we never work with all complex num-
bers at once. Rather than write out larger and larger binary matrices, we
sensibly consider small sets of complex d × d matrices with special proper-
ties. We will often restrict to those of circulant form for d = 2 and d = 3,
since these are combinations of the permutation matrices.

For many purposes, when R is mentioned, the rationals Q suffice. In
reduced a/b form, rationals fit neatly into a Farey sequence Fn containing
rationals with denominator ≤ n [39]. For example,

F3 = {0,
1
3
,
1
2
,
2
3
, 1}. (20)

Elements are listed in order. Let ak = nk/dk be a term in Fn for k =
0, 1, · · · , mn. Neighbouring pairs in the sequence Fn have the remarkable
property that dknk+1 − nkdk+1 = 1, which is a determinant 1 condition for
the integer matrix (

dk dk+1

nk nk+1

)
. (21)

Now let dk = ak−k/mn. For example, the F3 set takes values in {0,±1/12}.
It has been shown [40] that the famous Riemann hypothesis is equivalent to
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the statement that
mn∑

k=1

|dk| (22)

is of order nx for some x > 1/2. These days one suspects that this is itself an
axiomatic question. What is the value of mn? It follows from the recursion
mn = mn−1 + φ(n− 1), where φ(n) is Euler’s totient function [41]

φ(n) = n
∏

p|n
(1− 1

p
), (23)

a product over the primes dividing n. This function counts the number of
ordinals less than or equal to n that are relatively prime to n. It is also
a multiplicative function, meaning that φ(a)φ(b) = φ(ab). Such a rule is
always interpreted as the functor law for a 1-category, meaning here that N
with multiplication is a monoid.

Another multiplicative function on N is Ramanujan’s τ function, which
satisfies τ(ab) = τ(a)τ(b) whenever a and b have no common primes. It
appears as coefficients in the modular discriminant

∆(q) ≡
∞∑

n=1

τ(n)qn = q(
∞∏

n=1

(1− qn))24 (24)

where q = exp(2πiz), and z is in the upper half complex plane. The discrim-
inant ∆(z) equals η(z)24. This Dedekind η function deforms the modular
group transformations by

η(z + 1) = eπi/12η(z) η(−1/z) =
√−izη(z). (25)

A complex parameter q is used to define a noncommutative ordinal, a q-
number [28],

xnyq =
qn/2 − q−n/2

q1/2 − q−1/2
(26)

and such q parameters are used to deform commutative algebras. This is a
function of n ∈ N, but any real number similarly has a quantum deformation.
The parameter q is used to deform permutation algebras into braided ones.
When C is itself constructed, we care about each individual choice for q.
Typically it is a root of unity, and the ordinals N are mapped to phases which
project onto an axis in the complex plane. That is, quantum ordinals are non
integral because of the higher dimensionality of phases. If we don’t insist
that a dimension has to be real, the complex phase itself is so interpreted.

We can also use real numbers to define ring like structures with unusual
binary operations. The tropical max semiring (R ∪ (−∞),⊕,¯) uses the
operations [42][43]

a⊕ b = max(a, b) a¯ b = a + b (27)
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so that −∞ behaves like zero for ¯ and one for ⊕. There is a similar
min semiring, and we can restrict to R+ if we don’t care about additive
inverses. This structure is distributive. Using ⊕ and ¯, we can create
tropical polynomials.

Example 2.3 The degree two conic in three variables with coefficients in
X, Y and Z is

(X2 ¯ z1 ¯ z1)⊕ (XY ¯ z1 ¯ z2)⊕ (XZ ¯ z1 ¯ z3)

⊕(Y 2 ¯ z2 ¯ z2)⊕ (Y Z ¯ z2 ¯ z3)⊕ (Z2 ¯ z3 ¯ z3).

The reason for the strange coefficients is that this polynomial defines a
trivalent graph

¨̈
¨̈
¨

77
77

777777
¨̈

¨̈
¨

¨̈
¨̈

¨

77777

which is dual to the coordinatised two qutrit simplex. Tropical polynomials
naturally define polytopes [43]. A trivalent vertex here is a tropical line.

The tropical semiring is closely related to the logarithm, as noted in [44].
That is, when a physical parameter ~→ 0, we observe that

~ log(ex1/~ + ex2/~) ∼ max(x1, x2). (28)

This classical limit reduces two dimensional pictures to the one dimensional
tropical curves. In chapter 6, a modern diagram calculus for logarithmic
functions is described. This is important in the analysis of scattering am-
plitudes.

2.3 Union, Disjoint Union and Cohomology

To a mathematician, motives provide a universal theory for cohomological
invariants. To a physicist however, the invariants themselves are responsible
for the emergence of classical structure. Motives need to construct not only
invariants but the spaces themselves! It is surely a chicken and egg problem,
trying to say that a torus has a hole without looking at the torus. A few
introductory comments on cohomology are in order.

As usual, A1∪A2 denotes the union of two sets, A1 and A2, and A1∩A2

their intersection. We write A1
∐

A2 for the disjoint union. For a three
element set {0, 1, 2}, the union of subsets is illustrated on the cubic lattice
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of set inclusions
{}

xxqqqqqqq

&&MMMMMMM

²²

{2}
&&MMMMMM

²²

{0}
xxqqqqqq

²²

{0, 2}

²²

{1}
xxqqqqqq

&&MMMMMM

{2, 1}
&&MMMMM

{1, 0}
xxqqqqq

{0, 1, 2}

(29)

ending in {0, 1, 2}. The six elements at path length 2 actually give two copies
of {0, 1, 2}, so somehow one copy is taken away to recover {0, 1, 2}. Since,
in category theory, the cardinalities of sets are derived from sets, we would
like the algebra of cardinalities to agree with operations on sets. Consider
the principle of inclusion exclusion. Although usually expressed in terms of
cardinalities, we can write

A ∪B ∪ C = A
∐

B
∐

C −A ∩B −B ∩ C − C ∩A + A ∩B ∩ C (30)

for three sets, where it is understood that the cardinality of A
∐

B equals
|A|+ |B|. In general

⋃

i

Ai =
∐

Ai −
∑

i,j

Ai ∩Aj +
∑

i,j,k

Ai ∩Aj ∩Ak − · · · (31)

Classically, this is not correct. It is an amazing paradoxical fact that, when A
and B are open, A

∐
B is contained in A∪B. Usually for finite sets, where

the open sets are the singletons in the discrete topology, complementary
sets such as {0, 2} above are not open, and there is no problem. If A and
B have empty intersection, then A

∐
B is the same as A ∪ B, and there is

no problem. But the above formula suggests that A
∐

B should in general
be larger! This is of great interest to us, because these alternating sums of
intersections are responsible for the alternating sums that appear in Čech
cohomology [45][46], which uses open covers of a classical manifold.

A classical cover of open sets Ui for a space M is a good cover if all
intersections Ui ∩ Uj are either empty or contractible. For example, the
Riemann sphere CP1 takes three open sets. Two is not sufficient, because
an equatorial intersection is not contractible to a point. In this example, all
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possible intersections up to U1 ∩ U2 ∩ U3 give the cube

U1 ∩ U2 ∩ U3

uulllllll
))RRRRRRR

²²

U2 ∩ U3

))RRRRRRRRR

²²

U1 ∩ U2

uulllllllll

²²

U2

²²

U1 ∩ U3

uulllllllll

))RRRRRRRRR

U3

))SSSSSSSSSSS U1

uukkkkkkkkkkk

M

(32)

which is indexed by the original cube above. All arrows are inclusions.
For all good covers, the nested intersections define a cube. Tracing a path
backwards from M , one may encounter an empty intersection Ui ∩ · · · ∩Uk.
In that case, all objects above Ui∩· · ·∩Uk must be empty. Thus the cube is
partitioned into two pieces: a top part marked with empty sets and the base
with non empty ones. The shape of this partition defines the data of M .
For example, the space of two disjoint sets U1 and U2 has empty intersection
U1 ∩ U2. The incidence data for the intersection lattice is the matrix

(
0 1
1 1

)
.

The topological data of any classical manifold defines such a binary matrix.
The lattice of open sets for M is itself a category, which we call O(M). A
reversal of the inclusion arrows, to restrictions, defines the opposite category
O(M)∗. A presheaf on M is a functor F from O(M)∗ into an algebraic
category, such as the category of abelian groups.

For any such presheaf F , the 0-cochains of Čech cohomology [45] are the
maps that send Ui to an element in F (Ui). Then the 1-cochains come from
Ui ∩ Uj , and so on. The inclusion maps on the lattice induce a sequence
of homomorphisms in the algebraic data, and the coboundary operator δ
from d-cochains to (d + 1)-cochains is defined as usual by an alternating
sum. For d = 0, δ ≡ F (i1)− F (i2) on the two inclusion arrows i1 and i2 for
Ui ∩ Uj → Ui. That is, for two open sets U and V there are inclusion maps

U ∩ V
//
// U

∐
V

//
// U ∪ V (33)

where a map on the left chooses one of the two sets, ignoring the other.
Classically, there is only one inclusion on the right, but we need to be quite
clear that U and V in U

∐
V may use distinct inclusions.

The Mayer-Vietoris principle for the de Rham cohomology of manifolds
uses the differential form functor, applied to the sequence (33). We do not
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begin with manifolds at all, but what is the useful intuition behind Mayer-
Vietoris? When the differential form functor F is applied, it gives a reversed
sequence of restriction maps

F (U ∪ V ) // F (U)⊕ F (V ) // F (U ∩ V ) (34)

where the double map is absorbed into the algebraic splitting F (U)⊕F (V ).
Clearly there should be more differential forms in F (U ∪ V ) than in the
disjoint F (U) ⊕ F (V ), which has no joining information. The strictness of
the 1-functor F forces us to accept the bizarre behaviour of the underlying
sets. However, in our study of a more general kind of cohomology we do not
restrict attention to one dimensional functors. Notice also that the sequence
of inclusions

∐
ijk Ui ∩ Uj ∩ Uk

//
//
//
∐

ij Ui ∩ Uj
//
//
∐

i Ui
// M (35)

on a cube forms a simplex, in this case a tetrahedron. Instead, with a fixed
number n of arrows at each step, there are a total of n2 edges. In the previous
section, n2 enumerated the noncommutative paths fitting on a simplex with
halved edges. For example, two sets U and V give the four paths UU , V V ,
UV and V U . The noncommutative paths of length 2 are thus decomposed
into an ordinary simplex and a second complementary simplex, providing
extra arrows in the basic map sequence. So we consider general categorical
incidence data, where the cubes and simplices can become more general
polytopes.

2.4 A Category of Relations

See Appendix A for the basic definitions of categories. In the category Set,
the inclusion of disjoint union in union is given in a coproduct diagram

{} ! //

!

²²

A

²²
a

¾¾7
77

77
77

77
77

77
77

77

B //

b ))TTTTTTTTTTTTTTTTTT A
∐

B
i

%%JJJJJJJJJ

A ∪B

(36)

where ! is the unique inclusion of the empty set in any set. The coproduct
property of

∐
states that for any maps a and b, there exists an inclusion i.

When one does not adopt Set as a base category, this assumption may be
weakened. Actually, we should start with an even better category of sets.

Let a finite index set be denoted J . It has cardinality n = |J |. An n×n
matrix of zeroes and ones is a map J × J → Ω. For example, when n = 3
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the permutation (231) picks out the elements (X,Y ), (Y, Z) and (Z, X) in
J×J . That is, (231) sends the vector (X,Y, Z) to the vector (Y, Z,X). This
is a one to one function J → J , but the use of a relation J ×J → Ω is closer
to the idea of a truth table.

Every square matrix may be viewed as a map J × J → T for some set
T of allowed truth values. The reason for choosing 0 and 1 as truth values
is that these actually correspond to the cardinalities of the empty set and
a one element set, respectively. More generally, for arbitrary relations be-
tween sets, T can have any cardinality. The evaluation of larger propositions
depends on the basic ones, which for sets give the maps Ω× Ω → Ω.

If the alphabet contained all of R+, we would begin by allowing T to
be R+. However, the aim is to construct the real and complex number
fields more carefully. The axioms of a field are of secondary concern and
the selected subsets are specified by different criteria. It is then assumed
that any numerical matrix entry should have an interpretation in logic and
geometry.

The choice of 0 or 1 as a means of selecting a subset J of K may be
expressed using a diagram of functions between sets, where χ is the char-
acteristic function that sends elements of J to 1 and the other elements to
0.

J //

!
²²

K

χ

²²
1

t
// Ω

(37)

In the diagram, the set 1 is any one element set, and the function t picks
out true, namely the element 1 in Ω. The vertical arrow ! is unique, because
there is only one function into a one element set. This diagram lives in the
category Set, which is then a topos [47][7]. Similarly, the category Rel of
sets and relations contains the square

(J × J)× (J × J)
r1×r2 //

!
²²

K ×K

χ

²²
1 ' 1× 1

t
// Ω

(38)

where any one point set is isomorphic to the Cartesian product of two one
point sets. When J × J is a subset of K, via both r1 and r2, the square
commutes, in the sense that both paths lead to the same relation (J×J)2 →
Ω. In general, however, the square will not commute.

When K = Ω, the relations ri stand for matrices of zeroes and ones,
and χ is a basic 2 × 2 table. We would like r1 × r2 to be a tensor product
of matrices, with respect to χ, because |J × J | = |J |2. In fact, Cartesian
product is the tensor product for the category Set.
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3 Duality and the Fourier Transform

Engineers and physicists learn that complex numbers are perfect for de-
scribing the interaction of waves, but in information theory waves do not
necessarily give the ideal picture of what happens when quantum objects
interact. Instead, consider the following. In a real plane, (1, 1) and (1,−1)
are eigenvectors for the real Pauli matrix σX , which represents a spin mea-
surement in the direction X. Together they give an orthogonal basis for
the plane. However, real versions of σY and σZ can only give one further
basis for the plane, when two more are required in order to separate the Y
and Z directions. All three directions are implicit in the physical meaning
of spin, since spin states are separated in a Stern-Gerlach experiment using
magnetic fields. In this chapter we will see that C2 is the natural home for
the three required bases.

The real eigenvectors (1, 1) and (1,−1) form the columns of the 2 × 2
Hadamard gate [35] of quantum computation,

1√
2

(
1 1
1 −1

)
. (39)

When it acts via conjugation FdMFd
† on a matrix M , this is the quantum

Fourier transform F2 in dimension 2. Unlike in higher dimensions, where
Fd

4 is the identity, F2
2 is already I2. This is another way of saying that we

need a complex i in dimension 2, so that iF2 shares this property of higher
dimensional transforms.

The quantum Fourier transform is the analogue, for a discrete set of
noncommuting points, of the classical Fourier transform. The small finite
sets of quantum numbers that we deal with are thus not simply sets, under
an assumed background of axioms like Zermelo-Frenkel. They come with a
good deal more structure than an ordinary set, using axioms from category
theory.

The classical duality for the Fourier transform is given via richer notions
of duality, using the language of two dimensional categories. These are
first introduced in appendix A. The next section introduces the Fourier
transform, and the following the important arithmetic concept of mutually
unbiased basis.

3.1 The Quantum Fourier Transform

As usual, the indices of a finite matrix take values i, j ∈ 0, 1, 2, · · · , d−1. The
primitive dth root of unity exp(2πi/d) will be denoted ωd. The d dimensional
Fourier transform Fd is then a matrix transform FMF † on a d × d matrix
M , defined by [35]

(Fd)ij =
1√
d
(ωd)ij . (40)
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The choice of ωd rather than ωd is arbitrary, as is the choice of row and
column order. That is, there are a total of 2d2 matrices that we might have
written down for Fd. All are elements of the unitary group U(d), since FdF

†
d

equals the identity matrix Id.
Let Dd be the democratic probability matrix with entries all equal to

1/
√

d. For example,

D3 =
1√
3




1 1 1
1 1 1
1 1 1


 .

The elementary matrix Eij , with only one non zero entry equal to 1 in
the position ij, is given by Eij = Fd(Dd) for one of the d2 choices for Fd.
This is a decomposition of the basis matrices for all square matrices. The
democratic matrix Dd is a unit for the Schur product of matrices, defined
entrywise by (AB)ij = AijBij .

A quantum Fourier series is a d×d 1-circulant matrix, which is specified
by its first row, with each successive row a right cyclic shift, by one step, of
the first row. For d = 3 it is given by a1I + a2(231) + a3(312). The Fourier
transform of such a circulant is a diagonal matrix, as in

1
2

(
1 1
1 −1

)(
a b
b a

) (
1 1
1 −1

)
=

(
a + b 0

0 a− b

)
(41)

for the simplest 2× 2 case. Thus a Fourier series is a linear combination of
cyclic permutation matrices from Sd. In reverse, the Fourier transform of a
diagonal matrix is a 1-circulant matrix.

Observe that the entries of Fd only take values in the complex dth roots
of unity. When d+1 is a prime power, these d roots represent the d non zero
elements of the field Fd+1 with d+1 elements, along with their multiplication
table. When d = 3, we choose

F3 =
1√
3




1 1 1
1 ω3 ω3

1 ω3 ω3


 (42)

and its complex conjugate F †
3 . For d = 3 there are both 1-circulants, for the

odd elements of S3, and 2-circulants, for even permutations. Including the
determinant zero 0-circulants, there are always d classes of circulant. There
is one basic 1-circulant and one basic diagonal. For d = 3, let

x =




0 1 0
0 0 1
1 0 0


 p =




1 0 0
0 ω3 0
0 0 ω3


 . (43)

Observe that xp = ω3px. This is a Weyl commutation relation [48], usually
written with an ~. Cycles of x define three points for the space, and there
are similarly 3 forms for p, giving a six point phase space.
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A d × d circulant is an element of the group algebra CSd for the per-
mutation group Sd. These Hopf algebras appear in appendix C. In much
of what follows, we would like to restrict attention to circulant matrices,
because their Hopf algebra gives a natural string network.

3.2 Unitary Bases and Decompositions

The normalised Pauli spin matrices

σX =
1√
2

(
0 1
1 0

)
σY =

1√
2

(
0 i
−i 0

)
σZ =

1√
2

(
1 0
0 −1

)
(44)

define three directions in laboratory space. These matrices, along with the
identity I2, form a basis for the quaternions H, in the form

Q = x0I2 + x1σX + x2σY + x3σZ =
1√
2

(
x3 + x0 x1 + ix2

x1 − ix2 x3 − x0

)
. (45)

When the xi are complex, (x0, x1, x2, x3) is a point in complexified Minkowski
space C4, with x0 playing the role of time. This 2× 2 form leads naturally
to twistor geometry [49][50]. We will always take Minkowski space to be in
matrix form, since it introduces the concept of spinor. The Pauli matrices
are used to create projectors that are normalised forms of I2 + σi,

X =
1
2

(
1 1
1 1

)
Y =

1
2

(
1 i
−i 1

)
Z =

(
1 0
0 0

)
. (46)

A noncommutative path with the same end points, such as XY ZX, is an
analogue to a loop in a commutative space. The loop is directed because
Y Z 6= ZY . A point X is a kind of trivial loop. Observe that the product
XY ZX equals exp(−πi/4)X. In order to cancel the anomalous phase, and
maintain a law XY ZX ' X, each of X, Y and Z is multiplied by the basic
phase ω24 = exp(πi/12). Then X2 no longer equals X exactly, but does so
up to this phase factor.

The classical fundamental group π1(M, x) of a space M is the group
of all loops based at a point x, with loop reversal as an inverse. The rule
XY ZX ' X on noncommutative points is a statement of contractibility,
saying that loops can be shrunk without hitting any obstacles. The rule is
not strict, because there is a scale factor of 1/2

√
2 on traversing the loop.

In chapter 7, this data is used to create a cyclic 3× 3 rest mass operator
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√
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√
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which is used to parameterise Standard Model data. Note that the entries
of X, Y and Z select three planes in Minkowski space, namely (x1, x3),
(x2, x3) and (x0, x3) respectively. Note also that the Pauli matrices are a
noncommutative analogue of the cubed roots of unity, since

1 + ω3 = −ω3 ω3 + 1 = −ω3 ω3 + ω3 = −1. (48)

The Pauli group [35] for one qubit is the group generated by {I2, σX , σY , σZ}
with coefficients in {±1,±i}.

Each Pauli matrix has a pair of eigenvectors, one for each eigenvalue
±1/2. The eigenvector pair forms the columns of another 2 × 2 matrix.
Since an eigenvector is unchanged under multiplication by a complex scalar,
there are many equivalent forms for such operators. But the probabilistic
interpretation of quantum mechanical amplitudes means that the sum of
norm squares in each row and column should sum to 1.

These three matrices form what is known as a set of mutually unbiased
bases for dimension d = 2 [51][52][53]. That is, any two members M1 and
M2 of the set have the property that the inner product 〈v1|v2〉, for an eigen-
vector v1 in M1 and eigenvector v2 in M2, is always of norm square 1/d. For
example, take the eigenvectors (1,−1) and (1, 0), and remember the normal-
isation factor of 1/

√
2 for (1,−1). The Pauli matrices provide a maximal

set of d + 1 = 3 such bases for dimension 2.
The d + 1 mutually unbiased bases [52][53] in prime power dimension

d = pk are given by a d× d matrix set {Fd, Rd, Rd
2, · · · , Rd

d}, where Rd is
a unitary circulant matrix. First,

R2 =
1√
2

(
1 i
i 1

)
. (49)

We can use R2
8 = I to specify the three mutually unbiased bases {F2, R2, I}

in dimension 2, since
R2

2 = eiπ/4σX

has a zero diagonal, and so provides essentially the same eigenvectors as the
identity I2. In dimension 3 a convenient choice is

R3 =
1√
3




1 ω3 1
1 1 ω3

ω3 1 1


 (50)

for ω3 the cubed root of unity, so that R3
3 = I3 up to a phase i. The

set of four mutually unbiased bases is {F3, R3, R3
2, I}. Since 4 = 22 is a

prime power, these bases represent multiplication in the finite field F4. The
elements {R3, R3

−1, I} give the cyclic group C3 of non zero elements, just
like the cubed roots of unity. The Fourier matrix F3 represents zero in the
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sense that F3R3 is another form of F3. The general circulant Rd in odd
dimension d is

(Rd)ij =
1√
d
(ωd)(k−j)(j−k+1)/2 (51)

for i, j ∈ {0, 1, · · · , d− 1} [54][55].
When d = 1 any phase defines a basis that is mutually unbiased with

respect to another phase, since phases always multiply to a number of norm
1. In this way C is of uncountable dimension. However, we imagine that two
bases are sufficient to characterise the one dimensional space. These should
be F1 and I1 = 1, where F1 must be i in order to have the Fourier property.

Let us look closer at the Pauli bases in dimension 2. Later on, the diag-
onal element 1 of R2 will be generalised to a braid phase parameter, which
is π/2 for R2. The phase t = ±π/2 is special as a fixed point under the map
t 7→ −1/t. But any real diagonal in R2 has a corresponding braid parameter
for a unitary matrix representation. With the normalisation factors taken
as given, a circulant generalisation of R2 in CS2 is

R2(r) ≡ R(r) =
(

r i
i r

)
(52)

for r ∈ R+. Observe that this is the general Fourier transform of a diagonal
(

z 0
0 z

)
(53)

for z a complex number, under the scaling invariance z 7→ λz with λ real.
With the normalisation convention we are free to put the ratio of real to
imaginary parts into the parameter r. Such an R2(r) is no longer unbiased
with respect to F2 and I2, but instead stands for a general 2× 2 probability
matrix.

When r > 1, (R(r))2 has non zero diagonal elements r2 ≡ r2−1, as does
the nth power (R(r))n. However, as n → ∞ the parameter rn approaches
zero, because it goes as r/n. The recursion is given by

rj+1 =
rrj − 1
rj + r

(54)

where r = r1. Thus (R(r))∞ looks like R2
2. Observe that the sequence is

monotonic if and only if r ≥ φ, where φ ∼ 1.618 is the Golden ratio. Since
an infinite number of time steps was never a problem for tortoises or hares,
we can repeat the process and observe that

(R(r)∞)4R(r) = R(r). (55)

Thus for any r ≥ 1, R(r) has cyclicity. Moreover,

(R(r))∞+1 =
(

r i
i r

)(
0 i
i 0

)
=

( −1
r i
i −1

r

)
(56)
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so the parameters r < 1 appear naturally after the first infinite number of
steps. When r < 1, there is no convergence in the R(rj), as is easily seen by
looking at the first few terms of the sequence. However, the pseudoidentity

R(0) =
(

0 i
i 0

)
=

(
r i
i r

) ( −1
r i
i −1

r

)
(57)

relates the two parameter types. Observe that r ∈ {0,±1} sets up a binary
alternating sequence in 0 and −1. A small r takes a few iterations to come
close to 0.

The Pauli matrices provide a basis for the Lie algebra su(2) of trace-
less Hermitian matrices. The group SU(2) is obtained by exponentiating
elements of the Lie algebra. Since 1-circulants always commute with each
other, the 1-circulants (

0 x
x 0

)
(58)

in su(2), where x ∈ R, are exponentiated using the basic series

expA = I + A +
A2

2!
+

A3

3!
+ · · · (59)

resulting in unitary circulants of the form
(

cos(x2) i sin(x2)
i sin(x2) cos(x2)

)
. (60)

This corresponds to the parameter r = cot(x2). In the case of the R2 basis,
we get x =

√
π/2. The inverse parameter −1/r arises from the tangent of

−x2, which comes from pure imaginary elements of the form
(

0 ix
ix 0

)
. (61)

Thus 1-circulants in the Minkowski algebra map to circulants in the group.
Unlike in the Lie algebra su(2), the Pauli matrices are each playing different
roles in information theory. Note that σX is the only 1-circulant, providing
the matrices of most interest to us. What is special about σX? For any
d ≥ 2, this basic 1-circulant Vd = (234 · · · d1) always has an eigenvector set
giving the columns of Fd. The eigenvalues happen to be {ωd, ωd

2, · · · , 1}.
So V2 = σX is dual to F2, the only non circulant in the canonical set

of mutually unbiased bases. The circulant set {σX , R2, I2} gives all Pauli
matrices and their unbiased bases, in the sense that R2 is dual to σY and
I2 dual to σZ . There is a similar set of d + 1 circulants in any prime power
dimension, where Vd substitutes for the basis Fd.

As noncommutative operations, the mutually unbiased bases may define
arbitrary monomials from the word monoid. Consider a noncommutative
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polynomial in two variables X and Y . In the plane C, words in X and Y
define square paths on the lattice of Gaussian integers Z + Zi. Following
Kapranov [56], we can consider a general polynomial

∑
cijkl···XiY jXkY l · · · (62)

as a sum of abstract paths. This generalises a complex number z, which we
get for the natural values X = 1 and Y = i. The arbitrary strings (ijkl · · · )
of ordinals are instances of 2-ordinals, defined in the next chapter.

The duality of the Fourier transform is a specific instance of the phe-
nomenon of Stone duality [57], which underlies attempts at unifying spaces
and algebras in a motivic context. The next chapter discusses the basic
elements of such dualities.
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4 Duality, Triality and Ordinals

Dualities are ubiquitous in mathematics and physics. Geometrically, in di-
mension 2 duality swaps vertices for faces and edges for edges. It sends a
triangle to a trivalent vertex. In a category, this turns 2-arrows f and g into
little box points

A

ÁÁ
ÂÂ ÂÂ
®¶ f // @@

B

ÂÂ ÂÂ
®¶ g

A

B

f

g

where it is understood that edges are directed downwards, and these edges
are 1-arrows. The two unmarked areas are source and target objects. Since
a monoidal category is really a bicategory, such strings may be used to
represent its objects [58], with the concatenation

A⊗A

of strings standing for tensor product. Now an algebra object has a ba-
sic trivalent vertex, namely the multiplication A ⊗ A → A. In a braided
monoidal category the strings may pass over and under one another, but in
the symmetric case an ambiguous crossing

99
99

99
99

¦¦
¦¦

¦¦
¦¦

is sufficient. In a higher dimensional category, arrows may be reversed at
any level, defining many distinct notions of duality. An adjoint dual f † to a
map f can be represented by a flipped box [59][60]

A

B

²²² f

A

B

/// f †

The † structure for a symmetric monoidal category satisfies f †† = f , coming
from an identity natural transformation in the adjunction. When we want
both dual objects and dual arrows, we need the extra structure of basis
object. Object duals A∗ and B∗ induce another dual arrow f∗ : B∗ → A∗
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given by both a left right and an up down box flip.

A

B

²²² f

A

B

²²
² f∗

Starting with an adjoint f , we similarly define f∗, so that † is the composition
of upper and lower star maps. This kind of double diagram flipping appears
everywhere in this book.

A † Frobenius structure [61][60] is a cocommutative comonoid object A,
with ∆A : A → A⊗A and ε : A → I, such that ∆A

†∆A = 1A and

∆A∆A
† = (∆A

† ⊗ 1A) ◦ (1A ⊗∆A).

The arrows ∆A : A → A ⊗ A and ∆A
† : A ⊗ A → A define dual trivalent

vertices

²² ÂÂ?
??

??

ÄÄÄÄÄ
ÄÄ

•
ÄÄÄÄÄ

ÄÄ
ÂÂ?

??
??

•
²²

(63)

in the category, subject to the Frobenius axioms. Using the category of finite
dimensional Hilbert spaces as a guide, the † Frobenius structures are in one
to one correspondence with orthonormal bases for the spaces A. Since our
special bases are associated to measurement operators, string networks are
used to construct quantum circuit diagrams. Mixing † Frobenius structures
with duals θA : A → A∗ allows a proper axiomatisation of bases, with
θA∗ = θA

†. The θA are permutations. They allow a symbol

A

²²• θA

A

OO

with a reversed pair of object arrows, which are both reversed for the adjoint.
The ability to reverse object arrows with the θ maps is a time reversal
operation for quantum computation. It permits the acausal logical processes
of standard protocols [62] to be replaced with objects for which the observed
time flows in one direction.

In all such categorical structures the inputs and outputs fit on a one
dimensional line, creating a rigid concept of before and after for unitary
processes. In contrast, the twistor diagrams of chapter 6 aim to capture the
cyclicity of color structure in the Yang-Mills theory. The usual diagrammatic
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representation for permutations, from n points to n points, is replaced by
a cyclic structure within a twistor space picture. Then trivalent vertices
such as A → A ⊗ A no longer belong in the quantum mechanical scheme.
However, there should be a breaking of the cyclic symmetry that recovers
the standard planar diagram rules.

In other words, the simplest manifestation of triality is one in which there
are reduced binary directions, given by a root choice on a tree or polygon.
The next chapter focuses on these binary structures, which also play a key
role in twistor physics. We start with the arithmetic importance of rooted
trees.

The globule 2-arrows also correspond to trees. The ordinary ordinals
n ∈ N are represented by single level planar, rooted trees

0

****
····

1

////
²²²²

2

////
$$$$
½½½½
²²²²

3

· · ·
(64)

with n + 1 leaves. These are the 1-ordinals. A dual way to draw the 1-
ordinals is

→
0

→→
1

→→→
2

· · · (65)

so that the tree root stands for the n compositions along a string of arrows,
just as a closed polygon is geometrically dual to a tree without orientation.
Why does the number 1 have two leaves? As a polytope, the two leaves will
represent a geometric point, because there is only one way to draw a binary
tree with two leaves. This point set of one tree has cardinality 1. The single
leaf is like an empty binary tree, and has cardinality 0.

Alternative conventions are possible. We could take the two leaved tree
to be 0, since 0 is the dimension of a point. Then the single leaf represents
the geometric empty set, and is the number −1. Often we count the root
as another edge, so that the tree 2 has 4 edges and the tree 3 has 5. This
has the advantage that 2 + 3 is correctly represented by a total of 7 edges,
under a tree composition that deletes one leaf from each component.

4.1 The d-Ordinals

A d-ordinal is specified by a planar tree with d+1 node levels, including the
root [63]. For example, the trees

44444


****
····

¨̈
¨̈

¨̈
¨̈

¨

44444


****
····777777777

(66)

represent a 2-ordinal and 3-ordinal respectively. As the number of levels
increases so does the categorical dimension, as indicated by the equivalent
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globule diagram. The 2-ordinal on the left becomes the pasting diagram

ÁÁ
ÂÂ ÂÂ
®¶ // @@ÂÂ ÂÂ
®¶

ÁÁ
ÂÂ ÂÂ
®¶ // (67)

with five edges on the tree giving the five 1-arrows, the tree root specifying
the horizontal composition, and the vertical composition occurring at the
higher node. Similarly, the right hand tree is a diagram with five 3-arrows
and three directions of composition.

The 2-ordinals are specified by strings of 1-ordinals (n1, n2, · · · , nk), since
a two level tree has k base edges at the root and each higher node has ni

leaves attached. The horizontal and vertical arrow compositions correspond
to the trees

???? ÄÄÄÄ

???? ÄÄÄÄ

(68)

with a root node or a higher node respectively. All 1-ordinals can be ex-
tended to 2-ordinals with the addition of a root edge. Addition m + n of
1-ordinals is then essentially recovered with vertical composition. Similarly,
all 1-ordinals can be extended by adding another leaf to every leaf. Then
horizontal composition recovers addition. The globule form of the two leaved
trees

##;;
ÂÂ ÂÂ
®¶

##;;
ÂÂ ÂÂ
®¶

¾¾
ÂÂ ÂÂ
®¶ // CCÂÂ ÂÂ
®¶

(69)

makes the composition rules clear. Note that horizontal composition

???? ÄÄÄÄ

/// ²²² ???? ÄÄÄÄ

/// ²²²◦ = OOOOOO
oooooo

???? ÄÄÄÄ

/// ²²²
/// ²²²

(70)

preserves the number of lowest level edges, while vertical composition does
not. The globule representation turns the basic associator edge

44444


 

44444
444

44444


(71)

into an arrow between two dimensional pictures ((ab)c) and (a(bc)). Higher
dimensional representations of word association appear naturally, because
words are often shorthand for tensor products, such as a⊗ b⊗ c, which may
not be associative. Recall that the axioms for a monoidal category use the
fact that ⊗ is itself an arrow composition. There is then a unique underlying
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object, so that the word objects a, b, a⊗ b, · · · are treated as 1-arrows, and
the arrows between words are now 2-arrows.

A globule picture for association raises the dimension yet again, but it
becomes too unwieldy to work with higher dimensions, unless the categorical
structure requires it. It often does! The most common form of monoidal
category is a symmetric monoidal one, where a⊗ b is the same as b⊗ a, but
this is secretly a four dimensional category, because the symmetry rule is
an equation for 3-arrows in a braided monoidal category. It turns out that a
braiding structure γab : a⊗ b → b⊗a is another kind of categorical product,
which raises the dimension much as ⊗ did [64].

Observe that the 3-ordinals have three possible binary compositions. A
binary tree with four leaves, which has three levels, should then represent
a three dimensional object. Taking this globule correspondence seriously,
all the polytopes of the next chapter are thought of as reductions of higher
dimensional ones, since they are defined by level trees.

The interplay of the two binary composition types for the 2-ordinals
leads to a powerful representation of duality. This is illustrated with the
special example of the Tamarkin tree [65][66], which is the 2-ordinal

OOOOOOOO
oooooooo

////
²²²²

²²²²

////
////

²²²²

(72)

representing the composition of six 2-arrows. If these 2-arrows represent
dual structure, the Tamarkin tree is an initial instance of a triple of duals.
This 2-ordinal indexes a six dimensional polytope, and was instrumental
in extending compactifications for classical configuration spaces beyond a
surprising six point anomaly [67]. Six dimensions are physically special,
because that is the dimension of twistor space.

4.2 The Fourier Transform and Topology

The classical Fourier transform is associated to Pontrjagin duality [68] be-
tween a category of locally compact abelian groups and a category of Haus-
dorff spaces [57]. Given such a group G, the dual G∧ is the set of characters
G → S1 into the unit circle. The circle S1 is very special, in being both
an abelian group and a space. It extends the special role of the two point
set {0, 1} in the category Set. Recall that {0, 1} stands for the elemen-
tary one point topological space, including an empty set [7]. Then S1 is a
large extension to the foundation of topology, if it can be constructed from
scratch.

The functor ∧ is an endofunctor C → C for some category C that has
objects that are both spatial and algebraic. This is a feature of emergence,
where all objects in C should have a property analogous to {0, 1} and S1.
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Our matrices are full of characters in the form of complex phases, but
every phase is supposed to have representations in terms of sequences of
trees or strings. We must therefore understand how trees and strings are
always self dual objects in this topological sense. We have seen that trees
and arrow diagrams are dual, and that arrow diagrams and strings are dual,
and later we will look at how braids and trees are related.

The Pontrjagin duality is a natural transformation η : (G∧)∧ ' G be-
tween the double dual of G and G. That is, for every arrow f : G1 → G2 in
the group category, there is a commutative square

G1
∧∧ f∧∧ //

ηG1

²²

G1
∧∧

ηG2

²²
G1 f

// G2

(73)

in the category of abelian groups. When the categorical dimension is not
restricted, all such dualities may be weakened by higher dimensional arrows.
The important example is the Fourier duality between Z and S1. For us, Z
is the braid group B2 on two strands, and it defines the fundamental group
π1(S1) for the circle. A positive braid crossing comes from anticlockwise
windings.

With the quantum Fourier transform, the increasing dimension d of a
finite dimensional state space is associated to increasing categorical dimen-
sion. For each d the underlying space only has d points, and the mutually
unbiased bases in dimensions pn are associated to the ring Z/Zpn . This
suggests that Z ' B2 secretly lives at ω, and we have already assumed
that continua such as S1 are emergent. The Fourier duality of Z and S1 is
approached first with the inverse limits Zp

Z/Zp → Z/Zp2 → · · · → Z/Zp3 · · · → Zp (74)

of the p-dit rings. The set Zp is the p-adic integers, and it defines the division
field Qp of p-adic numbers [69]. A p-adic integer is a sequence of elements
xn ∈ Z/Zpn such that for n ≤ m, xn = xmmodpn. These numbers are
also written as series sums

∑
anpn with an < p, given p-adic arithmetic.

Amazingly, Zp is an uncountable set with the cardinality of the continuum.
As it happens, the Fourier dual of Zp is the group of all pn-th roots of

unity on S1 [70]. The only other phases we recognise are the rational ones,
differing from the roots by a factor of 1/π.

For a nice classical space X, p-adic cohomology H i(X,Zp) is also de-
fined as an inverse limit of the groups H i(X, Rn) as n → ∞. Finally, note
that there are interesting ways to embed the p-adic numbers into the com-
plex plane [71]. So quantum Fourier duality is carrying arithmetic into C,
building S1 by the rules of the underlying categorical Stone duality [57].
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5 Trees, Polytopes and Braids

A rooted tree is an example of a one dimensional contractible space. In this
chapter we look at rooted, planar trees, mostly with binary branchings. The
choice of a root turns cyclic trees into d-ordinals. Reading a tree downwards
from the leaves, a binary node represents a product operation a · b. Many
types of product occur. A bracketing (ab) is a kind of binary product on a
and b, and this is the default interpretation of binary tree nodes.

Permutations can be trees, where the permutation acts on the spaces
between leaves. For example, a permutation in S3 acts on the ⊗ operations
in the word a⊗ b⊗ c⊗ d. A categorical braiding is also a kind of product.

Categorical polytopes are specified by certain sets of trees. For example,
the binary planar trees with five leaves give the vertices of a polytope in
three dimensions. The edges correspond to a tree with one internal edge
collapsed, the faces to a tree with two internal edges collapsed, and the
whole polytope to the unique one node tree with five leaves, namely the
1-ordinal 4. The basic arithmetic of ordinals is initially given by a matrix
representation for trees, starting with the permutations.

5.1 Permutations and Planar Trees

First, consider the binary, rooted, planar trees such that every node is dis-
tinguished by its unique vertical height. The empty permutation on the
empty set is represented by a single leaf. A two leaf tree

??
??

ÄÄ
ÄÄ1

represents the trivial permutation (1) on one object, because there is only
one node beneath the leaves. In general, a binary tree with n + 1 leaves
gives a permutation in Sn, as in the example

??
??

ÄÄ
ÄÄ

??
?? //

/
²²
²

??
??

ÄÄ
ÄÄ //

/
²²
²1 2 3

(132) (75)

where each entry in (132) is given by the appearance of a new area between
leaves, moving down the page. The permutation really acts on the nodes of
the tree. Each permutation group Sd corresponds to a set of d! trees. The
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hexagon of S3 is the diagram

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

??
??

??
??

??
??

??
??

?

?????????????????

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
2222

¯̄
¯̄

%%% ¼¼¼

44444


··
**

44444


444 

44444


 

44444
444

44444


·· ····


44444
******

44444


·· ½½½


44444
**$$$

44444


¯̄
¯
// 

44444
222²²

44444


 ¨̈
¨



44444
44777

(76)

indexed by a one level tree with 4 leaves. Observe that the other geometric
elements of the hexagon, namely vertices and edges, correspond to expan-
sions of nodes into edges. Only two expansions are required to turn a 4 leaf
node into a binary tree, giving the dimension of the hexagon.

An Sd diagram in dimension d − 1 is known as a permutohedron [72].
The associahedra polytopes, also indexed by d ∈ N, are given by trees which
do not distinguish node levels. In this case (132) and (312) in S3 denote
equivalent trees, and the six vertices of the hexagon are reduced to the five
vertices of a pentagon associahedron, by shrinking the one edge that is not
labeled with a trivalent node. This pentagon is the Mac Lane axiom for
monoidal categories, as given in appendix A. The set of associahedra were
originally introduced by Tamari [73] and then by Stasheff [74], to discuss
homotopy for classical spaces.

The left right reflection symmetry of permutation trees will be associated
to S, T and U dualities, when permutations are reduced to their signature
classes. The signature signs label the vertices of a parity cube. In dimension
3 these eight vertices are the components of a three qubit state, and hence
label the electric and magnetic charges of black hole states [24]. In order
to see the categorical importance of parity cubes, consider the following
categorification of the bracketing process.

An associahedron binary tree with d+1 leaves represents a full bracketing
of d + 1 objects, such as in ((a(bc)d)e). Using edges oriented by the basic
(21) flip, four objects are bracketed in the steps shown in the cube on the
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right.

−−−
xxpppppp

&&NNNNNN

²²

−−+

&&NNNNNN

²²

+−−
xxpppppp

²²

+−+

²²

−+−
xxpppppp

&&NNNNNN

−+ +

&&NNNNNN + +−
xxpppppp

+ + +

1234

xxppp
ppp

p
&&NNN

NNN
N

²²

12(34)

&&MMMMMM

²²

(12)34

xxqqqqqq

²²

(12)(34)

²²

1(23)4

xxqqqqqq
&&MMMMMM

1(234)

&&MMMMMM
(123)4

xxqqqqqq

(1234)

(77)

The signs are an alternative representation of the bracket choices, giving
a parity cube P4. Observe that each face of the cube stands for one edge
on the hexagon (76). The cube is a categorification of the hexagon, in the
sense that each geometric element is raised by one dimension. Categorically
speaking, a face is now a pseudonatural transformation in a 2-category.
This cube is naturally associated with three dimensional categories [75][76].
Every face except the top face represents an associator edge (xy)z ⇒ x(yz).
The double arrow labels the face itself, indicating its dimensionality and the
homotopy between the two paths around the square. Now the top square

//

ÂÂ ÂÂ
®¶

²²

,,,, µµµµ

²²,,,, µµµµ //

$$$$
½½½½

$$$$
½½½½

(78)

breaks the Mac Lane axiom for monoidal categories [77]. This square will
make more sense in chapter 8, where the partial bracket diagrams are related
to braids.

Since permutations are fundamental to us, and the categorical dimension
is not arbitrarily restricted, this square allows for the deviation in tree node
levels. When the vertical direction denotes a time coordinate, as it often does
in physical applications, the Sd level splitting breaks the forward backward
symmetry of time.

In the next section, the three dimensional associahedron A4 is indexed
by rooted hexagons, which are geometrically dual to the trees with 5 leaves.
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Two vertices on this polytope are geometrically distinguished, and these
are the ones given by the ambiguous level 4-leaved tree above. Thus the
24 vertices of the S4 permutohedron are reduced to only 14 vertices for the
associahedron. There also exist more complicated polytopes combining these
types, such the permutoassociahedra [78]. In fact, every d-ordinal defines a
special polytope.

Now every permutation matrix is associated to a rooted, binary tree.
The S2 edge associahedron

44444


 

44444
444

44444


(79)

corresponds to the sum
(

1 0
0 1

)
+

(
0 1
1 0

)
=

(
1 1
1 1

)
= 2. (80)

In [79] Loday explains how the arithmetic of 1 + 1 = 2 works with trees.
The point is that we could start with the left hand 1 and then add the right
hand 1, or vice versa. Trees or matrices respect this handedness.

For the contracted trees, where at least one node is not binary, the
dimension of a permutation matrix may be reduced, as several leaves are
joined into one object. This is a substitution process, which eventually
reduces any tree to the index tree d ∈ N and the trivial permutation (1).
Letting the matrix entry 1 be generalised to k ∈ N, the hexagon edges of
(76) should become matrices with the sum of entries totalling d. There is
however a problem. Some trees group together objects from opposite ends of
a string, so that no single permutation matrix can represent the contracted
tree. We therefore generalise the matrices to include sums of permutations,
weighted so that the total of d is maintained. The hexagon edges are then
specified unambiguously by the matrices
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(
2 0
0 1

) (
0 2
1 0

)(
1 0 1
1 0 1
0 2 0

)

(
1 0
0 2

) (
0 1
2 0

)(
0 2 0
1 0 1
1 0 1

)

(81)

where the normalisation factors are understood. The 2 × 2 matrices are
reductions of the obvious 3×3 ones, reflecting the ordinal substitution from
S3 into S2. Observe that all six 3 × 3 matrices are norms of an F2 Fourier
matrix embedding into three dimensions. The other three possibilities for
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F2 are obtained via composition of edges. Two trees do not reduce to 2× 2
operators, and these are the ones corresponding to full left right reflections.
Now there is a reduction from the hexagon to the pentagon, and then to a
square of 2× 2 trees, which is the parity square S2×S2. The sum of matrix
hexagon edges gives the democratic matrix

3 =
1
3




1 1 1
1 1 1
1 1 1


 (82)

representing the hexagon face. For all d, the integral matrices of the permu-
tation vertices of Sd clearly sum to a scaled democratic matrix. Each vertex
contributes equally to its incident edges, and has a fixed valency.

Since the two trees of type (75) are combined in the pentagon vertex
(132)+ (312), the pentagon face sums to the asymmetric probability matrix

1
10




3 4 3
3 4 3
4 2 4


 . (83)

This embeds in a 4 × 4 matrix as a pentagon face of A4. A square face on
S4 is given by

(1234) + (2134) + (1243) + (2143) =
1
2




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 (84)

but on A4 we include (4123) and (4213) to obtain the magic square

1
16




7 7 0 2
8 8 0 0
1 1 8 6
0 0 8 8


 . (85)

Finally, one can easily verify the parity square and cube matrices

1
8




3 2 3
2 4 2
3 2 3


 1

10




3 2 2 3
2 3 3 2
2 3 3 2
3 2 2 3


 . (86)

Observe that the up down reflection of a parity cube matrix corresponds to
a left right reversal of the sign string, with all signs flipped. Flipping all
signs corresponds to the left right matrix symmetry.

In the search for motives, we want algebraic objects that explicitly man-
ifest the properties of their diagrams. These Sd objects do not achieve this,
and this is the main motivation for braid algebras.
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5.2 Solomon’s Descent Algebra

The signature class for a permutation group Sd is a string of d−1 signs, and
a collection of signature classes determines a parity cube in dimension d−1.
For example, the signature of (32145) is (−−++), with the signs determined
by the direction of change in the digits as one reads out the permutation
from left to right. Thus S3 has four signature classes, giving a parity square,
and the 8 corners of the parity cube come from the 24 elements of S4.

Example 5.1 The eight signature classes of S4, and their orders, are
(−−−) (4321) 1
(−−+) (4312), (4213), (3214) 3
(−+−) (4231), (4132), (2143), (3142), (3241) 5
(+−−) (3421), (2431), (1432) 3
(+ +−) (1243), (1342), (2341) 3
(+−+) (3412), (1423), (1324), (2413), (2314) 5
(−+ +) (4123), (3124), (2134) 3
(+ + +) (1234) 1

For the permutation polytopes, there is an obvious source and target
with which to orient the cube edges and faces. Let ρ denote a signature
class for Sd. Hρ is defined to be the sum of all permutations in the class,
which is an element in the group Hopf algebra KSd, for any suitable K that
contains zero and one. Solomon’s theorem [80] is the statement that Hρ1Hρ2

is a linear combination of the Hρ for Sd. When it is obvious, the notation
Hρ may be neglected.

Example 5.2 For the S4 group algebra over N,

(−+ +)(−−+) = [(4123) + (3124) + (2134)][(4312) + (4213) + (3214)]

= (+−−) + (+−+) + (−−−)

Signature classes may also be labeled by ordered partitions as follows.
The identity element of (+ + · · ·+) is the single component partition d, as
in the ordinal index. The descending (− − · · ·−) element is the partition
1+ 1 + · · ·+ 1 of all ones. For S3 there are two remaining classes, (−+) and
(+−), each containing two permutations. These are the partitions 1+2 and
2 + 1 respectively. That is, the minus signs are used to indicate a tendency
for ones. The more plus signs, the further one moves away from partitions
built from ones.

Atkinson [81] defines a matrix Mρ1ρ2 using any pair of ordered partitions
ρ1 and ρ2. The row sums are given by the ordinals in ρ1 and the column
sums by the ordinals in ρ2. For example, let ρ1 = 1 + 2 and ρ2 = 1 + 1 + 1.
Then there are three possibilities for the matrix Mρ1ρ2 , namely

(
0 1 0
1 0 1

)(
1 0 0
0 1 1

)(
0 0 1
1 1 0

)
(87)
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The matrices give the coefficients in the products Hρ1Hρ2 . For exam-
ple, H1+2H1+1+1 = 3H1+1+1, since the three matrices each give a copy
of H1+1+1. The general rule, for an n×m matrix, is

Hρ1Hρ2 =
∑

M

HM11,M22,··· ,M1m,M21,··· ,M2m,··· ,Mn1,··· ,Mnm (88)

where it is understood that zeroes are omitted. These matrices make for
easy computations in KSd. Let KD∞ be the disjoint union of all descent
Hopf algebras KDd, for d ≥ 0, and similarly, let KS∞ be ⊕KSd. For most
purposes, the ground field K may be taken to be the rationals Q.

It is shown in [82] that Solomon’s descent algebra KD∞ is a sub Hopf
algebra of KS∞, for any ground field K. Moreover, KD∞, as a Hopf algebra,
is the image under a map (φψ)∗, where

• using signed leaves on binary trees, φd maps the associahedron Ad to
the parity cube for Sd by noting the signs of interior leaves. The dual
φ∗ is the linear dual in the Hopf algebra.

• ψd is the reduction of Sd to Ad obtained by leveling tree nodes.

In other words, there is an intimate link between Sd, its parity cube and
the intermediary associahedron. For a tree T in Ad, the inclusion ψ∗(T ) in
the Hopf algebra KS∞ is the sum

∑
σ of permutations corresponding to T .

This is an unweighted version of the matrix sums that appeared in the last
section. In particular, the pentagon A3 maps to the parity square in such a
way that both permutations σ ∈ (+−) are correctly sent to (+−).

The descent algebra is a statement about magic probability matrices,
since these are sums of permutations. They are not elements of the linear
matrix group GLn, because many of these matrices have determinant zero.

5.3 Associahedra, Permutohedra and Polygons

A genus zero polytope in Euclidean dimension d−1 will define a categorical
axiom if it arises as an expansion set for an index d-ordinal tree [63]. Instead
of trees, we may use the rooted polygons that are dual to rooted trees. For
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example, the A3 polytope is the pentagon of chorded pentagons
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The number of chords on an index polygon clearly indicates the codimension
of the face. The nine face A4 polytope, without labels, looks like
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The square faces come from a chorded hexagon, such that the chord cuts
the hexagon in two. The 6 pentagonal faces are labeled by the other single
chorded hexagons, the 21 edges by hexagons with two chords, and the 14
vertices by hexagons with three chords.

The source of A4 is the tree (1234) and the target the tree (4321). This
orients all edges on A4, and fills all faces with a 2-arrow that breaks the Mac
Lane pentagon axiom. The set of all associahedra for d ∈ N give an example
of an operad, as in appendix A. The object d ∈ N is just the 1-ordinal tree
d, but it is often thought of as the topological space of the polytope in
Rd−1. Morally, however, the topological spaces go to infinite dimension, and
should be thought of as an ω-operad. Every time one adds an edge through
the expansion of a tree node, one increases the number of levels in the tree,
creating an ordinal globule diagram of higher dimension.

Let us enumerate the codimension k faces of Ad. The number of vertices
on Ad is given by the Catalan number

Cd =
1

d + 1

(
2d
d

)
. (91)
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This is seen by dualising rooted trees with d leaves and one root edge to
obtain rooted polygons with d + 1 sides. The Catalan number counts the
triangulated polygons. It is further divided into Narayana numbers

Nd,k =
1
d

(
d
k

)(
d

k − 1

) d∑

k=1

Nd,k = Cd (92)

This partition groups trees with d leaves according to the number of internal
right directed leaves. For example, on A4 we have N4,k ∈ (1, 6, 6, 1). The
decomposition of A3 into Narayana sets is
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giving N3,k ∈ (1, 3, 1). This takes care of the maximal codimension. For
codimension k, the cardinality of the Ad face set is

Fd,k =
1

d + 1

(
d + k + 1

k + 1

)(
d− 1

k

)
, (94)

which is similar to the sequence A033282 in the online sequence database
[83]. This result was first proved by Cayley in 1891 [84]. Related polytopes
include the cyclohedra [85], which bracket objects on a loop rather than on a
line. This is the natural polytope for theories that use cyclic tree diagrams,
such as N = 4 Yang-Mills theory.

There is much more to the A4 associahedron. The 21 edges are symmet-
rically divided into seven sets of the objects {a, b, c}, with each pentagon
carrying a label set of the form ababc. Each vertex carries an {a, b, c} triplet.
A full triangulation of the 9 faces results in 24 triangles, defining 24 tetra-
hedra when a central vertex is added. Since this triangulation creates 36
edges, the Poincare dual polytope is the permutohedron S4.

For the permutohedron Sd there are d! vertices and d!(d − 1)/2 edges.
The permutohedron always tiles Rd−1, as do cubes and their decompositions.
The polytope S4
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is coordinatised neatly as follows. First, think of the 24 permutations as
integral coordinates in R4, so that (2341) sits at (2, 3, 4, 1). These points
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clearly lie on the R3 plane x1 + x2 + x3 + x4 = 10. This can be turned into
the plane y1 + y2 + y3 + y4 = 0 by sending each digit n to (2n− 5)/2, giving
the vertex (−1/2, 1/2, 3/2,−3/2).

The permutoassociahedron in dimension three has 120 = 5! vertices, and
blends categorical associator and braiding arrows, by turning each vertex of
S4 into a pentagon.

In [72], Postnikov defines the mixed Eulerian numbers, which come from
volumes for simplices in polytopes. For the permutohedron at the integral
vertices σ ∈ Sd+1 in Zd+1, the volume Vd equals (d + 1)d−1. This is a
cardinality of parking functions, defined below. Postnikov studies volume
formulas for general coordinates (x1, · · · , xd+1). A generalised permutohe-
dron is defined to be a sum ∑

I

αI∆I (96)

in terms of subsets I of the standard d-simplex in Rd+1, where ∆I is the
subset of faces of the simplex, given by i ∈ I. These polytopes include
the associahedra and cyclohedra. The associahedra come from the interval
subsets of I of form {i, i + 1, · · · , j}, for 1 ≤ i ≤ j ≤ d. A hypersim-
plex ∆k,d is defined to be the generalised permutohedron at coordinates
(1, 1, · · · , 0, 0, · · · , 0) with k ones at the start, and d − k + 1 zeroes. Now
define a polytope as a sum

Pd ≡ z1∆1d + z2∆2d + · · ·+ zd∆dd (97)

where z1 = x1 − x2 and so on. Consider the vectors c = (c1, · · · , cd) for
ci ≥ 0 such that

∑
ci = d. Let Vc be an integral volume for the collec-

tion (∆1d
c1 , · · · ,∆dd

cd) of hypersimplices. These Vc are the mixed Eulerian
numbers of interest. Their properties include a decomposition

∑
c

Vc

c1! · · · cd!
= (d + 1)d−1 (98)

of the parking functions. The polytope volume may now be expressed as

V (Pd) =
∑

c

Vc
z1

c1 · · · zn
cn

c1! · · · cd!
(99)

The mixed Eulerian numbers include the classical Eulerian numbers Ekd,
defined for c = (0, 0, · · · , 0, d, 0, · · · 0), with the d in the kth position. In
other words, the volume of ∆kd is Ekd/d!. When c1 + · · · + ci ≥ i for all i,
then

Vc = 1c12c2 · · · dcd (100)

and there are Cd such vectors c. Moreover, the volumes also decompose the
Catalan numbers via d!

∑
Vc = Cd. The Eulerian numbers appear in recent

matrix structures in N = 8 supergravity [19].
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Example 5.3 When d = 4, the 14 c vectors that satisfy c1 + · · · + ci ≥ i
give volumes Vc that are graded by the Narayana numbers.

1 V4000 = 1
6 V1300 = 8, V3100 = 2, V3010 = 3, V3001 = 4, V2020 = 9, V2200 = 4
6 V1120 = 18, V1210 = 12, V1201 = 16, V2110 = 6, V2101 = 8, V2011 = 12
1 V1111 = 24

The special c vectors show up in the factorisation of ordinary ordinals.
Consider homogeneous coordinates in Z4 for the parity cube. It is necessary
to add a coordinate, because the strings of zeroes and ones have distinct
totals. We choose to put the extra variable at the start of the vector, where
it will only pick up a Postnikov volume of 1. The cube, including all integral
volumes,

ÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄ

2110(6) 1111(24)

3010(3) 2011(12)

3100(2) 2101(8)

4000(1) 3001(4)

(101)

clearly shows all factors of 24 = 4!. Opposite corner pairs give multiplication
to the target 24. This process works on all parity cubes up to dimension 4,
with a target volume 120 = 5!, since all numbers up to 5 are prime powers.

In this way, any natural coordinate set is turned into a set of integral
volumes. The parity cube in any dimension gives strings satisfying the
special c vector condition, when homogeneous coordinates are used.

Any rooted planar tree defines a set of linear orders. Each node of the
linear order is a node on the tree, and the nodes are connected by internal
edges from the tree. That is, the leaves are all deleted. The n nodes are then
labeled by the numbers 1, 2, · · · , n, with each number used only once. Note
that this is how tree nodes get labeled in the Sn picture. The restriction on
labels is that they must decrease as one travels on a downward path. The
linear orders at n = 2 and n = 3 are then

•
•2
1 •

•
•3
2

1 •

'''''

• ººººº

•2 3

1 •

'''''

• ººººº

•3 2

1 (102)

Consider the five vertex trees of the pentagon A3. Linear orders allow us
to distinguish the special tree (312) + (132) from the other four trees, and
recover the hexagon S3. There is a unique order 321 associated to each
of the four trees, but (312) + (132) has two distinct orders, each with two
leaves. Clearly, each order corresponds to a component permutation.
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Given a forest, namely a finite union of rooted trees, one associates
unions of linear orders, one order for each tree in the forest. Forests are
graded according to the total number of nodes. To begin with, the tree set
is itself unordered. For n = 4, the forest orders and their cardinalities are
then

••••24 •
•
•
•1

•
•
•4

• •
•12

•
•

•
•12

•• •
•

'''''

• ººººº

•2

•

'''''

• ººººº

•8

• •

'''''

•
•

ººººº

•

3

•

'''''

•
•

ººººº

•

3

•

'''''

• ººººº

••1
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containing 70 distinct objects. Without labels, forests form the Connes-
Kreimer renormalisation algebra of rooted trees, as given in appendix C.
The forest coefficient [86] on unlabeled forests is the integer defined by the
product of cardinalities

f =
∏
v

|{w : w ≥ v}| (104)

where v is the node set and w ≥ v if it lies above it on a path. For example,
the vertical tree at n = 3 has f = 6, because the bottom node contributes
three nodes, the middle contributes two, and the top node only itself. At
n = 3, the sum of f values equals 12. The labeled orders also give a count
of 12 for n = 3 forests. Verify that these two counts are dual in the sense
that they swap pairs of forests. For instance, the vertical order is exchanged
for the horizontal point set.

A noncommutative analogue orders the tree set within the forest [87].
There are then five distinct forests at n = 3, rather than four, and 14 at
n = 4. These are again the Catalan numbers. Now choose an order from
left to right on nodes at a level within a forest. Verify that there are then 3
forests at n = 2, and 16 at n = 3. Ignore left right tree flips for asymmetric
trees. The horizontal point set now has only one labeling, since it must be
ordered 123. These diagrams are known as parking functions [88][89]. The
count for general n is

pn = (n + 1)n−1

The correspondence between the order types and the standard parking func-
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tions [90] at n = 3 is

•
•
•

123, 231, 312, 213, 321, 132

••• 111

•
•
•

221, 212, 122

•
•
•

112, 121, 211

•

'''''

• ººººº

•
311, 131, 113

where parking functions are permutations of sequences i1i2 · · · in such that
ik ≤ k. On the vertical tree, the parking function entries just label the nodes
freely. The 111 forest starts at 1 again for each root. The 212 forest chooses
13 for the root labels, as does 121. Label the p4 = 125 forests to check that
the partition on unlabeled forests is

125 = 1 + 4 + 4 + 4 + 4 + 6 + 6 + 12 + 12 + 12 + 12 + 24 + 24. (105)

The number p3 = 16 is associated to the A4 associahedron in a nice way:
it counts the 3-simplices in a natural triangulation of A4. If the c vector
process is extended to any integral vector, then p3 is also the sum of the ten
permutohedra volumes for the three qutrit tetractys diagram, using canon-
ical coordinates. In this case, the mixed Eulerian coefficients are in the
set {1, 2, 3, 4, 6}, which are also the volumes on the pentagon sitting at the
(3, 0, 0) corner of the tetractys. This pentagon picks out the points satisfying
the special c vector condition.

One could divide A4 into 24 simplices, by triangulating each face and
placing a new node in the centre of the polytope, but the more efficient
16 simplex picture uses parking functions. Consider first A3. The 3 non-
commutative forests at n = 2 label three triangles on an oriented chorded
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pentagon [90]. One selects chords that aim for the target vertex.
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This also demonstrates the chording for a square. On the oriented A4, all
faces are chorded in this manner. The 16 base triangles sit on four pentagons
and two squares, with pentagons fixed by their leftmost entry. The diagram
is built from the central pentagon, where the A4 source sits.
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Observe that the source vertex defines an S3 hexagon, because only the S3

triangles meet at the source. The other 8 triangles in a triangulation, lying
on two pentagons and one square at the back of the diagram, might be
labeled with

223, 232, 222 331, 313, 333 233, 323 (108)

bringing us to 24 out of 27 three qutrit words. The missing three labels in
this example would be 133, 322 and 332. Note that the associated Postnikov
volumes for the whole homogeneous tetractys are {1, 2, 3, 4, 6, 8, 9, 12, 18, 27}.
These will be interpreted as probabilities. In particular, the central 6/27
point plays an important role.

A decorated rooted planar tree has labels on all external leaves, including
the root. Decorations take values in a set S. Decorated forests are disjoint
collections of decorated trees. We define a tree splitting contraction [91],
which sends a decorated tree with n edges to one with n − 1 edges. On
an internal edge, it simply contracts the edge. On an outside edge it (i)
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contracts the edge (ii) moves the label to the second vertex, and (iii) splits
the tree at this vertex, giving all subtrees the same label at that vertex. The
contraction of a tree T at an edge e is denoted T/e.

Example 5.4 The (21) tree splits into two at T/b,
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Example 5.5 The tree
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• • • •TTTTTTTT
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jjjjjjjj

splits into four unary edges, with one edge carrying the root label.

All tree contractions within an Ad polytope are internal edge contrac-
tions, which do not create disjoint forests. Let Te denote the set of all
decorated forests, graded by the total number of edges e. A differential
d : Te → Te−1 is defined using the splitting contraction [91]. It also re-
quires an orientation for a tree T , defined on the set of edges E. One
orientation is written w = e1∧e2∧· · ·∧em, where m is the cardinality of E.
This defines the orientation class +. Then given any permutation σ ∈ Sm,
the orientation eσ(1) ∧ · · · ∧ eσ(m) differs from + by the sign of σ. Let iw be
the contraction e2 ∧ · · · ∧ em. The differential is given by

d(T,w) ≡
∑

e∈E

(T/e, iw). (109)

It satisfies d2 = 0. Under the disjoint union product and ⊗ on orientation,
it satisfies the Leibniz rule [91]

d((T1, w1)(T2, w2)) = d(T1, w1)·(T2, w2)+(−1)e(T1)(T1, w1)·d(T2, w2). (110)

5.4 Three Dimensional Traces

Tracing really belongs to the realm of ribbon categories, where there are
dual objects to create arcs in a diagram. However, trees will be considered
instances of flat ribbon networks, allowing a trace operation.

When two trees are glued together as a composition 1 → m → 1, there
is only one input and one output to be traced. These are joined by a loop
segment, drawn in the plane. Because planar binary trees have trivalent
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nodes, they always glue to form surfaces in three dimensions. The gluing of
an upside down (12) and a (21) from S2 gives the tetrahedron
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in line form. Let us denote an upside down tree in Sd by σ∗, where σ is the
underlying permutation. The trace of two objects in Sd takes the tree σ∗

and glues it to τ . For example, the trace of (23415) with (15432) gives a
pentagonal prism
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as does tr((23415), (51432)). A similar trace diagram for Sd always gives a
d-gon prism. Even for S2 there is the squashed can, or globule prism.
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For S3 the trace tr((312), (231)) of 1-circulants is the triangular prism. Other
shapes also occur. The triangular prism is geometrically dual to a pair of
tetrahedra
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glued along one face. This is the polytope obtained by shrinking the square
faces of the A4 associahedron, so that the pentagons become triangles. Sim-
ilarly, shrinking the six square faces of S4 gives an octahedron, which is dual
to a cube.
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Binary tree tracing is a method for turning open ended diagrams into
closed ones. In joining the root edges at the top and bottom of a diagram,
we still have a planar diagram, but this is interpreted as a three dimensional
diagram by allowing a point at infinity on the plane, turning C into the
Riemann sphere CP1.

A typical braid or multitree diagram has n inputs and n outputs. The
standard trace matches the upper and lower points in order, a process that
requires n joining strings. For trees, one can also construct a reverse gluing,
like for a density matrix in quantum mechanics. This also requires more
than one joining string. For example, an associator (21) → (12) is glued
using three strings

33
33

33
3

®®
®®
®®
®

44
44

®®®®®®®

3333333

3333
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to give another form of the tetrahedron with six edges.
When arcs are freely available in the category, other types of trace are

possible [92]. A plat trace can be defined when there are 2n strands, which
is the case for ribbon diagrams. Instead of tracing from the top of the
diagram to the bottom, strings are used to join top points and also to join
bottom points. Most simply, one connects according to (12)(34)(56) · · · ((n−
1)n), using the same connections at the top and the bottom of the diagram.
We will also use the cyclic plat trace, which joins the points according to
(23)(45)(67) · · · (n1).

Example 5.6
(116)

Three twists τ1
2τ3

2τ5
2 are glued to form a closed ribbon diagram, which is

a three component link.

5.5 Associated Braids and Knot Invariants

Permutations in Sd are usually represented by crossing strings, running from
d points to d points in the plane. A braid diagram

(117)
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permits crossing information in the third dimension. The braid group Bn

on n strings composes two diagrams by joining one vertically to the other
to create a new braid. Thus the diagram above is the composition of two
single crossing diagrams. Clearly the group is non abelian.

As in appendix B, let τi represent the diagram with a crossing between
the i-th and (i + 1)-th strings, so that the left string passes over the right
string, as in the top half of the diagram above. Then τ−1

i is the diagram with
the opposite crossing. Each group Bn has d generators {τ1, τ2, · · · , τn−1}.
Along with τiτj = τjτi for |i− j| > 1, the group laws state that

τiτi+1τi = τi+1τiτi+1 (118)

for all i. The braid group Bn will now be represented by (n− 1)× (n− 1)
matrices. This choice agrees with the role of B3 as the cover of the 2 × 2
modular group PSL2(Z) of integer matrices up to ±1 [93]. The modular
group includes the generators

t1 =
(

1 1
0 1

)
t2 =

(
1 0
−1 1

)
. (119)

These satisfy t1t2t1 = t2t1t2, but this braid rule collapses under the addi-
tional relation (t1t2)3 = I2.

There are two natural representations of Bn, one n and one (n − 1) di-
mensional, known as the Burau representation [94][95]. Both are important.
The Burau representation of dimension n has a generator τi, sent to a 2× 2
block in the n× n matrix,

Ii−1 ⊕
(

1− t t
1 0

)
⊕ In−i−1 (120)

with entries in the polynomial ring Z[t, t−1], assuming t 6= 0. At t = 1 the
permutations in Sn are recovered. The (n − 1) dimensional representation
is obtained [95] by observing that the matrices above act on n-vectors to
leave invariant vectors whose entries sum to zero. The two B3 generators
are then given by

τ1 =
( −t 0
−1 1

)
τ2 =

(
1 −t
0 −t

)
. (121)

The pattern for higher n is indicated by the central B5 generator

τ2 =




1 −t 0 0
0 −t 0 0
0 −1 1 0
0 0 0 1


 . (122)

In this representation, (τ1τ2)3 = t3I2, so it does not collapse to the modular
group if t 6= 1 or t 6= ω3. It is faithful for B2 and B3 but not for higher
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dimensional n [94]. However, in analogy to the construction of all permuta-
tions from S2, we aim to understand braids by looking at B2 and B3. The
B3 generators are

τ1 =
( −t 0
−1 1

)
τ1
−1 =

( −1/t 0
−1/t 1

)
(123)

τ2 =
(

1 −t
0 −t

)
τ2
−1 =

(
1 −1
0 −1/t

)
.

Braid diagrams are traced like trees, with one connecting loop for each braid
strand. This creates a closed knot or link diagram. Modern link invariants
[96][97] specialise to the older Alexander polynomial ∆L(t), and this may
be recovered from the (n− 1) dimensional Burau representation as follows.
Let the unnormalised Alexander polynomial be defined by

∆L(t) = (1 + t + · · ·+ tn−1)−1 det(1− L) (124)

where L is the matrix for the link L, formed from the τi generators. We will
see that the polynomial coefficient comes from the determinants for unknot
braids. Using B3, verify that the unknot invariant ∆L = 1 is obtained from
τ1τ2. The unknot invariant should also be obtained from a diagram of the
form (117), such as τ1

−1τ2, but this gives

∆L = (1 + t + t2)−1 · ((1 +
1
t
)t +

1
t
) =

1
t
, (125)

using I2 for the identity braid in B3. In order to find the correct normalisa-
tion factor, consider first the newer knot invariant, the Jones polynomial.

The Jones link invariant VL(t) is defined by a skein relation. If three
link diagrams differ by only one crossing, there is a relation between their
invariants. Let Vτ stand for the invariant when τ sits at the distinctive
crossing. Then VL(t) is given by [96][95]

t−1Vτ1 − tVτ1−1 = (t1/2 + t−1/2)VI2 (126)

This is recursive, because we can always switch crossings in a messy knot to
obtain a simpler knot, and evaluate invariants using the simpler diagrams.
Note that the substitution −t introduces the complex i.

Example 5.7 The three B3 unknot diagrams, τ1
−1τ2, τ1τ2 and τ2, differ

in only one crossing. The generator τ2 is a two loop link, but the other
diagrams must satisfy VL = 1. Thus VL for two loops is (t1/2 − t−1/2).

Example 5.8 The trefoil knot τ1
3 in B2
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is computed using a few steps. Focus on changing the top right crossing. The
two skein alternatives turn the trefoil into either a Hopf link or an unknot.
We have computed the Hopf link VH = t1/2 + t5/2. The skein relation then
states that VT for the trefoil satisfies

(t1/2 + t−1/2)VT = t−1(t1/2 + t5/2)− t

implying that VT = 1+1/t+ t− t1/2− t3/2 + t2. One often chooses a variable
q = t1/2, and a form of the skein relation that pulls out the determinant
1 + 1/t + t. In that case, the trefoil polynomial takes the standard form
VT = q4 − q3 − q.

Fixing a value of VL for the unknot is in fact sufficient to prove that VL is
a link invariant. But what has happened to the matrix invariant? We would
really like an invariant that makes direct use of the matrix representations.
Recall that the unknot τ1

−1τ2 gave ∆L = 1/t. Let us list all such two
crossing braids in B3.

τ1τ2 =
( −t t2

−1 0

)
τ1
−1τ2

−1 =
( −1/t 1/t
−1/t 0

)
(127)

τ2τ1 =
(

0 −t
t −t

)
τ2
−1τ1

−1 =
(

0 −1
1/t2 −1/t

)

τ1τ2
−1 =

( −t t
−1 1− 1/t

)
τ1
−1τ2 =

( −1/t 1
−1/t 1− t

)

τ2τ1
−1 =

(
1− 1/t −t

1 −t

)
τ2
−1τ1 =

(
1− t −1
1/t −1/t

)

Observe that in order to obtain ∆L = 1 for these unknots, it seems we
require a correction factor of tk, where k is the number of under crossings in
the braid diagram. Recall that the writhe w of a link is the difference j − k
between the number j of over crossings and the number k of under crossings.
Note that an inverse braid b−1 has j and k swapped, so that w(b−1) = −w(b).
This suggests considering a modified Alexander polynomial ∆̃L(t) = tx∆L(t)
for some x depending on w and n, so that all one loop unknot diagrams have
∆̃L(t) = 1. Since I2 and powers of the B3 generators all have ∆̃L(t) = 0,
a factor such as tj+k would not appear in b · b−1. But what about longer
braids in B3? The unknot τ1τ2

−1τ1
−1τ2 needs a factor of t, but it has k = 2.

This suggests instead the definition

∆̃L(t) = t−w/2+1∆L(t) (128)

which yields ∆̃L(t) = 1 for all the above braids. This is the correct normal-
isation for B3. For general n [95] we have the matrix invariant

∆̃L(t) = (−1)w−n+1t−w/2+(n−1)/2∆L(t). (129)
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Consider B3 braids using the 2× 2 representation. Let τ denote any one of
the four basic generators. Given a braid word b, we would like to know that
the invariant for bτ is given simply in terms of the invariant for b. For any
2× 2 matrices, the characteristic polynomials give directly

det(I −AB) = 1 + det(A)det(B)− tr(AB), (130)

so that it is easy to evaluate ∆L(t) for any braid product AB. For example,
check that τ1

−1τ2 gives the determinant 1 + 1/t + t.
The Jones polynomial agrees with ∆̃L for B3 braids. For L ∈ B3 a knot,

it is given by

VL(t) = tw/2−1(1 + t + t2 + tw+1 − t · det(I − L)). (131)

At w = 0 this reduces to

VL
0(t) = 1 +

1
t

+ t− det(I − L) + 1. (132)

That is, the special determinant for unknots is canceled out and the nor-
malisation set at 1. Writhe zero knots have a simple skein relation for
evaluating VL

0(t) known as the Kauffman bracket [98] KL. This does not
give a true knot invariant in general, because it does not account for the
non planar writhe. Instead of two crossings, it uses both the I2 diagram and
its rotation by π/2. This mixture of arc pictures is fundamental to all the
combinatorics in this book. The initial normalisation is 1, and additional
loops carry a factor of −(t1/2 + t−1/2). Using diagram pieces to denote the
invariant itself, the bracket says

= t1/4 + t−1/4 (133)

When suitably normalised, the Kauffman bracket becomes the standard
Jones invariant VL on multiplication by a writhe factor (−1)w(t)3w/4. One
can see the three dimensional invariance problem by considering a braid
bτd

±1 in Bd+1, for any braid b. The addition of the extra crossing τd
±1

clearly does not change the actual knot, although it shifts w by ±1. Yet
such a move would alter the Kauffman bracket. Chapter 8 looks more closely
at the relation between the Kauffman bracket and the Jones invariant.

A change of variables of the form t 7→ 1/t gives a distinct set of Burau
matrices representing Bn, and exchanges a knot for its mirror image. Note
that this is a crossing swap in B2. The parameter t acts to deform Sn−1 by
extending planar diagrams into the third dimension.

Braids appear in the renormalisation Hopf algebras of the Standard
Model [99][100][101]. As discussed in chapter 8, the one particle irreducible
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Feynman diagrams are turned into braids. The braids contain extra infor-
mation coming from loops in the diagram, and this is encoded in chords
joining two strands in a braid diagram.

Since we hope eventually to build matrix invariants for physical compu-
tations, from now on we imagine that trees, or even diagrams with loops,
secretly come from braid and ribbon diagrams. The Standard Model parti-
cle spectrum [102] is given as ribbon diagrams in chapter 7, using the writhe
0 unknots in B3.
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6 Twistor Quantum Field Theory

Instead of working with Feynman diagrams, twistor scattering theory uses
diagrams in twistor space. Although it is still a continuum theory, it works
towards throwing away the underlying spaces by describing amplitudes in a
purely combinatorial way. In this chapter we look at techniques in N = 4
planar Yang-Mills theory and N = 8 supergravity. While this is not the
Standard Model, there can be no doubt of its relevance to the true non local
formulation for the Standard Model. However, whereas the supersymmetry
N usually provides additional variables to the background geometry, in an
emergent theory this background is itself derived from the fermionic degrees
of freedom. For this reason, we omit a full description of the geometry and
focus on the crucial combinatorial elements.

Twistor space is the transform of complexified Minkowski space M to
the complex projective space CP3 [49][50]. We start with a matrix form for
a vector in Minkowski space, namely a path matrix

P =
(

XX XY

Y X Y Y

)
=

(
x3 + x0 x1 + ix2

x1 − ix2 x3 − x0

)
, (134)

where (x0, x1, x2, x3) are the usual coordinates of Minkowski space M. For
commutative variables X, Y · · · , the determinant of P is clearly zero, giving
the lightlike Lorentzian metric. Physically, a null twistor replaces a light ray
in M. The points of M need to be complexified, and M then compactified,
for the twistor correspondence to work.

First note that, as a Hermitian matrix, P is an element of the quaternions
H. In general, such a P is a projection in a 2×2 Jordan algebra. The group
SL2(C) of unit determinant matrices G acts on P by conjugation

G†
(

XX XY

Y X Y Y

)
G. (135)

Here SL2(C) is locally the Lorentz group, because it clearly preserves the
determinant

XXY Y −XY Y X = −x0
2 + x1

2 + x2
2 + x3

2 (136)

which is the Lorentzian metric. As the double cover of the Lorentz group,
it includes spin. Here the qudit determinant is non zero only for noncom-
mutative monomials in a word alphabet which has four letters.

Twistor space T is defined by pairs of spinors λ and µ, so that a standard
twistor Z = (λ, µ) is a vector in C4. The transformation between projective
twistor space PT and Minkowski space is a span 1-arrow

F12(T)

xxqqqqqqqqqqq

&&MMMMMMMMMMM

M = F2(T) PT = F1(T)

(137)
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in a category of flag manifolds [50], which are sequences V1 ⊂ · · · ⊂ Vn of
subspaces of a vector space. Here PT is CP3, the one dimensional subspaces
of C4 = T. Complexified Minkowski space M is a flag manifold when viewed
as a Grassmannian, namely the set of all 2-planes in C4. This is what F2

means here. The local coordinates P may be expressed in Grassmannian
form as a 4×2 matrix, [P, I2]. The projective space CP3 similarly has homo-
geneous 4-vector coordinates [iPv, v], where v = [v0, v1] are homogeneous
coordinates for CP1, the Riemann sphere. A point in M is mapped under
the span to such a sphere in PT, which we think of as a celestial sphere. The
coordinates for F12 are [P, v], making it a five dimensional space.

The standard coordinates for T start with the spinor µ, which is usually
written with an index as µA′ = (µ0′ , µ1′). A twistor is a spinor pair Z =
(λA, µA′) wherein we use local coordinates. One works with a dual pair
of twistor spaces, with the dual twistor W ≡ (µ, λ). When T is equipped
with a 4× 4 Hermitian form so that SL2(C) acts separately on each spinor,
the spinors may be considered independent. When the spinors are real, the
conformal group acts simply as SL4(R) on R4, covering the Lorentz group.

As 4-vectors, an independent Z and W define a two dimensional plane
in T. These planes form a fibre bundle over the Grassmannian manifold
Gr(2, 4). Recall that a fibre bundle over a manifold M is an arrow π :
E → M with fibre F such that M is covered with sets Ui and there are
homeomorphisms φi : E ' Ui × F on E restricted to Ui [45]. In particular,
a vector bundle has F a vector space. The transition functions gij = φiφj

−1

on F take values in a structure group G. Although fibre bundles do not
particularly concern us, we need the following example.

Example 6.1 The space CP3 × C4 is a trivial vector bundle over CP3.
Inside this bundle is a universal bundle U1,4, which is defined so that the
projection π : U1,4 → CP3 sends the line that represents x in CP3 to the
point x. This works using the standard vector coordinates for CP3, which
contain the projection information. This generalises to any Grassmannian
with its local matrix coordinates [50].

A useful characterisation of the Grassmannian G(2, 4) is into P(
∧2C4),

for the exterior algebra
∧2C4. The exterior algebra has basis 2-forms {v1 ∧

v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4} in terms of the basis vi for C4.
The Minkowski Grassmannian is given by [U, V ] 7→ [U ∧ V ], which defines
the Klein quadric in CP5 [50]. This is the set of complex vij satisfying the
Plücker relation

v12v34 − v13v24 + v23v14 = 0, (138)

where vij is shorthand for homogeneous coordinates in P(
∧2C4). Later on

we will see that Plücker coordinates are closely connected to the entangle-
ment classification for three qubits, where the C6 is viewed naturally as a
three qubit state space.
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Note that we could have written the noncommutative P as a submatrix
of the length 2, d = 4 monoid matrix




XX XY XX XY

Y X Y Y Y X Y Y

XX XY XX XY

Y X Y Y Y X Y Y


 , (139)

so that P determines a square, formed between the edges of the divided
tetrahedron on the monoid alphabet {X,X, Y, Y }. Then the first two terms
of the Plücker relation are the determinant of P , and the whole relation
comes from the tetrahedron.

The twistor transform not only transforms Minkowski space to twistor
space. It also transforms the solutions of field equations to cohomology
classes on twistor space [103][50]. The long term difficulty in extending this
functor cohomology to massive fields is a major motivation for studying
universal noncommutative cohomology. Notably, classical massive solutions
to the Klein-Gordon equation are possible [16] using a pair of massless spin
1/2 fields, and H2 cohomology.

We would like to construct twistor scattering amplitudes using categor-
ical polytopes and their combinatorics, and notions of quantum entangle-
ment. Such a procedure shows that the Standard Model is reformulated us-
ing discrete structures, from which classical spacetime and locality emerges.

6.1 Scattering Amplitudes in Twistor Space

In category land, supersymmetry is about the choice of underlying number
field [104]. In particular, saying that a theory has N = 4 supersymmetry
just means that it is expressed in quaternionic geometry. Twistor theory
currently focuses on the planar N = 4 supersymmetric Yang-Mills theory,
wherein we consider the S matrix for massless particle scattering, with each
particle characterised by a momentum p and helicity ±. The color stripped
scattering amplitude components are M(λi, λi, hi), where hi is the ± helicity
[106][107][108][109]. For gluons, these fit into the full tree amplitude

An = gn−2
∑

Tr[T i1T i2 · · ·T in ]M(λi, λi, hi) (140)

which includes the T i matrices of the fundamental representation of SU(3)
color.

The helicity sign is often given by a left or right leaning tree leaf, since
helicity will be given by the handedness of a particle braid and the tree
orientation picks out a direction of propagation. However, this breaks the
natural cyclicity of the theory, which is also considered here.

Recall the Mandelstam variables for the s, t and u channels [105]
GGG
ww

w
www
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G1 2
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1 2

34 t
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OOOoo

nnnn1 2

34 u
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with s + t + u =
∑

i mi
2. That is, s = (p1 + p4)2, t = (p1 − p2)2 and

u = (p1− p3)2. Momentum conservation holds when reading the interaction
from left to right. In the zero mass limit, s ' 2p1 · p4 and so on.

The particle momentum is now expressed in twistor variables as pi =
λiλi, where in general the variables are independent. The full twistor vari-
ables are ZA = (λ, µ) and the dual WA = (µ, λ). Each leg i in a scattering
diagram carries both a helicity and a momentum. Momentum conservation∑

i pi = 0 is used to define closed polygons of momenta in a dual twistor
space, given by n coordinates such that xi+1 − xi ≡ pi. These polygons are
dual to the tree diagrams that usually label the Ad polytopes, or their cyclic
variant, the cyclohedra. In what follows we restrict to real spinors [106].

Under a SL2(C) Lorentzian transformation

λi 7→ φiλi λi 7→ φi
−1λi (142)

the amplitudes for a spin s particle should transform as

M(φZ,−) = φ2(s−1)M(Z,−) M(φZ, +) = φ−2(s+1)M(Z, +). (143)

The degrees here come from the anti self dual and self dual character of the
components, via cohomology. In the basic CP1 sheaf cohomology there is
Serre duality between H0 and H1 [50]. For the more complicated CP3 case,
the dimensions of H0 and H1 still complement each other, as they vary with
spin and helicity, as in the table [110].

s -3/2 -1 -1/2 0 1/2 1
dim H0 0 0 0 1 2 3
dim H1 3 2 1 0 0 0
degree -3 -2 -1 0 1 2

In the last row the homogeneity degree is 2s. For positive helicity the degree
−2s − 2 comes from the structure sheaf O(E⊗(−2s−2)), where E⊗m is the
m-th power of the hyperplane section bundle E. A hyperplane in CP3 is
given by an equation

∑4
i=1 cizi = 0. The section bundle is a line bundle

with transition functions gab ≡ fa/fb on the intersections Ua ∩ Ub, where
[50]

fa ≡ c1
z1

za
+ c2

z2

za
+ c3

z3

za
+ c4

z4

za
.

For example, the real permutohedron hyperplane z1+z2+z3+z4 = 0, which
gives S4 coordinates via permutations of (−1/2, 1/2, 3/2,−3/2), has

g23 =
z3

2 + z3(1 + z1 + z4)
z2

2 + z2(1 + z1 + z4)

and similarly for the other gab. The transition functions for Em are given
by gab

m. The bundle E−1 is the universal bundle (6) for the Grassmannian
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manifold CP3. It turns out that E−1 generates its cohomology group H1

over CP3, as the integers Z. Note the analogy with the braid group B2

representation by powers (−t)m for m ∈ Z. Then the homogeneity offset
coming from E⊗(−2) = E−1⊗E−1 is associated to one full twist, so to speak.
Only with this extra factor does the sheaf cohomology recover the physical
solutions on Minkowski space, via the Penrose transform.

Amplitudes are expressed in terms of basic invariants for the Lorentz
group. They are

[λ1λ2] ≡ εij(λ1)i(λ2)j 〈λ1λ2〉 ≡ εij(λ1)i(λ2)j (144)

for the antisymmetric tensor ε. That is, one is in terms of W coordinates
and the other in terms of Z. In the amplitudes, they are often abbreviated
to [12] and 〈12〉 for particles 1 and 2. Although one should use dots to
differentiate the indices for different spinors, this is unnecessary given a
consistent variable convention. A Mandelstam variable takes the form s =
〈14〉[14], and so on.

An n particle Yang-Mills amplitude is abbreviated to M(123 · · ·n). The
first non trivial M(123 · · ·n) have two negative (resp. two positive) helicities,
and these are known as MHV (resp. MHV) amplitudes [111]. We write
M(−−+ · · ·+) for the helicity configuration. For the minimal three point
MHV configuration (+ +−), the amplitude is given by

M(+ +−) =
[12]3

[13][23]
δ(λ1λ1 + λ2λ2 + λ2λ2) (145)

including the momentum conservation delta function. Ignoring the delta
function, the four point MHV amplitude

M(−−++) =
〈12〉4

〈23〉〈34〉〈41〉 (146)

indicates the general MHV pattern. The conditions of momentum con-
servation and zero rest mass reduce the number of independent kinematic
variables in the four point function from four to two, but the three variable
(s, t, u) symmetry is useful, not least because it is related to the basic axioms
for the gauge algebra.

For k extra negative helicities, we have the NkMHV amplitudes. The
first interesting six gluon MHV amplitude (−−+ + ++) equals simply

〈12〉4
〈23〉〈34〉〈45〉〈56〉〈61〉

There is also a delta function for momentum conservation
∑

p = 0, but this
is understood. Observe how the negative helicity homogeneity |2s− 2| = 4
appears in the numerator for the particles 1 and 2, giving the required phase
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scaling. For a general MHV amplitude, the numerator is the same and there
are n − 1 invariants on the denominator. Note how the MHV amplitudes
are easily written in the Z variables, while the MHV ones use the W .

These expressions originally arose from scrutinising concrete calculations
using the Feynman method. In the 1980s, Parke and Taylor [112] noticed
the simple form of the MHV amplitudes. Since then, it has become clear
that the twistor form of the amplitudes is vastly simpler than the original
Feynman form [113]. The modern advantage is our willingness to disallow
spacetime locality its separate existence.

In [114], scattering was considered in terms of on shell processes, which
do not permit arbitrary momenta in internal loops. The BCFW shift selects
two legs, n− 1 and n, and transforms the twistor variables

λn 7→ λn + zλn−1 λn−1 7→ λn−1 − zλn (147)

using a continuum parameter z, which may be considered a physical scale
parameter. The BCFW ansatz leads to an elegant formula for tree ampli-
tudes. For n particles, this rule [114][115] takes the form

M(123 · · ·n) =
∑
+,−

n−3∑

i=1

M(n123 · · · i(−P±
n,i))

1
P (n, i)2

M((P∓
n,i)(i+1) · · · (n−2)(n− 1))

(148)
where P (n, i) is the sum of momenta pn + p1 + p2 + · · ·+ pi. In other words,
there is a recursion rule that factorises an n point amplitude into a sum over
products of smaller ones. The two particles n − 1 and n have been singled
out in this expression, breaking the cyclic invariance. Given such a BCFW
cut, the n particle cyclic tree is turned into a familiar rooted tree with n−2
leaves. As a twistor diagram [116], the two legs obtain a BCFW bridge.

µµµµ

,,,, •◦____
n− 1 n

TTT...
(149)

The black dots will stand for the Z variables and the white dots for the W
[106]. In the newer twistor diagrams, these define ribbon vertices [117]

• ◦
ÄÄ

ÄÄ
Ä

??
??

?
AA

AA

}}
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where the anticlockwise and clockwise vertex orientation is given respectively
by the permutations (312) and (231). The boundary of the diagram is now
cyclic. The permutations (12) and (21) are now ribbon strips, with an
orientation. Such a twistor diagram always defines a decorated permutation
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[27][117]. For four legs, the associahedron edge becomes a flip of Z and W
nodes on the index squares.

→

??? ÄÄÄ

ÄÄÄ ???

??? ÄÄÄ

ÄÄÄ ???

•

•◦

◦

•

•◦

◦
(151)

A permutation in S4 defines four paths through the diagram disc, giving 8
edges on a ribbon graph. The identity (1234) can be drawn with no crossing
points

21

34

(152)

using ribbon edges that loop back to the same vertex. Thus the S2 permu-
tations are given by the pictures

(21) (12)
(153)

This is a crucial reinterpretation of the identity ribbon strip, because as
we will see in the next two chapters, the usual planar pictures for S2 are
precisely the other way around. This dual representation of S2 will result
in mixing, with values in a group algebra FS2. The permutation (3412)
requires a twistor square to cover the six path crossings.

21

34
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• ◦
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¥¥¥
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The line edges are omitted in this diagram, but are defined by the four
legs and path contours around the square. The permutation σ determines
the ribbon edge orientations, sending a path inwards from its source. This
chooses the position of all 2n ribbon edges on the boundary disc.

To each permutation σ ∈ Sn of the form (σ1 · · ·σn) one assigns a sequence
p(σ) = (p(σ1) · · · p(σn)) of consecutive ordinals such that there exists an
x ∈ N with x+1 ≤ p(σi) ≤ x+n. For example, (3412) is mapped to (3456),
with x = 2. The offset is given by [117]

x =
1
n

∑

i

(p(σi)− σi) (155)
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For an S6 example:
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In another example, (465123) is mapped to (465789) with x = 3. This can be
done by placing two ribbon edges around every edge on the twistor disc. On
such twistor diagrams, ribbon edges specify a U(1) gauge field, and as in the
next chapter ribbon twists are used to specify electromagnetic charges. Note
that the nine faces of the six point diagram resemble the A4 faces, although
the disc boundary gives a distinct surface, and the cyclohedra polytopes are
more appropriate for cyclic structure. These polytopes are all generalised
permutohedra. Including boundary vertices, there are 4(n − 2) vertices in
the twistor diagram.

These decorated permutations give a natural choice of Grassmannian
variables for a (k+2)×n matrix [117]. These are the G(k+2, n) Grassman-
nian homogeneous coordinates, where a (k + 2)× (k + 2) submatrix is fixed
at Ik+2. This generalises the Minkowski space G(2, 4) coordinates, which
now correspond to 4 particles in a (−−++) configuration. With a BCFW
cut, this basic configuration is represented by a two leaved tree

//////

²²²²²²

− +

−+

(157)

with a double edged root. Recall that this tree stands for the unique associ-
ahedron point A1. In other words, the MHV rule, which says one must have
at least two negative helicities, comes down to the emptiness of associahedra
below the fundamental point. A three particle tree can only have one leaf,
either left or right leaning, so it is no longer a proper binary tree.

The columns of the Grassmannian matrix span a planar subspace of n
dimensional space. The homogeneity sets k + 2 columns to the identity
matrix, as in

M13 ≡
(

c12 1 c32 0
c14 0 c34 1

)
(158)

for the alternative Minkowski space configuration (+−+−). As always, Mij

is indexed by the column choices, so that the remaining indices are used for

64



the rows. In total, there are

m =
(

n
k + 2

)

such matrix minors, the full set giving coordinates Mij for the projective
space Pm−1 via the Plücker map. The Plücker relation (138) holds between
the determinants of the minors in the four point case. The interesting part
of the Grassmannian is positive [118][119], meaning that all the minors are
positive. This is interpreted using tropical geometry.

For these N = 4 diagrams, there is a globule reduction rule. This is just
the categorical rule (292)

◦
• = (159)

which assumes that the points belong to the same entanglement class. The
full loop recursion rule for the n particle l loop amplitude is then given by
the sum over BCFW bridge tree factorisations and on shell loop terms

l − 1

µµµµµµµ

,,,,,,,

•◦
n 1

TTTTTT
...

(160)

where the little loop has an ingoing λjλj momentum and outgoing −λjλj

one.
In the twistor formalism, there is a close link between the N = 4 theory

and N = 8 supergravity. The amount of supersymmetry, N = 8, means
that CH, or the split octonions, now underlies the matrix algebra. The
spin 2 tensors required for perturbative gravity are, in a suitable sense,
squares of the Yang-Mills ones [120][121]. This is known as color kinematic
duality. First, let the numerator of a term in a Yang-Mills tree amplitude
be expressed as cjnj , where cj are color factors related to the structure
constants of the Lie algebra. Duality imposes a relation between the cj and
nj . That is, given three terms that are related by the Jacobi rule


444− =GGww (161)

a relation c1 ± c2 ± c3 = 0 implies that n1 ± n2 ± n3 = 0 [121]. The
supergravity amplitudes have numerators like nj

2, namely two kinematic
factors. The three particle spin 2 amplitude is just M2, for M the spin 1
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Yang-Mills amplitude. Instead of color trace factors in (140), one considers
kinematic factors τ(12 · · ·n).

These terms come from the two distinct cyclic ribbon vertices. At four
points, using the pieces of (153), there is a four leg ribbon vertex. In general,
the τ(12 · · ·n) obey Kleiss-Kuijf identities. For digit strings A and B,

τ(1AnB) = (−1)|B|
∑

σ∈sh

τ(1σn) (162)

expresses the relation between shuffles of the indices (ABT ), that is with
the string B reversed.

Example 6.2 The four point graviton amplitude in N = 8 supergravity is

M(+ +−−) = GN
〈34〉4[12]4

〈14〉[14]〈12〉[12]〈13〉[13]

where GN is Newton’s constant. The denominator is an stu factor, using
the convention above. This clearly resembles the product of Yang-Mills
M(−−++) and M(+ +−−) amplitudes. The three point case

M(−−+) =
〈12〉6

〈13〉2〈23〉2

does not mix Z and W invariants, and only makes sense for complex mo-
menta.

Physical localisation in scattering comes from the observation that fac-
tors in internal propagators, such as (p1 + p2 + p3 + p4)−1, give singularities
precisely when the internal particle is real, since then the sum of momenta
is zero. This is now an extra condition on the amplitudes, and a strong
constraint on the spin s. For spin 2 there was an stu factor in the four point
case. The only other solution for a fixed s theory is a factor s−1 + t−1 +u−1,
for a spin zero φ3 scalar field theory [122]. Of course a physical theory must
mix particle spins.

There is also a straightforward recursion rule for the gravity amplitudes.
Recent results include an exact tree level formula for the N = 8 theory. In
[19][27], the NkMHV kinematic invariants are defined by an n × n matrix
K(k + 2). This is paired with a matrix K for dual variables. We mention
the MHV case only. Define the phases [27]

φij =
[ij]
〈ij〉 i 6= j (163)

φii = −
∑

j 6=i

[ij]〈jx〉〈jy〉
〈ij〉〈ix〉〈iy〉
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which are independent of the choices x and y, for momentum conservation
on the n points. Now let

cijk = (〈ij〉〈jk〉〈ki〉)−1. (164)

Then the n point amplitude is expressed in terms of the cijk and φij as a
new kind of determinant for the symmetric matrix Kij , which has entries
φij . One needs to delete 3 rows and 3 columns from Kij , namely ijk and
the complementary rst respectively. These give a (n − 3) × (n − 3) minor,
called Φrst,ijk. Let σrst,ijk be the permutation in Sn sending (ijk12 · · ·n) to
(rst12 · · ·n). Then the important part of the gravity amplitude is just

M ′(12 · · ·n) = (−1)n+1sgn(σrst,ijk)cijkcrstΦrst,ijk. (165)

It does not depend on permutations. The full amplitude M(12 · · ·n) re-
quires a product det(K)det(K) of reduced determinants [19]. The reduced
determinant at NkMHV requires n − k − 3 contractions, and we note that
this is the dimension of the An−2 codimension k faces, labeled by trees with
contracted edges.

In summary, with a BCFW cut the four point diagram becomes the two
leaved A1 tree, which is a basic causal point. Localisation splits A1 into a
left (−) and right (+) leaf, defining the left right tree symmetry for all Ad.

6.2 Grassmannians and Associahedra

With two rows for a k = 0 MHV Grassmannian matrix, there are (d −
1)(d + 2)/2 + 1 minors Mij , for d = n − 1. Note that this is not the usual
correspondence d = n − 2, given by the sides on the polygon. Recall that
(d− 1)(d + 2)/2 counts the number f1,d of codimension 1 faces of Ad.

d 2 3 4 5 6 7
f1,d 2 5 9 14 20 27

To account for the one missing minor, we choose to ignore the sign configu-
ration (+−· · ·−+) that puts the two + helicities at the start and end. This
leaves f1,d signature classes for the permutation group Sn. For example, the
pentagon A3 has edges labeled by the five minors

//
//

//

²²
²²
²²

GGGGGGGGGGGG

wwwwwwwwwwww

−+ +−
+−+− −+−+

+ +−− −−++
(166)

In general, this gives a projection Sn+1 → An−1 that selects the signature
classes of MHV type. Similarly for the MHV case. These signatures are

67



vertices on the parity cube in the central dimension n. For codimension x
on Ad, the number of faces is

fx,d =
1
n

(
n− 2

x

)(
n + x
x + 1

)
(167)

in terms of n = d + 1. This selects minors for both n − 2 particles and
n+x particles, where x specifies k. The number of minors for k+2 negative
helicities and n particles is counted by lattice paths of length n. The paths
are drawn on a (k + 2) × (n − k − 2) rectangle. Alternatively, we can use
marked boxes in a rectangular Young diagram of the same shape.

Example 6.3 For the four particles that label the pentagon edges, omit
the empty Young diagram. The five remaining lattice paths are anchored at
the top right corner of the diagrams.

◦◦◦ ◦◦◦ ◦ ◦◦◦◦ ◦

These diagrams label the Minkowski space minors of Gr(2, 4).

Recall from appendix C that lattice paths count the (k + 2, n − k − 2)
shuffles in Sn. Shuffles will be important in the next section, where we look
at the symbol calculus for scattering amplitudes.

We have seen that the BCFW rules pair two legs to create a tree with n−2
leaves. Now the n particle scattering amplitudes match the associahedra
An−1, An−2 and An−3. The An−2 is indexed by polygons with n sides, and
An−3 works when a cut reduces the number of legs by one. Although the
directionality of tree roots breaks the cyclic symmetry of the theory, it offers
insight into the underlying categorical structure.

Consider labeling the interior nodes of the binary tree so that each edge
has ends forming a ± pair [123]. On the dual polygons, this corresponds to
labeling both outer edges and chords, so that all triangles in the chorded
diagram have mixed sign sets. That is, no triangles of form (− − −) or
(+ + +) are allowed. This is just an MHV rule. Let us see how signed
polygons or trees force an extension of the Ad structure. The pentagon of
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pentagons
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is marked with signs. The horizontal chord in the top right pentagon must
be a − by the triangle rule. This forces the one other chord to be marked
with a + sign. Moving around four sides of the large pentagon, all chord
signs are fixed by associator edges. But then the ends of the fifth side will
have opposite signs on the same internal chord. An additional sign flip
edge would turn the pentagon into a hexagon, just as for the categorified
pentagon on the faces of a parity cube.

Observe that only three vertices of the pentagon have some freedom in
assigning signs to chords. These are all equivalent under cyclic shifts. In
the end, there is only one vertex for the (− − + − +) sequence and one
for (− − − + +), counting C2. As n increases, however, there are more
possibilities for the chordings.

Now look at how the physical set of signed polygons may be mapped to
the vertices of the ordinary associahedron, with the shift ∆d = −1. Once
again let k + 2 be the total number of minus signs, and let r be the number
of + signs. For a given k, the number of terms in a scattering amplitude is
given by the Narayana numbers. Recall from chapter 5 that the collection of
Narayana numbers, for all possible k, gives the Catalan number associated
to n. For n points, the correct count is given by

Cn ≡ 1
n− 2

(
2(n− 3)
n− 3

)
(169)

for n ≥ 3. For example, at n = 5 we take the polygon with n− 1 = 4 sides,
and this has two possible chordings, giving C5. The Catalan numbers are
decomposed into Narayana numbers N(k, j) such that Ck =

∑k
j=1 N(k, j).
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In terms of n and r,

N(n, r) =
1

n− 3

(
n− 3
r − 1

)(
n− 3
r − 2

)
(170)

so that N(6, 3) = 3 recovers the three internal vertices of the pentagon A3.
The A3 signs are given in (93). After choosing a root, the other helicity
signs correspond to the direction of the leaves, with − for a left branching
and + for right. The double ± root with two leaves gives the n = 4 point
A1.

Since the signs are canonical, all the higher dimensional cells of this Ad

are defined as usual. We view such ∆d shifts as homological operations,
since they shift the dimension of a homological cell. But particle scatter-
ing is picking up a new ternary structure for homology, with three distinct
dimensions contributing directly to n point amplitudes.

6.3 Symbology and Polylogarithms

Multiple polylogarithms are ubiquitous in the components of scattering am-
plitudes. This large class of functions satisfies numerous functional relations.
Symbology [124][125][126] is the process of mapping a given polylogarithm to
a unique object in a categorical algebra so that the combinatorics of func-
tional relations are respected by this algebra. Polylogarithms are defined
[127] recursively in terms of complex parameters by

G(a1, a2, · · · , an−1;x) =
∫ x

0

dt

t− a1
G(a2, a2, · · · , an−1; t) (171)

starting with G(0) = 0 and G(x) = 1 for x 6= 0, and then G(0;x) = log x.
This class includes the classical polylogarithms Lin−1(x) = −G(0, · · · , 0, 1;x)
and nested sums such as

G(0, 0,
1
x3

, 0,
1

x2x3
,

1
x1x2x3

; 1) = (−1)3
∑

i1<i2<i3

x1
i1x2

i2x3
i3

i1
1i2

2i3
3 .

Sometimes the shorthand 0m is used for a string of m zeroes. In particular,
the multiple zeta values ζ(s1, · · · , sk) [128][129] for si ∈ N, called MZVs,
are given by G(0sk−1, 1, 0sk−1−1, · · · , 0s1−1, 1; 1). These MZVs occur in the
basic n point Veneziano amplitudes, which may be obtained through mo-
tivic integration on spaces described by categorical polytopes [130][131]. A
multiple zeta value of depth j and weight n is a function of the form

ζ(k1, k2, · · · , kj) =
∑

n1>n2>···>nk≥1

1

nk1
1 nk2

2 nk3
3 · · ·nkj

j

(172)
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for positive integers k1, k2, · · · such that n =
∑

ki. Higher order classical
polylogarithms [132] are defined iteratively as

Lin(z) =
∫ z

0
Lin−1(z)

dz

z

and in particular Lin(1) = ζ(n). The symbol S(G) associated to an MZV
will always be zero, due to the parameters occurring in G. For instance,
when some si ≥ 2 the MZV symbol contains at least one term equal to 1,
coming from a (0, 1) subsequence in the arguments.

Thus by construction the symbol algebra is torsion free, meaning that
any occurrence of a root of unity, such as 1 itself, kills the symbol. This
reflects the simple fact that S(log x) = x with log 1 = 0. In particular, the
pole of the Riemann zeta function at s = 1, which equals −G(1; 1), has
symbol 0. This is a special case of − log(1− x) at x = 1.

Since S(log x) = x, we may think of the symbol S(G) as a kind of
exponentiation map, which turns arithmetic sums into products. Moreover,
since S acts on functions, it might be viewed as a functor on a subcategory of
functions on {Cn}, with terminal object C. The pointwise product G1G2 of
two functions should then be sent by S to a product for the symbol algebra.
At the level of universal algebra, the shuffle rule

x y ≡ x⊗ y + y ⊗ x

interprets x y as S(log x log y) in the target category. This becomes the
functorality law for the symbol algebra.

Given a vector (a1, a2, · · · , an−1) of complex singularities, a general poly-
logarithm function G(a1, a2, · · · , an−1;x) of weight n− 1 will be referred to
simply as a polylog. The symbol S(G) [124][125] of a polylog G is an object in
a tensor algebra of functions in the parameters (a;x) ≡ (a1, a2, · · · , an−1; x)
of G. Words W of the form w1 ⊗ · · · ⊗ wk in the tensor algebra form an
algebra with respect to the shuffle product W1 W2. This product is de-
fined in appendix C. Finally, the full symbol algebra satisfies the following
axiomatic properties.

• Functorality: S(G(a1, a2, · · · , aj ; x)G(a1, a2, · · · , ak; y))

= S(G(a1, a2, · · · , aj ; x)) S(G(a1, a2, · · · , ak; y)).

• Distributivity: function products split, as in U ⊗ (xy) ⊗ V = U ⊗
x⊗ V + U ⊗ y ⊗ V .

• Scale Invariance: since, for all λ ∈ C∗, G(λa; λx) = G(a;x) provided
a 6= 0, the symbol must satisfy S(G(λa; λx)) = S(G(a; x)).

• No Torsion: for ωn the nth root, U ⊗ ωn ⊗ V = 0, for all n ∈ Z.
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To begin with,
S(log x) = S(G(0;x)) = x (173)

and functorality then implies

S(log x log y) = S(log x) S(log y) = x⊗ y + y ⊗ x. (174)

The symmetric tensor x ⊗ y + y ⊗ x is associated to the concatenation xy,
since the exponential of log x log y is xy.

An example of a classical polylog is Li2(x) = −G(0, 1;x), which has
symbol −(1−x)⊗x. A similar example will be determined in the next section
by a set of three chorded, labeled polygons P , along with the basic function
assignment f , which sends the simplest two variable diagram P (y; x) to

f(P (y; x)) = 1− x/y (175)

when y 6= 0, and to x otherwise [124][125][126]. Why this particular func-
tion assignment? Firstly, the ratio x/y enforces scale invariance on all
S(G). When y = 0, P (0;x) must recover S(log x) = x. The basic poly-
log −Li1(x) = G(1;x) has symbol (1− x), since this is just log(1− x). The
expression 1− x/y is also projective, for PF1 [91].

The next section describes the diagrams used to construct symbols.

6.4 Decorated Polygons for Symbols

Decorated trees appeared in section (5.3). Their dual polygons are used to
construct the symbol for a polylog. This is another point of view on the new
twistor ribbon graphs.

To each polylog G we first assign a decorated, rooted polygon P (G)
following [91][133]. For an n argument polylog G(a1, a2, · · · , an−1;x) there
is an n-gon with halved sides, forming a 2n-gon with alternating black and
white vertices, such that the white vertices mark the midpoints on the sides
of the original n-gon. The sides of the n-gon are labeled with the arguments
of G(a1, a2, · · · , an−1;x), so that x marks a root edge. The orientation of
P (G), left or right, is specified by choosing a vertex at either the left or right
hand side of the root edge.

A maximal chord diagram is a set of n−2 non intersecting chords on the
2n-gon, with each chord joining one black and one white vertex, but not an
adjacent vertex, as in the figure
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where the top edge is a left oriented root edge, taking the x variable. The
symbol S(G) is constructed from the set of all maximal chord diagrams.
This set is enumerated below. In what follows we assume a left orientation
for the polygons, so that labels are read in an anticlockwise direction. The
chording turns the 2n-gon into a polygon chopped into squares. To start
with, at n = 3 there are three chorded triangles for G(a, b; x).
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These chorded polygons are always cut into squares, suggesting the existence
of dual trees with 2n legs and ternary branchings. First, the dual decorated
tree to the n-gon may be considered a flat ribbon graph, by thickening the
edges as they meet the vertices [91]. This has n legs including the root, but
2n external ribbon edges. The polygon is decomposed using the splitting
contraction of (5.3) on the edge at the head of the chord. Thus the first
chorded triangle becomes

55
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55 ±±±±±±±
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±±

a b

x

7→
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b

b

x

(178)

The ribbon strips of the decomposed graph are dual to globule diagrams
with two sides. The top label is taken to be the root side of the globule.
Ribbon graphs have no automatic internal edges, but here each chord defines
an internal edge, which can be represented

********

········

'''''

ººººº
//

/
(179)

on an overlapping ribbon vertex. With such a vertex structure, the ribbon
edges define a ternary six legged tree, and as trees dual to hexagons the
three triangles may label the three square faces
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of the A4 associahedron in dimension 3. For any n we thus obtain index
diagrams for certain codimension n− 2 faces of A2n−2, which are always of
dimension n− 1. There are n!/2 such faces, which can be seen inductively.
Fixing one initial chord, there are (n − 1)!/2 ways to cut the remaining
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(2n − 2)-gon by the remaining chords. There are then n rotations of each
such diagram.

Given a maximal chord diagram, there are associated linear orders with
n−1 vertices. These are the internal orders of the dual decorated tree. Each
vertex is labeled with a pair (u, v) of variables from the decorated diagram,
representing a rooted globule with sides u and v. For the triangles, there
are two vertices in the unique order,

•
•

(x, b)

(b, a)

•
•

(x, a)

(a, b)

•
•

(x, b)

(x, a) (181)

with globule labels determined as above, by contraction. Observe that each
vertex on a linear order is a node on the dual tree. The orders are simply
paths through the dual tree, with the root node at the top. Recall that these
are themselves rooted trees, appearing in the Hopf algebra of rooted trees.

There remains only the sign problem in the symbol construction. This
uses the orientation that was required for the differential on trees. The
symbol obtains a factor of (−1)k, where k is the number of backwards arrows,
as follows. Orient every chord on the polygon with an arrow head at the
white vertex. An arrow is backwards if its tail starts at a vertex to the right
of its head, with the string of edges read clockwise from the root vertex
and ending with the root edge. For example, only the first triangle has a
backwards chord. Finally, the symbol for G(a, b; x) is

S(G(a, b; x)) = −(1−x

b
)⊗(1− b

a
)+(1−x

a
)⊗(1−a

b
)+(1−x

b
)⊗(1−x

a
), (182)

reading the function assignments, as in (175), from the linear orders. This
expression comes from a new differential, applied to an unchorded triangle.
This contraction differential defines a differential graded algebra of polygons
with a ∧ product, but the symbol actually belongs to an associated ⊗ coal-
gebra. This is known as the bar construction [134][91]. For general polygons,
the symbol is then obtained via a sum over all maximal sets P ,

S(G) =
∑

P

(−1)k
∑

orders

f(u1, v1)⊗ · · · ⊗ f(un−1, vn−1) (183)

using the above algorithm.

Example 6.4 The 12 octagons for G(a, b, c;x) are given by chord rotations
of the three diagrams
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There are three diagrams with V shaped linear orders, which have symbol
terms of the form

−f(b, x)⊗ f(a, b)⊗ f(c, b)− f(b, x)⊗ f(c, b)⊗ f(a, b)

−f(c, x)⊗ f(a, x)⊗ f(b, c)− f(c, x)⊗ f(b, c)⊗ f(a, x)

f(b, x)⊗ f(a, x)⊗ f(c, b) + f(b, x)⊗ f(c, b)⊗ f(a, x)

and the other 9 diagrams contribute terms like f(a, x)⊗ f(b, a)⊗ f(c, b).

Polygon differentials are closely related to comultiplications for Hopf
algebras of rooted trees. In the symbol calculus, the polygon label set
(a1, · · · , an−1; x) defines a polygon cocycle. That is, we consider cohomol-
ogy only for the ⊗ structure and not for the original ∧, whereas in general
the coalgebra differential mixes ⊗ and ∧. With both algebra and coalgebra
structures, the polygons form a commutative Hopf algebra. It is commuta-
tive because the disjoint union of trees is taken to be commutative, but this
could be modified to noncommutative forests.

Only a few basic function types occur in the symbol. In terms of these
symbol pieces, the permutation group S3 is given by [133]

x =

(
1 0 0
0 1 0
0 0 1

)
1
x =

(
0 0 1
0 1 0
1 0 0

)

1
1−x =

(
0 1 0
0 0 1
1 0 0

)
x

x−1 =

(
0 1 0
1 0 0
0 0 1

)

1− 1
x =

(
0 0 1
1 0 0
0 1 0

)
1− x =

(
1 0 0
0 0 1
0 1 0

)
(184)

where function substitution is the group operation. For example, substi-
tuting 1/x into the variable in 1/(1 − x) gives x/(x − 1). This means that
(231)(321) = (213). Observe that the sum of all six functions gives the
ordinal 3, as did the sum of matrix hexagon edges. The coidentity 1/x is
the inverse of x as an up down matrix reflection, and similarly for the other
functions. Recall that such a matrix symmetry is captured by the permu-
tation signature classes, with signature string reversal and sign flipping. In
terms of logarithms, this symmetry is the additive inverse between log x and
− log x. As permutations, the Z and W twistor vertices of (150) give the
variables 1/(1− x) and 1− 1/x.

Remark 6.5 This substitution S3 is the form of the S3 action on the ar-
gument z of the j-invariant for elliptic curves. That is, each function in z is
also a ratio in terms of roots of a cubic polynomial. For example, for (312)
we can take z/(z − 1) = (e2 − e3)/(e2 − e1). The roots clearly describe the
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permutation. The flat ribbon graph for the j-invariant is a gluing of two
trivalent ribbon vertices. This is a top down view of the basic pair of pants
surface diagram, namely CP1 without {0, 1,∞}.

The function assignment is motivated by homological cycles that are
expressed as decorated trees, with the decorations taking values in the q-th
roots of unity for Fq+1 a field [91][135]. Thus the polylog arguments in C
begin with the roots of unity.

6.5 Categorical Distributivity and Logarithms

This section is merely a categorical interlude. The importance of logarithm
functions comes down to their higher arithmetic nature. Whereas addition
for the integers mod k is characterised by the +k operation, the complex
logarithm has the property that 2πi can be added to any phase. The cyclicity
of phases is a quantum arithmetic, according to the theory of mutually
unbiased bases. So how do complex spaces become noncommutative?

Classically, twistor geometry uses sheaf cohomology on complex projec-
tive spaces [49][50]. Ostensibly, a quantum analog to the sheaf condition
employs a functor on a quantum lattice. With constructive motives, spatial
elements and algebraic ones should be unified. This means working with
endofunctors E : M → M on one universal category M, so that universal
homology and cohomology provides a pair of endofunctors, E and E∨, such
that E◦E∨ and E∨◦E characterise integral invariants. Relations of the form
E ◦E∨ → E∨ ◦E on functors are the categorical subject of distributive laws
[136][137], where ⊕⊗ → ⊗⊕ is the canonical example. Quantum distribu-
tivity requires noncommutative categories, as in the braided distributivity
of appendix C.

Braided distributivity suggests a weaker form of symbology, for noncom-
mutative analogues of the logarithm. Let us consider what the logarithm
represents abstractly.

Recall that a counting number n ∈ N stands for an n element set in
the category Set, whose objects are sets and whose arrows are functions
between sets. In Set, basic arithmetic is expressed in terms of functions.
For instance, the product nm of two counting numbers n and m becomes
the Cartesian product n × m of finite sets. This is drawn as a pullback
square

n×m
πL //

πR

²²

n

²²
m // 1

(185)

where πL and πR are projections onto left and right factors. Since the
composition of projections is always a projection, there is a subcategory Pr
of Set containing all the finite sets and all the projection arrows. The object
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N is a limit of the finite n. Addition n + m is the disjoint union of the sets,
and this is also represented by a square, with the empty set 0 replacing 1,
and the reversed arrows are the obvious inclusions. We extend Pr to include
these inclusions. Now there is a limiting successor function (+1) : N → N,
allowing an axiomatisation of arithmetic [7].

What about functions on infinite sets? Let us consider a convenient
infinite set F , such as the complex number field, which has an addition
and multiplication. Fn denotes the n-fold product, as for the domain of
functions in n variables. For many purposes, the uncountable cardinality
of F is troublesome, so we would like to begin with finite structures that
we already understand. So for this fixed F , there should be an analogue of
Pr, still within the larger category. Take the collection of all Fn as objects.
What is a suitable subset of the functions from Fn into Fm, replacing the
basic squares in Pr?

The arithmetic structure of Set suggests working with a collection of
suitably arithmetic functions. This is the context of special functions, such
as the polylogarithms. Natural analogues of addition and multiplication on
the ordinals N are the exponential and logarithm functions. That is, the
square for n×m may be mapped to a function product expn · expm, while
n+m becomes log n+ log m. The composition exp(log z) behaves similarly
to an identity arrow for the object F .

The symbol S acts on arithmetic functions and obeys a functorial rule.
Since its arguments are actual complex numbers, it will help to view C itself
as a category. In a sense we already do this, with N having the structure of
Pr. But if N and C are one dimensional structures then Set, which contains
them as sets, must become at least a two dimensional structure. It already
is, because the Cartesian product of sets gives Set a monoidal structure, so
that a 2-functor from Set ⊗ Set to Set gives the Cartesian product, and
all sets in Set are secretly 1-arrows. Thus C, as a continuum, is picking up
this extension to an axiomatic arrow.
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7 The Ribbon Particle Spectrum

In the Standard Model, the manifestly local Lagrangian contains a Higgs
field, responsible for rest mass creation [138]. In 2012, the ATLAS [139]
and CMS [140] experiments at the LHC discovered the Higgs boson. In the
γγ decay channel it was observed at a higher than expected cross section,
but most channels agree with Standard Model expectations. The observed
Higgs mass mH = 126 GeV was predicted some years ago by Dharwadker
and Khachatryan [141] using the simple formula

mH =
1
2
(mW+ + mW− + mZ) = mW +

mZ

2
, (186)

which is discussed below. The standard couplings run with scale, meaning
that the fundamental particle masses effectively change. However, this does
not prohibit algebraic relations between the masses, particularly in the low
energy limit. We expect the emergent theory to pick out special scales in a
different way to the Standard Model, wherein mass is generated only with
empirical parameters. M theory expects both IR and UV inputs to the mass
spectrum, and it is not clear at what scale the simplest symmetries should
manifest themselves. In this chapter we study mass spectra using simple
kinematic assumptions.

Twistor localisation is a factorisation process in a non local theory. The
same happens here, only with braids instead of networks. With braids,
localisation is the process of turning geometry into numbers, namely mea-
surement outcomes. True arithmetic appears to require ribbon diagrams,
extending the planar techniques that are associated to conformal structure.

Fundamental to the diagram techniques is the concept of S duality, or
more generally, S, T and U dualities. It is duality that introduces complex
cardinalities [142]. A U(1) charge appears directly in the diagrams below,
in the twists of ribbon strands. Such diagrams are used to frame knots
in three dimensional spaces. In James Clerk Maxwell’s original paper on
electromagnetism [143], such twist loops were supposed to define vortices in
the aether. This remains a useful insight into gauge construction.

The ribbon spectrum [102] represents the most fundamental set of lo-
calised IR states. It arises when the trivalent tree vertices are extended to
braids and ribbons, and carries the quantum numbers for both the elec-
troweak and the strong interaction. Kinematically, this is sufficient to dis-
cuss rest mass quantum numbers [120]. In the next chapter, braids and
ribbons are studied in more detail.

7.1 The Mirror Transformation

The magnetic charges will be specified in a doubling of the Standard Model
braid set. This hinges on a reversal of braid crossings in a B3 particle dia-
gram. Using the Burau representation of Bn, there are transformations that
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act on both the matrices and the braid diagrams themselves. By definition,
the mirror transformation

1. flips across a central horizontal axis

2. flips across a central vertical axis

3. changes all braid crossings, using the t 7→ 1/t map.

For the 2 × 2 matrices of B3, this interchanges the diagonal elements, one
for the other, and the off diagonal ones. Note that the diagram transfor-
mation only preserves the crossing site of a generator τi for τn in B2n. In
particular, the basic B2 generator is conserved. In B3, a knot in the set
{τ1τ2

−1, τ2τ1
−1, τ2

−1τ1, τ1
−1τ2} is fully fixed by the mirror map, with each

crossing being sent to the inverse of the other. Similarly, a pair τi
−1, τn−i in

Bn creates a w = 0 fixed point of the mirror map. Recall the Burau matrix

τ2 =




1 −t 0
0 −t 0
0 −1 −1


 , (187)

in B4, which is similar to the central τn generator for all B2n. The top
two rows look like τ2 in B3 and the bottom rows like τ1. The mirror trans-
formation sends τ2 in B4 to τ2

−1 by shifting the B3 τ2 down to its mirror
τ1
−1 and similarly shifting the B3 τ1 up. Thus both the matrix and the

diagram maintain the same crossing site τ2, but the τ1 and τ3 generators are
interchanged by the mirror.

Our braided ribbons will always be double knots in B2n, meaning that
there is an underlying knot in Bn. Since ribbon twists are separated from
the braiding in Bn, the reversal of crossings under a mirror map can preserve
the braid in Bn while flipping the direction of the ribbon twist. Full ribbon
twists define a unit of electromagnetic charge [102]. The sign convention

+ − (188)

follows the B2 convention, and the magnitude of charge q on each strand is
set at 1/n, where n is the total number of ribbon strands in a diagram. At
a basic interaction vertex, at most ∆q = ±1 is exchanged between particles.
It is therefore sometimes possible to represent a half twist with the root of
unity ω6, so that +1 7→ ω3 and −1 7→ ω3.

Note that whereas B2 is generated by a half twist, charge generates
Z ' B2 with a full twist. It would be better to label a half twist with the
integer 1, and let a full set of three twists stand for q = 6. However, this
disagrees with the physical convention, so we just remember the anomalous
factor of 6.
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Ribbons appear because we need the structure of a tortile tensor category
[144]. These are braided ⊗ categories for which the braiding is compatible
with the existence of dual objects. The definition is in appendix A. As
in (A.2), writhe and ribbon twists are interchangeable for tortile category
double knots. For this reason, we restrict attention to w = 0 knots in Bn,
and consider all possible charge assignments. The particle spectrum consists
of the fundamental set of such diagrams.

7.2 The Massless Electroweak and Strong Spectrum

In the massless particle scheme of [102], the permutations (213) and (312)
underlie left and right handed fermion braids respectively. The full Stan-
dard Model particle spectrum is given by braided ribbons for B3. It uses the
writhe zero B3 unknots, discussed further in chapter 8, along with charge
information in the ribbon twists. A twisted ribbon, representing electro-
magnetic charge, takes one of four sign values: 0, −, + or −+. Only the Z
boson is permitted mixed −+ loops, to distinguish it from the photon. Its
three ± strands may be considered a W± composition, as a bosonic analogy
to fermion annihilation. Mixed charges for fermion braids are considered
redundant, because ribbon twists are there to define the link writhe, and
fermions trace to a knot. So using B3 braids, the massless spectrum of the
Standard Model is given by

e−L = [τ2τ
−1
1 , (−−−)] e+

R = [τ1τ
−1
2 , (+ + +)] (189)

e+
L = [τ−1

2 τ1, (+ + +)] e−R = [τ−1
1 τ2, (−−−)]

νL = [τ2
−1τ1, (000)] νR = [τ1

−1τ2, (000)]
uL = [τ2τ

−1
1 , (+ + 0)] dR = [τ1τ

−1
2 , (00−)] R

uL = [τ2τ
−1
1 , (+0+)] dR = [τ1τ

−1
2 , (0− 0)] G

uL = [τ2τ
−1
1 , (0 + +)] dR = [τ1τ

−1
2 , (−00)] B

uL = [τ−1
2 τ1, (−− 0)] dR = [τ−1

1 τ2, (00+)] R

uL = [τ−1
2 τ1, (−0−)] dR = [τ−1

1 τ2, (0 + 0)] G

uL = [τ−1
2 τ1, (0−−)] dR = [τ−1

1 τ2, (+00)] B

W− = [I2, (−−−)] W+ = [I2, (+ + +)] γ = [I2, (000)]
Z1 = [I2, ((−+)00)] Z2 = [I2, (00(−+))] Z3 = [I2, (0(−+)0)]

The special Z boson comes with a color decomposition, according to the
placement of its (−+) mixed charges. Originally, in [102], a single Z bo-
son with charge assignment ((−+)(−+)(−+)) was used. Using the {1,±ω3}
charge representation, so that (±±) = (∓), we see that mixed charge assign-
ments do not change the W± diagrams. That is, for the color free bosons,
all possible charge assignments have now been given.
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Only one choice of crossing pair is used for each observed particle, but the
mirror particle set appears with duality. The mirror sends eL

− to a mirror
copy of the positron eL

+, and similarly for the other charged fermions. Thus
matter antimatter annihilation will be viewed as a four object process with
two pp annihilating pairs, one real and one mirror copy. The full ribbon
spectrum is now parity conserving.

Only fermions with neutral strands, namely the neutrinos and quarks,
exhibit non trivial mixing phenomena. Below we look at a braid picture
for particle mixing. On a quark, for example, the two parallel strands will
be swapped under the mirror transformation, and these strands may carry
distinct charges. Thus the mirror transformation is participating in the
strong interaction.

The chirality of the braids gives particle chirality. Antiparticles must use
the inverse braid in B3 so that braid composition represents annihilation
to the identity photon braid. Using the underlying permutations and a
{1, ω3, ω3} charge representation, fermions and bosons are related by the
3× 3 Fourier transform [145], since 3× 3 circulants are always transformed
to diagonal matrices. This is a form of supersymmetry. Using a twisted F3

transform, the left handed fermions are sent to the W±, γ bosons and the
right handed ones to a Z boson color triplet. The required twist on F3 is
just the (1, ω3, ω3) diagonal.

The important discrete symmetries of the Standard Model are

• C: charge conjugation on ribbon twists, sends a braid b to b−1

• P: parity, sends τ1
−1τ2 to τ2τ1

−1

• T: time reversal, does the mirror crossing flip and conjugates charge.

With these choices, it is clear that the CPT transformation is the identity
on particle states. The Standard Model P and CP violations have long
motivated the idea of mirror matter, which restores the discrete symmetries
for the full particle spectrum [146][147]. For us, however, the mirror matter
is another aspect to the mass generation of ordinary baryonic matter. Since
we do not expect the mirror states to be localised independently of the
standard states, there is no expectation for new WIMP type dark matter
particles. Rather, dark matter appears in the guise of black hole states.
Since braid composition is annihilation, the ribbon states must be mass
states. The electroweak states require the braid algebra.

As discussed in [102], the ribbon spectrum obeys the rules of the elec-
troweak interaction. The full set of quantum numbers for the particles and
the antiparticles should sum to zero, since these sets differ only in sign. This
sign must be associated to the crossing changes in both B3 and B2. We are
also interested in the specific braid parameter t = i, since ±i is the only
complex phase fixed by z 7→ −1/z.
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Let us now derive the electroweak quantum numbers for one generation,
algebraically [148]. The three valued rest mass quantum number is viewed
via a Stern-Gerlach type experiment analogous to the measurement of spin
[131]. This is what a mass spectrometer does when it separates a fixed
velocity beam of mixed mass particles into three streams, separated by the
ambient magnetic field. The three generations are labeled by the three
directions of space, conveniently defined by the three Pauli operations X, Y
and Z.

Stability of any quantum number requires at least two sequential mea-
surements, so we need l = 6 words to account for operations on three objects.
Ostensibly this is a high dimensional array, but a reduction to the one gen-
eration case leaves a 6 × 6 matrix of length 2 words. This should be split
into B3 and B2 components, and is done fully in the next section.

Let us start with B3, or rather the underlying S3. Recall the group
algebra for the three element group C3 ⊂ S3, from (C.1). A matrix repre-
sentation for C3 is given by the 3× 3 1-circulant permutations: (123), (231)
and (312). The relevant element of the group algebra is then

G1 =




a/2 b c
c a/2 b
b c a/2


 (190)

for a, b, c ∈ C, such that c = ±b for a left right pair. We always work with
the assumption that a triplet of equivalent operations may be cycled without
altering the physical properties of the system [149].

The S2 permutations in S3 stand for an operation that fixes one object.
To maintain invariance between the three directions, all three 2-circulant
coefficients must be equal. This is then another 1-circulant. They can then
contribute to the electroweak quantum numbers using

G2 =
u

3




1 1 1
1 1 1
1 1 1


 , (191)

for a parameter u ∈ C. Now the copy of S2 underlying B2 has objects σX

and I2. These are used to create the 6× 6 element of the Hopf algebra CS6,

G ≡ G1 ⊗ I2 + G2 ⊗ σX , (192)

where two copies of G1 form the diagonal blocks. As in [148], we impose the
measurement projector condition G2 = G to obtain equations for a, b, c, u.
The solutions give exactly the weak hypercharge Y = a and weak isospin
T3 = u for the leptons and quarks, such that the U(1) charge quantum
number is given by the Gell-Mann Nishijima formula q = T3 + Y

2 .
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Y T3 Y T3

eL
− −1 −1/2 eL

+ +1 +1/2
eR

− −2 0 eR
+ +2 0

νL −1 +1/2 νL +1 −1/2
νR 0 0 νR 0 0
uL +1/3 +1/2 uL −1/3 −1/2
uR +4/3 0 uR −4/3 0
dL +1/3 −1/2 dL −1/3 +1/2
dR −2/3 0 dR +2/3 0

This indicates that G1 is responsible for the unbroken symmetry U(1)Y

and G2 for SU(2)T . We can also use the canonical coordinates of a qutrit
simplex to specify Y and T3, as in the original Gell-Mann and Ne’eman
model [150][151]. The three qutrit resonance decuplet has coordinates (x, y, z)
such that x + y + z = 3 from the homogeneity of the monomials. Choosing
Y = 1− z and 2T3 = y− x gives the correct Y and T3 values at the integral
points. Then the charge quantum number is q = 2 − x − z = y − 1. Using
these coordinates for the quark (d, u, s) triplet, the quark vectors are

u = (2/3, 5/3, 2/3) d = (5/3, 2/3, 2/3) s = (2/3, 2/3, 5/3). (193)

The one qutrit quark triangle with coordinates (0, 1, 0), (1, 0, 0) and (0, 0, 1)
on the plane x + y + z = 1 also gives the three quark numbers. They are
2T3 = y − x and Y = 1/3− z, so that q = 2/3− x− z = y − 1/3.

One generation of the Standard Model spectrum has also been consid-
ered in terms of ideals for the algebra R ⊗ C ⊗ H ⊗ O, in [152]. This is
geometrised using the octonion Fano plane over F2. Using the unit con-
vention of appendix C, and the split octonion generators ui and ui [153],
Furey’s lepton and quark states are given by

up: iu1 =
1
2
(−e4 + ie1) down: iu1 =

1
2
(e4 + ie1) R (194)

up: iu2 =
1
2
(−e5 + ie2) down: iu2 =

1
2
(e5 + ie2) G

up: iu3 =
1
2
(−e6 + ie3) down: iu3 =

1
2
(e6 + ie3) B

ν: u0 =
1
2
(1 + ie7) e−: u0 =

1
2
(1− ie7)

Thus a bioctonion generator for modular arithmetic is a sum
(

1 0
ei 1

)
= u0 + u0 + ui (195)

from a weak interaction vertex. Here the up quark is colored by the selection
of a direction in the three dimensional space of off diagonal entries. The
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generations are then obtained via the three possible embeddings of 2 × 2
operators in a 3× 3 algebra.

The selected units u ∈ {1, iei} all satisfy u2 = 1, while the others sat-
isfy u2 = −1. The quaternion subalgebras fit the twistor complexification
scheme for SL2(C) Minkowski space. If we think of the quaternion ei as
Pauli matrices, the 2× 2 bioctonion matrix becomes a 4× 4 matrix acting
on C4.

7.3 Mirror Circulants

With the mirror transformation, an eL
−eR

+ annihilation

× (196)

creates an annihilation process for a mirror eL
+ and eR

−. All four w = 0
unknots in B3 appear in this set. Including also the crossing switched dia-
grams, such as the mirror of eL

−, there are eight braid diagrams associated
to charged lepton annihilation. Since annihilation is fundamental to the ex-
istence of rest mass, we interpret the two copies of eL

− as two components
for rest mass generation. The mirror objects are viewed as dual states,
nominally localisable at high energy.

The 2× 2 Burau representations for the eL
− mirror pair gives a formal

diagram sum with
(

1− 1/t −t
1 −t

)
+

( −t 1
−t 1− 1/t

)
=

(
1− t− 1/t 1− t

1− t 1− t− 1/t

)
.

(197)
Mirror pairs always give circulants in the group algebra CS2. The scalar
δ2 − 1 = 1 − t − 1/t defines an interesting choice of braid parameter δ =
i(t−1/2− t1/2). With the substitution t 7→ −t, this becomes δ = t1/2 + t−1/2.
At a root of unity t, this parameter corresponds to unitary representations
of B3 [95].

Note that the circulant was constructed with two diagrams of the same
crossing configuration. Logically, CS2 must balance positive and negative
crossings. Adding the two circulants together we obtain

−
(

2(t1/2 − t−1/2)2 + 2 (t1/2 − t−1/2)2

(t1/2 − t−1/2)2 2(t1/2 − t−1/2)2 + 2

)
. (198)

Circulants are also constructed for the larger representation below. As an
R2(r) matrix, the circulant (197) corresponds to a parameter r = i(1− t−
1/t)/(1− t), so that

t =
1
2
± 1

2

√
1− 4/(1− ir). (199)
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In particular, at r = 0 we have t = ω3. The other particle circulants
have the same diagonal entry, and the off diagonal entries are permuted by
t ↔ 1/t and ±1. That is, the charge free B3 mirror pairs have distinct σX

components
(

0 1− t
1− t 0

) (
0 1− 1/t

1− 1/t 0

)
(200)

(
0 t− 1

t− 1 0

) (
0 1/t− 1

1/t− 1 0

)
.

At a modular group value t ∈ {ω6, ω3}, the I2 component can be either 0 or 2,
and the off diagonals reduce to multiplicative generators of the cyclic group
C6, which can be embedded in S6. As permutations, C6 rightfully requires
a 6 × 6 representation. Actually, the (234561) matrix can be decomposed
into the form H1 ⊗ I2 +⊗H2σX , with

H1 =




0 1 0
0 0 1
0 0 0


 H2 =




0 0 0
0 0 0
1 0 0


 . (201)

These are not circulant, but insisting on a 2-circulant for H2 and a 1-circulant
for H1 uniquely defines a dual permutation (651324) in S6, such that the
group algebra sum (234561)+(651324) is the matrix H ≡ (231)⊗I2+(321)⊗
σX . This matrix has the nice property that H2 is the binary negation of H,
meaning that all zeroes and ones are interchanged. Then H3 = H2 + 2H,
which reduces to H3 = H2 under F2 arithmetic.

The ribbon twists require a representation of B2 ' Z. Let the Burau
representation generate m ∈ Z with (−Q)m, where Q is one half ribbon
twist. Then a full twist is Q2m, and the strand charge is m/3. We now need
to identify strands in the matrices, but this occurs naturally in the full n×n
representation for Bn, where generators are given by 2× 2 crossing blocks.
For charge, the twist generator becomes

(
1−Q Q

1 0

)2m

(202)

where m ∈ {0,±1}. Three charges form three blocks of a 6×6 matrix for the
double knot. The two copies of B3 must also use the 3 × 3 representation.
The canonical choice is to select rows and columns to match the double knot
strands, so that the braid b is embedded as b⊗ I2. Alternatively, permuting
with (142536), we can place two copies of b along a diagonal, as I2⊗ b. This
is easier to work with. For example, the eL

+ mirror B3 braid is

τ2τ1
−1 =




1 0 0
0 1− t t
0 1 0







0 1 0
1/t 1− 1/t 0
0 0 1


 (203)
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and the full 6× 6 particle operator should be



1 + Q2 −Q 0 0 Q−Q2 0 0
0 1 + Q2 −Q 0 0 Q−Q2 0
0 0 1 + Q2 −Q 0 0 Q−Q2

1−Q 0 0 Q 0 0
0 1−Q 0 0 Q 0
0 0 1−Q 0 0 Q



× (204)




0 1 0 0 0 0
1/t− 1 2− t− 1/t t 0 0 0

1/t 1− 1/t 0 0 0 0
0 0 0 0 1 0
0 0 0 1/t− 1 2− t− 1/t t
0 0 0 1/t 1− 1/t 0




so that charge acts on the ribbons at the base of a braid. The charge
operators are

(+) :
(

1 + Q2 −Q Q−Q2

1−Q Q

)
(−) :

(
1/Q 1− 1/Q

1/Q + 1/Q2 1 + 1/Q2 − 1/Q

)

(205)
Note that when Q = 1, we get the 6 × 6 identity, and when t = 1 the
permutation (231). This forces the convention of reading a braid word τiτj

from right to left, when composing the diagram from top to bottom. This
6 × 6 picture then recovers the CS6 objects that were used to derive the
Standard Model quantum numbers.

For τ1τ2
−1, and with the positive charge matrix evaluated at Q = 0, the

6× 6 particle matrix reduces to a 6× 3 matrix of two identical 3× 3 blocks,
which are both

τ1τ2
−1 =




1− t 0 t
1 0 0
0 1/t 1− 1/t


 .

At Q = 1 the same two blocks, up to sign, sit on the 6× 6 diagonal. Note
that we can also use Q = ∞ as a valid charge operation, letting Q take
values in CP1. So the positive particle matrix takes the form (+)⊗ b for the
particle braid b. We can also define 4× 4 matrices (±) ⊗ b using the 2 × 2
Burau representation.

A 6×6 particle determinant has no dependence on the parameter t. For
example, we obtain −8Q9 + 12Q8 − 6Q7 + Q6, which evaluates to −1 at
Q = 1 and 27 at Q = −1.

Consider the 2×2 circulants constructed from the larger representation.
The mirror transformation works also on these matrices, exchanging τi for
τn−i

−1. The 2× 2 generators τ and τ−1 give circulants
(

1− t 1 + t
1 + t 1− t

) (
1− 1/t 1 + 1/t
1 + 1/t 1− 1/t

)
. (206)
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The first matrix corresponds to an R2(r) matrix for the root of unity

t =
−ir − 1
ir − 1

. (207)

That is, t = cos 2x + i sin 2x when r = tanx. Let φr = tan−1(1/r). Then
the special braid parameter δt ≡ t1/2 + t−1/2 equals −2 sin φr and δ−t =
−2 cos φr. Summing the positive and negative contributions of (206), we
obtain the circulant

(
δ−t

2 δt
2

δt
2 δ−t

2

)
=

(
(1− t)(1− 1/t) (1 + t)(1 + 1/t)
(1 + t)(1 + 1/t) (1− t)(1− 1/t)

)
. (208)

The products (1± t)(1± 1/t) are perfect polynomials, because just like the
number four, their product equals their sum. As a matrix product, multiply-
ing matching entries is the Schur product, as noted in appendix C. One can
substitute any polynomial into t, and δ2 remains perfect. At the trigonomet-
ric values this matrix is a probability matrix, when multiplied by a factor
of 1/4. The Schur square root is the unitary circulant

−i

2

(
cosφr i sinφr

i sinφr cosφr

)
= −i sinφrR2(−r). (209)

These circulants are used in the next section to study 3×3 mixing matrices.
Observe that (207) is the fractional linear transformation −F2 on ir, where
F2 is the Hadamard gate [35]. It sends r ∈ {0, 1,∞} on the line R+ to
{0, π/2, π} on the unit circle.

So an R2(r) circulant is constructed from braids overlying the S2 per-
mutations, which are recovered at t = 1. The range r ∈ F covers all the
normalised elements of the group algebra. For the 2× 2 B3 representation,
at a root of unity t, the real parts of (t1/2 − t−1/2) cancel, leaving a totally
real square matrix. This reduces to I2 = (12) when t = 1. In other words,
the group algebra for S2 is viewed as a derivation of the braid algebra using
both B2 and B3.

The 2×2 Burau representation of B3 contained the complexified modular
group generators. These may be extended to bioctonion operators using the
ui variables of appendix C [153], resulting in the new generators

τ1(j) =
( −t 0
−iej 1

)
τ1
−1(j) =

( −1/t 0
−iej/t 1

)
(210)

τ2(j) =
(

1 −iejt
0 −t

)
τ2
−1(j) =

(
1 −iej

0 −1/t

)

for the color index j = 1, 2, 3. Note that the signs of the braid entries take
care of inverses for modular addition. The lower triangular matrices are the
u + e− + ν objects of beta decay, and the upper triangular ones use mirror
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quark objects rather than down quarks. Down quarks would introduce an
additional minus sign, creating a distinct set.

The braid circulants are extended to bioctonion operators in the obvious
way. Observe that the classical off diagonal generator 1 for addition now
looks like −ej/t. The complex number t gives the B3 braiding, and as a color
object for up quarks, ej must pick the neutral ribbon strand. The full Burau
representation does not give modular operators, but is similarly extended
to the bioctonions, and in this case it is clear how ej can correspond to a
strand.

Now the additive states of the weak interaction are given by bioctonion
operators, while the annihilating mass states use braids. This must be a clue
to the mixing phenomena for neutrinos and quarks. Eventually, in order to
reduce the octonion algebra to complex numbers for the construction of uni-
tary matrices, we need to think about projections from higher dimensional
octonion spaces, although it is the categorical structure of these spaces that
really matters.

7.4 Neutrino and Quark Mixing

The fundamental particles of the Standard Model are all massive, with the
exception of the photon. When all other quantum numbers are fixed, there
are three rest mass numbers for each fermion. The charged leptons, in
increasing order of mass, are electrons (e±), muons (µ±) and tau (τ±) par-
ticles. Neutrinos exhibit a mixing phenomenon. That is, if the three elec-
troweak neutrinos are νe, νµ and ντ , there exists a second triplet of states
ν1, ν2 and ν3 such that the first triplet is transformed into the second by
a non trivial 3 × 3 unitary transformation. The second set is interpreted
directly as a set of mass states [154][155].

From an electroweak vertex, the propagating mass states supposedly
transition from one to the other with a probability that depends on the dis-
tance L from the source and the energy E. For three states, the probability
Pi→j is expressed as the square of the amplitude

Ai→j =
3∑

k=1

Vik
∗Vjk exp(−imi

2L/2E). (211)

In the two neutrino case, this gives a probability

Pi→j = sin2 2θij sin2 L(mi
2 −mj

2)
4E

(212)

in terms of a mixing angle θij . The unitary 3×3 MNS neutrino matrix gives
the transition amplitudes for all three states [156]. In contrast, the unitary
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CKM matrix for quarks [157] contains amplitudes



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (213)

that transition between the up and down quark triplets. It is usually factored
as VuVd

†. The Jarlskog invariant [158] measures CP violation in terms of
the entries of the full CKM matrix, in a phase convention independent way.
It is easily derived from any parameterisation of the full unitary matrix.
Here we will only consider a cyclic ansatz for color and generation number,
but this is closely related to the best parameterisation for the matrix.

Each 3 × 3 mixing matrix must be unitary and also respect unitarity,
whereby the sum of norm squares for each row and column equals 1, con-
serving probabilities [159]. That is,

∑
i VijVik

∗ = δjk and
∑

j VijVkj
∗ = δik.

In M theory, we consider the cyclic ansatz of triality. This gives the
cyclicity of particle generations, leaving the probability set invariant under
permutations of rows and columns. Given the existence of a single generation
ribbon set, this suggests three unbroken SU(2)× U(1) factors, wherein the
mixing of only two generations obeys the exact symmetry. Each factor
should belong to the group algebra CS3, coming from the underlying braids.

The determinant condition on an SU(2) matrix is the same as the uni-
tarity condition. The only way to select an SU(2) × U(1) matrix that is a
circulant sum is as the sum of a real diagonal and an imaginary 2-circulant,
namely an extended R2(r) matrix. The required 3× 3 R2 factors are

R12(r) =




r i 0
i r 0
0 0 1


 R23(r) =




1 0 0
0 r i
0 i r


 R31(r) =




r 0 i
0 1 0
i 0 r




(214)
giving a three parameter mixing matrix of the form

V = NR12(a)R23(b)R31(c), (215)

where a, b and c are real, and

N−2 = (a2 + 1)(b2 + 1)(c2 + 1) (216)

is the required normalisation factor. As a circulant sum, V then takes the
form

V = N




abc −a− c −b
−b abc −a− c

−a− c −b abc


 (217)

+iN




bc ac− 1 ab
ac− 1 ab bc

ab bc ac− 1


 .
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This is the general form for a cyclic decomposition in terms of generation
pairs, because one is always free to scale the imaginary entries of Rij to unit
norm. Such matrices are always magic, in the sense that rows and columns
have a constant sum.

Neutrino mixing is close to, but not equal to, the tribimaximal proba-
bility matrix [160][161]




1/3 1/3 1/3
1/6 1/6 2/3
1/2 1/2 0


 (218)

This matrix has many complex representations, including F3F2. It takes cir-
culant mixing parameters (a, b, c) = (1,

√
2, 0). When one parameter is zero

there is necessarily a zero probability. Observationally, for both neutrinos
and quarks, all the parameters a, b and c are observed to be non zero.

Each mixing parameter has a corresponding braid parameter t = ±(r −
i)(r + i), which is a root of unity. This phase converts a mixing factor to an
SL2 matrix. The overall correcting phase for all three factors is

φV ≡
√

(a + i)(b + i)(c + i)
(a− i)(b− i)(c− i)

. (219)

For the CKM quark mixing matrix, the conjugate numerator and denom-
inator are near to ±π/24, so that φV = π/12 + x for a small x ∼ 0.0035,
which happens to equal the parameter c for the quarks. This provides a
potential further constraint on the parameters given below.

Neutrino experiments are not yet sufficiently accurate to pinpoint the
parameters precisely. However, strong evidence for a non zero θ13 in neutrino
mixing has come to light in recent years [162][163][164]. The accurate Daya
Bay result [164] corresponds to an angle of around 9◦. Current estimates for
the other two angles are 34.0◦ ± 1.1 (θ12) and 45◦ ± 7 (θ23) [165]. Current
constraints, including the ∆m2 values, are:

∆(m12)2 = 7.59± 0.2× 10−5 eV2

∆(m31)2 = 2.43± 0.13× 10−3 eV2

sin2 2θ13 = 0.092± 0.017
sin2 2θ23 > 0.92

Observe that θ13 +θ12 ' θ23. If the large mixing phase is 47 = 90−θ13−θ12,
then the three phases satisfy a cyclic set of additive relations

9 + 34 = 47 (220)
47 + 9 = 34
34 + 47 = 9
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under the 90◦ tangent rule. Thus the three phases give a 1-circulant, where
the third column vector is considered a sum of the first two. A more cyclic
representation in terms of the total angle

90 = 9.0 + 34.0 + 47.0 (221)

sums all three vectors to obtain the democratic probability matrix. With
these angles, all in agreement with the data, the neutrino mixing probabili-
ties from V are given by

|Vν |2 =




0.01 0.48 0.51
0.60 0.17 0.23
0.39 0.35 0.26


 . (222)

Consider now the CKM mixing matrix. Recent experimental estimates [157]
of the unsquared CKM amplitudes, for a complex CKM matrix VCKM, are
given by




0.97427± 0.00015 0.22534± 0.00065 0.00351± 0.00015
0.22520± 0.00065 0.97344± 0.00016 0.0412± 0.0011
0.00867± 0.00030 0.0404± 0.0011 0.999146± 0.000046


 (223)

which is closely approximated by the three parameter product

VCKM = NR12(a)R23(b)R31(c) (224)

for a = −0.231, b = 24.0 and c = 0.00347. These parameters correspond to
the Euler angles of the standard parameterisation, but are now responsible
for crucial phases in this kinematic CKM matrix. Observe that the CKM
entry 0.999133 is recognised as 24/

√
242 + 1. Such basic fractions are the

reason for selecting r as a parameter, rather than the usual cosines and sines.
The number 242 is a Postnikov volume for the S4 permutohedron source
coordinate (1, 2, 3, 4). The small parameter c is close to 1/288, where 288
is the volume for the target S4 vertex (4, 3, 2, 1). The remaining Cabibbo
parameter a might be determined by (219) under the constraint π/12 +
c. Note that the split octonion quarks fit on a cube, but the cube does
have natural coordinates within the Z4 lattice. Recall that the cube vertex
(1, 1, 1, 1) has volume 24. Moreover, as a three dimensional cube, it collects
the signature classes from S4. Since such canonical volumes are intimately
related to probabilities [84], either as V or 1/V , it is not unlikely that they
contribute in some way to fundamental probability arrays.

Since two factor products are effectively unordered, we interpret the
three factor ordering as a noncommutative aspect of triality. As noted below,
all unitary matrices in U(3) have a neat parameterisation in terms of cyclic
mixing matrices. The cyclicity of oscillations

νe → νµ → ντ → νe

91



is now associated directly to three t 7→ 1/t braid maps. In other words,
mirror particle pairing is driving the oscillations.

Although dynamical contributions are important, in some instances this
cyclic approximation may roughly determine observables. For example, a
simple Bs physics CKM parameter

2βs ≡ 2arg(VtsV tbV csVcb) (225)

is easily computed. Using the cyclic CKM phases, we obtain a 2βs value of
−0.0388, in agreement with Standard Model fits [166]. Note that the value
−0.0388 comes mainly from the Vts term. In terms of the parameters, the
angle βs is closely approximated by the product abc. Similarly, replacing
strange quarks by down quarks, we obtain the value sin 2β = 0.649, which
is only a little lower than recent measurements indicate [167], and a non
standard result. Such anomalies will be accurately measured by the LHCb
experiment [168].

In [169], Gibbs proved that any 3× 3 unitary matrix U could be written
in the form

U =




ψ1 0 0
0 ψ2 0
0 0 ψ3


V




φ1 0 0
0 φ2 0
0 0 φ3


 (226)

for a magic matrix V , and phase diagonals. This was extended to unitary
matrices in any dimension by S. Lisi [170]. It follows that the circulant
parameterisation, which is magic, characterises some essential behaviour of
unitary mixing.

7.5 Koide Rest Mass Triplets

The leptons and quarks have the observed rest masses [171]

m (MeV/c2)
e− 0.510998910(13)
µ− 105.6583668(38)
τ− 1776.84(17)
d 4.1 - 5.7
u 1.7 - 3.1
s 100± 30
c 1290± 110
b 4190± 180
t 172900± 1500

and the neutrino states satisfy the current bounds [165]

∆m12
2 = 7.59± 0.20× 10−5 eV2

∆m31
2 = 2.43± 0.13× 10−3 eV2

92



As a triplet of real numbers, a diagonal rest mass matrix is Fourier
transformed to a Hermitian circulant. This is a basic rest mass operator.
Alternatively, a Hermitian circulant matrix gives directly a triplet of rest
mass eigenvalues. The off diagonal entries, responsible for mass splitting,
are characterised by a single complex phase. There is one rational phase
component which turns out to be universal, and a second phase compo-
nent that only appears for the neutral stranded neutrinos, and possibly the
quarks. Conjugation of this secondary phase is interpreted as a mirror pro-
cess, under the t 7→ 1/t mirror map.

The twistor vertices (150) correspond to the permutations (231) and
(312), which give the φ and φ phase components of M . This conjugation
showed up in the homogeneous transformations Z 7→ φZ, W 7→ φ−1W
[107][106]. The operators M are defined in terms of twistors in chapter 10.

First, recall the inverse pair of 3× 3 circulant mutually unbiased bases

R3 =
1√
3




1 ω3 1
1 1 ω3

ω3 1 1


 R3

−1 =
1√
3




1 1 ω3

ω3 1 1
1 ω3 1


 . (227)

Note that R3
2, which is the natural increment from R3 in the cyclic group,

is the inverse only up to a factor of i. Thus R3 is really a 12th root of
I3. However, bases are equivalent up to multiplication by a complex scalar.
Along with I3 and F3, these are the 3 × 3 analogues of the Pauli unbiased
bases, appropriate for describing real measurements with three outcomes.
We need a Hermitian matrix, so one must sum R3 and R3

−1 with the same
coefficient, to obtain the simplest mass matrix

H =




2 ω6 ω6

ω6 2 ω6

ω6 ω6 2


 . (228)

Any multiple of I3 may be added, since I3 is another basis. The Schur square
root of H

HS =



√

2 ω12 ω12

ω12

√
2 ω12

ω12 ω12

√
2


 (229)

contains the basic arithmetic phase π/12, as in (47). Using conjugate phase
multiples of R3 and R3

−1, we have a general Hermitian circulant. Note that
the special matrix H is fixed under the operation H 7→ H2. Testing a general
diagonal parameter x and phase φ 6= 1, simple algebra shows that only the
sixth roots have fixed points, at x ∈ {2,−1} for ω6 and x ∈ {−2, 1} for ω3.
However, if we let φ vary on iteration, then x = x(φ) can be fixed by maps
H 7→ Hn, in which case φ will eventually return to itself. At the Schur value
x =

√
2, φ ' 4π/23 rad fixes H 7→ H3. This cubic rule may be viewed as a

ternary analogue of quantum mechanical projection P 2 = P . Appropriately,
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the rational 4/23 appears in chapter 10 as an entropic probability for three
unary fermion states.

The well known Koide formula [172][173] for the three charged lepton
rest masses correctly predicted the τ mass, and has since been applied to
neutrino triplets and hadrons [174]. This formula arises from a triplet of
eigenvalues for a circulant

√
M at some scale µ,

√
M =

√
µ(I3 + z(231) + z(312)) =

√
µ




x φ φ

φ x φ

φ φ x


 , (230)

where z is complex, x−1 = |z| and φ = arg(z). The eigenvalues are then

√
mi =

√
µ(1 + 2|z| cos(arg(z) +

2πi

3
)), (231)

for i = 1, 2, 3. The square root best displays the following empirical data,
but now we can assume that each mirror component contributes equally to
the mass operator M . Both charged leptons and neutrinos have mass triplets
fitted with x ' √

2, as in HS . As discussed in [174][175], the charged lepton
phase is 2/9, while the neutrino states are assigned a phase 2/9+π/12. The
charged quark triplets are at first roughly fitted using phases 2/27 for the
up triplet, and 4/27 for the down triplet. The quark |z| value is related to
the lepton value by basic trigonometry [176][177], with the lepton triangle
inscribed inside the up quark one. This is

f(
√

2) ≡ |z| = 1√
2

sin(ω12
5 − 4/27)

sinω12
.

A natural charged lepton scale is given by µl = 313.8 MeV, which equals
the dynamical quark mass mp/3. More recently it was observed [178] that
the alternative (b, c, s) quark triplet fits the lepton value of x =

√
2 with a

phase of 6/9. There is also a tripling of scales in 3µl, paired to the tripling
of the 2/9 phase.

Quarks do not require a large secondary phase component, but might be
corrected by a phase π/N . Now all fundamental Koide scales are empirically
related to mp, using basic braid parameters. Including mirror neutrinos, the
table below contains the theoretical mass values for the Koide parameters.
The leptons require a small phase adjustment to fit the accurate measure-
ments. We set a somewhat arbitrary basic mass scale µ0 = mp/5 MeV, for
the proton mass mp. In the table, all triplets then fit within current ob-
servational constraints, and the Koide eigenvalues therefore provide precise
predictions for the rest masses.
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x φ (rad) µ (MeV) m

e−
√

2 2/9 5µ0/3 0.51095
µ− 105.65
τ− 1776.82
u f(

√
2) = 1.76 2/27 120µ0 2.0

c 1249
t 171546
d

√
3 4/25 3µ0 5.0

s 83.3
b 4148
b

√
2 2/3 5µ0 = mp 4190

c 1356
s 92
ν1

√
2 2/9 + π/12 5× 10−11µ0 0.00038

ν2 0.0087
ν3 0.0497

ν1
m

√
2 2/9− π/12 5× 10−11µ0 0.0006

ν2
m 0.00117

ν3
m 0.0581

Recall that the universal 2/9 is a basic path probability for the central point
of the qutrit tetractys, and may be viewed as the volume 6 for the canonical
coordinate (1, 1, 1). Similarly, 2/27 marks the coordinate (2, 1, 0) and 2/3
the coordinate (0, 1, 2). We can take 120 = 5! as a volume for (1, 1, 1, 1, 1),
although it is not yet clear how these scales arise. The product

√
3f(

√
2)

of up and down parameters equals 3.049, which is the side length of the
Koide up quark triangle in the (r, φ) plane [176]. The lepton triangle has
side length

√
6, which is similarly a product of the

√
2 and

√
3.

Note that we can always choose off diagonal entries of norm 1 in
√

M by
absorbing a scale into the parameter µ, which is where our arbitrary choice
of units is hidden. Since a Hermitian matrix is a 1-circulant, it can only
have a 2-circulant component equal to a multiple of the democratic matrix

D =




1 1 1
1 1 1
1 1 1


 , (232)

which is both a 1-circulant and 2-circulant. Taking a Hermitian matrix in
the form

±i√
3




0 v −v
−v 0 v
v −v 0


 +

1√
3
D

it follows from normalisation that v =
√

2. The Hermitian matrices are
in general the sum of three equal phased mixing factors, giving them an
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interpretation as a one time operation. The reduction to one time variable
is a homogeneous mixture of three, presumably responsible for setting the
mass scale.

Consider again the mirror ansatz, where rest mass creation comes from
braid pair localisation. For a boson there is only one mass state, because
there are no braid crossings to generate a mirror. Since the 2/9 phase is
observed to be universal amongst Standard Model particles, we use the sec-
ondary phase component to discuss the possibility of distinct mirror Koide
states, which may be associated to observable phenomena.

A total phase conjugation does not alter the rest mass triplet, so only
two mismatched phase components can generate distinct mirror states. For
reasons that will be discussed in chapter 11, the Koide scale µ is thought to
be fixed by the mirror triplet, just as ordinary matter sets the same scale
for the mirror triplet. There is no CPT violation, because the mirror pair is
its own annihilation pair. So in principle we permit distinct mass states for
the second so called sterile neutrino triplet.

Now the neutrino
√

M has a 2/9 − π/12 mirror phase, where only the
π/12 piece has been conjugated. With this phase, one may easily verify
that the central mirror mass state corresponds precisely [179][180] to the
current CMB temperature of 2.73 K, at 0.00117 eV. In a quantum universe,
the CMB is not merely a cosmic relic of essentially arbitrary temperature,
but a local observation of neutrino mass creation. The heavier particles are
created at hotter horizons. We determine that the CMB was hotter in our
imagined cosmic past precisely because there is an inverse duality between
the mirror temperatures and their partner masses, which start out at zero
at the conformal horizon.

The Koide coincidences lead to a significant reduction in the number of
parameters required in the Standard Model. Mass is energy, and energy
conservation is associated classically to local time symmetry [181]. In chap-
ter 11, the nonlocal asymmetry of cosmological time is associated to the
rest mass splittings and the generation of dynamics. In chapter 10 we also
look at how entropy is described using these matrices and their quantum
information content. In the eigenvalue space R3, the charged lepton Koide
vector is rotated by π/4 from the (1, 1, 1) vector, as originally noted in [182].
The (1, 1, 1) vector sits at the centre of the word monoid tetractys, denoting
mixed paths of type XY Z, which altogether represent the S3 permutations
that underlie mass circulants.

7.6 Symmetry Creation and the Higgs Boson

The electroweak theory of the Standard Model begins with the unbroken Lie
symmetry SU(2)× U(1). In the gauge theory [183] this symmetry is spon-
taneously broken down to the U(1) of electromagnetic charge. In the ribbon
picture, space consists of only three (or six) abstract points, marked by a
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horizontal cut on a braid diagram. So the redundant gauge is, in some way,
specified with only three U(1) phases, as in the mixing parameterisation.

The Higgs mechanism of the Standard Model [138] introduces a poten-
tial, contributing extra terms to the local Lagrangian to give rest masses
to local states. In the emergent theory, we require spacetime to arise from
quantum information, and so the symmetries that act upon spacetime must
also be emergent. We know that SU(2), for instance, is the set of unit
quaternions, which may be considered independently of the representation
theory of Lie groups. To a mathematician, quantum arithmetic replaces
representation theory in the so called Langlands correspondence.

An exact SU(2)× U(1) symmetry appears in the MNS and CKM mix-
ing matrices, with the circulant parameters. These CS3 objects may be
constructed from braid mirror pairs. A braid on its own displays no natural
classical symmetry. In the braid picture, what does the Higgs boson look
like?

Dharwadker et al [141] correctly predicted the Higgs boson mass mH =
126 GeV in 2009, using the relation

mH =
1
2
(mW+ + mW− + mZ) =

mZ

2
(1 + 2 cos θW ), (233)

where θW is the Weinberg angle, which for us is close to 28◦. This is a
Koide eigenvalue with parameter x = 1 and a scale set by mZ . The Higgs is
presumed to create a condensate of pairs with mass 2mH . Under the mirror
ansatz, it is natural to split the pair so that each mirror sector claims one
mH . Consider the decomposition of a Koide matrix

M = µWWZ




x 1 1
1 x 1
1 1 x


 + µγff




0 iy −iy
−iy 0 iy
iy −iy 0


 (234)

into real and imaginary parts, giving a (W+, W−, Z) degenerate triplet and
a (γ, f, f) creation annihilation triplet. Since photons are the only massless
states, this is an essentially unique way to view a Koide matrix in terms of
real and imaginary parts. Here we take x = sec θW ' 1.13.

The Dharwadker geometry [185] is hypothesised to come from a partic-
ular Steiner system [186] known as the Witt design. This special set, called
S(5, 8, 24), is a collection of 759 length 8 subsets, known as octads, of a 24
letter alphabet, such that every 5 element subset of S(5, 8, 24) is contained
in exactly one octad. It may be constructed using the 24 dimensional parity
cube, which is associated to a state space for 24 qubits, where 0 and 1 give
the characteristic function for subsets of 24.

First, put all the length 24 binary strings in lexicographic order. Then,
from the top, delete any string that does not differ in at least 8 places
from any previous one. The resulting 4096 strings form the extended binary

97



Golay code [187]. The strings with exactly 8 plus signs are the 759 = 3×253
octads.

There are 24 quarks and leptons, not including antiparticles but includ-
ing generation number [185]. A two sheeted Riemann surface representing
the causal wave function is given a coloring by fermion discs, with quark
color joining three quark discs together at a trivalent vertex, but all other
particles are separated on the sheet. The surface is divided into 8 quadrants,
for u, d, e−, ν and their antiparticles. There is a total of 48 local regions
for all quarks and leptons. The 24 double points are a state space for the
higher dimensional parity cube. Alternatively, we could study the geometry
of more complicated polytopes in lower dimension, such as the 24 vertex
permutohedron.

The ambient space on the surface is supposed to be the fourth color of
the four color mapping theorem, which states that any proper map in two
dimensions requires no more than four colours. That is, the particle surface
should model any two dimensional space, as a matter of principle. The
fourth color is where the bosons live, under the supersymmetry that maps
small fermion discs to large open boson spaces, as in open closed duality for
a ribbon graph. The Higgs boson sits at the central zero point, on both the
matter and antimatter sheets. Only the W and Z states have access to this
point.

The four color theorem was proved only using a computer search. Math-
ematicians have hypothesised [188] that the maximum of 4 corresponds to
the quantum algebra limit given by the braid parameter δ2 at t a root of
unity. This parameter can be expressed in the form 4 cos2 θ, which clearly
has a maximal value of 4. For the braid circulants this factor of 4 showed
up in the unnormalised 2× 2 probability matrix, which has 4 braid compo-
nents. These braid pieces are used in the ribbon scheme to distinguish two
mirror states and two antiparticle states. Note also that the parity cube
is associated to the Leech lattice in dimension 24, given by the standard
construction. The projection of the 24 source axes on the cube give the
fundamental roots ω24 in the complex plane.

It will be interesting to study anomalous observations using the emergent
scheme. For instance, parity sign symmetries in M theory have been used
[190] to explain the Wjj dijet anomaly [189]. Although an explanation in
terms of multiple Z generations has been ruled out using local methods,
the color Z triplet in the ribbon spectrum permits multiple states without
altering the one generation characteristic [145].

Localisation should also clarify the meaning of bound state. The arith-
metic structure of state spaces extends the qubit quantum mechanics that
is usually applied to atomic or chemical bond structure. The simplest atom,
the deuteron, has a formation energy that happens to equal the current
constraint on mn − mn, the difference between neutron and antineutron
masses. Thus, as with the neutrinos, the neutrons could display a distinct
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mirror behaviour [191], distinguishing free and bound states. Without the
extra complication of charge, neutral particles are the perfect laboratory for
studying gravity.
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8 Knots, Ribbon Graphs and Motives

The general aim is to find a category Mot that describes a special class of
spaces. Motives should provide a universal type of homology and cohomol-
ogy, so that a category Space of spaces has an arrow Mot → Space that
sends the universal cohomology to the usual one.

Unfortunately, universality is usually discussed in a 1-categorical sense.
To a physicist, however, motives are about the emergence of classical geom-
etry from quantum information. The numerical results of an experiment are
invariants for the geometry of the experiment, and so we need to consider
noncommutative and nonassociative geometries.

Usually, the functors go from a spatial category to an algebraic one,
but since our geometric objects are always equipped with algebraic data, it
makes more sense to work with endofunctors Mot → Mot. To start with,
we seek the right diagram categories. Algebras for knots are a big clue about
the structure of Mot, using the inspiration of three dimensional categories.
In the following few sections we look at the Temperley-Lieb category TL of
planar diagrams, and its connection to twistor diagrams.

A Temperley-Lieb generator on two points is a diagram in (153). How-
ever, the arc diagram represents (21) in the Temperley-Lieb algebra, while
it gives the identity (12) in planar twistor diagrams [116][117]. And (21) for
twistors is the identity for the Temperley-Lieb algebra. This basic confusion
between (12) and (21) appears to be responsible for the ubiquitous 2 × 2
mixing circulants. Diagrammatically, such a sum is the duality of an open
string vertex

$$
$$
$$
$$
$$
$$
$$

(235)

The planar twistor diagrams for n > 2 are built with 4(n−2) ribbon vertices,
including the boundary legs. These are the W and Z variables of causal
structure. An extension to true braided ribbon diagrams will require a cyclic
structure for braids. A particle braid in B3 is usually drawn acyclically with
three top inputs and three bottom outputs. But the standard trace joins
these points in pairs. This could be used to create open ribbon legs.

For example, τ1
−1τ2 on the points {1, 2, 3} is paired with two extra cross-

ings to create a zero writhe ribbon vertex out of the figure eight knot.

1
2

3

(236)
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This is not a twistor vertex, because the edge paths are no longer cyclic, due
to the half twist on leg 1. A three crossing twistor vertex can only create a
trefoil knot in B2. As a traced braid on B3, this would lead to a separated
loop at one leg. Since knotting is related to the essential entanglement of
causal states, the figure eight knot is a minimal three way linking diagram.
The reversal of ribbon orientation at leg 1 gives the vertex a categorical
direction, breaking the cyclicity again. The six new possibilities may be
abbreviated to the edge vertices

²² ²² ²²

ÄÄÄÄÄ ÂÂ?
??

ÂÂ?
??

OO

ÄÄÄÄÄ

OO

ÂÂ?
??

OO

ÄÄÄÄÄ
??ÄÄÄ

__??? ??ÄÄÄ
??ÄÄÄ

__??? __???

(237)

That is, including the standard cyclic twistor vertices, there is a set of eight
vertices labeling the corners of a parity cube.

The figure eight knot is hyperbolic, in contrast to the trefoil knot, which
is a torus knot [192]. Its complementary space in dimension three may
be constructed from two ideal hyperbolic tetrahedra. This knot gives the
smallest of all such hyperbolic volumes, at a normalised value of 2.0299. The
holographic complement of the figure eight knot also has the property that
its ribbon template diagram [31] contains all knots, as a branched surface.
This is the so called universal template of Ghrist, which uses four letters for
the knot monomials, just like RNA or DNA.

The figure eight knot is a writhe zero knot. Consider again the writhe
zero links in the standard planar representation. For a ∈ Z, consider the
w = 0 braid words ti,a

± ≡ τi
aτi±1

−a in Bn. This includes the fundamental
particle braids at a = ±1. In Bn, there are 4(n − 2) braids of the form
ti,±1

±. Observe that all w = 0 links in Bn are given as words in the ti,a
±,

since a general braid word τi1
a1τi2

a2 · · · τik
ak satisfies

∑
ai = 0. For instance,

τ1
2τ3

−1τ2
−1 is expanded to τ1

2τ3
−2τ3

1τ2
−1. Another example is τ1τ4

−1 in
B5.

(238)

Recall that double knots in B2n can have the writhe augmented by any
n ∈ Z via the addition of a ribbon twist within B2n. Therefore any link in
Bn has a w = 0 ribbon representation in B2n with particle generators ti,a

±.
Let q = t1/2 = exp(2πi/r) be a root of unity braid parameter, so that

δ2 = q + q−1 + 2 is the q-number (x2yq)2. Then δ2 = 4 cos2 π/r. The set
{0, 1, · · · , r − 2} may be considered a set of spin labels for a ribbon functor
that describes quantum computation [?]. This functor sends a k qubit state
space to a disc marked with 3k points. As a configuration space, the disc
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has an action of the braid group B3k. For each qubit there are three points,
representing the three punctured Riemann sphere CP1. As a moduli space,
CP1 is in fact a point, since it carries an essentially unique complex structure.
Below it will be drawn as a ribbon graph.

This CP1 point is now a trivalent vertex, just like the vertices that appear
in twistor scattering. As categorical diagrams, these basic vertices are pieced
together to form spin networks [196]. In particular, a two qubit system for
the modular functor corresponds to B6 braids on the disc, which include the
particle states.

8.1 Temperley-Lieb and Hecke Algebras

The Catalan numbers Cd, which enumerate the vertices of the associahedra,
also give the dimension of the Temperley-Lieb algebra TLd+1 [193]. The
diagram representation of TLd+1 has d generators ei, i = 1, · · · , d, such that

ei
2 = δei eiei±1ei = ei (239)

eiej = ejei |i− j| ≥ 2

for δ ∈ C. An element of TLd+1 is a string diagram from d + 1 points
to d + 1 points in the plane, such that non crossing arcs and loops are
permitted. Note the similarity of the relations to those for the braid groups.
Composition in TLd+1 is given by the vertical gluing of diagrams, as for
braids. The generators of TL3 are

e1 e2

(240)

When a loop is created in a diagram, it acts as the scalar δ. This can be
seen in the relation ei

2 = δei. The identity 1 is, by definition, the same as
a braid identity. The other two loop free diagrams in TL3 are

s t

(241)

The pair e1e2 and e2e1 define a basis for TL3, since for instance e1e2 ·e2e1 =
δe1. This is enumerated by C2 = 2.

Compare this to the d + 1 leaved trees that define the vertices of Ad.
We use the permutations in Sd to determine a diagram word. For example,
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(231) is mapped to e2e3e1. Now observe how (132) and (312) reduce to the
same Temperley-Lieb diagram on the A3 pentagon.

///////

²²²²²²²

¶¶
¶ ++

+

= (242)

The TLd pictures correspond directly to trees. Place a node on each down-
ward arc in the picture, as it is built from generators. These are the tree
nodes. Then one only needs to draw lines connecting nodes to other nodes
on arcs below it, and include the arc segments going to the top.

Altogether there are 14 loop free pictures in TL4. This equals C4, the
vertex number for the next associahedron, A4, just as there were C3 = 5
diagrams in TL3. In other words, there is a second way to match trees to
arc pictures, so that A3 comes from TL3, rather than TL4.

The algebra TLd is generalised to arc pictures from d to k points, for
distinct d and k. Let TLd,k denote the vector space with basis given by all
possible arc diagrams, equipped with formal addition of diagrams. We can
restrict the coefficients to, say, the rational functions in Laurent polynomials
in δ, with coefficients in Z.

It is easy to check that the algebra TLd gives a representation of the
positive braids in the braid group Bd under the correspondence

τi 7→ δei − 1 (243)

as follows. Plug τi = f(t)ei − 1 into the braid group relation τiτi+1τi =
τi+1τiτi+1. Comparing the two sides forces f(t)2 = δf(t), so that f(t) = δ
unless f(t) = 0. The negative generators τi

−1 appear to require an inverse
(ei

2 − 1)−1, but this is not obviously in TLd. Inverses are discussed further
below. Observe that τi mixes the two S2 diagrams, as if it defines an open
string vertex.

As usual, a nice choice of parameter is δ = (t1/2 + t−1/2), so that δ2 =
2 + t + 1/t, wherein we see the Alexander determinant for the writhe zero
unknots in B3. When t = ωn there is a unitary representation of Bd, and
then δ2 = 4 cos2 π/n [95]. These special values may be used to study the
numerical range of the Jones polynomial VL(t).

Now the identity diagram in TL2 and the generator e1 look like the
arc pictures in the Kauffmann bracket (133). This is important, because
the Kauffmann bracket motivates a categorification of polynomial invariants
like VL(t). What does it mean to categorify polynomials? Recall that a
categorification of a number was a set, or vector space. The polynomial
invariant should be derived from the diagram spaces, just as numbers give
cardinalities of sets. This idea is the basis of Khovanov homology for links
[194][197].
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But we already have a space of planar diagrams associated to knots,
namely TLd. Actually, it is better to think in terms of a category TL,
which has ordinal objects d ∈ N and arrow sets given by TLd, along with
algebras TLd,k giving arrows d → k, which are arc pictures from d to k.
Then we can also work with the union

∐
d Bd of all braid groups.

Let us look for diagram inverses within a single TLd. Consider an arrow
2 → 2 which uses TL2,4 and TL4,2 to cancel the half loops of e2 in TL4.

(244)

It provides an inverse for e2, but only via conjugation, and one obtains I2

rather than I4. One always obtains an identity In, where n is the number of
through strands in a diagram. This n grades the Temperley-Lieb algebras
into subalgebras TLd,k,n for n ≥ 0. In order to obtain an identity arrow
4 → 4, we might conjugate once again with elements of TL4,2 and TL2,4.
This diagram

(245)

is now weakly equivalent to the identity I4, remembering the scalar multiple
δ2. But this does not provide true inverses.

Once we have a category, we can invent products between distinct al-
gebras. A category TL is permitted to contain TLd algebras for distinct
values of δ. In this setting, we can look for braid inverses τi

−1 in another
copy of the Temperley-Lieb algebra.

Consider B3, where there are two generators e1 and e2 giving the positive
generators τ1 and τ2. The inverse τ1

−1 came from a mirror generator τ2
∗,

along with t 7→ 1/t in the matrix. This suggests working with two mirror
copies of TL3, so that the mirror copy provides the correct site for the inverse
braid crossing. Let the mirror category TL∗ be the union of all TLd,k

∗, so
that ei

∗ exists as a generator object in it. Then we choose the correct maps

τi
−1 7→ δ(1/t)en−i

∗ − 1 (246)

into TL∗, which is equipped with the mirror parameter δ(1/t). The condi-
tion τiτi

−1 = I now states that

I = (δ(t)ei − 1)(δ(1/t)en−i
∗ − 1). (247)
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A product between a TL and TL∗ object has been used. With this product,
the full braid group Bn is formally represented. At the unitary values, where
δ(t) = δ(1/t), the braid product gives a simple rule

δeien−i
∗ = ei + en−i

∗ (248)

for the mixed algebra product. Recall that B2 = Z is the fundamental group
for the unit circle, with exp(2kπi) sitting over 1, for k ∈ Z. The negatives
arise from winding in the anticlockwise direction around the circle, tracing
a charge ribbon twist. This suggests labeling our second copy of TL with
generators e−k, so that

ek + e−k = δeke−k (249)

holds between addition and product in the double algebra. If the product
annihilates, we are left with a decomposition of the scalar δ = ek + e−k.

The Temperley-Lieb category contains Jones-Wenzl projectors pi [198],
satisfying p2 = p. Assuming the usual braid parameters t and δ, the recur-
sion rule is

pd = pd−1 − fdpd−1ed−1pd−1 (250)

with p1 = 1. The function f2 is δ−1, in p2 = 1− δ−1e1. For p3, basic algebra
verifies that f3 = δ−1(1− δ−2)−1. At each step, projection follows from the
projection fdpdedpd.

The idempotents are often represented by box symbols, to disguise their
exact diagrammatic nature. These boxes augment spin networks by creating
vertices d → d that obey the recursion. The δ parameter is required for the
TLd relations at each step, for the generators ed and ed−1. The recursion
hinges on the TLd relations for all generators.

However, we could consider distinct TLN , where the underlying t param-
eter varies with N . Each TLN contains a distinct set of Jones Wenzl idem-
potents. One choice is t a 2Nth root of unity, matching matrix characters for
BN representations. Then as N 7→ ∞, the braid phase t approaches 1 and
δ2 reaches the limit of 4. The coefficient fN becomes small as p∞+1 ' p∞.
Comparing braid generators to projectors, the many relations start with
τ1p2 = −p2.

In general, the mirror transformation shifts the Burau matrix τi to
τn−i

−1, just as it transforms the corresponding braid diagram. Using the
TL and TL∗ product, for any Bn,

(δ(t)en−j
∗ − 1)(δ(1/t)ej − 1) (251)

must pick out n identity strands. To each term we apply a Kauffman bracket
(133), using the t 7→ 1/t inversion on the mirror term. By design, the result-
ing braid rule occurs at one generator site. Substituting the two brackets
into the product, we have

f(t)I2 = g(t) + h(t) (252)
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with

f(t) = 2 + δ(t)−1t1/2 + δ(1/t)−1t−1/2 (253)
g(t) = t−1/4 + δ(t)−1t1/4 h(t) = t1/4 + δ(1/t)−1t−1/4

At the special unitary values δ = t1/2 + t−1/2, f becomes δ + 2. There is a
solution for f = 1 at the modular value t = ω3. This is a local Jones type
skein rule. Temperley-Lieb type relations are also related to Hecke algebras
[199].

8.2 Bn and Khovanov Homology

In Khovanov homology [194][197] one has two choices for replacing a cross-
ing, namely the two Kauffman uncrossings, I2 and e1 in TL2. Under the
above TL to tree algorithm, e1 is the unique two leaved tree, which is the
1-ordinal 1. The identity gives an empty tree, because there is nowhere to
draw a node. Then an arrow I2 → e1 represents the fundamental inclusion
of the empty set in a one point set. It is often written 0 → 1, so that multiple
uncrossing choices are denoted by sequences like 001, or −−+.

Given a link L with l crossings, Khovanov homology first writes down
all possible diagrams with uncrossings in place of each crossing. That is, it
takes the set of Kauffman bracket terms for all crossings in L. For example,
when L is the trefoil knot τ1

3 in B2, there are 8 smoothings given by the
parity cube vertices [197]

000 111
011 101 110 001 010 100

(254)
Each smoothing is assigned a polynomial in t1/2. From the Temperley-Lieb
algebra, there is a factor of δ = t1/2 + t−1/2 for each loop in the traced
diagram. This is multiplied by (−1)ktk/2, where k is the number of 1 digits.
This gives terms

(t1/2+t−1/2)2, −t3/2(t1/2+t−1/2)3, 3t(t1/2+t−1/2)2, −3t1/2(t1/2+t−1/2),
(255)

where there is a copy of the term for each object. Then all terms are summed
together to obtain

−t3 + t2 + t + t−1. (256)

The w = 0 unknot determinant is subtracted, giving −t3 + t2 − 1. There
is also an overall factor of t for the writhe w = 3, recalling that the writhe
factor turns the Kauffman bracket into the Jones polynomial. Finally, we
obtain the standard form of the Jones polynomial for the trefoil knot,

Vτ3 = t + t3 − t4. (257)
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The Khovanov diagram space is a categorification of the Jones polynomial,
because we derived the polynomial from it in much the same way that ordi-
nals come from counting sets. It can distinguish knots that are not distin-
guished by VL.

The true Khovanov invariant [L] is a sequence of graded modules, each
coming from the diagram set at a given k. The shift map 0 → 1 is the
fundamental flip operation on Kauffman pictures, and it defines the arrows
of the parity cube. Note that this is the reverse process to the ordinal arrow
between trees. And now the 0 ↔ 1 pair is associated to the S2 mixing,
between twistor diagrams and Temperley-Lieb ones. So the diagrams give an
invariant more powerful than the Jones polynomial, they appear in twistor
theory, and they also correspond to rooted trees.

The Khovanov axioms use an abstract loop space V , which has the
quantum dimension δ. It allows the gluing of two loops via a reverse flip,
m : V ⊗ V → V , and the separation of a loop ∆ : V → V ⊗ V . On trees,
these are the standard bialgebra vertices.

The {Ad} and Sd operads define oriented polytopes in every dimension
d ∈ N. The Temperley-Lieb algebra has given us at least two ways to
picture Sd and Ad. A permutation either (i) acts on the nodes of a tree with
d + 1 leaves, associated to TLd+1, or (ii) comes from the d strands of Bd in
TLd. Case (i) uses point objects and case (ii) uses one dimensional edges
or strings. Geometrically, the exchange of points and edges should define
a Poincare duality for the one dimensional space. Categorically, there is a
shift operation d−1 from TLd+1 to TLd.

Remark 8.1 The tree differential of (5.3) also reduces the number of leaves
by 1. It creates unions of rooted trees, and these underlying forest objects
naively belong to multiple copies of the associahedron. However, in chap-
ter 5 we saw that noncommutative forests are also counted by the Catalan
numbers Cd, and the corresponding parking functions label simplex decom-
positions of the associahedra and other polytopes.

Consider again the positive knots, where the writhe w equals the number
of crossings. This fixes the dimension of a Khovanov parity cube. This cube
is a reduction of Sd for d = w + 1, the rooted trees with w + 2 leaves, and
their diagrams in TLw+2.

Take the codimension 1 faces on A2m for 2m = w+1. These are specified
by the two node trees with node valency m+2, or by k = 0 sign strings from
S2m+2. To the positive writhe w knot in B2 there is associated a chorded
braid diagram [101]. This is a Feynman diagram with w loops, created
as follows. For the trefoil knot, insert two horizontal chords on the braid,

107



connecting the first strand with the second.

a1 a2

b1 b2

7→ a1 a2

b1

b2

(258)

Ensure that at least one crossing lies between a pair of chords. The traced
knot defines a planar loop with the two chords attached, forming a three
loop diagram. Start at a1 and trace a path along the braid to determine
the positions of the vertices. There are two possible chordings on the trefoil.
For harder knots, crossed chords are necessary [101]. For B2 torus knots of
odd writhe, there are m = (w + 1)/2 chords. This corresponds to the leaf
count of m + 1 at one node on the A2m face, that is the 1-ordinal m. These
leaves count the loops in the Feynman diagram, or rather the number of
cuts required to reduce it to a tree.

This knotty Feynman diagram is associated to the numerical zeta value
ζ(w). This is also obtained from Ad using motivic methods, as discussed be-
low. Such braid chord diagrams can be thickened into cyclic ribbon graphs.

8.3 Ribbons and Moduli Spaces

We have seen that two level rooted planar trees correspond to globule dia-
grams for a 2-category. The pointlike nature of arrow sources and targets
is associated to the pointlike nature of particles in the Feynman formalism.
But trees can be thickened to ribbons, drawn with a total of 2n lines. The
Riemann sphere CP1 with three punctures is drawn as the interior of the
flat ribbon diagram

(259)

where the outside line is a loop about ∞, and the other loops traditionally
mark the points 0 and 1. Although the continuum appears to be packed into
the ribbon picture, we view ribbons as abstract geometric objects, prior to
the existence of C itself.

There is a very fundamental reason for introducing ribbon graphs. Recall
that for the associahedra Ad, the tree nodes correspond to the bracketing
of letters in a word, such as (a ⊗ (b ⊗ c)). Consider the basic associator
(12) → (21) of section (5.4). Ideally, the associator should be a loop rather

108



than an edge, because it describes a homotopy. Using the ribbon diagram
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(260)

the cyclic plat trace gives a picture of a Riemann sphere CP1 with 5 punc-
tures, imagining the inside of the ribbon as the surface. What does this have
to do with the associahedra?

Consider the complex equivalence classes of 5-punctured Riemann spheres,
allowing for the degenerate cases where punctures collide. This defines a
compactified moduli space M0,5 [200]. Now the real number points of the
moduli space M0,5, which is a combinatorial gadget associated to points
on the circle RP1, define a two dimensional space that is tiled [201] by 12
copies of the A3 pentagon. In general, there are (d + 1)!/2 copies of the Ad

polytope in the moduli space tiling.
But the A3 pentagon is the basic axiom for associativity in monoidal

categories! In other words, the shape of the punctured sphere is encod-
ing information about the structure of all punctured spheres. With a tree
diagram, the cyclic trace yielded only a tetrahedron.

Similarly, the cyclic trace of the unique two leaved diagram (1) → (1)
gives a picture of a 3-punctured sphere, and M0,3 is a point. A point is the
A1 associahedron. The empty polytope A0 corresponds to a basic ribbon
strip, traced into a loop. As a complex space, this is the disc. It will be
useful to think of the edge of the disc as the unit circle in the complex plane.
So in thickening trees to ribbons, we obtain actual pictures of the complex
spaces. Physicists know these as string diagrams, but note that the legs on
the string diagram come from the holes in the picture, and not from the
thickened edges.

The simplification of real spinors in twistor scattering leads to a concrete
tiling of punctured RP1 moduli by the associahedra Ad. The real points of
the moduli spaces M0,n, indexed by n ∈ N, form an operad in the sense
that a composition

M0,k+1 ×M0,n1+1 × · · · ×M0,nk+1 →M0,n (261)

may be defined using the structure of the Ad tree operad. The complex
moduli spaces are similarly related to loop free string diagrams, but these
require a higher dimensional operad structure. The real moduli compactifi-
cation looks at configurations of points on RP1 [201]. It smooths the moduli
by adding points that represent the limiting case of collisions between points,
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which work to reduce the number of points in the configuration. These col-
lisions are drawn as bubble offshoots of the original RP1, introducing strings
of loops or, rather, glued polygons. And glued polygons may be viewed as
chorded polygons.

The polytope picture for moduli spaces is used to describe relative co-
homology invariants that happen to correspond to the n point Veneziano
amplitudes [130][131]. These quantities are expressed in terms of the multi-
ple zeta values, which have vanishing symbols. The chords of the n-gon are
labeled (ij) and each chord indexes a variable uij , which is a function

M0,n → CP1\{0, 1,∞}

derived from simplex coordinates ti. These are cross ratios

uij ≡ [ii + 1 | j + 1j] =
(zi − zj+1)(zi+1 − zj)
(zi − zj)(zi+1 − zj+1)

(262)

such that the first three points z1, z2 and z3 are sent to 1, ∞ and 0 respec-
tively, and the remainder are relabeled as ti. So for n points there are n− 3
simplex coordinates, where a simplex is chosen with 0 < t1 < · · · < tm < 1.

Example 8.2 For n = 5, there is an edge simplex with coordinates t1 and
t2. The five chords give

u13 = 1− t1 u24 =
t1
t2

u35 =
t2 − t1

t2(1− t1)
u41 =

1− t2
1− t1

u52 = t2

defining an affine space of dimension n(n− 3)/2 = 5.

Each uij determines a differential form ωij = d loguij . The face of the
associahedron An−2 is given by an equation uij = 0. This polytope corre-
spondence creates pullbacks of differential forms on the lower dimensional
associahedra, so that integrals are decomposed into an iterated expression.
These multiple zeta value invariants form a rational algebra over a basis set
of primitive integrals [128].

As usual, let si = (p1 + · · ·+ pi)2 give the sum of external momenta pj .
We introduce new coordinates xi defined by ti = xixi+1xi+2 · · ·xn−3 [130],
and also hyperplanes αij ≡ xi − xj . The Veneziano integrals then take the
form

Bn =
∫ 1

0

n−3∏

i=1

dxi x
−α(si+1)−1
i

∏

1<i<j<n

(1− xi−1xi · · ·xj−2)−pipj (263)

where the α(si) and the pipj are integers.
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Example 8.3 Consider seven point amplitudes. This requires 14 affine
coordinates uij representing the chords of a heptagon.

u13 = 1− t1 u14 =
1− t2
1− t1

u15 =
1− t3
1− t2

u16 =
1− t4
1− t3

u24 =
t1
t2

u25 =
t2
t3

u26 =
t3
t4

u27 = t4

u35 =
t3(t1 − t2)
t2(t1 − t3)

u36 =
t4(t1 − t3)
t3(t1 − t4)

u37 =
(t1 − t4)
t4(t1 − 1)

u46 =
(t1 − t4)(t2 − t3)
(t1 − t3)(t2 − t4)

u47 =
(t1 − 1)(t2 − t4)
(t1 − t4)(t2 − 1)

u57 =
(t2 − 1)(t3 − t4)
(t2 − t4)(t3 − 1)

The full motivic integral is

B7 =
∫ 1

0

4∏

i=1

dxi x
−α(si+1)−1
i (1− xi)βi

∏

1<i<j<n

(1− xi−1xi · · ·xj−2)−pipj

Here, βi gives an integer ghost term. The ghost elimination from such
integrals was crucial to the derivation of the dimension d = 26 for bosonic
string theory. As in appendix C, in M theory the dimension 26 becomes
the dimension of the traceless Hermitian elements of the exceptional 3 × 3
Jordan algebra over the octonions.

If the RP1 punctures stand for ribbon legs, a basic four leg vertex has
a one dimensional moduli space tiled by three associator edges A2, forming
a triangle {0, 1,∞}. These A2 are given by the S2 trees, now described by
Temperley-Lieb diagrams with the edge extrapolating between I2 and e1.
The bubble graph

•
•

•

•

•
(264)

for four points on RP1 has three places to put the second circle, representing
the collision of two points. This is the same as putting two legs together in a
BCFW factorisation, reducing the four valent particle graph to two trivalent
factors.
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9 Motivic Constructions

The word monoid, with its noncommutative monomials, replaces ordinary
simplices in algebraic topology. It is equipped with numerical data. The
divided simplices also contain natural representations of categorical poly-
topes. For example, we saw that the pentagon appears in one corner of the
three qutrit tetractys.

On classical d dimensional simplices there is a boundary operation ∂d,
giving the face cells of the simplex. What replaces it for the graded word
monoid?

We want the classical simplices at l = 1 to obey the usual rule ∂2 = 0
for boundaries. At l = 2 the analogue is a ∂3 = 0 rule, as follows. First, a
solid simplex goes to all boundary elements under ∂, as usual. The second
application of ∂ kills the classical elements, namely the undivided lines,
edges and so on. However, it leaves the midpoints on all edges. Only the
third application of ∂ kills these mixed paths.

For l = 3, we can similarly define a boundary operation such that ∂4 = 0.
When the classical faces are killed off, the edge pieces between the two middle
points on each edge remain. Another ∂ kills the edges, and leaves the points
for the last step. In this way, ∂l+1 = 0 for all word monoid simplices. Object
labels are maintained throughout boundary operations.

Instead of coefficients in Z, which do the canceling for ∂2 = 0, now we
require cancelation via a sum

a1 + a2 + · · ·+ al+1 = 0 (265)

which is obeyed by the roots of unity ωl+1
k. The midpoints on the l =

2 simplices should then take on coefficients over {1, ω3, ω3}, such as the
Eisenstein integers. For l = 3, objects require the Gaussian integers Z[i].
Combined with the l = 2 operations, this introduces ω24.

In order for an l = 2 object to cancel out in a boundary, it must occur in
three higher dimensional cells, rather than two. The midpoints on a triangle
themselves define an inscribed triangle inside the l = 2 simplex. These
three points must together pick out the zero sum for {1, ω3, ω3}. For two
qutrits, these are the points XY , Y Z and ZX. The Pauli operators are a
noncommutative analogue to {1, ω3, ω3}.

As usual, simplices for homology define the d-chains in a space M , only
now there is a double (d, l) index. The simplex labels are commutative,
but the tensor cubes carry all noncommutative monomials. As algebraic
data, this is a non abelian coefficient structure for cohomology. Recall that
singular cohomology is defined by dualising singular homology [45]. Given
coefficients Z, the collection of arrows from the d-chains into the object Z
give the object of d-cochains. Similarly for other abelian coefficient sets,
when l > 1.

112



9.1 Comments on Quantum Homotopy

Given divided simplices for l > 1, a generic chain complex has a double
(d, l) grading. The usual planar notion of homotopy f : C• → D• between
two complexes is extended to higher dimension. A cubic segment of such a
homotopy

Cd,l

∂

yyrrrrrrrrr
f

%%LLLLLLLLL

²²

Cd−1,l

f %%LLLLLLLL

²²

Dd+1,l

∂

yyrrrrrrrrr

²²

Dd,l

²²

Cd,l−1

yyrrrrrrrr f

%%LLLLLLLL

Cd−1,l−1

f %%LLLLLLLL
Dd+1,l−1

yyrrrrrrrr

Dd,l−1

(266)

introduces length three paths to replace the ∂d+1fd and fd+1∂d paths on
the squares [45]. The higher l face carries boundary operations δ such that
δl+1 = 0, so that an object in the source Cd,l is equally likely to be killed off
whatever path it takes to the target.

The classical cone is a homotopy between a d-simplex and a single point.
The single point represents the minimal space, because classical homotopy
requires a base point to define the trivial loop. In quantum homotopy, this
can be relaxed to n base points, since groupoids are just as nice as groups
to a category theorist. Moreover, typical groupoids have objects indexed
by n ∈ N, such as the groupoid of braid groups Bn. Now a quantum cone
extends the classical cone with its noncommutative internal simplex, sitting
over the n points. For example, internal to the two qutrit cone over a triangle
is a triangular simplex

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 44
44

44
44

44
44

4

ÄÄÄÄÄÄÄÄ 44
44

44
4

//
//

//
//

//
//

··
··
··
··
··
·XY

Y Z

ZX

XY

Y Z

ZX (267)
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This was an index simplex for the hexagon S3. The ± signs of l = 1 ho-
motopy are replaced by the cubed roots of unity, or their noncommutative
analogue, the Pauli operators. At l = 2 there is always a simplex prism
inside the cone.

When the other genus zero categorical polytopes are triangulated, clas-
sical cones can be created given a base point. For example, the 24 triangles
on A4 are extended to a fifteenth vertex. Each of the boundary triangles
then represents a vertex on a dual S4 permutohedron, and the signatures of
the S4 vertices give a parity cube. The homotopy class π2 should look at
maps using all this structure.

Classical twistor constructions rely on relative homotopy and homology.
For single basepoints, the group πk(M,A) is defined for a subspace A → M
[45]. One takes the space ΩA of paths into A, which is a bundle over A, and
evaluates πk−1(ΩA) in terms of πk−1(M) and πk−1(A). Divided simplices
automatically provide quantum subsets. Homotopy classes are distinguished
by relative contractibility, which is now dictated at every point by tree edges
and tree differentials.

In the triangulated categories of classical motives, homology and coho-
mology is constructed from derived functors, using natural chains of objects

· · · → TTA → TA → A

associated to an object A. When the arrows are weak equivalences, T is
thought of as a projector. Our algebraic projectors instead arose from pair-
ings X, X of letters from the word monoid, resulting generally in l = 2k ten-
sor cubes. They all have a noncommutative structure. If a matrix T⊗T → T
generates such a long sequence, the associated homology maps Hk → Hk−1

are a reduction in the quantum grading 2l 7→ l, but the simplex dimension
is preserved. However, the secondary polytopes associated to the simplices
are of distinct dimension, and act as homological cells.

9.2 The Crans-Gray Tensor Product

Recall that distributivity is naturally a three dimensional structure on cate-
gorical tensor operations, just as arithmetic knots guide us towards a three
dimensional picture for Z. In [14], Crans noted that a natural tensor product
for higher dimensional categories was not dimension preserving. In partic-
ular, the horizontal composition of two 2-arrows gives a 3-arrow, just as
branched 2-surfaces contain three dimensional knots. A generic category
of dimension ≥ 2 has such dimension raising compositions, so that beyond
dimension 3, space is created from the algebra of surfaces.

To begin with, the Gray tensor product breaks interchange. Put two
objects U in C1 and V in C2 into a formal pair (U, V ). Let gi be a 1-arrow
in C1 and fj a 1-arrow in C2. Then the formal pairs (gi, 1Vi) and (1Uj , fj)
satisfy (g1, 1V )(g2, 1V ) = (g1g2, 1V ) and (1U , f1)(1U , f2) = (1U , f1f2). Now
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for each pair f and g there is only an isomorphism σfg : (1U , f)(g, 1V ) ⇒
(g, 1V )(1U , f). That is, the diagram

U

1

²²

// V

1

²²

// W

1

²²
U

1

²²

//

ÂÂ ÂÂ
®¶ α

V

1

²²

//

ÂÂ ÂÂ
®¶ 1

W

1

²²
U //

ÂÂ ÂÂ
®¶ 1

V //

ÂÂ ÂÂ
®¶ β

W

(268)

may be different, via an isomorphism, from the diagram

U

1

²²

// V

1

²²

// W

1

²²
U

1

²²

//

ÂÂ ÂÂ
®¶ 1

V

1

²²

//

ÂÂ ÂÂ
®¶ β

W

1

²²
U //

ÂÂ ÂÂ
®¶ α

V //

ÂÂ ÂÂ
®¶ 1

W

(269)

Note that these are the usual pictures for interchange, which is now broken.
When the crucial four 2-arrows sit on the faces of a tetrahedron, σfg is the
resulting internal 3-arrow. When the Mac Lane pentagon is broken on the
six faces of a parity cube, one can fill the cube with a cyclically invariant
3-arrow.

In general, the composition of a p-arrow and a q-arrow results in a
(p + q − 1)-arrow. Thus categorical structure permits ribbon spectra to
generate information in arbitrarily high dimension. The full continuum of
the underlying surfaces cannot be constructed until dimension ω, so there is
a correspondence between dimensions 2 and ω, a known feature of quantum
gravity.
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10 Entanglement and Entropy

The black hole qubit correspondence [24][25] is a detailed relationship be-
tween black hole entropy formulas in M theory and measures of entangle-
ment for multiple qudits. In particular, the extremal BPS solutions have
eight charges, a magnetic set (p0, p1, p2, p3) and an electric (q0, q1, q2, q3).
These correspond to the eight coefficients of an unnormalised three qubit
state ψijk, so that the black hole entropy is given by

S =
π

2

√
−∆(ψijk) (270)

where ∆(ψ) is Cayley’s hyperdeterminant [84]. The hyperdeterminant is a
natural generalisation of a matrix determinant for a 2× 2× 2 qubit tensor
cube, which is just the parity cube for a 0, 1 alphabet. In the next section,
we see how this invariant is connected to twistor geometry [202].

An acceptable measure of quantum entanglement must show the correct
invariance under the equivalence relations of the physical system. These are
taken to be the local operations with classical communication (LOCC), or
stochastic local operations (SLOCC). Here locality means that transforma-
tions act on each qudit separately [203]. For an n qubit system we usually
consider a SLOCC group GL2(C)⊗n, where GL2 acts locally on each qubit.
For a general mixed qudit Hilbert space on n objects, the SLOCC group
will be GLk1(C) ⊗ · · · ⊗ GLkn(C). When the classical groups are the pri-
mary consideration, determinant zero matrices are mostly ignored. But it
is now precisely these matrices that shift the entanglement class, and we
instead consider the entanglement classification using the underlying cate-
gorical combinatorics.

The axiomatic nature of category theory is a good argument for certain
choices of entanglement measure, which are by no means yet settled. In
some current schemes, an entanglement class can contain both separable
states and maximally entangled ones! Here we consider only maximally
entangled states, meaning n-partite n qudit systems. For example, for three
qubits there are two tripartite classes, one bipartite and one totally separable
class. Separability literally means that the state is expressible in terms of
j < n components. For four or more qubits, an entanglement measure
may require a free parameter, every value of which defines a distinct class.
Insisting on restricted coefficient sets at least limits the cardinality of such
entanglement schemes.

The interesting invariants may be constructed using secondary polytopes
[84], introduced below. These polytopes are indexed by finite geometries.
For example, one index is the two qutrit word monoid simplex, namely a
triangle with edges divided into two. Combinatorially, this is a hexagon,
and is used to construct the three dimensional associahedron A4 via the
usual chordings. The natural invariants associated to secondary polytopes

116



are constructed using matrix minors, as for Grassmannians.

10.1 Entanglement with Trees and Strings

Recall that the 2n particle scattering amplitudes include a helicity configu-
ration with n negative and n positive helicities, for n ≥ 2. Given 2n legs on

a diagram, there are clearly h =
(

2n
n

)
ways to assign ± signs to the legs.

Observe that this is n + 1 times the Catalan number Cn.
It is also the number of minors in the n × 2n matrix of Grassmannian

coordinates, where an n× n block has been fixed at In. These minors are a
basis for Ch. When n = 2, the Minkowski space Grassmannian gives a basis
for

∧2(C4) and the six minors vij satisfy the Plücker relation

V = v12v34 − v13v24 + v23v14 = 0. (271)

In [202], the minors for n = 2 and n = 3 are used to study entanglement for
n fermions with two single particle states, − and +. When n = 2, there is
only one true bipartite entanglement class, given by V 6= 0. A measure of
this entanglement is given by

η ≡ 8|V | ∈ [0, 1]. (272)

When V = 0, the two particle system is separable. This means that V can
be written in the twistor form vij = ZiWj −WiZj for two 4-vectors Z and
W . Now the lowest dimension associahedron related to the Minkowski trees
was the geometric point A1, where two legs are joined in a double root

//////

²²²²²²

− +

+−
(273)

to give the 1-ordinal 1. This now represents the unique entanglement class
for n = 2. A full four leg tree gives h = 3C2, where C2 = 2 counts the
objects on the associator edge A2.

When n = 3, there are now 20 = 4C3 minors in the 3× 6 Grassmanian
matrix [202]. We call them Vijk, where as before the index ijk labels the
selected columns. The triple root trees

-----

´´´´´

///
−− +

+ +−
(274)

give the associator edge, with its MHV and MHV source and target. Now
C2 = 2 will count the number of tripartite entanglement classes. The first
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entanglement measure is |T123| ∈ [0, 1], defined as follows. Let Vijk also
denote the numerical coefficient of vi ∧ vj ∧ vk in the full state. Since the
ijk index tracks the choice of ± signs, let the source s = V123 and target
t = V456. The remaining 18 3-forms fit into two helicity conjugate 3 × 3
matrices,

A =




V156 V164 V145

V256 V264 V245

V356 V364 V345


 B =




V423 V431 V412

V523 V531 V512

V623 V631 V612


 . (275)

The measure is defined by

T123 = 4[(Tr(AB)− st)2 − 4
√

det(AB)
−1

Tr(A†B†) + 4s detA + 4t detB].
(276)

This is chosen to be twice the quartic form q(x) for the Freudenthal triple
system C⊕ C⊕ J ⊕ J for the 3× 3 matrix Jordan algebra J , where

x =
(

s A
B t

)
(277)

and A and B are in J . The definition is in appendix C. Let us look at the
special case of diagonal A and B. This gives eight dimensional vectors

V = V123 + V156 + V264 + V345 + V423 + V531 + V612 + V456, (278)

which specialise further to a three qubit state when indices in {1, 2, 3} are
replaced by 0, and {4, 5, 6} by 1. In this case, the entanglement measure is
given by Cayley’s hyperdeterminant ∆ for a 2×2×2 three qubit tensor cube,
to be discussed further in the next two sections [84]. That is, T123 = 4∆(V ),
where

∆(V ) = V123
2V456

2 + V612
2V345

2 + V531
2V264

2 + V423
2V156

2 (279)
−2V123V456(V612V345 + V531V264 + V423V156)

−2(V612V345V531V264 + V531V264V423V156 + V423V156V612V345)
+4(V123V345V156V264 + V456V423V531V612).

Unlike for qubits, the three fermions are distinguishable by their indices,
using the six letter alphabet. Consider now an example where T123 = 0, but
the entanglement is still tripartite [202]. Let Φ be the normalised state with
V123 = 1/

√
3, V456 = 0, B ≡ 0 and

A =
1√
3




1 0 0
0 0 0
0 0 1


 . (280)
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How do we distinguish this state, known as a |W 〉 state, from a T123 6= 0
one? With the Jordan algebra J , one can define a dual state Ṽ . This turns
out to be

Ṽijk = 3εabcdefVibcVajkVdef , (281)

which may be taken as a definition for the triality inspired dual. In the
example, Φ̃ is non zero, and this counts as a second entanglement measure.
The duality is defined separately for s, t, A and B using triality for J . For
Φ̃, s̃, t̃ and Ã are all zero, but B̃ is not. Let C(A)T by the transpose cofactor
matrix of A. Then

B̃ = 3sC(A)T =
3

3
√

3




0 0 0
0 1 0
0 0 0


 , (282)

from Ṽ531 = V156V123V345. The 1/3 coefficient comes from the single nonzero
Cij determinant. It is also a result that

T123 = −cεabcdefVabcṼdef , (283)

for a normalisation constant c. This shows the origin of the quartic terms
in ∆(V ). So T123(Φ) is zero precisely because of the complementarity of A
and its cofactor matrix, but it is constructed from two non zero components,
and the existence of a dual signifies an entanglement class distinct from the
T123 6= 0 class.

We could also specialise T123 to a three unary state system, using 1, 4 7→
X, 2, 5 7→ Y and 3, 6 7→ Z. This is a qutrit. Now each leaf on the signed tree
is paired to its conjugate root leg. The hyperdeterminant ∆ then becomes
an expression in the 1-circulant three qutrit words, for XY Z the identity,

∆ = (1− 4VXY Z
2)(VZXY

2 + VY ZX
2) (284)

−2VZXY
2VY ZX

2 + 8VXY Z
2VZXY VY ZX .

If the 1-circulants form a 3 × 3 Hermitian Koide matrix with diagonal
VXY Z = xI3 and off diagonal complex phases φ and φ, then we have a
normalised state such that T123 = (4/3)(tan2 φ)(4x2 − 1).

Remark 10.1 Since any SLOCC transformation of a three term W state
returns another W state, mixing matrices with three non zero parameters
may be viewed as triplets of W states. When the (1/3, 1/3, 1/3) vector is in
the Φ basis, the degenerate tribimaximal mixing matrix consists of two W
states and one separable one.

For the three qubit state Υ with coefficients aijk, consider a projective
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coordinate fix of a000 = 1. Cayley’s hyperdeterminant is then reduced to

∆(Υ) = a2
111 + a2

100a
2
011 + a2

010a
2
101 + a2

001a
2
110 (285)

+4(a011a110a101 + a111a100a010a001)
−2(a100a011a111 + a010a101a111 + a001a110a111

+a100a010a101a011 + a010a001a110a101 + a100a001a110a011).

In [204] it was noted that the entanglement condition ∆(Υ) = 0 is equivalent
to an ordinary determinant D = a111 for the 3× 3 matrix

M(Υ) =




a100

√
a100a010 − a2

110

√
a100a001 − a2

011√
a100a010 − a2

110 a010

√
a010a001 − a2

011√
a100a001 − a2

101

√
a010a001 − a2

011 a001


 .

(286)
The entries are written so that the set of aijk are the six 2×2 minors. When
∆(Ψ) 6= 0 the determinant D differs from a111, which then characterises the
entanglement. Note that this matrix is really a two qutrit rather than three
qubit matrix, as are the Jordan algebra elements above. It matches the
commutative path array when the parity 110 terms are zero, as for the |W 〉
state. The qutrit state is then (

√
a100,

√
a010,

√
a001), and none of the matrix

entries are zero. The |W 〉 state, with D = 0, characterises null twistors,
as shown in [26]. This now follows directly from the 2 × 2 minors of the
qutrit matrix, which are essentially the Minkowski elements in SL2(C). This
gives each of the three qubit subspaces of the qutrit space an interpretation
in twistor variables, as expected. In contrast, the GHZ state is given by
M(Υ) ≡ 0, with a111 6= 0. This requires the twistor variables Z and W to
specify distinct null directions.

The two tripartite classes given above (T123 6= 0 and Ṽ 6= 0) are known
respectively as the GHZ and |W > states for three qubits [205]. A bisep-
arable state is given by the example 1/

√
2(V123 + V156) and a GHZ state

by

Ψ =
1√
3
(
√

2V135 + V246). (287)

Note that the four classes for three qubits do not distinguish the three labeled
biseparable sets, such as (AB)(C). Does the Catalan number Cn−1 count
the number of n-partite classes for n fermions?

In terms of categorical structure, it was shown in [206] that the two
tripartite classes for three qubits, W and GHZ, correspond to two kinds of
commutative Frobenius algebras on C2 in the symmetric monoidal category
of qudit Hilbert spaces. Take trivalent nodes for the multiplication m and
comultiplication ∆, and truncated strings

•
• (288)
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for the unit η : I → A and counit ε : A → I respectively. The compatibility
condition looks like

•
ÄÄ

ÄÄ
ÄÄ

Ä

•??
??

??
?

ÄÄ
ÄÄ

ÄÄ
Ä

=
OOO

OOO

•oooo
oo

oooooo
•OOOOOO

(289)

as an algebra diagram, stating that the order of nodes does not matter. For
diagrams with no loops one can then introduce the shorthand

Smn = •OOO
OOO JJJ
JJ

ooo
ooo· · ·

oooooo
ttttt
OOOOOO· · · (290)

for a vertex from m to n strings. In particular, S02 and S20 give the arc
diagrams of duality, so that we may consider a straightening law

=
(291)

involving an arrow A → A ⊗ A ⊗ A → A. This is part of the structure
of a compact category [137], for which writhe pieces are unimportant. The
category of finite dimensional Hilbert spaces is an example of a compact
category, with duals A∗. This straightening law underlies the protocol for
quantum teleportation [207]. Now the GHZ and W states are given respec-
tively by [206] the laws

•
• = •

• =
•
• (292)

noting the scalar loop, as in the Temperley-Lieb algebra. The so called
induced tripartite state is given by the diagram S03

•




44
44

4

(293)

which we see is just an A2 associahedron tree. The diagram calculus of GHZ
and W states for the symmetric monoidal category captures multipartite
entanglement for any number of qubits. However, the higher dimensional
polytopes are expressing coherence laws for higher dimensional categories,
so symmetric monoidal categories cannot be the whole story.

10.2 Secondary Polytopes and Hyperdeterminants

The associahedra and permutohedra are examples of secondary polytopes
[84]. In this section we see how secondary polytopes can generate determi-
nant type invariants.
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To begin with, for any finite set S of n points in an embedding space Rk,
let C(S) be the convex hull of the set, possibly with points in its interior.
We consider triangulations with vertices in S, including the hull edges. For
example, four points in the plane with one central point define two possible
diagrams.

²²
²²
²²

//
//

//

• //
//

//

²²
²²
²²

ÄÄ
ÄÄ ??

?? (294)

Observe that a square configuration of four points would not have allowed a
central subdivision. For the square configuration, the triangulations would
be the chorded source and target of A2. Thus the geometry of the points
dictates the diagram set. We only allow certain nice triangulations, as indi-
cated in the examples below.

Given a triangulation T for any S, let ξT : S → R be the characteristic
function defined by the sum

ξT (p) =
∑

{σ:p∈σ}
Vol(σ) (295)

over simplices σ in T . The volumes will be neatly normalised so that the
underlying field is not crucial to the combinatorial arguments. Let RS be
the vector space of all ξT for all T . The dimension of RS is just n.

The secondary polytope Σ(S) is the convex hull in RS of all vectors ξT for
all triangulations T . For the four point configuration above, the normalised
volume vectors are (3, 3, 3, 0) and (2, 2, 2, 3), giving the secondary interval
between these points. The dimension of Σ(S) is n − k − 1, since every
cone over T in RS shares a k + 1 dimensional subspace with every other,
determining the codimension for Σ(S).

Example 10.2 The A4 polytope in R3 is determined by the 14 triangula-
tions of the planar two qutrit simplex, which is a squashed hexagon.
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The area of a minimal piece inside any triangulated simplex is normalised
to 1. Note that this process is dual to assigning integral volumes to vertices,
as in the Postnikov procedure. Zero area triangles are permitted along
a simplex edge. For example, on the tetractys three qutrit simplex, the
possible areas are 0, 1, 2, 3, 4, 6 and 9. Note that these values were Postnikov
volumes for a hexagon piece of the tetractys. These volumes take values
V ∈ {2i23i3 · · · lil} for ik ≤ d− 1. For A4, the volumes are 0, 1, 2 or 4, and
these occur in a square chunk of the hexagon simplex.

Example 10.3 The qubit intervals in the word monoid of length n− 1 are
squashed cubes. Consider the three qubit parity cube, at n = 4. As an
interval it has four triangulations, matching the interval partitions (1, 1, 1),
(1, 2), (2, 1) and (3). Recall from chapter 5 that these partitions label the
vertices of the parity square. The four vectors of the secondary polytope are
(3, 3, 3, 3), (1, 2, 2, 1), (1, 3, 2, 2) and (2, 2, 3, 1). For the 2× 2× 2 cube in R3,
we expect a four dimensional secondary polytope on the eight vertices.

Example 10.4 The permutohedra Sd are secondary polytopes for the tri-
angular prism ∆1 ×∆m−1 in Rm on a simplex ∆m−1 [84], where ∆1 is the
interval. The prism clearly has 2m points, so the secondary polytope is of
dimension m − 1, for d = m. For example, the hexagon S3 of dimension 2
comes from the six point prism ∆1×∆2. The ξT vectors form 2×m matri-
ces, using the prism decomposition. For the permutation (d(d− 1) · · · 1) in
Sd, one may take a triangulation such that the ξT vectors are (d− k + 1, k),
and the other ξT are permutations of these vectors.

Divided simplices are canonically coordinatised. Let S sit in the integral
lattice Zk, so that p ∈ S is a commutative monomial Xp = X1

i1 · · ·Xk
ik

with k variables. That is, integer vectors are replaced by index vectors. For
example, when k = 2 let S be the monomials XiY j for i ∈ {1, 2, · · · ,mi} and
j ∈ {1, 2, · · · ,mj}. For any mi×mj matrix M defining a form

∑
MijX

iY j ,
the S-discriminant is either 1, when mi 6= mj , or equal to the determinant
detM when M is square. We think of the variables X, Y as coefficients
for polynomials, such as f(x) = X0 + X1x + X2x

2, and the form M as an
invariant for sets of functions. For the trilinear XiY jZh there is a hyperde-
terminant for any form

mi∑ mj∑ mh∑
MijhXiY jZh (296)

In [72], this polynomial type generates generalised Catalan numbers, where∑
Mi00X

i = C(X) is the usual Catalan number generating function. For
the braid parameter t(X) in (199), with X−1 = 1 − ir, we have C(X) =
t(X) ·X−1. The ternary function [72] is then

t(X)t(Y )t(Z) ·X−1Y −1Z−1

1− t(X)− t(Y )− t(Z)
. (297)
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At the pseudoidentity r = 0 we have X = 1 and C(1) = ω6, the whole
infinite sum of Catalan numbers. In this case the ternary generating function
evaluates to −1.

The Cayley hyperdeterminant ∆(V ) for qubits is a 2 × 2 × 2 example.
Recall that ∆(V ) is quartic by the triality of (281). The arguments come
from an A4 particle configuration. Triality on A4 itself is made manifest
by the simplex triangulations. Look at the 21 = 3 × 7 edges, indicated by
triangulations that may omit a boundary triangle. Two of these edge sets
come with a left right reflection asymmetry, leaving only 5 diagram types.
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Any simplex is coordinatised on Zd by the monomial indices [84]. For ex-
ample, the monomial X3Y 2Z for 6 qutrits is given the coordinate vector
(3, 2, 1) of entry sum n = 6 in R3. The homogeneity of a word monoid
simplex monomial means that all points lie in the hyperplane

x1 + x2 + · · ·+ xn = d. (299)

This fixes a volume normalisation factor for the simplex. Integral coordi-
nates may be abbreviated so that (3, 2, 1) becomes 321. The two qutrit labels
from the word monoid give the A4 index triangle its coordinates: (2, 0, 0),
(0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1) and (0, 1, 1).

Recall that planar paths in steps X and Y ending at a point (m,n), and
so of total length m + n, correspond to the (m,n) shuffles in Sm+n. The
paths XY and Y X therefore stand for the (1, 1) shuffles in S2, which is all
of S2, namely {I2, σX}. The noncommutative paths always form a tensor
cube. Commutativity naturally reduces an l = 2 matrix to a symmetric
matrix, such as 


200 110 101
110 020 011
101 011 002


 , (300)

which uses the shorthand for triangle coordinates. Observe that all permu-
tations of a vector occur in such an array.

Finally, the shuffle polytope Nm,n [84] has amongst its vertices all the
(m,n) shuffles in the permutohedron Sm+n. Thus N1,1 is the edge S2. The
polytope N3,3 determines an invariant for two cubic polynomials

f(z) = X0 + X1z + X2z
2 + X3z

3 g(z) = Y0 + Y1z + Y2z
2 + Y3z

3 (301)

whose coefficients Xi and Yj define integral coordinates in R8. The vertices
of N3,3 specify terms in R, but it is difficult to compute. By definition, N3,3

is the convex hull of all integral vectors in R8 such that ci0i1···j3 is non zero.
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The index simplex for a secondary polytope is dual to tropical curves.
Tropical polynomials like (2.2) may be used to draw cyclic tree diagrams,
more suited to the symmetry of N = 4 planar Yang-Mills theory.

10.3 Entropy and Black Holes

Given an ensemble of N classical states with probabilities pi such that∑
i pi = 1, the entropy

S = −
∑

i

pi log pi (302)

may be considered a measure of distance from equipartition, where the
equipartition for N states gives S = log N . For N = 2, the associated
free energy is considered in [44] in connection with the tropical logarithm
and arithmetic. In information theory many alternative measures exist, but
the intuition of arithmetic is crucial to the motivic point of view [208].

We consider how such measures arise combinatorially. First let S be
a generating set in the integer lattice Zk. The secondary polytope for S
is known as the Chow polytope for the toric variety defined by S. In this
case there is a principal S-determinant for S, such that a triangulation T is
associated to a coefficient

cT = ±
∏

σ∈T

Vol(σ)Vol(σ). (303)

As noted in [84], the expression
∏

i V
V is the same as

exp(
∑

Vi log Vi) (304)

where
∑

Vi log Vi is in the form of a negative entropy, where Vi is a proba-
bility.

Consider the two qutrit index simplex. When a minimal triangle is
normalised to area 1, the 14 cT take the values 1, 4 or 16. The renormalised
probabilities over all 14 vertices of A4 are then 1/92, 1/23 and 4/23. The
latter probability showed up in chapter 7, as a phase for the ternary operator
H.

Recall that certain simplex volumes take values Vc ∈ {2c23c3 · · · dcd} for
ck ≤ n−1, as in chapter 5 [72]. The secondary polytopes thus exhibit a wide
variety of volume numbers. In (5.3), the Catalan number C4 = 14 labeled
integral volume hypersimplices for coordinates in Z4. This particular set
contains 11 distinct volumes. Prime volumes of the form 1c12c23c3 · · · pk

ck

are examples of Vc volumes for c vectors with non zero entries only at prime
sites, satisfying the condition c1 + · · ·+ ci ≥ i for all i ≤ k. This reduces the
example of C4 to 9 distinct prime factorisations, up to 112132.

Now the c vectors for C4 are canonical coordinates for four 4-dits. The
tetrahedral four 4-dit simplex then contains an integral A4 polytope, just
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as one corner of the tetractys contains the pentagon A3. These pentagon
coordinates were

(1, 1, 1) (2, 0, 1) (1, 2, 0) (2, 1, 0) (3, 0, 0)

and they have volumes in {1, 2, 3, 4, 6}, wherein we recognise the universal
6/27.

A volume thus represents both scale and probability. The probability
measures the likelihood of ending up in a particular region, where this like-
lihood increases with volume. On the other hand, the only probability 1
event is a maximal density experiment, namely black hole creation within
a small volume. In the first instance, some fixed classical region defines the
total probability 1. In the second, the smallest possible region defines the
probability 1. The black hole state has a definite local mass, while the un-
certainty of position sharpens a measure of momentum. Partitions are then
an important aspect of duality for M theory.

For a general 1-ordinal n ∈ N with prime decomposition n = p1
c1 · · · pk

ck ,
let En = log n represent an energy eigenvalue for a state |n〉 including ci

objects of type pi. These are additive eigenvalues, since En = c1 log p1 +
· · ·+ ck log pk where log pi is the energy of a prime state. Then the partition
function is

Z(s) =
∑

n

e−sEn =
∑

e−s log n =
∑ 1

ns
= ζ(s) (305)

the Riemann zeta function, for s = 1/kT . This system is known as the
Riemann gas. Now the coordinate Vc volumes can be written in terms of
the prime decomposition

Vc = 1c12c2+c4+c6+···3c3+c6+c9+···5c5+c10+···. (306)

In this case, the Riemann energy eigenvalue is

Ec = log 2(
∑

j

c2j) + log 3(
∑

j

c3j) + · · ·+ log pk(
∑

j

cpj). (307)

For example, when c = (2, 1, 1, 0) for the integral Vc = 6, we have Ec = log 6.
However, c = (3, 0, 0, 1) has Ec = log 2, whereas Vc = 4. So it is only the
prime c vectors that give Ec = log Vc directly, and Ec is otherwise divided
out by divisors. In a sense, the Riemann gas only sees the primes.

With canonical coordinates, the prime volumes pick out certain vertices
on the simplices and polytopes. For example, allowing prime powers, five
vertices are selected on the parity cube (101). Recall from chapter 5 that
there were 70 forest orders at n = 4. It so happens that the length squared

12 + 22 + 32 + · · ·+ 242 = 702
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of the 24 dimensional integral source vector of S24 is the square of 70, which
as a volume defines a 70 dimensional vector (2484, 0, · · · , 0, 1). But 70 is
also the volume of the prime vector (25, 1, 0, 0, 1, 0, 1) in dimension 7, using
the prime decomposition of 70. As usual, the first coordinate is selected to
maintain the coordinate sum for Sd. In this way quantum geometry can
reduce the dimension of classical arithmetic, by adding noncommutative
information to the underlying spaces.

In the STU model of M theory, the macroscopic black hole entropy for
extremal states is the square root of Cayley’s hyperdeterminant. This is
extended beyond three qubits to the tripartite entanglement of seven qubits,
where S = π

√
|T | for a suitable invariant T [24][25]. In the three qubit case,

the charge cube corresponds to the quantum state via

(p0, p1, p2, p3, q0, q1, q2, q3) ↔ (a000, a001, a010, a011,−a111, a110, a101, a100),
(308)

so that pairs (pi, qi) sit on opposite corners of the parity cube. The mi-
nus sign ensures a real entropy, as can be seen when a111 defines a 3 × 3
determinant. The real amplitudes reduce the local symmetry to SL2(R),
and integral values give the total U duality group SL2(Z)⊗3. We see that
electric magnetic duality flips signs in signature classes for S4. Altogether,
the three dualities correspond to the three binary operations on the ribbon
spectrum: crossing flips, left right symmetry, and charge conjugation.

In the thermodynamic interpretation of black hole geometries [209][210]
it is indeed the horizon area A that corresponds to an entropy S ∼ A/4G.
Taking G = 1, we see directly the factor of 4 that arises naturally in both
entanglement geometry and braid algebras. Using the four letter ribbon
template [31] for braids, we can also model the attractor surfaces [211] that
are supposed to control the pathological behaviour of microscopic states in
the continuum theory. The full four qubit structure for STU states is also
related to the j-invariant for elliptic curves.
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11 Information in the Emergent Cosmology

The relativistic Big Bang cosmology of the twentieth century cannot be cor-
rect. This is not to say that it lacks useful working descriptions or partially
correct observations, but as a fundamental subject cosmology demands con-
ceptual clarity. Accurate predictions cannot come from false foundations. It
is no longer scientifically reasonable to phrase our description of the cosmos
in terms of general relativity, with a dash of quantum physics.

This old approach produces numerous anomalies. First, only 4.5 percent
of the observed mass in our universe is baryonic matter, the remainder
constituting the problem of dark energy and dark matter. Dark matter
was not predicted by theorists, but observed first in the anomalous rotation
of galaxies by Zwicky [212] in the 1930s. It has since become clear that
basically all galaxies show a flat rotation curve at high radius [213], in line
with the hypothesis that extra mass lies in the galactic halo.

None of the localisable WIMP type dark matter candidates can agree
with astrophysical observation, since the dark matter characteristics of a
galaxy depend on properties that cannot be attributed to states with an
essentially independent cosmic evolution [214]. The data does however agree
with the hypotheses of conformal gravity [215] and modified Newtonian
dynamics, as mentioned below.

The so called dark energy component of the universal energy budget was
hypothesised after the observation of apparent dimming for distant super-
novae, which act as standard candles for distance measurement [216][217]. It
is often attributed to a cosmological constant term in Einstein’s equations,
although this can hardly be considered a physical explanation of anything
[218]. Moreover, this constant was only considered by Einstein as a means
of ruling out an expanding universe, before observations confirmed that the
universe was expanding. The natural alternative is a quantum cosmology,
perhaps with a variable speed of light as one looks back in time, or a depen-
dence of supernovae characteristics on evolving particle properties.

The Friedman equations for an isotropic and homogeneous classical space-
time predict a constant density for the equation of state p = −ρ, generally
accepted in the dark energy paradigm and in agreement with observation.
In terms of the Hubble expansion parameter H = ȧ/a, the flat universe
critical density is

ρc =
3H2

8πG
(309)

where G is Newton’s constant. The cosmological density parameters are
then defined by

Ω ≡ ρ

ρc
=

8πG

3H2
ρ (310)

so that Ω = 1 expresses flatness. The classical spacetime evolves from the
Big Bang epoch, where nucleosynthesis occurs at a temperature of around
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100 keV. It becomes transparent at the recombination epoch, when hydrogen
is formed, at about 0.3 eV. Everything depends on the temperature of the
environment, and evolves slowly by one cosmic clock.

One cornerstone of classical cosmology is the evolution of structure for-
mation [219]. Historically, this is analysed with a strictly classical image
of colliding galaxies and star formation. Large scale structure is associated
to the supposedly initial perturbations, seen in the cosmic microwave back-
ground radiation. In this framework, it takes billions of years from the Big
Bang for complex spiral galaxies to form, and yet they are observed at high
redshift [220].

Such anomalies were in fact predicted by the alternative idea of pri-
mordial black holes [221][222]. In this situation, the conditions at the Big
Bang epoch are based on thermodynamic principles, and our cosmological
boundary is associated to actual black hole horizons. We assume that the
boundary is conformal, with particle states becoming massless as the speed
of light approaches infinity [223][224]. In the quantum picture, this Big Bang
is an observer dependent phenomenon, with the local constancy of the speed
of light depending on our notion of present time.

Another observational issue is the lithium problem, namely the conflict
between the theoretical value of lithium abundance and that observed, which
is much less. Hydrogen and helium fractions are a success of Big Bang
nucleosynthesis, but beyond this it fails. Moreover, recent studies of stellar
mass black hole accretion discs indicate that the full cosmic lithium fraction
can be created locally in hot regions near the black hole [225][226].

Direct detection dark matter experiments have now ruled out most WIMP
scenarios [227][228]. There remains the oscillation results of DAMA [229],
which observed a variation in event rates with a phase that is correlated with
Earth’s relative galactic motion, rather than solar system motion. Heaven
forbid that we should imagine a classical aether as an explanation, with
the Earth sweeping through a fixed sea of classical dark matter particles.
However, alternative mechanisms defining our galactic motion are possible.

An increasingly popular view holds that neutrino condensates are re-
sponsible for gravitational states in the cosmic environment. McElrath [233]
has recovered the vierbein of general relativity using condensate arguments.
Recently, Alexander obtained an interesting evolving equation of state from
a neutrino condensate ansatz [234]. This all suggests that neutrinos are
closely related to the cosmic microwave background radiation, as discussed
previously in [179][180]. The Koide relation offers further quantitative evi-
dence for this idea, recovering the precise CMB temperature from the mirror
neutrino states.

In an M theory based on quantum measurement, cosmology must be ob-
server dependent [232]. Even the holographic principle [230], which places
quantum information at horizons, usually requires the input of a classical
boundary. Notably, Padmanabhan [231] has studied atoms of spacetime
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using the thermodynamics of general relativity, and its associated entangle-
ment entropy.

A basic foundation for the emergent view must lie in the physical du-
alities of M theory, linking small and large scales. Whether representing
distances or couplings, the only natural unit is that for energy. In a quan-
tum world the only certain experiment is that of black hole creation, when
the conditions of an experiment push local density limits. A small distance
is defined by such a large energy probe, in the experimenter’s laboratory.
This contrasts with the largest possible distances, which are cosmological
ones. The laboratory does not exist without the second consideration.

The easiest way to encode both conditions into the abstract experimen-
tal constraints is to start with two distinct notions of time, since time is
closely connected to the concept of energy. This is accommodated in the
new cosmology, which views the dark sector of the universe entirely in terms
of black hole quantum states. Using classical methods, Penrose [224], Carr
and Hawking [221] and others have studied the black hole picture. However,
the necessary observer dependence cannot happen within general relativity,
because although spacetime is dynamical, its content cannot be discussed
without favouring the observer that knows the universal geometry. That is,
there is no interaction between distinct observers. More simply, it contains
no Planck’s constant ~.

Consider the Big Bang epoch. We now imagine [224] that all matter
is massless at the observer’s boundary, meaning that the speed of light is
essentially infinite [235]. Initially, it does not concern us what form the
matter takes here, because we cannot observe it. We just say that as our
cosmological time progresses, the mass M of the observable universe should
be seen to increase.

What matters is that the boundary we observe in the distant past is
like the horizons we observe when we look at black holes. Classically we
identify these boundaries, to create Penrose’s cyclic universe [224]. Quantum
gravitationally, we identify them only in our mind, because they have no
concrete reality outside observation, and the boundaries are dissolved by
quantum geometry. Cosmological conditions become local ones, because
there is no observation without locality.

Usually, the local clocks of the laboratory are identified with the clocks
that govern the distant past. Thus we begin with the concept of dual clocks.

11.1 Mirror Clocks and the Dark Sector

An observer selects two clocks. The cosmological clock estimates the elapsed
time since the Big Bang, with either an estimate of universal mass M or
measurement of the CMB temperature T . The laboratory clock uses the local
dynamics of a few massive objects to define an orbital tick. Each clock covers
the full range of energy scales. Our cosmological clock measures time from
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our Big Bang, through to the present and into local future horizons. The
laboratory clock keeps time for both low and high energy local experiments.

With respect to the dualities of M theory, these two clocks must be
related, but they are not identified. One is mainly used to observe particles
and the other the environment, or horizons. Crucially, we do not assume that
other observers, whether in distant galaxies or nearby, share our estimate of
cosmological epoch.

Implicitly, dual clocks occur already in black hole thermodynamics. In
black hole complementarity [236][237], quantum information resides in both
the particle states and in the local environment. The mirror particles of
baryonic matter are now assumed to contribute to the infrared internal black
hole states, while the external states that are accessible to us are a complex
mix of local and nonlocal information.

Thus our cosmological boundary, beyond the dark ages, is defined by
future horizons, describing an abundance of primordial black holes. These
black holes seed a dispersive structure evolution. The entropic arrow of the
observer’s cosmic time drives the irreversible dynamics of quantum gravity.
As Riofrio [238] notes, one may invoke Kepler’s law for the universal mass
M ,

GM = tc3, (311)

where t marks this passage of cosmic time as measured by an observer’s
estimate of the CMB temperature. Newton’s constant G and c may be set
to 1, and M then increases exactly with the arrow of cosmic time, from the
massless boundary. We attribute the missing factor of π in Kepler’s law
to the difference between the cosmic radial time and the time defined by
an orbital clock. This factor of π now differentiates the rational and non
rational Koide phase factors, with the universal 2/9 arising in the laboratory.

Where do dual clocks occur in the rest mass quantum numbers? Recall
that neutrinos, which define the CMB temperature, have Koide phases

δν =
2
9
± π

12
. (312)

In chapter 7, the±π/12 conjugation recovered both the neutrino mass triplet
and the CMB temperature, at 0.00117 eV [179][180]. There are two other
mirror mass states in the triplet, one at a future time and one in the past.
The past one occurs at around z = 7, which is the observed reionization
epoch.

The mirror neutrino braids have flipped crossings under the t 7→ 1/t
Burau map. Since t is a root of unity for unitary braids, this is indeed a
phase conjugation. Note that the two clocks should still exist as we approach
conformal boundaries, where the Koide scales must vanish. Since local ob-
servation is directly associated to cosmological conditions, we most easily
observe the cosmological conditions for light states, namely the neutrinos.
Indeed, it appears that only the neutrinos carry the π/12 Koide phase.
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Now the mirror mass triplets also define triplets of photon energies.
When all massive states and all photons are created via Hawking radiation,
in principle out of the entropic vacuum that replaces classical horizons, the
observer’s past universal mass M may be interpreted as a black hole mass.
Then the Hawking temperature T , as a measure of cosmic time, appears in
a modified form of (311),

1
t

=
8πkT

~
=

c3

GM
, (313)

with k Boltzmann’s constant. At the CMB temperature, the Koide factor of
3 appears once more in 8πT ' 0.03 eV, which is close to the tripled neutrino
mass scale 3µν . This is an additional coincidence between neutrinos and the
CMB. Recall that the charged lepton scale is also set by an internal phe-
nomenon, namely the dynamical quark scale, with 3µl equal to the proton
mass.

The exact value of Ωd = 3/π for the total dark sector density was ob-
tained by Riofrio [238] using an horizon pair production argument. We split
Ωd into Ωdm = 3/4π for dark matter and ΩΛ = 9/4π for dark energy. The
factor of three in Ωdm/ΩΛ is now attributed to the quark color quantum
number, as it appears in the Koide triplets. Since quarks are already inter-
nal, in the domain of confinement, and dynamical quarks account for most of
the baryonic rest mass, each dynamical quark contributes roughly 1/3−1/π
to the total baryonic fraction Ωb = 1− 3/π.

Yet another occurrence of the factor of 3 is in the universal shear viscosity
to entropy ratio of the quark gluon plasma [239], which has an observed
[240] minimum value of 1/4π and a maximum of 3/4π. These quantities
were notably associated to the Rindler causal horizon in [241]. The color
kinematic duality of N = 8 supergravity [120][121] is a strong theoretical
argument for this link between color number and kinematic states.

Consider that the rational phases of a Koide operator come from the
laboratory clock. The time p ranges from 0 to 1 radians, and may be inter-
preted as a probability. The basic probabilities should be associated to the
Koide scale parameters r, since scale is itself a time measure. Recall that
r in

√
M ranges from 0 for fermion creation and annihilation to ∞ for an

identity matrix, representing boson rest mass. Let p then define a triplet
(p, q, q) with p + 2q = 1, in a probability circulant

C =




p q q
q p q
q q p


 (314)

which is also a mixed boson Koide matrix. At p = 0, r = 0 stands for the
condition of the creating horizon. Letting p/q arise as a 2×2 r parameter in
a Schur square root, a few simple rationals are given, with the corresponding
braid phase t.
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p q r t

1/2 1/4 1 π/2
1/4 3/8 1/

√
3 π/3

1/3 1/3 1/
√

2 1.23
2/3 1/6

√
2 1.91

4/27 24/56 1/
√

6 0.78
2/27 26/56 1/

√
13 0.54

1/17 8/17 1/4 0.49 = 28◦

1 0 ∞ π

Recall that r and 1/r determine complementary phases, so that 0.49 =
π − 2 tan−1 4. The angle 28◦ ∼ θW follows from r = 1/4 regardless of
the probability interpretation. The IR Standard Model parameter zoo still
requires further unraveling, but the Koide triplets already strongly constrain
data.

11.2 Modified Newtonian Dynamics

In [242] Milgrom noted that in the weak acceleration limit pertaining to
outer galactic motions, one could modify Newtonian gravity according to
the rough law

GM

r2
=

a2

a0
(315)

where a0 is a characteristic acceleration. For a circular orbit this gives

a =
√

GMa0

r
(316)

which indicates a constant speed v = 4
√

GMa0 at the galactic rim, in line
with the observation of rotation curves. MOND is a candidate theory to
explain the dark sector without any additional matter states. The observed
value of a0 is around 1.2×10−10 ms−2. Relativistic variants of MOND exist.

One variant of MOND adds an additional 1/r term to the usual 1/r2

behaviour of Newtonian gravity. For large r, the non standard 1/r term
dominates. In classical mechanics [243] a 19th century theorem of Bertram
states that closed Keplerian orbits can only exist for the laws 1/r2 and r.
The observational reality of closed orbits in galactic rotations then demands
a transformation from the function r to 1/r. This is exactly the behaviour
of T duality in M theory.

11.3 Further Observational Comments

The furthest human experiment to date is the Voyager II journey beyond
the solar system [244]. In [245], the anomalous acceleration towards the sun
that is observed in the Pioneer spacecraft is attributed to the speed of light
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variation over this distance. This variation agrees with the cosmological rate
of variation determined by Riofrio. The Riofrio study [238] also provides a
quantitative explanation for the apparent dimming of type Ia supernovae
[216][217].

The rotation curves of spiral galaxies are clearly dictated by the lumi-
nosity of the galaxy [246]. In particular, the observed Tully-Fisher relation
[247] shows that the smaller the galaxy, the greater the dark matter fraction.
The total density fraction for the dark sector, Ωd, can only be an average
for the galaxy distribution. We interpret this fact as follows, on the basis
that mirror states are complementary to baryonic ones. Lower mass galaxies
are interpreted as younger objects, according to the definition of the cosmic
clock, in the same way that the light neutrinos are associated to the most
local cosmic conditions. This is true irrespective of the stellar ages observed
within them, because we are chiefly concerned with the black hole content
of the galaxy.

Theoretically, one expects a correspondence between the emergent de Sit-
ter geometry and a conformal field theory at the boundary. In the twistor
picture, this has become a breaking of conformal structure by higher cate-
gorical geometry.
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A Category Theory

Categories are the foundation of relational mathematics. A set is a zero
dimensional category, because everything in a set is an element, pictured as
a pointlike object. A one dimensional category C, or 1-category for short,
has both zero dimensional objects and arrows between objects. If the head
of an arrow meets the tail of another, they compose to form another arrow
in C. That is, an arrow f has source and target objects. Instead of equa-
tions relating elements of sets, categories relate arrows using commutative
diagrams. For example, the square

A
h //

f

²²

B

k

²²
C g

// D

(317)

says that gf = kh, if it commutes, and A, B, C and D are source and target
objects. Diagrams of any shape are possible. A 1-category C is associative
on arrows, so that h(fg) = (hf)g, and it always contains at least identity
arrows 1A : A → A for every object A, that represent the object at the
arrow level. Thus a set only has identity arrows.

Since categories replace sets, we need maps between categories. A func-
tor F : C → D sends objects A to objects F (A) and arrows f , g to arrows
such that F (gf) = F (g) ◦ F (f). This is the covariant rule. A contravariant
functor satisfies F (gf) = F (f) ◦F (g). We can also say that a contravariant
functor is a covariant functor Cop → D from the opposite category Cop,
which is the same as C with all arrows formally reversed.

Example A.1 VectF is the category of vector spaces over the field F. Every
vector space V is an object in the category. The arrows are the linear maps
between vector spaces.

Example A.2 Set is the category of all sets, with functions as arrows. The
empty set is an initial object, since it is included in any other set in only
one way. A one element set is terminal. All one element sets A and B are
equivalent, because the unique maps ! in the squares

A
! //

1A

²²

B

1B

²²
A B

!
oo

B
! //

1B

²²

A

1A

²²
B A

!
oo

ensure that they commute. The two element set Ω = {0, 1} in Set gives it
the structure of a topos [7]. In particular, Ω allows characteristic functions
A → Ω, which send some elements of A to 1 and others to 0, thereby defining
a subset of A using an arrow.
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Note that two objects A and B are equivalent when there exist two
arrows f : A → B and g : B → A such that both fg = 1B and gf = 1A

hold. Arrows can be equal, but distinct objects can only be equivalent.
Why categories? Many familiar structures are already categories. For

instance, a group is a 1-category with only one object. Arrow composition is
the group operation and every arrow has an inverse, such that they compose
to the identity. Note that the axioms of a category have automatically given
the group its identity, and a group homomorphism is nothing but a functor
between two groups. A groupoid is a category in which every 1-arrow is
invertible. This extends groups to categories with multiple objects.

So the category Grp of all groups is really a category of categories,
containing all one object categories with inverses, and all functors between
them. Now comes the interesting part. Categories of categories have another
level of structure, namely 2-arrows between the 1-arrows. Let F and G be
functors with the same source and target categories. These 2-arrows are
natural transformations η : F ⇒ G, given by a collection of arrows ηA in the
target category, such that for every f in the source category the squares

F (A)
F (f) //

ηA

²²

F (B)

ηB

²²
G(A)

G(f)
// G(B)

(318)

all commute. The 2-arrows are two dimensional pieces of a diagram, because
they fill an area between two 1-arrows. Such 2-arrows may compose both
horizontally and vertically, as in this globule

ÁÁ
ÂÂ ÂÂ
®¶ // @@ÂÂ ÂÂ
®¶

ÁÁ
ÂÂ ÂÂ
®¶ // (319)

piece of a 2-category. Natural transformations were originally introduced
for cohomology, since cohomology is a functor from a category of spaces
to the algebraic category that gives the invariants. Now a 2-category is
a collection of objects, 1-arrows, 2-arrows and identities, such that every
equation on 1-arrows can be weakened by 2-arrows between the paths.

There is no reason to stop at dimension 2. Categories are naturally
defined for any ordinal dimension n. Things get much more interesting in
dimension 3, with the appearance of tricategories [75][76]. Up to dimension
2, all categories are essentially strict. This means that every bicategory is
equivalent, at the level of 2-arrows, to an ordinary 2-category [77]. Bicate-
gories will be discussed below.
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A.1 Limits and Universality

As with sets, categories can have natural closure conditions, such as the
existence of certain limiting objects [137][47]. A limit in a 1-category is
defined over any diagram D in the category. It is an object L, with an
arrow from L to each object in D, such that given any other object Q in
the category, and arrows from Q down to D, there is always a unique arrow
Q → L so that the whole diagram commutes.

Thus the pullback limit of a pair of arrows, f and x, if it exists, is a
unique square in a set of diagrams

Q

h

''OOOOOOOOOOOOOOO

k

ºº/
//

//
//

//
//

//
//

ÂÂ?
??

??
??

?

L //

²²

A

f

²²
Z x

// B

given by the following condition. For any pair of arrows h and k, there is a
unique arrow Q → A such that the diagram commutes. Note that an arrow
L → B also exists by composition.

Example A.3 Pullbacks characterise the behaviour of the differential form
functor in the de Rham cohomology of manifolds. Given f : Rm → Rn, there
is a pullback f∗ from 0-forms on Rn to forms on Rm, defined by f∗(w) = wf
[45]. The pullback f∗ extends to all differential forms.

Similarly, a colimit is an object C, along with arrows from D to C, so
that for any other object Q and arrows from D to Q, there is a unique
C → Q making the diagram commute.

Example A.4 The direct limit of a sequence {Xi}.

C

· · ·Xi
//

11cccccccccccccccccccccccccccccccccccccccccccccccccccccc Xi+1
//

22ddddddddddddddddddddddddddddddddddddddddddd Xi+2
//

22fffffffffffffffffffffffffffffffff
Xi+3

//

44hhhhhhhhhhhhhhhhhhhhhhh · · · // Xn

>>}}}}}}}

Limits are instances of universality, the idea that a single object essen-
tially contains the structure of a larger piece of the category. In particular,
motives are a universal cohomology theory, in some category of cohomology
functors. However, the 1-categorical limit concept is too limiting, not least
because a category of functors is already a 2-category! We need higher di-
mensional limit concepts. On that note, observe that there is a unique limit
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only in the sense that all limits must be equivalent. Let us look then at
equivalences between categories.

Let 1C and 1D be the identity functors on two categories C and D.
There is an adjunction F a G, for functors F : C → D and G : D → C, if
there exist natural transformations η : 1C ⇒ GF ⇒ and ε : FG ⇒ 1D. It
helps to draw out the arrows. In simple cases, F and G may compose to the
identity itself.

Example A.5 F and G are both the same functor ∨ : Vect → Vect,
namely the duality functor on a category of vector spaces. There is a natural
equivalence (V ∨)∨ ' V between the double dual of a vector space and itself.

Example A.6 Let K be a finite extension of the number field F defined by
the splitting property, namely that the extension splits certain polynomials
into linear factors. For example, C splits quadratics over the reals. Let S be
some subset of K. The field F(S) closes S under the field operations. This
gives a lattice of extensions between F and K. To any such nice extension
K/L we consider the group of automorphisms of K which fix the elements
of L. This is the Galois group Gal(K/L). For example, Gal(C/R) is the two
element group, containing the trivial automorphism and complex conjuga-
tion. The subgroups of Gal(K/F) are in one to one correspondence with the
extensions between F and K. This is an adjunction between the lattice of
extensions and the subgroups.

A monad is an endofunctor T : C → C with natural transformations
µ : T 2 ⇒ T and η : 1C ⇒ T such that µ(Tη) = µ(ηT ) and

T 3
Tµ //

µT

²²

T 2

µ

²²
T 2

µ
// T

(320)

Note how this axiom resembles associativity for a binary product. Every
adjunction defines a monad with T = GF . Monads define T -algebras, which
are pairs (X,h) for X an object in C and h : TX → X the algebra structure,
so that Th · h = µXh [77].

A multicategory allows arrows with multiple sources.

''OOOOOOOOOOOO

ÂÂ?
??

??
??

²² ÄÄÄÄ
ÄÄ

ÄÄ
Ä

wwoooooooooooo

²²

(321)

On such tree diagrams the arrow orientations are often omitted, and it is
understood that processes occur downwards on the tree. An operad is a
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multicategory on one object [248]. That is, for every n ∈ N there is an
object X(n), including an identity 1 in X(1), so that the collection has a
composition

X(n)×X(k1)×X(k2)× · · · ×X(kn) → X(k1 + k2 + · · ·+ kn) (322)

given by an associative x · (x1, x2, · · · , xn) such that x · (1, 1, · · · , 1) = x.
This last identity rule extends n leaves on a tree by a secondary leaf. Simi-
larly, the generic composition uses the tree X(n) as a base for grafting the
other components. Special sequences of polytopes of real dimension n form
operads, and these are an important theme of the book. Operads are often
defined with a permutation group action, but the weaker definition is more
suited to noncommutative geometries.

A.2 Monoidal, Braided and Tortile Categories

In category theory, coherence of a structure means providing a finite set
of axioms that are sufficient to force commuting diagrams wherever neces-
sary. The primary example is Mac Lane’s proof of coherence for monoidal
categories [77], which are examples of bicategories.

A bicategory B is the general form for two dimensional axioms, as in
categories of 1-categories, functors and natural transformations. Thus it
contains 0-arrows, 1-arrows and 2-arrows, along with weak identities 1A for
all 0-arrows A, and a left identity λf and right identity ρf for all 1-arrows
f . The 1-arrows and 2-arrows from A to B form a 1-category B(A,B). The
identities satisfy

A

f

ÄÄ~~
~~

~~
~~

~~

f

²²

____ks
ρf

B
1B

// B

A

1A

ÄÄ~~
~~

~~
~~

~~

f

²²

____ks
λf

A
f

// B

(323)

It turns out that any bicategory is weakly equivalent to a 2-category, where
all the λf and ρf are strictly identities. For objects A, B and C, there is a
functor

⊗ : B(B, C)×B(A,B) → B(A, C) (324)

and associator 2-arrows ψfgh : f ⊗ (g ⊗ h) → (f ⊗ g)⊗ h such that

ψfg1(f ⊗ ρg) = ρf⊗g ψ1fgλf⊗g = λf ⊗ g ψf1g(f ⊗ λg) = ρf ⊗ g. (325)

The interchange law for 2-arrows ψ, φ, ψ′ and φ′ states that (ψ⊗φ)(ψ′⊗φ′) =
ψψ′ ⊗ φφ′, interchanging the two inner arrows. That is, the composition of
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four 2-arrows
A

²²

// B

²²

// C

²²
A

²²

//

ÂÂ ÂÂ
®¶ φ
′

B

²²

//

ÂÂ ÂÂ
®¶ ψ
′

C

²²
A //

ÂÂ ÂÂ
®¶ φ

B //

ÂÂ ÂÂ
®¶ ψ

C

(326)

should give a 2-arrow in B. Here, the 2-arrows are globules, defined from one
source object to one target object. This may be generalised to the concept
of double category, based on square building blocks.

A bicategory with one object is a monoidal category. Since there are
only two non trivial levels of arrow, it may be described using objects and
1-arrows with extra structure, understanding that the objects are really the
1-arrows and the 1-arrows are really 2-arrows. The identity on the one
object is usually denoted I, and acts as a unit for ⊗. The objects can be
composed using the monoidal product ⊗. The bicategory interchange law
becomes the Mac Lane pentagon axiom [77]

((A⊗ (B ⊗ C))⊗D)
ψ // (A⊗ ((B ⊗ C)⊗D)) ψ ,,YYYY

(((A⊗ B)⊗ C)⊗D)

ψ 22eeee

ψ
--\\\\\\\\\\\\\\\\\ (A⊗ (B ⊗ (C ⊗D)))

((A⊗ B)⊗ (C ⊗D)) ψ

11bbbbbbbbbbbbbbbbb

(327)

Rather than keep track of the same set of objects all the time, this law
is abbreviated to bracket sets. A bracketed object is replaced by a binary
rooted tree with four leaves. For instance,

??
??

ÄÄ
ÄÄ

??
?? //

/
²²
²

??
??

ÄÄ
ÄÄ //

/
²²
²

(328)

stands for the object ((A⊗B)⊗ (C ⊗D)).

Example A.7 The category Set with Cartesian product × is a monoidal
category. So is VectF with tensor product ⊗.

In these standard examples, the tensor product is symmetric. But it
turns out that the condition of commutativity on ⊗ is a four dimensional
structure. The three dimensional structure that underlies commutativity is
that of a braided monoidal category. Like monoidal categories, these have
only two non trivial levels of arrow, but now there is one 0-arrow and one
1-arrow. The 0-arrow gives the ⊗, as above. The 1-arrow adds the structure
of a braiding, which is a collection of arrows γAB : A⊗B → B⊗A such that

140



the hexagon

A⊗ (B ⊗ C)
γA(BC)// (B ⊗ C)⊗A

ψ

((RRRRRRRRR

(A⊗B)⊗ C

ψ
66lllllllll

γAB⊗1C ((RRRRRRRRR
B ⊗ (C ⊗A)

(B ⊗A)⊗ C
ψ

// B ⊗ (A⊗ C)
1B⊗γAC

66lllllllll

(329)

and another hexagon with inverse associators ψ−1, commute [64]. Braids
are actually just that: knotted string diagrams. String diagrams are dual
to the usual arrow diagrams, because a string stands for an object A, while
a braid object on a set of strings is an arrow. Thus a braid arrow γAB is a
braid crossing

A B

B A

(330)

and γBA is the opposite crossing, taking B over A. A tortile braided
monoidal category C has a dual object A∗ for every object A in C, and
twist maps θA : A → A that twist the object ribbons. As explained in [144],
ribbons are necessary to make a braiding compatible with the existence of
duals. Duals come from adjunctions. We can assume that A∗ is a right dual,
since in tortile categories this automatically makes it a left dual also. From
the adjunction A a A∗ there is a unit and counit

ηA : I → A∗ ⊗A εA : A⊗A∗ → I (331)

where I is the monoidal identity. These are drawn as arcs

η ε
(332)

so that I is an empty diagram. The arrow (1A ⊗ ηA)(εA ⊗ 1A) should be
the identity 1A, as should (ηA ⊗ 1A∗)(1A∗ ⊗ εA). For every A, the twist θA

satisfies the compatibility condition

A⊗B
γAB //

θA⊗B

²²

B ⊗A

θB⊗θA

²²
A⊗B B ⊗AγBA

oo

(333)

In string diagrams, this just says that the braiding of ribbons does not
interfere with the ribbon twists. Tortile categories introduce both ribbons
and arc segments. Only full twists will be permitted on ribbons, so that
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ribbon diagrams are doubled braid diagrams, with a unique underlying braid
[144]. Finally, the definition of tortile tensor category includes the condition
θA∗ = (θA)∗. That is, if a ribbon A is twisted, the twisting on the dual
object A∗ must define the dual of the twisted A. This is because A and A∗

are connected by a ribbon arc, and the twists can propagate along a ribbon

(334)

to the other side. A single braid crossing within a ribbon diagram, thought
of as a double knot, adds ±1 to the writhe of the braid. Recall that a braid’s
writhe w is the sum j−k, where j is the number of over crossings and k the
number of under crossings. This quantity is important in the definition of
knot and link invariants. For a double knot, the twist number is given by

θK =
1
2
(j − k) (335)

This is always an integer, noting that two ribbons create four braid crossings
when they cross. Let ξK denote j − k when each ribbon crossing only
contributes ±1. That is, ξK = w/4. Then the linking number of the two
underlying knots is given by

lK = ξK + θK (336)

Now we can extend any single knot to a double knot by replacing each strand
segment with a parallel double strand segment, ie. a ribbon, and adding full
twists on the new ribbons.

The total number of twists n = n+− n− and ξK together give an equiv-
alence between double knots, because ξK + n is conserved under ambient
isotopy in R3. We can see this by observing that a writhe component on the
underlying knot is turned into a full twist.

DD
DD

DD
DD

D

DD
DD

DD
DD

ÄÄ
Ä

ÄÄ
ÄÄ

vvvv wwww
= (337)

A ribbon functor is a functor between ribbon categories that preserves
the essential structures. In particular, modular functors are used to model
quantum computation [?].

In general, the categorical dimension is not restricted. Even the ⊗ struc-
ture will be broken by physical considerations in dimension 3. It is too labo-
rious to write out the rules for categories with more than two or three levels
of arrow, so one must focus on basic geometric elements, namely trees, braids
and ribbons. We will soon see that trees contain structure into arbitrary
high categorical dimension.
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A.3 Tricategories and Higher Dimensions

In 1995, Gordon, Power and Street found a coherence theorem for tricate-
gories [75]. It shows that not every tricategory is triequivalent to a strict
3-category, with simple identity arrows. Although the definition is essen-
tially unique, its precise form is still a mystery. One axiom is given by the
A4 polytope, which generalises the Mac Lane pentagon to dimension 3. In-
stead of strict natural transformations, the category provides 2-arrows to fill
in the squares. A convenient concept is the pseudonatural transformation,
where the square filling arrows are assumed to be invertible. For example,
given objects A, B, C and D and bicategories of arrows T (A,B) between
them, there is a pseudonatural transformation

T (A,B)× T (D, A)× T (C, D) ⊗×1 //

ÂÂ ÂÂ
®¶1×⊗

²²

T (D,B)× T (C, D)

⊗
²²

T (A,B)× T (C,A) ⊗
// T (C,B)

(338)

on the ⊗ composition functor. And since a tricategory has three dimensional
arrows, diagrams of composed pseudonatural transformations are subject to
modification 3-arrows. For example, the cube

T 4

11⊗
}}||

||
|| ⊗11

!!B
BB

BB
B

1⊗1
²²

T 3

⊗1 !!B
BB

BB
B

1⊗

²²

T 3

1⊗
}}||

||
||

⊗1

²²

T 2

⊗

²²

T 3

1⊗
}}||

||
|| ⊗1

!!B
BB

BB
B

T 2

⊗ !!CC
CC

CC
T 2

⊗}}{{
{{

{{

T

(339)

is filled with a modification. A weak identity axiom is given by the (left)
triangular prism 3-arrow

T 3

²² !!B
BB

BB
B

T 2

==||||||

²²

//T 2

!!CC
CC

CC
T 2

²²
T

=={{{{{{
// T

(340)

with faces filled by 2-arrows. Although tricategories are not all strict, they
are all triequivalent to a special tricategory Gray of 2-categories with a
Gray tensor product [249]. This is mentioned in chapter 9.
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B Braid Groups

To Maxwell, electromagnetism was a theory of circular vortices in the aether
[143]. Later in the 19th century, Lord Kelvin proposed knotted vortices as
atoms for space. Knots had already been studied by great mathematicians,
such as Gauss, who first defined a linking number invariant.

The first true knot invariant is due to Alexander, in the 19th century.
Little progress was made on finding invariants that were good at distinguish-
ing knots, until 1983, when Jones [96] defined the Jones polynomial. This
was followed shortly thereafter by a two variable analogue [250]. The basic
link invariants are defined in chapter 5.

A braid group Bn on n string pieces has n − 1 generators τi, for i =
1, 2, · · · , n − 1. Each generator represents an over under crossing, and the
inverse τi

−1 is the under over crossing. A braid b ∈ Bn is a word in the
generators. Since B1 has only one string, which cannot knot itself, B1 is
the trivial group 1. With only one over (+1) or under (−1) crossing, B2 is
isomorphic to Z. For B3, we have

τ1 τ2

(341)

The group multiplication is given by adjoining a braid to the bottom of
another braid, so that τ1τ2 6= τ2τ1. For all n, the group relations are

τiτi+1τi = τi+1τiτi+1 for i = 1, 2, · · · , n− 2 (342)
τiτj = τjτi for |i− j| ≥ 2

A braid b ∈ Bn has an underlying permutation in Sn, given by the connection
of endpoints at the top of the diagram to points at the bottom. Thus Sn is
given by the braids in Bn, where the crossing information is forgotten.

A braid diagram is a projection onto the plane of a link diagram in three
dimensions. A link is formed by tracing the braid, by joining each top point
to the same point at the bottom of the diagram, as in the B3 example

oooooo

OOOOOO

(343)

which is unknotted. Observe that the trace can form links with various
numbers of loops. A knot is a one loop link. Markov [251] showed that
a traced braid is equivalent to a link, in the sense that two distinct braid
representations of the same link in three dimensions are simply related to
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each other. A link is deformed into an equivalent link by ambient isotopy in
dimension 3. If we are not allowed to flip knot pieces around in the third di-
mension, braids are only equivalent up to planar isotopy. The Reidemeister
moves [252]

=

R1 R2

=
(344)

=

R3
define the equivalence relation between different braid diagrams for the same
link.

Example B.1 The Hopf link

Example B.2 The trefoil knot

is chiral, being distinct from its mirror image.

Example B.3 The unique four crossing knot is the achiral figure eight knot.

This is the first true B3 knot, since the trefoil is represented by τ1
3 in B2.

It has the braid word τ1τ2
−1τ1τ2

−1.
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The unknot, trefoil and figure eight knots are all prime with respect to
connected sum [253]. This operation K1]K2 cuts a small piece from two
knots, and joins the knots at these points.

(345)

That is, it flips two vertical arcs to two horizontal arcs. This is a fundamental
binary operation on planar string diagrams. The collection of all knots
along with connected sum form a monoid, with unit the unknot. There
is no canonical listing of prime knots by prime ordinals in the monoid N,
although this question is studied.

Let j be the number of positive crossings in b ∈ Bn and k the number
of negative crossings. The writhe w of a link is the integer w = j − k. For
the trefoil above, w = +3, whereas the mirror trefoil with reversed crossings
has w = −3.

Braid strands may be replaced by ribbon segments, allowing ribbon
twists. The diagram still has an underlying link picture [144], obtained
by shrinking all ribbons to strands. As we saw in appendix A, in a ribbon
category a writhe component on the underlying link is turned into a full
ribbon twist
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vvvv wwww
=

(346)

Observe that a braid crossing, as represented on the plane, consists of
three string pieces: one over string and two under strings. The crossing can
be used to represent a product a ◦ b = c of the under string segments. Alge-
bras of such link arcs are known as racks or quandles [254]. The Reidemeister
moves define their rules.

There is a category Br of all Bn braid groups, with objects n ∈ N and
arrow sets Bn for n → n. This is a collection of groups forming a groupoid,
which is a category in which all arrows are invertible.
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C Basic Algebra

An algebra is usually a vector space over a field equipped with a binary
product m(a, b) on vectors. The field provides additive and multiplicative
inverses. In constructive number theory, we are more interested in diagram
algebras. A vector is then a formal sum of basis diagrams, and the coeffi-
cients belong to a restricted set, not necessarily forming a field. Products
are defined using a composition of diagrams.

Many known algebras can be thought of as diagram algebras. In partic-
ular, given a diagram representation for permutations in the permutation
group Sd on d objects, the group algebra of formal combinations of σ ∈ Sd is
a diagram algebra. Such algebras are often also bialgebras or Hopf algebras,
which are defined below.

In order to be useful, diagrams should have an interpretation in category
theory. A one dimensional category consists of directed edges, or 1-arrows,
but we often start with undirected edge diagrams that encode parts of the
categorical structure. With rooted trees, for instance, there is an obvious
choice of direction, downwards on the branches.

A monoid is a set with a binary composition a ◦ b or, equivalently, a
1-category with only one 0-arrow giving the source and target of 1-arrows.
Arrow composition is literally the gluing of arrows

→→→ · · · (347)

in a diagram segment of the category, so that the composed path itself defines
an arrow in the category. To begin with, binary operations are associative.
This says that the two paths in

a, b, c
m×1c //

1a×m
²²

a ◦ b, c

²²
a, b ◦ c // a ◦ b ◦ c

(348)

commute, where m is the binary composition map C×C → C on the category
C. Weakened associativity comes from higher dimensional arrows, starting
with a 2-arrow filling this square. We should always think of ψabc : ((a ◦
b) ◦ c) ⇒ (a ◦ (b ◦ c)) as being at least two dimensional. Usually, bracketed
objects such as ((a ◦ b) ◦ c) are represented by tree diagrams, and ψabc is a
transformation of trees. As the number of product structures grows, so does
the categorical dimension.
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C.1 Bialgebras and Hopf Algebras

Multiplication takes two objects a and b and returns m(a, b), as in the tree

?????
ÄÄÄÄÄ

a b

m(a, b)

(349)

Dually, comultiplication sends one object to two,

ÄÄ
ÄÄ

Ä
??

??
?

a

∆(a) = x⊗ y

(350)

An ordinary algebra object A in a category C comes with a map m : A⊗A →
A, such that associativity

A⊗A⊗A
m⊗1A //

1A⊗m

²²

A⊗A

m

²²
A⊗A m

// A

(351)

holds. Note that C carries the whole algebra in the object A. Often there
is also an object I in C, such that there exists a unit arrow η : I → A with
the property that η ·m : I ⊗A → A is essentially 1A, and similarly for m · η.
Comultiplication obeys coassociativity

A⊗A⊗A A⊗A
∆⊗1Aoo

A⊗A

1A×∆

OO

A
∆

oo

∆

OO (352)

and often comes with a counit ε : A → I. In a category of vector spaces, the
object I is the base field. A bialgebra object A has both a multiplication m
and comultiplication ∆, such that

A⊗A
m //

∆×∆

²²

A

∆

²²
A⊗A⊗A⊗A

m×m
// A⊗A

(353)

Example C.1 A Frobenius algebra is a bialgebra object A with (m, ∆) and
natural transformations η : I → A and ε : A → I, such that (m, η) forms a
commutative monoid and (∆, ε) forms a cocommutative monoid, and

(1⊗m)(∆⊗ 1) = ∆m
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A Hopf algebra H is a bialgebra, along with an arrow S : H → H called
the antipode [255]. The antipode satisfies

H ⊗H
S⊗1H // H ⊗H

m

##GGGGGGGGG

H

∆
;;wwwwwwwww

ε

))SSSSSSSSSSSSSSSSSSSS H

I

η

55kkkkkkkkkkkkkkkkkkkk

(354)

Example C.2 Functions on a group G with values in a given field. The
multiplication is defined by (f1 · f2)(g) = f1(g)f2(g). Given g and h in
G, ∆(f)(g, h) ≡ f(gh), using the group product. The unit sends a scalar
λ to the constant function g 7→ λ. The counit sends f to f(1), for the
identity 1 ∈ G. The antipode exists because G has inverses. It is defined by
S(f)(g) = f(g−1). Let us check the antipode rule. The path ηε sends f to
f(1) · 1, where 1 is the constant function. The other way, ∆f acts on (g, h)
and S × 1A then works on (g−1, h−1), giving f(1) for all g, h ∈ G, and so
defining the function f(1) · 1.

Example C.3 Given a field F, the group algebra FC3 over the three element
group C3 = {(0), (1), (2)} is the set of all formal linear combinations v =
a0(0) + a1(1) + a2(2). Here C3 is represented using mod 3 arithmetic. The
field operations extend to products and scalar multiples for elements v and
w. Thus m(v, w) is the product vw, and the unit sends λ ∈ F to λ(0), noting
that (0) is the identity for C3. The counit sends v to (0), and ∆(g) ≡ g ⊗ g
for g ∈ C3. For general v, linearity fixes ∆(v). The antipode is similarly
defined using S(g) = g−1, so that S(v) = a0(0) + a2(1) + a1(2). Any finite
group defines such a Hopf algebra.

Example C.4 [256] The renormalisation algebra is closely related to the
Hopf algebra of rooted trees. A basis object is a rooted tree. Then H is
a vector space over all such trees, using coefficients in Q. The product is
generated by the disjoint union of two trees, producing a forest. The empty
tree e gives the unit, sending λ ∈ Q to λ, and the counit maps every non
empty tree to 0, and e to 1. The comultiplication uses tree cuts, that split
a tree into two pieces by removing one edge. An admissible cut set for a
tree T is such that any path from a leaf down strikes at most one cut. For
example,

•
???• ÄÄÄÄ

•
∆ = •

???• ÄÄÄÄ
•⊗1 + 1⊗ •

???• ÄÄÄÄ
•+ 2• ⊗ •

• + • • ⊗ •
where lone tree nodes are included. The single left and right cuts give the
factor of 2. In general, ∆ satisfies ∆(e) = e⊗ e and

∆(T ) = T ⊗ e + (I ⊗R+)∆(R−(T ))
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where R+ is the operation of grafting two trees by attaching them to two
extra base edges, and R− is the inverse operation that removes the two root
edges. The antipode for the same example is

•
???• ÄÄÄÄ

•
S = − •

???• ÄÄÄÄ
•+ 2 • •

• − • ••

The minus signs pick up the even number of cuts. Each cut, including the
empty cut, can be represented by a box around the smaller piece so that
the diagrams correspond to nested boxes. This generalises nested boxes
around single path trees, which are the same as sequences of bracketings. In
renormalisation, subdivergences are subgraphs of Feynman graphs, defined
by the partition boxes.

C.2 Shuffles and Lattice Paths

The Hopf algebras CSd over the permutation groups are of particular inter-
est, although Q coefficients are more appropriate for most purposes [82].

A permutation σ in Sd, which acts on the sequence (123 · · · d), is a shuffle
if

1. σ−1(1) < σ−1(2) < · · · < σ−1(m)

2. σ−1(m + 1) < σ−1(m + 2) < · · · < σ−1(m + n)

for m+n = d. That is, the sequence σ−1 breaks up into two strictly ordered
pieces, one of length m and one of length n. Altogether, there are

(
m + n

m

)

(m,n) shuffles. Note that when m = n, this is similar to the Catalan number
Cn. For fixed m and n, the sum over all shuffles of type (m,n) in Sd is an
element hmn in the Hopf algebra ZSd. For example, for m = 2 and n = 1,
h21 = (123) + (132) + (312).

Let smn be a permutation in Sd that lets (s1 · · · sm) ∈ Sm act on the first
m objects and (sm+1 · · · sd) ∈ Sn act on the rest. Then the group algebra
product hmnsmn is thought of as a product of the partial permutations in
Sm and Sn. For example, h21 · (213) = (213) + (231) + (321). This is a
graded product for the infinite direct sum ⊕ZSd over all d.

The (m,n) shuffles are in one to one correspondence with paths on a
planar lattice [84]. The point (0, 0) is the source and (m,n) the target,
defining a block of mn lattice squares. The variables σ−1(k) within the
shuffle are used to label horizontal steps if k ≤ m, and vertical steps for k >
m. Shuffles are often written as words in two letter types, as in X1Y1X2Y2

for m = n = 2.
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C.3 Octonions, Jordan Algebras and Spinors

This section makes a few remarks that rely on some knowledge of represen-
tation theory. The nonassociative octonions O [257] are real linear combi-
nations

a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 (355)

of 1 and the seven other units ei. The products eiej satisfy [153]

eiej = −δij + εijkek

where the antisymmetric εijk has norm 1 on the seven lines of a Fano plane

•
ÄÄ

ÄÄ
ÄÄ

•

ÄÄÄ

??
??

??
??

??

•

••
•

•

µµµµµµµµµµµµ

,,,,,,,,,,,,((
((

((
(

¹¹
¹¹
¹¹
¹2 1

5
3

4

6

7

and εijk is chosen to be positively oriented on the cycles

615 534 426 673 471 572 213.

The projective Fano plane is the seven lines in the cube F2
3. The line

orientation is recovered from an oriented cube with faces of type

//

²² //

OO (356)

and the central e7 placed at the source and target. It uses the labeling

2

¡¡¢¢
¢¢

¢
7oo

²²

¡¡¢¢
¢¢

¢

6 //

²²

1

²²

4

OO

¡¡¢¢
¢¢

¢
3oo

7 5

@@¢¢¢¢¢
oo

(357)

By definition, the conjugate of a ∈ O is a0 −
∑7

1 aiei. The norm of a ∈ O is
N(a) ≡ aa, satisfying N(ab) = N(a)N(b).

The bioctonions CO are the complexification of O defined by complex
coefficients [258], such that the complex unit i commutes with all ei. It has
an octonion conjugate and a complex conjugate a0+

∑
aiei. The bioctonions
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contain the split octonion algebra [153]. This may be defined using the 2×2
rational matrices

A ≡
(

x a
b y

)
A ≡

(
y −a
−b x

)
(358)

with x, y in Q and a, b in a three dimensional space V 3. The matrix product
is
(

x1 a1

b1 y1

)(
x2 a2

b2 y2

)
=

(
x1x2 + a1 · b2 x1a2 + y2a1 − b1 × b2

x2b1 + y1b2 + a1 × a2 y1y2 + b1 · a2

)
.

(359)
The 8 basis elements of the split algebra are then given by

u0 =
(

0 0
0 1

)
u0 =

(
1 0
0 0

)
(360)

ui =
(

0 0
ei 0

)
ui =

(
0 −ei

0 0

)

for ei the three octonion units e1, e2 and e3. Then AA = AA equals (xy −
a · b)I2. There are two copies of the split octonions in CO, with the second
one given by iuj .

A (formally real) Jordan algebra Jn [257] has a nonassociative product
a ◦ b such that

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2. (361)

We are interested in the 3 × 3 matrix Jordan algebras over R, C, H, O
and CO. These are the 3× 3 Hermitian matrices with commutative Jordan
product a ◦ b ≡ (ab + ba)/2.

The 2× 2 Hermitian matrices over O also form a Jordan algebra, and it
has projections (

XX XY

Y X Y Y

)
(362)

for (X, Y ) in O2 of norm 1. By definition, the projective line OP1 is the set
of all 2×2 projections P such that the trace of P equals 1. This agrees with
the projective lines FP1 over the other fields. The 3× 3 algebra over O can
only give a Moufang plane OP2 [259], and there is no OP3. The line OP1 is
basically the sphere S8 ' O ∪∞, just as CP1 is the sphere S2. The 2 × 2
algebra over O is an instance of a spin factor [257] because the elements

(
x + y a

a x− y

)
(363)

with x and y real may be considered as elements (a, y, x) in O⊕R⊕R, and
similarly for a rational basis. The matrices in SL2(O) give the spin group
Spin(9, 1), which is the double cover of the Lorentz group in dimension 9.
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The group SL2(O) acts on O2 as a left handed spinor representation, just
as for the twistor SL2(C).

For octonions, the 2 × 2 spacetime has dimension 10, and for the bioc-
tonions [258] it should have real dimension 20. This happens to equal the
number of minors Dij for a 3 × 6 Grassmannian matrix in Gr(3, 6). Such
minors are fundamental to scattering combinatorics, and Gr(3, 6) represents
the six particle case with a − − − + ++ helicity configuration. In chapter
10, the −+ pairs represent a fermion, so that Gr(3, 6) is a three fermion
state space. The 2 × 2 algebra over O appears in the 3 × 3 algebra under
the isomorphism [257]

J3(O) ' J2(O)⊕O2 ⊕ R ' R3 ⊕ V8 ⊕ S8
+ ⊕ S8

−.

Here V8, S8
+ and S8

− are the three components of triality for the octonion
number field. S8

+ and S8
− are right and left handed spinor representations.

Triality is the trilinear map

t : V8 × S8
+ × S8

− → R (364)

associated to the multiplication structure of a division algebra. Trialities
with norms are always specified in terms of spinors, since they give repre-
sentations of Spin(n). All three components are just R8 as vector spaces.
An automorphism of the triality is a triplet (f1, f2, f3) of norm preserving
maps such that

t(f1(v1), f2(v2), f3(v3)) = t(v1, v2, v3)

for all vi. It turns out that the automorphisms of O form the Lie group G2,
and this is contained in the triality automorphism group Spin(8). Remark-
ably, any g ∈ Spin(8) defines a unique triplet (g, g+, g−) in Spin(8)3 such
that

t(g(v1), g+(v2), g−(v3)) = t(v1, v2, v3).

The outer automorphisms of Spin(8) form the permutation group S3, which
allows any permutation of the spaces V8, S8

+ and S8
−.

For the full bioctonion algebra J3(CO) we define a trilinear form by [260]

T (a, b, c) ≡ (a, b ◦ c) =
1
2
(a, bc) +

1
2
(a, cb) (365)

where (x, y) is the inner product tr(x ◦ y), and the last step uses ordinary
matrix product. The complex 3× 3 matrices form a subalgebra of J3(CO).
There is also a commutative Freudenthal product

a× b ≡ a ◦ b− 1
2
tr(a)b− 1

2
tr(b)a +

1
2
tr(a)tr(b)I3 − 1

2
(a, b)I3 (366)
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and associated cubic form

(a, b, c) ≡ (a, b× c) = (a× b, c). (367)

Then the determinant of a ∈ J is given by det(a) = (a, a, a)/3. It is known
as the cubic norm of a.

Let Dij denote the minor determinant at position ij in any n × n
complex matrix D. The cofactor matrix Cij has entries (−1)i+jDij for
i, j = 1, 2, · · · , n. The adjugate is the transpose D∗ ≡ Cij

T . There is then a
bilinear form on matrices in J3(C) given by [202]

β(A∗, B) = 3(A,A, B). (368)

The Freudenthal triple system for J (F) is the larger algebra

F⊕ F⊕ J ⊕ J
with elements 2 × 2 matrices A as in (358), such that x, y ∈ F and a and
b are J . For J the 3 × 3 complex matrices, the Freudenthal triple is a 20
complex dimensional space. The quartic form of the system is

q(A) ≡ 2(β(a, b)− xy)2 − 8β(a∗, b∗) + 8x det(a) + 8y det(b). (369)

Under a suitable equivalence relation on the Freudenthal triple system for
complex matrices [202], any matrix in the algebra may be transformed into
elements with b = 0, y = 0 and x = 1, and a diagonal a in the set




0 0 0
0 0 0
0 0 0







1 0 0
0 0 0
0 0 0







1 0 0
0 1 0
0 0 0







1 0 0
0 1 0
0 0 k




for k ∈ C. In this case, the quartic form often reduces to 8det(a), which
takes values in {0, 8k}.

There is an SU(3) color subgroup of G2 that makes the split octonions
u0 and u0 singlets and the ui and ui a triplet and antitriplet [153]. Octonion
structure can thus be used to specify the quarks. The automorphisms of
J3(O) are the Lie group F4, which is generated by a pair of traceless Her-
mitian matrices over O. This is a 52 = 2× 26 dimensional group. It has an
SU(3)× SU(3) flavor color subgroup, associated to the decomposition

26 7→ (8, 1)⊕ (3, 3)⊕ (3, 3). (370)

This is in turn related to the 27 dimensional representation of the group E6,
which has decomposition [153]

(3, 3, 1)⊕ (3, 1, 3)⊕ (1, 3, 3) (371)

under SU(3)× SU(3)× SU(3). The last factor is the color symmetry. The
(3, 3) part is the lepton factor. All leptons and quarks fit into a complex oc-
tonion 3×3 matrix, written as a combination of the {u0, ui, u0, ui}. Particle
states are discussed in chapter 7.
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C.4 Tensor Algebra and Distributivity

For two n×n matrices J and K, the Schur product S is given entry by entry
as Sij ≡ Jij ·Kij . This is a kind of word concatenation, as in the example

(
XX XY

Y X Y Y

)
=

(
X X
Y Y

)
◦S

(
X Y

X Y

)
(372)

for a dual pair of vectors, resulting in a Jordan algebra projection. For a
general square matrix, if the entries are projections (Pij)2 = Pij , then the
Schur product clearly defines a matrix projection. The Schur product is a
submatrix of the tensor product.

We imagine that everything is a category, rather than a set. Recall that
the tensor product A⊗B of two 2× 2 matrices A and B, with commutative
entries, is defined as the 4× 4 matrix




A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22


 . (373)

This generalises to any pair of matrices. Given a tensor product on objects
in a category V with addition and multiplication, the symmetric algebra on
V is the space of all objects v1 ⊗ v2 + v2 ⊗ v1. The exterior algebra

∧k V is
the space spanning all k-fold wedge products v1∧· · ·∧vk for 1 · · · ≤ k−1 ≤ k,
where v1 ∧ v2 is defined as v1 ⊗ v2 − v2 ⊗ v1. Then v1 ∧ v2 = −v2 ∧ v1.

Consider a category with the three composition types ., ⊗ and ⊕. Let .
give horizontal composition and ⊗ vertical. As with matrices, the category
also contains objects In for n ∈ N that act as identities for the . product.
Then the object (A⊗ Im)(In ⊗B)

A

B

In

Im

usually specifies a unique object A ⊗ B by the bicategory interchange law.
Similarly for B ⊗ A. What about ⊕ in the third dimension? Using matrix
dimensions as a guide, observe that (A⊕B)⊗ (B ⊕A) should distribute to

(A⊗B)⊕ (B ⊗A)⊕ (A⊗A)⊕ (B ⊗B),

whereas (A⊗B)⊕(B⊗A) would be (A⊕B)⊗(B⊕A) if basic interchange held.
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That is, basic distributivity is breaking interchange in the third dimension

µµµµµµµ µµ
µµ
µµ
µ

µµ
µµ
µµ
µ

A

B

µµµµµµµ µµ
µµ
µµ
µ

µµ
µµ
µµ
µ
A

B

by creating the AA and BB terms. Distributivity is fundamentally a three
dimensional structure. In a higher category, a distributive law is a natural
transformation λ : ⊗⊕ → ⊕⊗ between two operation endofunctors, such
that λ · (⊗)R = (⊗)L and

⊕⊗⊕ // ⊗⊕⊕

$$III
III

III

⊕⊕⊗

99sssssssss

%%LLLLLLLLL ⊗⊕

⊕⊗
λ

44iiiiiiiiiiiiiiiiiii

(374)

commutes, along with similar laws for a source ⊕ ⊗ ⊗. Observe that λ
resembles a braiding. Already with ⊗ and ⊕ we have a string of adjunctions
for distributivity [136]. That is, if Mon is a category of monoids with ⊗
and Ab is a category of additive groups with ⊕, then there is a category
Ring that inherits the two operations through the four adjunctions in the
square

Ring⊗⊕

%%JJJJJJJJJ

yyrrrrrrrrr

Mon⊗

99rrrrrrrrr

&&MMMMMMMMMM Ab⊕

eeJJJJJJJJJ

yysssssssss

Set

ffMMMMMMMMMM

99sssssssss

(375)

and a distributive law gives an arrow inside the square, which is nominally
a 3-arrow filling a tetrahedron. As a string diagram, the usual distributive
axiom is naturally symmetric, allowing strings to slide past one another
through a vertex. A braiding gives a choice between the usual law and a
broken distributivity, with the axiom taking the form

6= (376)
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Note that only a pair of opposite crossings on the left will block the string
slide. Each crossing is a braiding λ⊗⊕ on the two functor objects. Since
our physical spaces emerge from braided structures, broken distributivity
for arithmetic is a fundamental feature of quantum algebra.

Remark C.5 The Jacobi rule (161) for Lie algebras is often expressed as
a triplet of trees. The (s, t, u) Mandelstam variables act on three particles
(234), once the leg 1 is fixed. They permute these three legs according to
the 1-circulants in S3. Thus a braided version of the Jacobi rule replaces the
S3 permutations by a braid triplet in B3. With suitably chosen crossings,
these form an annihilation triplet (γ, eL, eR), as in the bottom pieces of the
broken distributivity diagrams. This three term braided Jacobi rule is then
a form of broken distributivity. There is a left and right handed version,
each using two fermion braids and the resulting photon.
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