
Gluon Confinement in Yang-Mills Magnetic Monopoles 
 

This brief two-page paper points out a symmetry property of Yang-Mills magnetic 
monopoles which makes them plausible baryon candidates.  We use the language of differential forms 
to do so, and will assume the reader has sufficient familiarity with differential forms so that no tutorial 
explanations are required. 

 
In an Abelian (commuting field) gauge theory such as QED, the field strength tensor F is 

specified in relation to the vector potential gauge field (e.g., photon) A according to dAF = .  The 
magnetic monopole source density P is then specified classically (for high-action circumstances

( ) ( ) h>>= ∫ ϕϕ LxdS 4  where the Euler Lagrange equation may be applied) by 0=== ddAdFP .  

This makes use of the geometric law that the exterior derivative of an exterior derivative is zero, i.e., 

0=dd .  In integral form, this becomes 0===== ∫∫∫∫∫∫∫∫∫∫∫∫∫ dAFddGdFP .  All of the 

foregoing is what tells us that there are no magnetic monopoles in an Abelian gauge theory such as QED.  
This absence of magnetic monopole charges has been well borne out experimentally in the 140 or so 
years since as James Clerk Maxwell published his 1873 A Treatise on Electricity and Magnetism. 

 
In a non-Abelian (non-commuting field) Yang-Mills gauge theory such as (but not limited to) 

QCD, the fundamental difference is that the field strength tensor F is now specified in relation to the 
vector potential gauge field  G (e.g., gluon in QCD) according to 2iGdGF −= .  In this relationship, 

[ ] νµ
νµ dxdxGGG ,2 =  expresses the non-commuting nature of the gauge fields.  Therefore, although 

0=ddG  as always because of the exterior geometry, the classical (high-action) magnetic monopole 

density becomes ( ) 22 idGiGdGddFP −=−== , which is non-zero.  In integral form, using Gauss’ 
law, this becomes: 
 

( ) ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫ −=−==−=−== 2222 GiGidGFdGiiGdGddFP , (1) 

and from the last two terms in the above, we may also derive the companion equation: 
 

0=∫∫dG . (2) 

Of course, (2), albeit with the different field name, is just the relationship 0=∫∫dA  which tells us that 

there are non-magnetic monopoles in Abelian gauge theory.  But in light of (1), which provides us with a 

non-zero magnetic monopole 02 ≠−= ∫∫∫∫∫ GiP , what can we learn from (2), which is the Yang-Mills 

analogue to the Abelian “no magnetic monopole” relationship 0=∫∫dA ? 

 
 If we perform a local transformation dGFFF −=′→  on the field strength F,  which in terms 

of the field density tensor is written as ][' µνµνµνµν GFFF ∂−=→ , then in integral form we find from 

(1), as a direct and immediate result of the Abelian “no monopole” relationship 0=∫∫dG  in (2), that: 

 

( ) ∫∫∫∫∫∫∫∫∫∫∫ =−=′→= FdGFFFP . (3) 



This means that the flow of the field strength ∫∫∫∫ −= 2GiF  across a two dimensional surface is 

invariant under the local gauge-like transformation ][' µνµνµνµν GFFF ∂−=→ .  Now, we know that 

the invariance of the QED Lagrangian under the similar transformation Λ∂+=→ µµµµ AAA '  means 
that the gauge parameter Λ  is not a physical observable.  Similarly, the invariance of the gravitational 

Lagrangian under }{' νµµνµνµν Λ∂+=→ ggg  means that the gauge vector νΛ  is not a physical 

observable (and we know νΛ is in fact connected merely with a coordinate transformation 

)( νµµµµ xxxx Λ−=′→ ).  In this case, the invariance of ∫∫F  under the transformation 

][' µνµνµνµν GFFF ∂−=→  similarly tells us that the gauge field µG  is not an observable over the 

surface through which the field ∫∫∫∫ −= 2GiF  is flowing.  But µG  is simply the gauge field, which in 

QED, is the gluon field.  So, simply put: the Yang-Mills gauge fields Gµ (including gluons in SU(3)C ) are 
not observables across any closed surface surrounding a magnetic monopole density P.  Whatever goes on 

inside the volume represented by ∫∫∫P , the gauge fields remain confined. 

 
 Taking this a step further, we see that the origins of this gauge field confinement in fact lie in the 
140-year old mystery as to why there are no magnetic monopoles in Abelian gauge theory.  In differential 

forms language, the statement of this is 0=ddG .  In integral form, this becomes 0=∫∫dG , equation 

(2).  And, it is precisely this same “zero” which renders ∫∫∫∫∫∫ =′→ FFF  invariant under 

][' µνµνµνµν GFFF ∂−=→  in (3).  So the physical observation that there are no magnetic monopoles in 
Abelian gauge theory becomes translated into a symmetry condition in non-Abelian gauge theory that 
gauge boson flow is not an observable over the surface of a magnetic charge.  Again: In Abelian gauge 
theory there are no magnetic monopoles.  In non-Abelian theory, this Abelian absence of magnetic 
monopoles translates into there being no flow of gauge bosons (e.g., gluons) across any closed surface 
surrounding a Yang-Mills magnetic monopole.  Consequently, the absence of Abelian magnetic 
monopoles is fundamentally, organically equivalent to the absence of gluon flux, hence color, across 
surfaces surrounding non-Abelian chromo-magnetic monopoles.  And, because this is turn originates in 

0=dd , we see that this confinement is geometrically mandated.  This makes Yang-Mills magnetic 
monopoles plausible baryon candidates.  The very same “zero” which in Abelian gauge theory says that 
there are no magnetic monopoles, in non-Abelian gauge theory says that there is no observable flux of 
Yang-Mills gauge fields across a closed surface surrounding a Yang-Mills magnetic monopole.   
 

We do not find a free gluon (or other gauge field) in Yang-Mills gauge theory any more than we 
find an Abelian magnetic monopole in electrodynamics, for identical geometric reasons.  


