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* ABSTRACT: We give and interpretation of the Riemann Xi-function $(s) as the
quotient of two functional determinants of an Hermitian Hamiltonian 77 = ;' To get
the potential of this Hamiltonian we use the WKB method to approximate and evaluate

_ 2
the spectral Theta function () = z eXP(~1Y,) over the Riemann zeros on the

critical strip 0 <Re(s) <1. Using the WKB method we manage to get the potential

inside the Hamiltonian # , also we evaluate the functional determinant det(H + z°)

by means of Zeta regularization, we discuss the similarity of our method to the method
applied to get the Zeros of the Selberg Zeta function

* Keywords: = Riemann Hypothesis, Functional determinant, WKB semiclassical
Approximation , Trace formula ,Bolte’s law, Quantum chaos.

1. Riemann Zeta function and Selberg Zeta function

Let be a Riemann Surface with constant negative curvature and the modular
group PSL(2,R) , Selberg [14] studied the problem of the Laplacian
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These momenta £, are the non-trivial zeros of the Selberg Zeta function, which

can be defined by an Euler product over the Geodesic of the surface in an
analogy with the Riemann Zeta function
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Selberg also studied a Trace formula which relates the Zeros (momenta of the

1. :
Laplacian A) on the critical line Z Slgﬂk,, ﬁ= 0 and the length of the Geodesic of
the Surface in the form

In N(P)
- N(P)l/z _N(P)Uz

> h (k)-“( ) ( J’dkkh(k)tanh(nk) gnN(P) (3)

Here, p.p.0 means that we are taking the sum over the length of the Geodesic,
h(k) is a test function and g(k) is the Fourier cosine transform of A(k)

1 [ee]
g(k) :E'[dx’l(x) cos(kx) (D) is the area of the fundamental domain describing
0

the Riemann surface . In case we had a surface with the length of the Geodesic
In N(P)=1Inp for ‘p’ on the second side of the equation a prime number,then
the Selberg Trace is very similar to the Riemann-weil sum formula [12]
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This formula (4) related a sum over the imaginary part of the Riemann zeros to
— k

=-p
otherwise
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another sum over the primes, here A(n) Ep

with ‘k’ a positive

integer is the Mangoldt function, in case In N(P) =In p both zeta function of
1

Selberg and Riemann are related by ——= |_| Z(n +S) and their logarithmic

Z( ) n=0
e . In N(P)
derivative is quite similar if we set the function A, (P) = W

1 0 s Z'
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In both cases the Riemann and Selberg zeta functions obey a similar functional
equation which relates the value at s and 1-s

/,l( )s 1/2

Z(=-s)=exp+——— [ vtan(mv)dv+c EZ(S) {(1=5)=X(s){(s) (6)
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The constant of integration ‘c’ is determined by setting s =1/2 , and
= Lrts . .
X(s)=2(2m) " [ (s)cos HESE for the case of the Riemann zeta function.

With the aid of the Selberg Trace formula (3) , we can evaluate the Eigenvalue
staircase for the Laplacian A = —yz(ai +ai)
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Here p = ,/E—% , we can inmediatly see that the smooth part of (7) satisfy

H(D)

Weyl's law in dimension2 N, ,(E)=——= P E , the oscillatory part of (7) satisfy

1
Bolte’s semiclassical law [4] (page 34, theorem 2.10) ;argZ%ﬂ\EE with

1
A =1, the branch of the logarithm inside (7) is chosen, so arnglgﬁ:O in this

case the Selberg Zeta function is the dynamical zeta function of a Quantum
system and the Energies are related to the zeros of Z(s).

2. A functional determinant for the Riemann Xi function ¢(s)

From the analogies between the Riemann Zeta function and the Selberg Zeta
function, we could ask ourselves if there is a Hamiltonian operator in the form

d’¥ (x)
HY (x)=—2—
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VW, () =EW,(x) W (0)=0=W (x) E =y (8
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So for the Riemann Xi-function é(s) = ES(S -nr % E((S) =é(1-5s) we have that

1 >0
fﬁiﬂ\/E_n ﬁzo OnON , the potential is given by V' (x) foo) * <0 , at x=0

there is a infinite wall so the particle inside the well can not penetrate the region
x <0 . For the case of the Hamiltonian (8) the exact Eigenvalue staircase is [9]
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As a simple example of how Quantum Mechanics can help to solve problems of
finding the roots of functions , let be a particle moving inside an infinite potential

well , the energy is given by E = p* and the one dimensional Schréedinger
equation [7] in units h=2m =1 (h is the reduced Planck’s constant with value
h=1.05.107>* J.T™")

Hyu (x)=- ;l;(x)+V(x)u () =Eu (x) u(0)=0=u (m) E =n’ (10)
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u,(x) :Asin( 7TX) , in this case the Euler’s product formula for the sine function
is the quotient between 2 functional determinants
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We can also compute the density of states to get the Poisson sum formula

p(E)_Z E E _—§25P n +25 p— l’l H— IPZQ?imIP (11)

o Zeta regularized determinant for &(s) :

Given an Operator P with real Eigenvalues {E} , we can define its Zeta
regularized determinant [6] in the form

et P+ 2exp T2, ()] E - (12)

Here {»(s,k%) :TF{ (P+k2)_s} = Z(E +k2)_s is the Spectral Zeta function of the

n

operator taken over all the Eigenvalues, the relationship between this spectral
zeta function and the Theta function ©() = zeXp(_tEn) is given by the Mellin

1 1 dt —tk?
@(l‘)t . . .
£ kz) I'(s)I . If P is a Hamiltonian we can

transform Z (

obtain the Theta function () = Z exp(~tE,) (approximately) by an integral over
the Phase space [7]

- I = p -’ —1f (x) — 1 p —if (x) —
o) = ;exp(—tEn) =5TJ’_mdp£dxe ) —z—ﬁjo’dxe T =0 (1) (13)

The expression (13) depends only on the momentum and the function f(x)
defined in (8) to evaluate the Theta function, if we combine (13) and the
definition of the Theta function for the Eigenvalues

O =3 exp( (£, ==s i)™ = [ defdpexp(-tp’ ~1f(x) (14
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From expressions (14) and (15) and setting N(0) =0 (after changes of variable)
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To prove (16) we have used the properties of the integral representation for the
inverse Laplace transform

c+ioo

DUf())=5— [ dsF(s)e’s”  poe =7 DabR (17)
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And the fact that if two Laplace transforms are equal then L{ f(¢)} = L{ g(?)}
implies that f(¢) =g(), for the case of the Riemann Zeros

1 1 . : : : . ,
N(E) = ;afgfglgﬂx/fﬁ (Bolte’s semiclassical law in one dimension) so

1/2

2
f(x)= \/, N argEB£+1x/7E since we want our potential inside (8) to be

positive whenever we take the inverse we must choose the POSITIVE branch of
the inverse in order to get f(x) =20 on the interval [0,), the half derivative
and the half integral for any well behaved function are given in [13]

d7f(x) _ 1 cdif (t) dfx)_ 1 JS@) ()
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We have written implicitly the potential inside (8) , if the function f(x) is
1/2

_ 2 1
defined by the functional equation f'(x) = Tﬁargfgliﬂx/fﬁ , then we
JT ax

may evaluate the Spectral Zeta function of the Quantum system given in (8),
then

0 E(z+1/2)

d
Al £(1/2)

det(H+zz)—det(H):exp§—%ZP (19)
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For the potential defined by /~'(x) = N argg‘gﬂ\FE we can evaluate

: R df” (X) o
the Theta kernel uisng (15) and (16) ©(?) = Ze 2\/—_]'0' , for

this potential the spectral theta function and its derivative are
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Taking exponentials we reach to the infinite product for the Riemann Xi-function

det(rr+22) []0a+2)

det(H) ﬁ V2 n=t

If we choose the positive branch f(x) =20 of the inverse
1/2
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7(x) :ﬁmargfﬁiﬂ\/fE then the potential will be always positive so the

Energies of the Hamiltonian inside (8) will be all positive £, =y>OR", then all
the non-trivial zeros of the Riemann Zeta function will be on the critical line

1 1
Re(s) = 5 with a simple change of variable z =5 = we obtain

) detBH s(1-s)+ 45 El-s) l_l @ s
¢(0) L1 ¢(0) ,0
4

det HH

Equation (22) is the Hadamard product for the Riemann Xi-function in terms of
the quotient of 2 funcitonal determinants, since the expected value of the

Hamiltonian is positive (¢, | H |, ) 2 0 and Hermitian ,with f(x) 20 then all the
Energies are positive E, =s(1-s)JR" Riemann Hypothesis should hold.

o Bohr-Sommerfeld quantization condition and the square of the Riemann
Zeros:

1/2

2
The expression f ' (x) = \/7 FNLE argf§+l\/7E could also be obtained from

the Bohr-Sommerfeld quantization conditions [7]

..o 1icC p _
[ pda —277H1 *3E 2[dxJE = f(x) = p(x) E=f(a)  (23)
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‘a’ is the classical turning point, » = N(E) is the Eigenvalue staircase, the first
integral inside (23) is a line integral taken over the closed orbit of the classical
system, equation (23) can be understood as an integral equation for the inverse
of the potential in the form

a=a(E)

2nB§+n(E)B=2 J’ JE =V (x)dx = 2J’\/E A 2 f(x) (24)



If we take the half derivative on both sides of (24) we would get

d1/2 Dl
f(x)= 2\/5(1 > Bi _argEBEﬂ\/_EE in this case this result is completely

equivalent to the one we got by Zeta regularization and by the WKB

|
\/EJ-dxe 7 = Oy (1) .
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approximation of the Theta function 5
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In order to evaluate the inverse of the potential /' (x) = \/_ argEEEﬂ\/_E

1 1. . .
we would need to evaluate ;argZ %ﬂ\/f% , this can be made using the

Riemann-Siegel formula [10] to evaluate the zeta function on the critical line

uk) F(k)—kl
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The functions inside (25) are u(k) = %/5_[[ , [ x] is the floor function and
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o Riemann Weyl explicit formula as the Trace Tr{ o) (E -f (x))} :

The next question is to compute the density of states for the Hamiltonian
desfined in (8) , let be the property of the delta function p = JE
olp-y|+d(p+
5(E_y2) — (p-y)+3(p+y)
2p

1 . 1
function —lim Lim ﬁm @= d(x-a), the density of states Tr{ 5( E - f(x))}

, If we use Shokhotsky’s formula for the delta

—liargf%+i£+i\/fﬁz 25(E—y2): l%%ﬂpﬁz—
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Here __nelfn m m B_ Hx E this factor comes from the logarithmic

1
derivative of s(s —1) along the critical line s = 5+z’p, equation (26) is a



distributional version of the Riemann-Weil trace formula , taking formally the
logarithm of the Euler product for the Riemann Zeta function on the critical line

yields to Z \/(_) o = Z_EEﬂpE using two test functions h(x) and g(x)

17
g(x)= ;J'dr cos(rx)h(r) we recover the oscillatory part of the Riemann-Weil
0

trace formula -22 \/— g(lnn) .
n=I

Unlike the model of Wu and Sprung, we have considered also the oscillatory
1 . . .
part of the Riemann Eigenvalue Staircase I—TargZ EEHJEE , Which satisfy
Bolte’s semiclassical law , Wu and Sprung considered only the smooth part of
teh Eigenvalue staircase in the limit 7 >>1 llnD r 0 N(T) in order to get a
g 2 Bine H: g

Hamiltonian whose Energies are the positive imaginary part of the Riemann
Zeros, their starting point is the Harmonic oscillator [15] , but unlike the normal
quantum mechanical oscillator whose functional determinant gives the Gamma

= |‘| §+5E the product taken ONLY over the positive imaginary
n= n

= [0 C
part of the zeros (even if it converges) | | +yi [ has no meaning, by analogy
n= |:| n [

with the zeros of the Selberg Zeta function, is better to consider the case with
the Energies E, = y,f , in this case the Trace of the Resolvent of the Hamiltonian

(E +i£ —H)_1 is the Riemann-Weil trace for the Riemann zeros.
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