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Abstract

Scalar and vector fields are coupled in a gauge invariant man-
ner, such as to form massive vector fields. The nonlinear equa-
tions of motion admit transverse and longitudinal solutions. These
are shown to conserve energy and momentum. The mass ratio
mW /mZ is determined.
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1. Introduction

The U(1) model of scalar electrodynamics has been used to create massive
photons. However, it was only with the advent of electroweak theory that the
weak constants, g and g′, were thought to play a similar role. In this paper,
the weak coupling between scalar and vector fields is shown to generate
mass. The coupling terms occur in the standard electroweak Lagrangian.
They give rise to nonlinear equations of motion. Transverse and longitudinal
solutions are found for the W± and Z0 bosons. Total energy and momentum
are shown to be conserved. The mass ratio mW /mZ emerges, during the
course of this calculation.

The paper begins by revisiting (and revising) the U(1) model. Most of
the analysis carries over to the electroweak theory.

2. U(1): Equations of Motion

The U(1) Lagrangian is

L = L(A) + L(Φ) + L(k2) (1)

where

L(A) = −1

4
FµνF

µν (2)

L(Φ) = gµν(DµΦ)∗(DνΦ) (3)

L(k2) = − k2

6g2
gµνkµkν (4)

The constant term L(k2) does not enter the field equations, but it will
contribute to the energy tensor. The U(1) covariant derivatives are

Fµν = ∂µAν − ∂νAµ (5)

DµΦ = ∂µΦ + igAµΦ (6)

The functional derivatives are

∂L

∂(∂µAν)
= −Fµν (7)
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∂L

∂Aν
= 2g2AνΦ∗Φ + ig{(∂νΦ∗)Φ− Φ∗∂νΦ} (8)

∂L

∂(∂µΦ∗)
= ∂µΦ + igAµΦ (9)

∂L

∂Φ∗
= g2AµA

µΦ− igAµ∂µΦ (10)

The equations of motion for the vector field are

−∂µFµν = 2g2AνΦ∗Φ + ig{(∂νΦ∗)Φ− Φ∗∂νΦ} (11)

while for the scalar field

∂µ∂
µΦ = g2AµA

µΦ− ig{(∂µAµ)Φ + 2Aµ∂µΦ} (12)

The U(1) gauge invariance allows the transformation

Φ =
1√
2

(φ+ iψ) −→ 1√
2
φ (13)

where φ(x) is a real function.[1] In this unitary gauge, the equations of
motion become

∂µF
µν + g2Aνφ2 = 0 (14)

∂µ∂
µφ− g2AµAµφ = 0 (15)

(∂µA
µ)φ+ 2Aµ∂µφ = 0 (16)

Since ∂µ∂νF
µν ≡ 0, it follows from (14) that

∂µ(Aµφ2) = 0 (17)

which agrees with (16). These equations admit traveling solutions, if Aµ is
a polarized vector. In this case,

Aµ(u) = εµf(u) (18)

where the argument u = −kµxµ, and εµ is a real polarization vector. 1 Such
vectors satisfy

∂µA
µ(u) = −kµεµ

df(u)

du
= 0 (19)

1Throughout this paper, u = −kµx
µ = (k · x− k0x0) and k2 = kµk

µ = (k0)2 − k2.
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since kµε
µ = 0. From (16), it must also be true that

Aµ∂µφ = 0 (20)

This condition is satisfied, if φ = φ(u)

Aµ∂µφ = −kµεµf(u)
dφ

du
= 0 (21)

Polarization vectors are space-like, εµε
µ = −1, so that

AµA
µ = −f2(u) (22)

Therefore, both equations (14) and (15) will be satisfied, if f(u) = φ(u) and

∂µ∂
µφ(u) + g2φ3(u) = 0 (23)

This equation, known as the cubic wave equation, is solved by the elliptic
function cn(u, 12) (appendix A)

φ(u) =
k

g
cn(−kµxµ) (24)

The amplitude of this traveling wave is not arbitrary, but is fixed by the
value of k/g.

3. U(1): Energy and Momentum

The energy tensor for the vector field is

Tµν(A) = FµηF
η
ν +

1

4
gµνFηρF

ηρ (25)

with energy and momentum densities

T00(A) =
1

2

{
F 2
01 + F 2

02 + F 2
03 + F 2

23 + F 2
31 + F 2

12

}
(26)

T0i(A) = F01Fi1 + F02Fi2 + F03Fi3 (27)

For the real scalar field

Tµν(φ) = ∂µφ∂νφ+ g2AµAνφ
2 − gµνL(φ) (28)

The energy and momentum densities are
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T00(φ) =
1

2

{
(∂0φ)2 + (∇φ)2 + g2[(A0)

2 + A2]φ2
}

(29)

T0i(φ) = ∂0φ∂iφ+ g2A0Ai φ
2 (30)

The constant term L(k2) contributes

Tµν(k2) = − k2

3g2
(kµkν −

1

2
gµνk

2) (31)

so that

T00(k
2) = − k2

6g2
(k20 + k2) (32)

T0i(k
2) = − k2

3g2
k0ki (33)

The following formulas occur repeatedly in the calculations and are placed
here for reference (app. A):

φ2 =
k2

g2
cn2(u) (34)

(φ′)2 =
k2

2g2

{
1− cn4(u)

}
(35)

(a) Transverse polarization
For plane waves moving along the x3-axis, kµ = (k0, k3), and the linear

polarization vectors are

εµ1 =


0
1
0
0

 εµ2 =


0
0
1
0

 (36)

If the polarization is along x1, then Aµ = εµ1 φ(u) has the single component
A1 = φ(u). In this case, the energy contributions are

T00(A) =
1

2
(∂0A1)

2 +
1

2
(∂3A1)

2 =
k20 + k23

2
(φ′)2

=
k2

2g2
k20 + k23

2

{
1− cn4(u)

}
(37)
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T00(φ) =
1

2

{
(∂0φ)2 + (∂3φ)2 + g2A2

1φ
2
}

=
k2

2g2

{k20 + k23
2
{1− cn4(u)}+ (k20 − k23)cn4(u)

}
(38)

T00(k
2) = − k2

2g2
k20 + k23

3
(39)

Similarly, the momentum contributions are

T03(A) = ∂0A1 ∂3A1 =
k2

2g2
k0k3{1− cn4(u)} (40)

T03(φ) = ∂0φ∂3φ =
k2

2g2
k0k3{1− cn4(u)} (41)

T03(k
2) = − k2

2g2
2

3
k0k3 (42)

Sum the energy and momentum contributions to find

T00 =
k2

2g2

{2

3
(k20 + k23)− 2k23 cn4(u)

}
(43)

T03 =
k2

2g2
k0k3

{4

3
− 2 cn4(u)

}
(44)

The energy and momentum integrations may be performed, with the
introduction of the volume element l3 dV/V. In order to arrive at the correct
quantum expressions, the integrals must be independent of the ratio k2/g2.
This factor is eliminated by setting

l3

V
dV =

3π

2K

g2

k2k0V
dV (45)

The integrals are

E =
3π

2K

g2

k2k0V

∫
T 0
0 dV

=
3π

2K

h̄c

2k0V

∫ {2

3
(k20 + k23)− 2k23 cn4(u)

}
dV (46)

cp3 =
3π

2K

g2

k2k0V

∫
T 3
0 dV

=
3π

2K

h̄c

2k0V

∫
k0k

3
{4

3
− 2 cn4(u)

}
dV (47)
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The elliptic function cn(u, 12) admits the integral (app. A)∫
cn4(u) du =

u

3
+

2

3
sn(u)cn(u)dn(u) + constant (48)

Over one period,

1

4K

∫ 4K

0
cn4(u) du =

1

3
(49)

Therefore, the energy and momentum are constants of the motion

E =
π

2K
h̄ck0 = h̄ω (50)

cp3 =
π

2K
h̄ck3 = h̄c

2π

λ
(51)

(b) Longitudinal polarization
In this case, Aµ(u) = εµ φ(u) is expressed in terms of the zero-helicity

vector

εµ(0) =
1

k


k3

0
0
k0

 (52)

Aµ has two components (A0, A3) = (k3, k0)k−1φ(u). The contributions to
the energy density are

T00(A) =
1

2
(∂0A3 − ∂3A0)

2 =
k2

2g2
k20 − k23

2

{
1− cn4(u)

}
(53)

T00(φ) =
1

2

{
(∂0φ)2 + (∂3φ)2 + g2(A2

0 +A2
3)φ

2
}

=
k2

2g2
k20 + k23

2

{
1 + cn4(u)

}
(54)

T00(k
2) = − k2

2g2
k20 + k23

3
(55)

while those for the momentum are

T03(A) = 0 (56)
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T03(φ) = ∂0φ∂3φ+ g2A0A3 φ
2 =

k2

2g2
k0k3

{
1 + cn4(u)

}
(57)

T03(k
2) = − k2

2g2
2

3
k0k3 (58)

Sum terms to find

T00 =
k2

2g2

{2

3
k20 −

1

3
k23 + k23 cn4(u)

}
(59)

T03 =
k2

2g2
k0k3

{1

3
+ cn4(u)

}
(60)

The energy and momentum integrals are

E =
3π

2K

g2

k2k0V

∫
T 0
0 dV

=
3π

2K

h̄c

2k0V

∫ {2

3
k20 −

1

3
k23 + k23cn4(u)

}
dV

=
π

2K
h̄ck0 = h̄ω (61)

cp3 =
3π

2K

g2

k2k0V

∫
T 3
0 dV

=
3π

2K

h̄c

2k0V

∫
k0k

3
{1

3
+ cn4(u)

}
dV

=
π

2K
h̄ck3 = h̄c

2π

λ
(62)

4. U(1) ⊗ SU(2)L : Field Equations; Energy Tensors

The Lagrangian is given by

L = L(W ) + L(B) + L(Φ) + L(k2) + L(leptons) (63)

The lepton term contains the electroweak interaction and will be set aside.
The focus is upon the coupling between vector and scalar fields. The covari-
ant derivatives are [2]

Gµν(W ) = ∂µ(W i
νT

i)− ∂ν(W i
µT

i) + gΣijkεijkW
i
µW

j
νT

k (64)

Fµν(B) = ∂µBν − ∂νBµ (65)
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DµΦ =
{
∂µ + ig T iW i

µ + ig′
Y

2
Bµ
}

Φ

=
{
∂µ + ig

τ i

2
W i
µ + ig′

1

2
Bµ
}(φ+

φ0

)
(66)

The final term in Gµν(W ) yields third- and fourth-order vector boson inter-
actions and will also be ignored.[3] This leaves

L(W ) + L(B) = −1

2
Tr Gµν(W )Gµν(W )− 1

4
Fµν(B)Fµν(B)

= −1

4

{
Fµν(A)Fµν(A) + Fµν(Z)Fµν(Z)

+Fµν(W 1)Fµν(W 1) + Fµν(W 2)Fµν(W 2)
}

(67)

where

W 3
µ =

g′√
g2 + g′2

Aµ +
g√

g2 + g′2
Zµ = sin θAµ + cos θZµ (68)

Bµ =
g√

g2 + g′2
Aµ −

g′√
g2 + g′2

Zµ = cos θAµ − sin θZµ (69)

The charged bosons W±µ = (W 1
µ ∓ iW 2

µ)/
√

2 are expressed in terms of the
real fields W 1

µ and W 2
µ .

The expansion of

L(Φ) = gµν(DµΦ)†DνΦ) (70)

is carried out in appendix B, where the functional derivatives are also found.
Before writing the equations of motion, the scalar field is transformed to
unitary gauge

Φ =

(
φ+

φ0

)
−→

(
0

φ/
√

2

)
(71)

where φ(x) is real. This greatly simplifies the functional derivatives

∂L

∂(∂µAν)
= −Fµν(A)

∂L

∂Aν
= 0 (72)

∂L

∂(∂µZν)
= −Fµν(Z)

∂L

∂Zν
=

1

4
(g2 + g′2)Zνφ2 (73)

∂L

∂(∂µWν)
= −Fµν(W )

∂L

∂Wν
=

1

4
g2W νφ2 (74)
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where Wν is either W 1
ν or W 2

ν . The equations of motion for the vector fields
are

−∂µFµν(A) = 0 (75)

−∂µFµν(Z) =
1

4
(g2 + g′2)Zνφ2 (76)

−∂µFµν(W ) =
1

4
g2W νφ2 (77)

Since ∂µ∂νF
µν ≡ 0, these equations yield

∂ν(Zνφ2) = ∂ν(W νφ2) = 0 (78)

For the scalar field,

∂L

∂(∂µφ0∗)
= ∂µφ0 − i

2

√
g2 + g′2 Zµφ0 (79)

∂L

∂φ0∗
=

i

2

√
g2 + g′2 Zµ∂µφ

0 +
g2

2
W−µW+

µ φ
0 +

1

4
(g2 + g′2)ZµZµφ

0

(80)

∂L

∂(∂µφ+∗)
=

i√
2
gW+µφ0 (81)

∂L

∂φ+∗
= − i√

2
gW+µ∂µφ

0 + (eAµ − g′ sin θZµ)
1√
2
gW+

µ φ
0 (82)

The equations of motion are (φ0 = φ/
√

2)

∂µ∂
µφ− 1

4
g2W 1µW 1

µ φ−
1

4
g2W 2µW 2

µ φ−
1

4
(g2 + g′2)ZµZµ φ = 0 (83)

and

(eAµ − g′ sin θZµ) gW+
µ φ = 0 (84)

where (78) has been used. The vector fields couple individually with φ, so
that (84) will be satisfied.

The energy tensors are much the same as for U(1). Each vector field
Aµ, W

1
µ , W

2
µ , Zµ contributes

Tµν = FµηF
η
ν +

1

4
gµνFηρF

ηρ (85)
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The scalar Lagrangian

L(φ) =
1

2
gµν

{
∂µφ∂νφ+

1

4
g2(W 1

µW
1
ν +W 2

µW
2
ν )φ2+

1

4
(g2+g′2)ZµZνφ

2
}

(86)

contributes

Tµν(φ) = ∂µφ∂νφ+
1

4
g2(W 1

µW
1
ν +W 2

µW
2
ν )φ2 +

1

4
(g2 +g′2)ZµZνφ

2−gµνL(φ)

(87)
The constant term is treated in the following section.

5. The W± and Z0 Bosons

The coupling of W± with the scalar field is described by the equations

∂µF
µν(W ) +

1

4
g2W νφ2 = 0 (88)

∂µ∂
µφ− 1

4
g2WµW

µφ = 0 (89)

where ∂µW
µ = Wµ∂µφ = 0. These equations are identical to those of U(1),

(14) and (15), with the replacement g −→ g/2. The solutions are polarized,
Wµ(u) = εµ φ(u), where

φ(u) =
2kW
g

cn(−kµxµ) (90)

Similarly, the coupling of Z0 is described by

∂µF
µν(Z) +

1

4
(g2 + g′2)Zνφ2 = 0 (91)

∂µ∂
µφ− 1

4
(g2 + g′2)ZµZ

µφ = 0 (92)

The solutions are Zµ(u) = εµ φ(u), where

φ(u) =
2kZ√
g2 + g′2

cn(−kµxµ) (93)

The calculations of T00 and T03 proceed as in the example of U(1).
The replacement g −→ g/2 is required for W± and g −→

√
g2 + g′2/2
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for Z0. However, before integration can occur, the two factors k2W /g
2 and

k2Z/(g
2 + g′2) must be eliminated. This is possible only if they are equal

k2W
g2

=
k2Z

g2 + g′2
(94)

In this case, the volume element is uniquely defined (compare (45))

l3

V
dV =

3π

8K

g2

k2Wk
0V

dV =
3π

8K

(g2 + g′2)

k2Zk
0V

dV (95)

Integration for W± and Z0 may now go forward as in U(1). 2 The integrals
for transverse and longitudinal fields all assume the form

E =
l3

V

∫
T 0
0 dV = h̄ω (96)

cp3 =
l3

V

∫
T 3
0 dV = h̄c

2π

λ
(97)

showing that the energy and momentum are conserved.

6. Concluding Remarks

The coupling theory is made tractable, with the choice of unitary gauge.
This resembles the choice of Coulomb gauge in electrodynamics, in that
the gauge invariance is no longer manifest. However, in the present case,
the unitary gauge eliminates the scalar currents, leaving direct nonlinear
coupling between the real scalar and vector fields. The equations of motion
yield both transverse and longitudinal solutions, indicating the presence of
mass.

In the U(1) model, scalar-vector coupling generates a single massive
vector field, while in the electroweak theory there are two, the W± and Z0.
They satisfy relation (94), yielding the mass ratio

2Moreover, the constant terms are identical

Tµν(k
2) = −4

3

k2
W

g2
(kµkν −

1

2
gµνk

2)

= −4

3

k2
Z

g2 + g′2
(kµkν −

1

2
gµνk

2)
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mW

mZ
=
kW
kZ

=
g√

g2 + g′2
(98)

Finally, the constant term in the energy tensor Tµν(k2) has been intro-
duced out of necessity. Without it, the energy and momentum would not
satisfy the relation c2p = E v, as they must; the work would simply be
incomplete.

Appendix A. Elliptic Functions [4, 5]

The elliptic functions sn(u,m), cn(u,m), and dn(u,m) satisfy

sn2(u,m) + cn2(u,m) = 1 (99)

dn(u,m) =
√

1−m sn2(u,m) (100)

Their derivatives are

d sn(u,m)

du
= cn(u,m)dn(u,m) (101)

d cn(u,m)

du
= −sn(u,m)dn(u,m) (102)

ddn(u,m)

du
= −m sn(u,m)cn(u,m) (103)

In particular,

d2cn(u,m)

du2
= −cn(u)dn2(u) +m sn2(u)cn(u)

= (2m− 1) cn(u)− 2m cn3(u) (104)

If the parameter m = 1
2 , then

d2cn(u, 12)

du2
= −cn3(u,

1

2
) (105)

Substitute φ(u) = a cn(u, 12) into the differential equation

d2φ(u)

du2
+ λφ3(u) = 0 (106)
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to find

−a cn3(u,
1

2
) + λa3cn3(u,

1

2
) = 0 (107)

The equation is satisfied if a2 = 1/λ

φ(u) =

√
1

λ
cn(u,

1

2
) (108)

The physical equation (23) yields

kµk
µ d

2φ(u)

du2
+ g2φ3(u) = 0 (109)

This equation is satisfied by (108) if λ = g2/k2

φ(u) =
k

g
cn(−kµxµ) (110)

The elliptic functions, with m = 1
2 , satisfy two useful identities. The

first is

(d cn(u)

du

)2
= sn2(u)dn2(u) =

1

2
{1− cn4(u)} (111)

The second identity is

d

du
{sn(u)cn(u)dn(u)} =

1

2
{3 cn4(u)− 1} (112)

and it follows that∫
cn4(u) du =

u

3
+

2

3
sn(u)cn(u)dn(u) + constant (113)

The period of the elliptic function is 4K. (If m = 1
2 , then K

.
= 1.85.)

Therefore, for motion along the x3-axis

cn(−kµxµ) = cn(k3x3 − k0x0) = cn 4K
(x3
λ
− t

T

)
(114)

It follows that

ck0 =
4K

T
=

2K

π
2πf =

2K

π
ω (115)

k3 =
4K

λ
=

2K

π

2π

λ
(116)
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and

E = h̄ω =
π

2K
h̄ck0 (117)

cp3 = h̄c
2π

λ
=

π

2K
h̄ck3 (118)

Appendix B. Scalar Lagrangian

(a) Lagrangian

L(Φ) = gµν(DµΦ)†(DνΦ)

= ∂µφ+∗∂µφ
+ + ∂µφ0∗∂µφ

0

+
{

[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ]2 +

1

2
g2W+µW−µ

}
φ+∗φ+

+[eAµ − g′ sin θ Zµ]
{ g√

2
W+
µ φ

+∗φ0 +
g√
2
W−µ φ

0∗φ+
}

+
{1

2
g2W−µW+

µ +
1

4
(g2 + g′2)ZµZµ

}
φ0∗φ0

−i[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ](φ+∗∂µφ

+ − ∂µφ+∗φ+)

− i√
2
gW−µ(φ0∗∂µφ

+ − ∂µφ0∗φ+)− i√
2
gW+µ(φ+∗∂µφ

0 − ∂µφ+∗φ0)

+
i

2

√
g2 + g′2 Zµ(φ0∗∂µφ

0 − ∂µφ0∗φ0) (119)

(b) Functional derivatives

∂L

∂(∂µφ0∗)
= ∂µφ0 +

i√
2
gW−µφ+ − i

2

√
g2 + g′2Zµφ0 (120)

∂L

∂φ0∗
= − i√

2
gW−µ∂µφ

+ +
i

2

√
g2 + g′2Zµ∂µφ

0

+[eAµ − g′ sin θ Zµ]
1√
2
gW−µ φ

+

+
1

2
g2W−µW+

µ φ
0 +

1

4
(g2 + g′2)ZµZµφ

0 (121)

and

∂L

∂(∂µφ+∗)
= ∂µφ+ + i[eAµ +

1

2
(g cos θ − g′ sin θ)Zµ]φ+ +

i√
2
gW+µφ0 (122)
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∂L

∂φ+∗
= −i[eAµ +

1

2
(g cos θ − g′ sin θ)Zµ]∂µφ

+ +
1

2
g2W+µW−µ φ

+

+[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ]2φ+

+[eAµ − g′ sin θ Zµ]
1√
2
gW+

µ φ
0 − i√

2
gW+µ∂µφ

0 (123)
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