
IJCES International Journal of Computer Engineering Science , 

Volume 2 Issue 2              ISSN : 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 
 

1 
 

MS: Multiple Segments with Combinatorial Approach 

for Mining Frequent Itemsets Over Data Streams 

 

K Jothimani
1
, S. Antony Selvadoss Thanmani

 2
 

 

1
 Research Scholar, Research Department of Computer Science,  

NGM College, 90, Palghat Road, Pollachi - 642 001  

Coimbatore District, Tamilnadu, INDIA 
 Email: jothi1083@yahoo.co.in 

2
 Professor and Head, Research Department of Computer Science, 

 NGM College, 90, Palghat Road, Pollachi - 642 001  
Coimbatore District, Tamilnadu, INDIA 

Email: selvdoss@yahoo.com 

Abstract. Mining frequent itemsets in data stream applications is beneficial 

for a number of purposes such as knowledge discovery, trend learning, 

fraud detection, transaction prediction and estimation. In data streams, 

new data are continuously coming as time advances. It is costly even 

impossible to store all streaming data received so far due to the memory 

constraint. It is assumed that the stream can only be scanned once and 

hence if an item is passed, it can not be revisited, unless it is stored in main 

memory. Storing large parts of the stream, however, is not possible because 

the amount of data passing by is typically huge. In this paper, we study the 

problem of finding frequent items in a continuous stream of items. A new 

frequency measure is introduced, based on a variable window length. We 

study the properties of the new method, and propose an incremental 

algorithm that allows producing the frequent itemsets immediately at any 

time. In our method, we used multiple segments for handling different size 

of windows. By storing these segments in a data structure, the usage of 

memory can be optimized. Our experiments show that our algorithm 

performs much better in optimizing memory usage and mining only the 

most recent patterns in very less time.  

Keywords: Data stream mining, Frequent itemset, Segment-based and Variable 
length Window. 

1   Introduction 

Frequent itemset mining is a KDD technique which is the basic of many other 
techniques, such as association rule mining, sequence pattern mining, classification, 

clustering and so on. A data stream is a massive unbounded sequence of data elements 
continuously generated at a rapid rate. Due to this reason, it is impossible to maintain 
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all the elements of data streams [1]. This rapid generation of continuous streams of 
information has challenged our storage, computation and communication capabilities 
in computing systems. The main challenge is that „data-intensive‟ mining is 
constrained by limited resources of time, memory, and sample size. 

1.1   Data Streams 

Data Stream mining refers to informational structure extraction as models and 

patterns from continuous data streams. Data Streams have different challenges in 
many aspects, such as computational, storage, querying and mining. Based on last 
researches, because of data stream requirements, it is necessary to design new 
techniques to replace the old ones. Traditional methods would require the data to be 
first stored and then processed off-line using complex algorithms that make several 
pass over the data, but data stream is infinite and data generates with high rates, so it 
is impossible to store it [12]. 

  Data from sensors like weather stations is an example of fixed-sized data, whereas 
again, market basket data are an example of variable size data, because each basket 
contains a different number of items. By contrast, sensor measurements have a fixed 
size, as each set of measurements contains a fixed set of dimensions, like temperature, 
precipitation, etc.  

A typical approach for dealing is based on the use of so-called sliding windows. 

The algorithm keeps a window of size W containing the last W data items that have 
arrived (say, in the last W time steps). When a new item arrives, the oldest element in 
the window is deleted to make place for it. The summary of the Data Stream is at 
every moment computed or rebuilt from the data in the window only. If W is of 
moderate size, this essentially takes care of the requirement to use low memory. The 
type of objects i.e. windows in a stream impacts the way the data stream is processed. 
This is due to two facts: We have to handle windows of different types differently, 

and we are able to tailor the processing to the specific properties of the objects. 
Hence, for our focus, interesting properties are the size of the windows, what 
information the objects represent and how they relate to other windows in the stream. 

2   Related Work 

Recently proposed mining approaches for event logs have often been based on 
some well-known algorithm for mining frequent itemsets (like Apriori or 
FPgrowth).In this section we will discuss the frequent itemset mining problem and 
prominent algorithms for finding optimistic solution in addressing this problem. 

The sliding window method processes the incoming stream data transaction by 
transaction. Each time when a new transaction is inserted into the window, the 

itemsets contained in that transaction are updated into the data structure 
incrementally. Next, the oldest transaction in the original window is dropped out, and 



IJCES International Journal of Computer Engineering Science , 

Volume 2 Issue 2              ISSN : 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 
 

3 
 

the effect of those itemsets contained in it is also deleted. The sliding window method 
[4] also has a periodical operation to prune away unpromising itemsets from its data 
structure, and the frequent itemsets are output as mining result whenever a user 
requests. 

Two types of sliding widow, i.e., transaction- sensitive sliding window and time-
sensitive sliding window, are used in mining data streams[1][2]. The basic processing 

unit of window sliding of first type is an expired transaction while the basic  unit of 
window sliding of second one is a time unit, such as a minute or an hour. In the 
damped window model, recent sliding windows are more important than previous 
ones. 

As long as the window size is reasonably large, and the conceptual drifts in the 
stream is not too dramatic, most itemsets do not change their status (from frequent to 

non frequent or from non-frequent to frequent).[18] In other words, the effects of 
transactions moving in and out of a window offset each other and usually do not cause 
change of status of many involved nodes. 

To find frequent itemsets on a data stream, we maintain a data structure that 
models the current frequent itemsets. We update the data structure incrementally. The 
combinatorial explosion problem of mining frequent itemsets becomes even more 

serious in the streaming environment. As a result, on the one hand, we cannot afford 
keeping track of all itemsets or even frequent itemsets, because of time and space 
constraints. On the other hand, any omission (for instance, maintaining only M, C, or 
F instead of all itemsets) may prevent us from discovering future frequent itemsets. 
Thus, the challenge lies in designing a compact data structure which does not lose 
information of any frequent itemset over a sliding window. 

3   Problem Description 

      
Let I = {i1,..., in} be a set of items. If X _ I, X is called an itemset, and if |X| = k, X 

is also called a k-itemset. A transaction is a tuple T = (tid, X) where tid is a 
transaction identifier and X is an itemset. A transaction database D is a set of 
transactions, and the cover of an itemset X is the set of identifiers of transactions that 
contain X: cover(X) = {tid | (tid, Y) _ D, X _ Y}. The support of an itemset X is 
defined as the number of elements in its cover: supp(X) = |cover(X)|. The task of 
mining frequent itemsets is formulated as follows – given the transaction database D 
and the support threshold s, find itemsets {X | supp(X) _ s} and their supports [13] 

(each such set is called a frequent itemset). 

 A specific point in time is modeled as the number of base time units that have 
elapsed since the epoch. We denote points in time with t, or ti if we want to 
distinguish several points in time. From the base time unit, other time units with 
coarser granularities can be composed[17] .Let I = {x1, x2, …, xz} be a set of items 

(or attributes). An itemset (or a pattern) X is a subset of I and written as X =xi xj…xm. 

The length (i.e., number of items) of an itemset X is denoted by |X|. A transaction, T, 

is an itemset and T supports an itemset, X, if X⊆ T.  
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A transactional data stream is a sequence of continuously incoming transactions. A 
segment, S, is a sequence of various number of transactions, and the size of S is 
indicated by s. A window, W, in the stream is a set of successive w transactions, 

where w ≥  s. A sliding window in the stream is a window of different number of 

most recent w transactions which slides forward for every transaction or every 
segment of transactions. We adopt the notation IL to denote all the itemsets of length l 
together with their respective counts in a set of transactions (e.g., over W or S). In 
addition, we use Tn and Sn to denote the latest transaction and segment in the current 
window, respectively. Thus, the current window is either W = < Tn-w+1, …, Tn > or 

W = < Sn-m+1, …, Sn >, where w and m denote the size of W and the number of 
segments in W, respectively. 

Given a data stream in which every incoming transaction has its items arranged in 
order, and a changeable value of ms specified by the user, the problem of mining FIs 
over a sliding window in the stream is to find out the set of frequent itemsets over the 
window at different slides. 

We remark that most of the existing stream mining methods[3] [5] [9] work with a 
basic hypothesis that they know the user-specified ms in advance, and this parameter 
will remain  un changed all the time before the stream terminates. This hypothesis 
may be unreasonable, since in general, a user may wish to tune the value of ms each 
time he/she makes a query for the purpose of obtaining a more preferable mining 
result.  

Apart from the type of data in the stream, one important property of the data stream 
is the stream rate. It can be measured in objects per time unit, like objects per minute 
or per hour. Another possible measure is the amount of data per time unit. This 
measure is especially useful in settings with objects of variable size. Taking the size 
of the objects into account is more accurate in such a setting, because it better reflects 
the actual load of the data stream processing system 

. 

4   Multiple Segments For Handling Streams 

The transaction-by-transaction sliding of a window leads to excessively high 
frequency of processing. In addition, since the transit of a data stream is usually at a 

high speed, and the impact of one single transaction to the entire set of transactions 
(in the current window) is very negligible, making it reasonable to handle the window 
sliding in a wider magnitude.[20] Therefore, for an incoming transactional data 
stream to be mined, we propose to process on a segment-oriented window sliding. We 
conceptually divide the sliding window further into several, say, m, segments.  

Each of the m segments contains a set of successive transactions and is of the 

different size s (i.e., contains the number of s transactions). Besides, n each segment, 
the summary of transactions belonging to that segment is stored in the data structure. 
Multiple segments can be used for storing the transactions. Thus, even if various size 
of windows w will be coming, it can be easily handled by the segments. 
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By taking this segment-based manner of sliding, each time when a segment in-out 
operation occurs, we delete (or drop out) the earliest segment, which contains the 
summary of transactions of that segment, from the current window at each sliding. As 
a result, we need not to maintain the whole transactions within the current window in 
memory all along to support window sliding.  

In addition, we remark that the parameter m directly affects the consumption of 

memory. A larger value of m means the window will slide (update) more frequently, 
while the increasing overhead of memory space is also considerable. Let us consider 
the following example. The first group of itemsets that needs to be restored contains 
those k-itemsets that have the same (k − 1)-prefix as some itemset in the current 
frequent set.  

Consider then in pass k, an itemset X in the Multiple Segments (MS) and an itemset 
Y in the current frequent set such that |X| > k. Suppose that the first k − 1 items of Y 

are in X and the (k − 1)st item of Y is equal to the j th item of X. We obtain the k-
subsets of X that have the same (k −1)-prefix as Y by taking one item of X that has an 
index greater than j and combining it with the first k−1 items of Y , thus getting one of 
these k-subsets. After these k-itemsets are found, we recover candidates by combining 
them with itemset Y. 

 

Algorithm: The retrieving procedure 

Input: Ck+1 from join procedure, Lk, and current MS 

Output: a complete transaction set Tk+1 

1. for all itemsets l in Lk 

2. for all itemsets m in MS 

3. if the first k −  1 items in l are also in m 

4. /* suppose m.itemj= l.itemk− 1 */ 

5. for i from j + 1 to |m| 

6. Tk+1 := Tk+1 ∪  {{l.item1, l.item2,…, l.itemk, m.itemi}} 

 

There are four possible cases when we combine two frequent k-itemsets, say I and 
J, which have the same (k − 1)-prefix, to generate a (k + 1)-itemset as a new 

preliminary candidate. In this proof, we will show that, even though that we remove 
the subsets of the MS from the current frequent set, our new candidate generation 
algorithm will handle all these cases correctly 

Algorithm: The Multiple Segment algorithm 

Input: a database and a user-defined minimum support 

Output: MS which contains all maximal frequent itemsets 

1. L0 := ∅ ; k := 1; T1 := {{i} | i ∈ I } 

2. FCS: = {{1, 2, . . . , n}}; MS: = ∅  

3. while Tk ≠ ∅  

4. read data streams and count supports for Tk and MS 

5. remove frequent itemsets from FCS and add them to MS 
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6. Lk := {frequent itemsets in Tk} \ {subsets of MS} 

7. Sk := {infrequent itemsets in Tk} 

8. Call the FCS-gen algorithm if Sk≠ ∅  

9. call the join procedure to generate Tk+1 

10. if any frequent itemset in Tk is removed in line 6 

11. call retrieving procedure to recover transactional  

       itemsets Tk+1 

12. k := k + 1 

13. end-while 

14. return MS 

Theorem 1 The Multiple Segment algorithm generates all frequent itemsets over 
data streams. 

Proof:  The Multiple Segment Algorithm will explicitly or implicitly discover all 
frequent itemsets. Therefore, the Multiple Segment algorithm generates frequent 
itemsets. Maintaining all the data streams in the main memory requires too much 
space. So we have to store only relevant itemsets and drop itemsets when the tail-

dropping condition holds.  
When all windows of different sizes frequent itemsets are dropped the entire itemset 
is dropped from segments. As the result of the tail-dropping we no longer have an 
exact support over L, rather an approximate support. Now let us denote supportL(X) 
the frequency of the itemset X in all batches and supportL’(X) the approximate 
frequency. With ε <<σ this approximation is assured to be less than the actual 

frequency according to the following inequality’s in [3]: SupprtL(X) −ε L ≤ 
SupportL’(X) ≤ SupportL(X) 

5   Experimental Results 

We evaluate the performance of our MS algorithm by varying the usage of the 
memory space. We also analyze the execution time. The simulation is performed in 
Visual C++ and conducted in a machine with a 3GHz CPU and 1GB memory. We use 
two sets of synthetic databases from an IBM Quest data generator.  

The following figures illustrates some of the parameters that we have controlled: 
the size of the sliding window 10K, the average size of the transaction T, the average 
size of the frequent itemsets I and we randomly generate the weight of each item in 

transaction, ranging from 0.2 to 0.8. Synthetic dataset T10I4D100K denotes the 
average size of the transactions and I the average number of frequent itemsets. 
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 Fig.1 Compare execution time between FCS and MS T10I4D100K   

 
In this experiment, we examine the execution time and memory usage between MS 

and FCS Frequent Candidate Set by dataset T10I4D100K. In Fig. 1, we can see that 
the execution time incurred by MS is quite steady and is shorter than that of FCS. The 
experiment shows that MS performs more efficiently than FCS. In Fig. 2, the memory 
usage of MS is more stable and smaller than that of FCS. This is because MS delete a 

lot of common nodes between various regions does not need to search these spaces 
for some computations and enumerate all subsets of each incoming transaction. The 
amount of all subsets is an enormous exponential number for long transaction. Hence, 
it shows that SFIDS is more suitable for mining frequent itemsets in data streams. 

 

 

 Fig. 2 Compare space consumption between FCS and MS T10I4D100K. 
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5   Conclusions 

In this paper, a structure was designed to dynamically maintain the up to date 
contents of data streams by scanning it only once, and a new method MS was 
proposed to mine the frequent patterns in a sliding window. This method could 
answer a request with no false negative. We study the problem of mining frequent 

itemsets over the sliding window of a transactional data stream.  
Based on applying the theory of Multiple Segments for varying different windows, 

we devise and propose an algorithm called MS finding frequent itemsets over data 
streams. It conceptually divides the sliding window into segments and handles the 
sliding of window in a segment-based manner. According to the experimental results, 
MS is quite efficient and possesses good scalability with varying minimum support 
threshold. Extensive experimental results show that MS decrease required time for 

processing batches and amount of memory for storing history of data.  
We compare our algorithm with FCS algorithm and show that MS perform better 

than FCS in various conditions. The main contributions on evolving data streams are 
giving a unified framework for data mining with time change detection with varying 
length of windows. Experiments show that the proposed algorithm not only attain 
highly accurate mining results, but also run significant faster and consume less 

memory than existing algorithms for mining frequent itemsets over online data 
streams. 
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