
Access Control for Healthcare Data Using Extended
XACML-SRBAC Model

A. A. Abd EL-Aziz
Research Scholar

Dep. of Information Science & Technology
Anna University

Email: zizoah2003@gmail.com

A.Kannan
Professor

Dep. of Information Science & Technology
Anna University

Email: kannan@annauniv.edu

Abstract—In the modern health service, data are accessed by
doctors and nurses using mobile, Personal Digital Assistants, and
other electronic handheld devices. An individual’s health related
information is normally stored in a central health repository
and it can be accessed only by authorized doctors. However,
this Data is prone to be exposed to a number of mobile attacks
while being accessed. This paper proposes a framework of using
XACML and XML security to support secure, embedded and
fine-grained access control policy to control the privacy and data
access of health service data accessed through handheld devices.
Also we consider one of the models, namely Spatial Role-based
access control (SRBAC) and model it using XACML.

Keywords: XACML, SRBAC, XML encryption, XML
signature, XML security, mobile

I. I NTRODUCTION

Health services are a major part of the national infras-
tructure and hence are a very critical sector of the nation.
The information and data related to health services are very
confidential and needs to be maintained and accessed with
improved levels of security. The information in health services
relates to sensitive and confidential information of the patients.
These could include the patients history, personal details, and
any other secret information. It needs to be made available
to the authorized doctors. Privacy is the main concern here
and therefore data access control plays a very critical role
in health services. Doctors and nurses get access to data and
information using their handheld devices. Security of these
handheld devices is very important and so is the security of
the data coming into the mobile device and going out of the
mobile device. The first step that takes place when a patient
visits the doctor is that the doctor requests the central health
repository for the patients information using his handheld
device. The central health repository will send the information
to the doctors device after performing initial trust negotiation
and ensuring that it is the right request coming from the correct
source. The information is sent to the doctors device not in
plain text but in an encrypted format. After a few requests and
responses between the doctors device and the central health
repository, the data will be finally available for the doctor to
use. The main parts of the process used in order to retrieve
the actual information from the encrypted data involves the use
of XACML policy which is used to verify the policy of the

mobile device and make policy decisions to send the key that is
used to encrypt the information. Based on some computations
performed using XACML policy and some cryptographic
algorithms, the real time key that is used to encrypt the patients
information can be obtained. The real time key will be used
in the doctors handheld device to decrypt the information and
get access to the actual information[8]. XACML was used
not only for defining access control policies. The standard
XACML languages and processing models were also extended
to allow the access control policies be embedded with the
digital content of any type or format in the same XACML
document, which serves as a persistent container for both
embedded access control policies and the content to be pro-
tected. In addition, the original content can be further divided
into multiple parts, each of which encapsulated by its own
access control policy, to provide finer grained access control.
Since then, we have incorporated XML encryption and XML
signature into the XACML policy document to further protect
the confidentiality, authenticity, and integrity of the content
and the access control policy, both embedded in the same
XACML document and both can be sensitive information [7].
Many models have been suggested to extend the Role-based
access control (RBAC) model to provide location aware access
control. In this paper we consider one of the models, namely
Spatial Role-based access control (SRBAC) and model it using
XACML [2].

II. RELATED WORK

In [11], the authors described a complete composite access
control model for mobile agents where authors presented two
key aspects of the role-based access control for mobile agents:

1) authorization infrastructure.
2) the structure of role-based access control policies.

The policies map agent role to user role and provide a
composite policy for policy Decision point (PDP) decisions
regarding access control applied to mobile agents.

The traditional XACML polices, used for user access
control in distributed environments, can be used for mobile
agents access control [5]. Such polices are used to manage
delegation of access rights from users to agents while at
the same time following the core principles of the XACML

standard. [5] proposed a combination of policies that map
users to their mobile agents and make access control decisions
for mobile agents by evaluating complex policy sets.
In [6], the policy embedding approach that we use is similar
to that of the Enterprise Rights Management (ERM) which
is defined as a digital document-based security model that
enforces access, usage, confidentiality, and storage policies.
However, the method in [7] is based on XACML which is an
open standard; while ERM is built upon Microsofts generally
proprietary Windows Rights Management Services (RMS)
technology that works with RMS-enabled applications to
help safeguard digital information from unauthorized use.
In [3], the XML-based security standards will be used more
and more in terms of an integrated security system, and the
possible interaction of different standards was a basic goal in
the evolution of XML-based security standards that include
XACML and XML Security. The combined use of XACML,
XML-ENC, and XML-DSIG in [7] is one more example of
constructing an integrated security system focusing on secure,
embedded, and fine-grained access control.

III. XACML

XACML [4] is an XML-based language for access control
that has been standardized by OASIS (Organization for the
Advancement of Structured Information Standards). XACML
is an XML encoded language that describes both an access
control policy language and a request/response language [1].
The policy language is used to express access control policies
(who can do what when). The request language expresses
queries (requests) about whether a particular access should
be allowed, and the response language describes answers
(responses) to those queries. In the response, the answer about
the request is available and it is one of four possible val-
ues Permit, Deny, Intermediate, or Not Applicable. XACML
provides an extensible, flexible, highly expressive, standards-
based, and general-purpose access control policy language that
can be used for controlling access to any type of resources [1],
not just XML documents. In addition, there are other XML
based security standards that can be leveraged to enhance
the confidentiality, integrity, and authenticity of information.
These include the XML Encryption Syntax and Processing
[9] and XML Signature Syntax and Processing [10], both
from the W3C (World-Wide Web Consortium). Integration of
these technologies (access control, encryption, and signature)
becomes significantly easier with XML being the common
base language for them all. XACML supports an architectural
model of separating the policy decision logic from the policy
enforcement logic. Three key logical functions are defined
by XACML. A Policy Decision Point (PDP) is an entity
that evaluates applicable policy and renders an authorization
decision. A Policy Enforcement Point (PEP) is an entity that
performs access control by making decision requests to a PDP
and enforcing the authorization decisions returned by the PDP.
The third XACML logical function, Policy Administration
Point (PAP), is an entity that creates and manages access
control policies. In a typical XACML usage scenario, a subject

(e.g., user, application, or process) wants to take some action
on a particular resource [2], [7]. The request is the XACML
code corresponding to the access request made by the subject
to a certain resource. The subject submits its query to the
PEP that is responsible for protecting the requested resource
(e.g., file system, or web server). The PEP translates the
Access request into the corresponding XACML code. This
request consists of four parts: Subject, Resource, Action and
Environment. Those four elements help in the process of
matching the Request with the corresponding Policy(s) in
the PDP. The subject is the entity associated with the access
request. An example for a subject can be the human requesting
the service or the piece of code responsible for creating the
request. The Resource element specifies information about
the resource(s) for which access is requested. The Action
element specifies the action to be performed on this resource.
The environment element provide information regarding the
environment. This information is not related to the Subject,
Resource, or Action. For example, environment element could
include an attribute describing the time of access or the
place from which the request was initiated. The Response
element encapsulates the authorization decision produced by
the PDP after evaluating the Request against the existing
Policies. The response is composed of a sequence of one
or more results each corresponding to a requested resource.
Each result element represents an authorization decision for
the resource specified in the ResourceId attribute. The result
can take one of the four values (Permit, Deny, Intermediate,
or NotApplicable). The Status of the Response is an optional
element which states the errors (if any) that were encountered
during the evaluation of the request. access by the subject
[6]. The base construct of all XACML policies is a Policy
element. Each XACML document can hold exactly one Policy
or PolicySet. The PolicySet is a container that can hold
other Policies, PolicySets or other reference found in remote
locations. A Policy element must contain a〈Target〉 element
which is used for determining whether a policy is fit for
controlling a specific request. The Target defines a set of
Subjects, Resources, Actions, and Environments.〈Rule〉 is the
smallest element among the elements that expresses access
control policy semantics. Each rule is composed of Condition,
Effect, and Target. The condition is composed of logical
expressions defining attribute restrictions of entities and is used
for evaluating the request. If the condition evaluates toTrue,
the rule is applicable and the effect of the rule takes place.
If the condition evaluates to false, the effect of the rule is
NotApplicable. If the condition evaluates toIntermediate, the
rules effect isIntermediate. A Rule cannot exist alone and
must be contained in a policy. A policy can contains 0 to n
(n≥1) rules and provides standard rule combination algorithm
to deal with the conflict that occurs when more than one rules
make evaluation to one request.

IV. EMBEDDING XML SECURITY IN XACML DOCUMENT

This framework is designed with XACML as the base mech-
anism for embedding fine-grained access control policies and

content. The resultant XACML document is further protected
with XML encryption [7].

A. Extending XACML

The most significant extension was made to the XACML
policy language to allow a〈ResourceContent〉 element within
a 〈Resource〉 element which is contained within a〈Rule〉
element. The〈ResourceContent〉 element is used to embed
the original content encoded into the Base64 format. Access
to the data embedded within the〈ResourceContent〉 element is
regulated by the policy expressed in the encompassing〈Rule〉
element. Fine-grained access control is supported by allowing
multiple 〈Rule〉 elements in an XACML document with each
〈Rule〉 element specifying its own access control policy for
the content embedded within this〈Rule〉 element.

B. Applying XML Encryption

If the entire policy document is to be protected as a single
unit, then the element content of the〈Policy〉 element can
be encrypted to produce an encrypted version of the XACML
document as shown in Figure 1. On the other hand, the element

〈 Policy 〉
〈 EncryptedData Id? Type? MimeType?...〉

.....
〈 /EncryptedData〉

〈 /Ploicy 〉

Fig. 1. XACML with entire policy and content encrypted

content of each〈ResourceContent〉 element can be encrypted
to replace the original content by an〈EncryptedData〉 element.
Furthermore, different parts can be encrypted using different
keys and thus preserving the fine-grained control capability.
Figure 2 shows an example XACML document containing
an embedded policy section that having its original content
encrypted with a different key.

〈 Policy RuleCombining...”...:permit-overrides”〉
....

〈 Rule RuleId=”Rule1”, Effect=”Permit”〉
〈 !– Policy & Content for First Part –〉
〈 Target〉

....
〈 Resource〉
〈 ResourceContent〉
〈 EncryptedData〉
〈 EncryptionMethod/〉
〈 KeyInfo 〉
〈 KeyName〉 Key1 〈/KeyName〉

〈 /KeyInfo 〉
〈 CipherData〉
〈 CipherValue〉Data encrypted〈/CipherValue〉

〈 /CipherData〉
〈 /EncryptedData〉

〈 /ResourceContent〉
〈 /Resource〉

....
〈 /Target〉

Fig. 2. XACML with encrypted element content of〈ResourceContent〉
element

C. Applying XML Signature

The flexibility of the XML signature standard allows our
framework to support fine-grained signatures as well. In our
framework, only enveloped signatures are used. In this mode,
a signature is generated over some portion of the XACML
content, and the resulting signature is contained as an element
in the same XACML document. The XML encryption and
The XML signature can be used together to sign and encrypt
the XACML document. Figure 3 shows an example of an
enveloped XML signature generated over the element content
of the 〈Policy〉 element which contains the encrypted data and
access control policy.

〈 Policy RuleCombining ... ”...:permit-overrides”〉
〈 EncryptedData Id? Type? MimeType?...〉

.....
〈 /EncryptedData〉
〈 Signature ID?〉

...
〈 /Signature〉

〈 /Ploicy 〉

Fig. 3. XACML with entire content encrypted and signed

The SRBAC model is an extension of the RBAC model.
It specifies the spatial restrictions on permission assigned to
roles. The SRBAC models consists of five basic components:
sets Users (U), Roles (R), Permissions (PRMS), Sessions (S),
and Locations (L) to represent the set of users, roles, permis-
sions, sessions, and the spatial location, respectively. Users
are considered to be mobile users who establish a wireless
connection with the system to access a certain resource. Roles
represent the set of permissions to access system resources.
Permissions are approvals to execute some operations on
one or more resource. Locations describe location domains
identifiable by the system. Hierarchies in SRBAC define an
inheritance relationship between different roles. Thus, role ri
inherits role rj , if and only if all permission that are available
for role rj are also available for role ri. Since SRBAC model
depends on the location of the users, the inheritance of the
SRBAC model should also depend on the location of the users.
Thus, if role ri inherits role rj in Location L, this means that
ri has all the permissions that rj has in Location L [2].

V. THE PROPOSED ARCHITECTURE

Our proposed architecture based on [7] and it concerns with
the implementation of XACML in the mobile environment.
XACML policy is used to give access to the data requested
by the mobile device from the Central health repository
(service provider). The steps begin with the doctor requesting
the patient’s information from the Central health repository
(service provider). When the service provider receives the
request it will send a challenge request and integrated XACML
policy based on SRBAC with the key policy decision checks.
The integrated XACML policy will contain the encrypted
patient’s information by using XML encryption standard and
the environment can be the location where the doctor is
located. On receiving these, the mobile device will parse

through the XACML policy and provide a response in the
form of a hash value of the values requested by the XACML
request policy from the service provider. The Central health
repository receives the challenge response and the hash value.
An initial set of secret computation techniques is decided and
both the service provider and the mobile devices provider are
aware of it. These computations are performed on the hash
value and the resulting value is used as a key to encrypt the
real time key on the service provide (Central health repository)
side. This new encrypted key is then sent to the mobile device.
Since the device is also aware of the same secret computation
techniques, it will perform the same computations on the hash
value which it already has. The resulting value is used to
decrypt the encrypted real time key. The real time key is then
used to decrypt the encrypted data. The proposed architecture
can be summarized in the following points:

1) Doctor requests for the patients information.
2) Embedded XACML policy based on SRBAC with policy

decision checks is sent containing the encrypted patient’s
information.

3) Challenge response and hash of the policy decision
values returned to the service provider.

4) Real time key is encrypted using modified hash value
and is sent to the device.

5) Real time key is decrypted using the modified hash
value. Real time key is used to decrypt the encrypted
patient information.

VI. CONCLUSION

In this paper, we propose an architecture for controlling
the access to the data in the health services sector. The main
Contribution of the paper is the approach used to control
privacy of the data using integrated XACML within the mobile
environment. The integrated XACML document, containing
both access control policy and the patient’s information, is
further protected by XML encryption for confidentiality and
XML digital signature for authentication and integrity control.
The resultant encrypted data and digital signatures are also
embedded in the same XACML document and applied in fine
granularity. Also we have shown how to model SRBAC model
that extends RBAC to incorporate location information in ac-
cess control decisions to be able to determine the permissions
a role encompasses at a given location using XACML.

REFERENCES

[1] Sun’s XACML Implementation Programmer’s Guide for Version 1.2.
July 11, 2004 http://sunxacml.sourceforge.net/ guide.htm.

[2] M. Aburahma and R. Stumptner. Modeling Location Attributes Using
XACML-RBAC Model. In Proceedings of the 7th International Confer-
ence on Advances in Mobile Computing and Multimedia, pages 251–254,
2009.

[3] A. Ekelhart, S. Fenz, G. Goluch, M. Steinkellner, and E. Weippl. Xml
security a comparative literature review.The Journal of Systems and
Software, vol. 81(10):1715–1724, Oct., 2008.

[4] eXtensible Access Control Markup Language (XACML) Version 2.0.
OASIS Standard, 1 Feb 2005, http://docs.oasis-open.org/xacml/2.0/ ac-
cesscontrol-xacml-2.0-core-spec-os.pdf.

[5] A. Giambruno, M. A. Shibli, S. Muftic, and A. Lioy. MagicNET:
XACML Authorization Policies for Mobile Agents. In Proceedings
of the International Conference on Internet Technology and Secured
Transactions (ICITST), pages 1–7, 2009.

[6] G. Hsieh, K. Fostera, G. Emamalia, G. Patricka, and L. Marvelb. Using
XACML for Embedded and Fine-Grained Access Control Policy.In
Proceedings of the International Conference on Availability, Reliability
and Security (ARES), pages 462 – 468, 16-19 March, 2009.

[7] G. Hsieh, R. Meeks, and L. Marvel. Supporting Secure Embedded
Access Control Policy with XACML+XML Security.In Proceedings
of the 5th International Conference on Future Information Technology
(FutureTech), pages 1–6, 21-23 May, 2010.

[8] M. Rajarajan S. Arunkumar. Healthcare Data Access Control using
XACML for Handheld Devices.In Proceedings of the Developments in
E-systems Engineering (DESE), pages 35 – 38, 6-8 Sept, 2010.

[9] XML Encryption Syntax and Processing. W3C Recommendation, 10
Dec 2002, http://www.w3.org/TR/Xmlenc-core.

[10] XML-Signature Syntax and Processing. W3C Recommendation, 12
February 2002,http://www.w3.org/TR/xmldsig-core.

[11] J. Zhang, Y. Wang, and V. Varadharajan. Mobile Agent and Web Service
Integration Security Architecture.In Proceedings of the IEEE Inter-
national Conference on Service-Oriented Computing and Applications
(SOCA), pages 172–179, June, 2007.

