
IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

1

MS: Multiple Segments with Combinatorial Approach

for Mining Frequent Itemsets Over Data Streams

K Jothimani
1
, S. Antony Selvadoss Thanmani

 2

1
 Research Scholar, Research Department of Computer Science,

NGM College, 90, Palghat Road, Pollachi - 642 001

Coimbatore District, Tamilnadu, INDIA
 Email: jothi1083@yahoo.co.in

2
 Professor and Head, Research Department of Computer Science,

 NGM College, 90, Palghat Road, Pollachi - 642 001
Coimbatore District, Tamilnadu, INDIA

Email: selvdoss@yahoo.com

Abstract. Mining frequent itemsets in data stream applications is beneficial

for a number of purposes such as knowledge discovery, trend learning,

fraud detection, transaction prediction and estimation. In data streams,

new data are continuously coming as time advances. It is costly even

impossible to store all streaming data received so far due to the memory

constraint. It is assumed that the stream can only be scanned once and

hence if an item is passed, it can not be revisited, unless it is stored in main

memory. Storing large parts of the stream, however, is not possible because

the amount of data passing by is typically huge. In this paper, we study the

problem of finding frequent items in a continuous stream of items. A new

frequency measure is introduced, based on a variable window length. We

study the properties of the new method, and propose an incremental

algorithm that allows producing the frequent itemsets immediately at any

time. In our method, we used multiple segments for handling different size

of windows. By storing these segments in a data structure, the usage of

memory can be optimized. Our experiments show that our algorithm

performs much better in optimizing memory usage and mining only the

most recent patterns in very less time.

Keywords: Data stream mining, Frequent itemset, Segment-based and Variable
length Window.

1 Introduction

Frequent itemset mining is a KDD technique which is the basic of many other
techniques, such as association rule mining, sequence pattern mining, classification,

clustering and so on. A data stream is a massive unbounded sequence of data elements
continuously generated at a rapid rate. Due to this reason, it is impossible to maintain

mailto:selvdoss@yahoo.com

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

2

all the elements of data streams [1]. This rapid generation of continuous streams of
information has challenged our storage, computation and communication capabilities
in computing systems. The main challenge is that „data-intensive‟ mining is
constrained by limited resources of time, memory, and sample size.

1.1 Data Streams

Data Stream mining refers to informational structure extraction as models and

patterns from continuous data streams. Data Streams have different challenges in
many aspects, such as computational, storage, querying and mining. Based on last
researches, because of data stream requirements, it is necessary to design new
techniques to replace the old ones. Traditional methods would require the data to be
first stored and then processed off-line using complex algorithms that make several
pass over the data, but data stream is infinite and data generates with high rates, so it
is impossible to store it [12].

 Data from sensors like weather stations is an example of fixed-sized data, whereas
again, market basket data are an example of variable size data, because each basket
contains a different number of items. By contrast, sensor measurements have a fixed
size, as each set of measurements contains a fixed set of dimensions, like temperature,
precipitation, etc.

A typical approach for dealing is based on the use of so-called sliding windows.

The algorithm keeps a window of size W containing the last W data items that have
arrived (say, in the last W time steps). When a new item arrives, the oldest element in
the window is deleted to make place for it. The summary of the Data Stream is at
every moment computed or rebuilt from the data in the window only. If W is of
moderate size, this essentially takes care of the requirement to use low memory. The
type of objects i.e. windows in a stream impacts the way the data stream is processed.
This is due to two facts: We have to handle windows of different types differently,

and we are able to tailor the processing to the specific properties of the objects.
Hence, for our focus, interesting properties are the size of the windows, what
information the objects represent and how they relate to other windows in the stream.

2 Related Work

Recently proposed mining approaches for event logs have often been based on
some well-known algorithm for mining frequent itemsets (like Apriori or
FPgrowth).In this section we will discuss the frequent itemset mining problem and
prominent algorithms for finding optimistic solution in addressing this problem.

The sliding window method processes the incoming stream data transaction by
transaction. Each time when a new transaction is inserted into the window, the

itemsets contained in that transaction are updated into the data structure
incrementally. Next, the oldest transaction in the original window is dropped out, and

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

3

the effect of those itemsets contained in it is also deleted. The sliding window method
[4] also has a periodical operation to prune away unpromising itemsets from its data
structure, and the frequent itemsets are output as mining result whenever a user
requests.

Two types of sliding widow, i.e., transaction- sensitive sliding window and time-
sensitive sliding window, are used in mining data streams[1][2]. The basic processing

unit of window sliding of first type is an expired transaction while the basic unit of
window sliding of second one is a time unit, such as a minute or an hour. In the
damped window model, recent sliding windows are more important than previous
ones.

As long as the window size is reasonably large, and the conceptual drifts in the
stream is not too dramatic, most itemsets do not change their status (from frequent to

non frequent or from non-frequent to frequent).[18] In other words, the effects of
transactions moving in and out of a window offset each other and usually do not cause
change of status of many involved nodes.

To find frequent itemsets on a data stream, we maintain a data structure that
models the current frequent itemsets. We update the data structure incrementally. The
combinatorial explosion problem of mining frequent itemsets becomes even more

serious in the streaming environment. As a result, on the one hand, we cannot afford
keeping track of all itemsets or even frequent itemsets, because of time and space
constraints. On the other hand, any omission (for instance, maintaining only M, C, or
F instead of all itemsets) may prevent us from discovering future frequent itemsets.
Thus, the challenge lies in designing a compact data structure which does not lose
information of any frequent itemset over a sliding window.

3 Problem Description

Let I = {i1,..., in} be a set of items. If X _ I, X is called an itemset, and if |X| = k, X

is also called a k-itemset. A transaction is a tuple T = (tid, X) where tid is a
transaction identifier and X is an itemset. A transaction database D is a set of
transactions, and the cover of an itemset X is the set of identifiers of transactions that
contain X: cover(X) = {tid | (tid, Y) _ D, X _ Y}. The support of an itemset X is
defined as the number of elements in its cover: supp(X) = |cover(X)|. The task of
mining frequent itemsets is formulated as follows – given the transaction database D
and the support threshold s, find itemsets {X | supp(X) _ s} and their supports [13]

(each such set is called a frequent itemset).

 A specific point in time is modeled as the number of base time units that have
elapsed since the epoch. We denote points in time with t, or ti if we want to
distinguish several points in time. From the base time unit, other time units with
coarser granularities can be composed[17] .Let I = {x1, x2, …, xz} be a set of items

(or attributes). An itemset (or a pattern) X is a subset of I and written as X =xi xj…xm.

The length (i.e., number of items) of an itemset X is denoted by |X|. A transaction, T,

is an itemset and T supports an itemset, X, if X⊆ T.

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

4

A transactional data stream is a sequence of continuously incoming transactions. A
segment, S, is a sequence of various number of transactions, and the size of S is
indicated by s. A window, W, in the stream is a set of successive w transactions,

where w ≥ s. A sliding window in the stream is a window of different number of

most recent w transactions which slides forward for every transaction or every
segment of transactions. We adopt the notation IL to denote all the itemsets of length l
together with their respective counts in a set of transactions (e.g., over W or S). In
addition, we use Tn and Sn to denote the latest transaction and segment in the current
window, respectively. Thus, the current window is either W = < Tn-w+1, …, Tn > or

W = < Sn-m+1, …, Sn >, where w and m denote the size of W and the number of
segments in W, respectively.

Given a data stream in which every incoming transaction has its items arranged in
order, and a changeable value of ms specified by the user, the problem of mining FIs
over a sliding window in the stream is to find out the set of frequent itemsets over the
window at different slides.

We remark that most of the existing stream mining methods[3] [5] [9] work with a
basic hypothesis that they know the user-specified ms in advance, and this parameter
will remain un changed all the time before the stream terminates. This hypothesis
may be unreasonable, since in general, a user may wish to tune the value of ms each
time he/she makes a query for the purpose of obtaining a more preferable mining
result.

Apart from the type of data in the stream, one important property of the data stream
is the stream rate. It can be measured in objects per time unit, like objects per minute
or per hour. Another possible measure is the amount of data per time unit. This
measure is especially useful in settings with objects of variable size. Taking the size
of the objects into account is more accurate in such a setting, because it better reflects
the actual load of the data stream processing system

.

4 Multiple Segments For Handling Streams

The transaction-by-transaction sliding of a window leads to excessively high
frequency of processing. In addition, since the transit of a data stream is usually at a

high speed, and the impact of one single transaction to the entire set of transactions
(in the current window) is very negligible, making it reasonable to handle the window
sliding in a wider magnitude.[20] Therefore, for an incoming transactional data
stream to be mined, we propose to process on a segment-oriented window sliding. We
conceptually divide the sliding window further into several, say, m, segments.

Each of the m segments contains a set of successive transactions and is of the

different size s (i.e., contains the number of s transactions). Besides, n each segment,
the summary of transactions belonging to that segment is stored in the data structure.
Multiple segments can be used for storing the transactions. Thus, even if various size
of windows w will be coming, it can be easily handled by the segments.

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

5

By taking this segment-based manner of sliding, each time when a segment in-out
operation occurs, we delete (or drop out) the earliest segment, which contains the
summary of transactions of that segment, from the current window at each sliding. As
a result, we need not to maintain the whole transactions within the current window in
memory all along to support window sliding.

In addition, we remark that the parameter m directly affects the consumption of

memory. A larger value of m means the window will slide (update) more frequently,
while the increasing overhead of memory space is also considerable. Let us consider
the following example. The first group of itemsets that needs to be restored contains
those k-itemsets that have the same (k − 1)-prefix as some itemset in the current
frequent set.

Consider then in pass k, an itemset X in the Multiple Segments (MS) and an itemset
Y in the current frequent set such that |X| > k. Suppose that the first k − 1 items of Y

are in X and the (k − 1)st item of Y is equal to the j th item of X. We obtain the k-
subsets of X that have the same (k −1)-prefix as Y by taking one item of X that has an
index greater than j and combining it with the first k−1 items of Y , thus getting one of
these k-subsets. After these k-itemsets are found, we recover candidates by combining
them with itemset Y.

Algorithm: The retrieving procedure

Input: Ck+1 from join procedure, Lk, and current MS

Output: a complete transaction set Tk+1

1. for all itemsets l in Lk

2. for all itemsets m in MS

3. if the first k − 1 items in l are also in m

4. /* suppose m.itemj= l.itemk− 1 */

5. for i from j + 1 to |m|

6. Tk+1 := Tk+1 ∪ {{l.item1, l.item2,…, l.itemk, m.itemi}}

There are four possible cases when we combine two frequent k-itemsets, say I and
J, which have the same (k − 1)-prefix, to generate a (k + 1)-itemset as a new

preliminary candidate. In this proof, we will show that, even though that we remove
the subsets of the MS from the current frequent set, our new candidate generation
algorithm will handle all these cases correctly

Algorithm: The Multiple Segment algorithm

Input: a database and a user-defined minimum support

Output: MS which contains all maximal frequent itemsets

1. L0 := ∅ ; k := 1; T1 := {{i} | i ∈ I }

2. FCS: = {{1, 2, . . . , n}}; MS: = ∅

3. while Tk ≠ ∅

4. read data streams and count supports for Tk and MS

5. remove frequent itemsets from FCS and add them to MS

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

6

6. Lk := {frequent itemsets in Tk} \ {subsets of MS}

7. Sk := {infrequent itemsets in Tk}

8. Call the FCS-gen algorithm if Sk≠ ∅

9. call the join procedure to generate Tk+1

10. if any frequent itemset in Tk is removed in line 6

11. call retrieving procedure to recover transactional

 itemsets Tk+1

12. k := k + 1

13. end-while

14. return MS

Theorem 1 The Multiple Segment algorithm generates all frequent itemsets over
data streams.

Proof: The Multiple Segment Algorithm will explicitly or implicitly discover all
frequent itemsets. Therefore, the Multiple Segment algorithm generates frequent
itemsets. Maintaining all the data streams in the main memory requires too much
space. So we have to store only relevant itemsets and drop itemsets when the tail-

dropping condition holds.
When all windows of different sizes frequent itemsets are dropped the entire itemset
is dropped from segments. As the result of the tail-dropping we no longer have an
exact support over L, rather an approximate support. Now let us denote supportL(X)
the frequency of the itemset X in all batches and supportL’(X) the approximate
frequency. With ε <<σ this approximation is assured to be less than the actual

frequency according to the following inequality’s in [3]: SupprtL(X) −ε L ≤
SupportL’(X) ≤ SupportL(X)

5 Experimental Results

We evaluate the performance of our MS algorithm by varying the usage of the
memory space. We also analyze the execution time. The simulation is performed in
Visual C++ and conducted in a machine with a 3GHz CPU and 1GB memory. We use
two sets of synthetic databases from an IBM Quest data generator.

The following figures illustrates some of the parameters that we have controlled:
the size of the sliding window 10K, the average size of the transaction T, the average
size of the frequent itemsets I and we randomly generate the weight of each item in

transaction, ranging from 0.2 to 0.8. Synthetic dataset T10I4D100K denotes the
average size of the transactions and I the average number of frequent itemsets.

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

7

 Fig.1 Compare execution time between FCS and MS T10I4D100K

In this experiment, we examine the execution time and memory usage between MS

and FCS Frequent Candidate Set by dataset T10I4D100K. In Fig. 1, we can see that
the execution time incurred by MS is quite steady and is shorter than that of FCS. The
experiment shows that MS performs more efficiently than FCS. In Fig. 2, the memory
usage of MS is more stable and smaller than that of FCS. This is because MS delete a

lot of common nodes between various regions does not need to search these spaces
for some computations and enumerate all subsets of each incoming transaction. The
amount of all subsets is an enormous exponential number for long transaction. Hence,
it shows that SFIDS is more suitable for mining frequent itemsets in data streams.

 Fig. 2 Compare space consumption between FCS and MS T10I4D100K.

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

8

5 Conclusions

In this paper, a structure was designed to dynamically maintain the up to date
contents of data streams by scanning it only once, and a new method MS was
proposed to mine the frequent patterns in a sliding window. This method could
answer a request with no false negative. We study the problem of mining frequent

itemsets over the sliding window of a transactional data stream.
Based on applying the theory of Multiple Segments for varying different windows,

we devise and propose an algorithm called MS finding frequent itemsets over data
streams. It conceptually divides the sliding window into segments and handles the
sliding of window in a segment-based manner. According to the experimental results,
MS is quite efficient and possesses good scalability with varying minimum support
threshold. Extensive experimental results show that MS decrease required time for

processing batches and amount of memory for storing history of data.
We compare our algorithm with FCS algorithm and show that MS perform better

than FCS in various conditions. The main contributions on evolving data streams are
giving a unified framework for data mining with time change detection with varying
length of windows. Experiments show that the proposed algorithm not only attain
highly accurate mining results, but also run significant faster and consume less

memory than existing algorithms for mining frequent itemsets over online data
streams.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of

Items in Large Databases. In Proceedings of the 1993 International Conference on

Management of Data, pp. 207-216, 1993.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proceedings

of the 20th International Conference on Very Large Data Bases, pp. 487-499, 1994

3. M.N. Garofalakis, J. Gehrke, & R. Rastogi, Querying and mining data streams: you only

get one look (A Tutorial), Proc. 2002 ACM SIGMOD Conf. on Management of Data,
Madison, Wisconsin, 2002, p. 635.

4. J.H. Chang & W.S. Lee, “A sliding window method for finding recently frequent itemsets

over online data streams‟, Journal of Information Science and Engineering, 20(4), 2004,
pp. 753–762

5. Y. Zhu & D. Shasha, “Stat Stream: statistical monitoring of thousands of data streams in

real time”, Proc. 28th Conf. on Very Large Data Bases, Hong Kong, China, 2002, pp.
358–369.

6. G.S. Manku & R. Motwani, “Approximate frequency counts over data streams”, Proc.
28th Conf. on Very Large Data Bases, Hong Kong, China, 2002, pp. 346–357.

7. J.H. Chang & W.S. Lee, “A sliding window method for finding recently frequent itemsets
over online data streams”, Journal of Information science and Engineering, 20(4), 2004,

pp. 753–762.

8. J. Cheng, Y. Ke, & W. Ng,” Maintaining frequent itemsets over high-speed data streams”,

Proc. 10th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, Singapore,
2006, pp.462–467.

IJCES International Journal of Computer Engineering Science ,

Volume 2 Issue 2 ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal http://www.ijces.com/

9

9. C.K.-S. Leung & Q.I. Khan, “DSTree: a tree structure for the mining of frequent sets from

data streams,” Proc. 6th IEEE Conf. on Data Mining, Hong Kong, China, 2006, pp. 928–

932.

10. Y. Chi, H. Wang, P.S. Yu, & R.R. Muntz, “Moment: maintaining closed frequent itemsets

over a stream sliding window”, Proc. 4th IEEE Conf. on Data Mining, Brighton, UK,
2004, pp. 59–66.

11. K.-F. Jea & C.-W. Li, “Discovering frequent itemsets over transactional data streams

through an efficient and stable approximate approach, Expert Systems with Applications”,
36(10), 2009, pp. 12323–12331.

12. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proceedings

of the 20th International Conference, was supported in part by the National Science
Council in 2006.

13. F. Bodon, “A fast APRIORI implementation”, Proc. ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI‟03), 2003.

14. Risto Vaarandi, “Tools and Techniques for Event Log Analysis”. In SIGMOD Record,

Vol. 35, No. 1, June 2005.

15. Frequent Itemset Mining Implementations Repository (FIMI). Available:

http://fimi.cs.helsinki.fi/

16. Mahnoosh Kholghi, Mohammadreza Keyvanpour, “An Analytical Framework for Data

Stream Mining Techniques Based on Challenges and Requirements”, International Journal
of Engineering Science and Technology (IJEST) ISSN: 0975-5462 Vol. 3 No. 3 Mar 2011.

17. N. Jiang & L. Gruenwald, “CFI-Stream: mining closed frequent Itemsets in data streams”,

Proc. 12th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, Philadelphia,
PA,USA, 2006, pp. 592–597.

18. Quest Data Mining Synthetic Data Generation Code. Available:

http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.ht
ml

19. H.F Li, S.Y. Lee, M.K. Shan, “An Efficient Algorithm for Mining Frequent Itemsets over
the Entire History of Data Streams”, In Proceedings of First International Workshop on

Knowledge Discovery in Data Streams 9IWKDDS, 2004.

20. P. Indyk, D. Woodruff, “Optimal approximations of the frequency moments of data

streams”, Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pp.202–208, 2005

http://fimi.cs.helsinki.fi/
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.html
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/datasets/syndata.html

