
Wave Funtion for Classial MehanisJ. M. Karimäki, Department of Physis, University of Helsinki28th April 2000AbstratIn this paper the relationship of lassial physis and quantum physisis studied by introduing a partial di�erential equation, whih desribeslassial mehanis, but looks very similar to the Shrödinger wave equa-tion of quantum mehanis. This work is largely based on David Bohm'sausal interpretation of quantum mehanis, but is in some sense omple-mentary to it. In Bohm's theory the Shrödinger wave equation is usedto derive lassial looking equations of motion for quantum physis. Hereexatly the opposite is done. The equations of lassial physis are putinto a form resembling the Shrödinger equation of quantum physis.1 IntrodutionThere has been onsiderable debate over the role of the wave funtion in quan-tum mehanis and the interpretation of quantum mehanis in general. Atthe beginning of the quantum era it was not lear whether the wave funtionwould represent matter waves that atually exist or something else. The prob-lem was partly solved by Max Born who proposed that the wave funtion doesnot represent any truly existing physial wave, but only gives us the probabilityof �nding the partile at a spei� loation after measurement.There were, however, other opinions and di�erent approahes, whih did notreeive muh attention. In 1927 Louis de Broglie suggested that the role of thewave fution was to guide the partile along a ontinuous urve [1℄, but thisapproah was quikly abandoned after having reeived harsh ritiism. Amongother things, it was laimed that the theory would not work for more than onepartile.Nevertheless, independently of de Broglie's ideas, in 1952 David Bohm pub-lished a similar theory [3℄, whih, in addition, took aount of the many partilease. Bohm's theory, or the ausal interpretation of quantum mehanis, startsfrom the Shrödinger wave equation, whih is used to derive two equations: The�rst one is similar to the equation of lassial physis and desribes partile tra-jetories. The seond one desribes the probability of the partiles to be movingalong a spei� set of trajetories.In this paper, the equation for the trajetories of the partiles is replaed bythe orresponding equation of lassial mehanis, but the form of the probabil-ity equation remains the same as in Bohm's theory. From these two equations asingle di�erential equation is dedued, whih is very similar to the Shrödingerwave equation of quantum mehanis, but whih produes the results of lassialphysis. 1



2 The Causal Interpretation of QuantumMehan-isIn this setion we will reprodue the derivation of David Bohm's ausal inter-pretation of quantum mehanis for the ase of a single non-relativisti partile.We shall go into more detail than is usual, sine the results of this setion willbe needed in the developments of later setions.We will start from the Shrödinger wave equationi�h�	=�t = � �h22mr2	+ V	: (1)The wave funtion 	(x; t) an be written as a produt of two parts, orrespond-ing to an amplitude and a phase:	 = R exp(iS=�h); (2)where R and S are real funtions of x and t. When this expression is insertedto the wave equation, and the resulting equation is divided by �	, we get aomplex equation, whose real part is�S�t = �h22mr2RR � (rS)22m + V; (3)and imaginary part � i�hR �R�t = i�h2m [r2S + 2rR � rSR ℄: (4)We an reorder the terms in equation (3) and multiply the equation (4) by�R=i�h to get a pair of oupled equations for R and S:�S�t = �[ (rS)22m + V � �h22mr2RR ℄; (5)�R�t = � 12m [Rr2S + 2rR � rS℄: (6)Now the original omplex wave equation (1) of the omplex valued funtion	 has been transformed into two real equations of two real valued funtions.These are the sought for equations of the ausal interpretation of quantummehanis in the form written by Bohm [3℄. Let us take a loser look at theirphysial meaning.The equation (5) is the same as the Hamilton-Jaobi equation of lassialmehanis apart from an additional �quantum potential�Q = � �h22mr2RR : (7)Aording to the ausal interpretation of quantum mehanis the partilemoves along a ontinuous urve and its veloity an be alulated from thephase S using the Hamilton-Jaobi-relation:v(x; t) = rS(x; t)m : (8)2



It is furthermore assumed that, before any measurements are performed, theatual position of the partile is unknown, but the probability density for thepartile to be at x at time t is given by the square of the amplitude R:P (x; t) = R(x; t)2: (9)The equation (6) an be written in a more familiar form by multiplying itby 2R and using the above de�nitions of P and v:�P�t = �r � (Pv): (10)This is a onservation equation for the probability. It ensures that the assump-tion (9) is valid for t > t0, if it is valid at t0 and the system has not beendisturbed between t0 and t.To �nd the trajetory of the partile one has to �nd a solution for theequations (5) and (6). The veloity an then be obtained from S using (8) andthe position of the partile. One the initial position of the partile is known thetrajetory an be alulated from the veloity v. In reality the initial position ofthe partile annot be known exatly and only the initial probability distributionR is available. However, we an imagine that the initial position exists, even if itis impossible to know it exatly. The initial positions an then be onsidered tobe so alled �hidden variables� and the ausal interpretation a �hidden variable�theory of quantum mehanis.Instead of (8) it is also possible to use the following equation of motion toalulate the partile trajetories:md2xdt2 = �r(V +Q): (11)This di�ers from the Newtonian equation of motion only in that the quan-tum potential Q has been added to the lassial potential V . The quantumpotential an be thought of as exerting an additional �quantum fore� �rQ tothe partile. The equation (11) is perhaps intuitively the most appealing linkbetween lassial and quantum mehanis and its value lies in its philosophialimpliations rather than its usefulness in alulations.Finally, it is perhaps worth mentioning that the theory an be formulatedwithout expliit referene to the funtions R and S. The formula (8) for theveloity of the partile an be written using 	 only:v(x; t) = �hmImr		 : (12)Sine the probability density an be written in the more familiar formP = j	j2 (13)and the quantum potential asQ = � �h22mr2j	jj	j ; (14)we only need to solve the original Shrödinger equation (1) to be able to alulatethe partile trajetories. 3



3 The Classial Limit of Quantum MehanisHow lassial physis an be retrieved as a limit ase of quantum physis is adeliate question involving both mathematis and interpretation. In the ausalinterpretation of quantum mehanis the question beomes easier than in thestandard, or Copenhagen, interpretation.Let us �rst see how things work in the ausal interpretation. If we set �h = 0in the equation (5), we get the Hamilton-Jaobi equation of lassial mehanis:�S�t = �[ (rS)22m + V ℄: (15)This equation desribes the behaviour of the exat lassial ounterpart ofthe quantum system. A solution for the phase funtion S(x; t) an be foundusing the standard methods of lassial mehanis and the veloity of the partilean be determined from the expression (8). There is no more need for theequation (6), sine R does not appear in (15).In the standard interpretation of quantum mehanis we have to start fromthe Shrödinger equation (1), but here we annot diretly put �h = 0, for thiswould lead to the trivial equation 0 = V	; (16)whih obviously does not desribe the above mentioned lassial situation.Thus, it seems that, whereas the standard interpretation of quantum me-hanis is onerned, lassial physis an only be approahed as a limit aseby letting �h! 0. In pratie, we an do this by replaing �h in the Shrödingerequation (1) by ��h, where the fator � is a positive real number:i(��h)�	=�t = � (��h)22m r2	+ V	: (17)Let us take a lassial partile moving in the potential V . For eah hoie of� we an hoose a wave paket 	� whih obeys the equation (17). Moreover,these wave pakets an be hosen so that their motion approahes the motionof the given lassial partile as �! 0.Nothing prevents us from using the limit value approah in the ausal in-terpretation too. We an replae �h by ��h in the equations (2) and (5) and use(8) for the veloity. An alternative way, whih again uses the wave funtion	 diretly and avoids S and R, is to use the equation (17) and the followingveloity formula: v(x; t) = ��hm Imr		 : (18)Whether we use 	 or S and R is more or less a matter of taste at this point. Wemention both ways here, beause the expressions (17), (8) and (18) are neededlater. What is interesting, though, is that by using the ausal interpretation wean smoothly hange from quantum mehanis to lassial mehanis (or vieversa) just by moving the value of � between 1 and 0.To sum up things: in the ausal interpretation the lassial limit an bereahed either by using a limit value or simply by replaing �h by 0, but in thestandard interpretation the use of the limit value seems neessary.4



4 The Wave Equation for Classial PhysisThere is, however, another possible approah to restore lassial physis. Wean make a small modi�ation to the equation (5) of the ausal interpretationand work bakwards. To get the lassial situation we start diretly from theHamilton-Jaobi equation (15) and the probability equation (10)�S�t = �[ (rS)22m + V ℄; (19)�P�t = �r � (Pv): (20)These an be written in the following form:�S�t = �[ (rS)22m + V � �h22mr2RR + �h22mr2RR ℄; (21)� i�hR �R�t = i�h2m [r2S + 2rR � rSR ℄: (22)By multiplying these by �	 = �R exp(iS=�h) and adding them together we get,after some manipulations, the Shrödinger equation and an additional term:i�h�	=�t = � �h22mr2	+ V	+ �h22m exp(iS=�h)r2R: (23)Although this equation looks very muh like the Shrödinger equation, itprodues exatly the lassial behaviour for the partile. To show this theequation (23) must be interpreted the same way as the Shrödinger equationis interpreted in the ausal interpretation of quantum mehanis, i.e. we mustsolve the equation (23) and then �x an initial position for the partile at theinitial time and use the Hamilton-Jaobi relation v(x; t) = rS(x; t)=m for theveloity of the partile.As an additional result we an now also work with initial probability distri-butions as in the quantum ase, sine the equation (10) is still valid.The equation (23) an be put into a more elegant form using 	 only:i�h�	=�t = � �h22m(r2	� 	j	jr2j	j) + V	: (24)or, using the de�nition (7) of the quantum potential Q:i�h�	=�t = � �h22mr2	+ (V �Q)	: (25)It is lear from (24) that the new equation is not linear with respet to	. Although this equation should not be onsiderably more di�ult to solvethan the original Shrödinger equation, we lose the possibility to reate newsolutions by linear ombination. This is one of the features that make lassialand quantum physis distint.A seond remark to be made from (24) is that it still ontains �h. However,the atual value of �h has absolutely nothing to do with the solution of theequation! Any value of �h would lead to exatly the same lassial physis.5



5 Initial Conditions for the One Partile CaseAny wave funtion 	(x; 0) that an be used as an initial value in the quantumase an also be used in the lassial ase. So, the amplitude R and the phaseS an be hosen quite freely. For example, it is always possible to hoose aonstant veloity for the partile at time zero. It is also possible to hooseany di�erentiable veloity �eld on a given 2-dimensional plane of the three-spae. However, this is not possible for the whole 3-dimensional spae, sine theveloity �eld must satisfy v(x; 0) = rS(x; 0)=m, whih restrits the availableinitial veloity �elds to those that are non-rotational (r� v = 0).The subsequent evolution of the wave funtion may di�er from the quantumase, beause there is a possibility of arriving at singularities. This is due to thefat that lassial trajetories an ross eah other, whereas in the one partilease of the ausal interpretation of quantum mehanis it is not possible.6 Free PartileAs an example, we shall onsider a lassial free partile moving at the veloityv. The equation (23) now beomesi�h�	=�t = � �h22m (r2	� exp(iS=�h)r2R): (26)One possible solution is	 = 	0(x� vt) exp[i(mv � x� 12mv � vt)=�h℄; (27)where the real funtion 	0(x) is the initial amplitude of the wave funtion.This solution represents a wave paket moving with onstant veloity v andmaintaining its initial shape during the motion. It should be noted that in thisexample there is no unertainty for the momentummv and that the wave paketan be on�ned to an arbitrarily small volume, thus allowing the unertaintyfor the partile position to be dereased under any given value.7 N partilesLet us �rst take a look at the ausal interpretation of quantum mehanis forN non-relativisti partiles. The starting point is the Shrödinger equation:i�h�	=�t = �[ NXj=1 �h22mjr2j	℄ + V (x1; :::;xN ; t)	; (28)where	 is a funtion ofN positions xj and time t andrj stands for the gradientrespetive to xj . As in the single partile ase the wave funtion an be writtenas a produt of an amplitude and a phase fator:	(x1; :::;xN ; t) = R(x1; :::;xN ; t) exp[iS(x1; :::;xN ; t)=�h℄: (29)Inserting this to (28) leads us to the equations of the ausal interpretationfor N partiles: 6



�S�t = � NXj=1( (rjS)22mj + �h22mj r2jRR ) + V; (30)�P�t = � NXj=1rj � (Pvj): (31)The probability density P and the partile veloities vj are de�ned the sameway as in the single partile ase:P (x1; :::;xN ; t) = [R(x1; :::;xN ; t)℄2; (32)vj(x1; :::;xN ; t) = rjS(x1; :::;xN ; t)=mj : (33)(Here it must be remembered that the index j denotes the jth partile and thateah vetor vj has three omponents.) The de�nition of the quantum potentialQ for N partiles is: Q(x1; :::;xN ; t) = � NXj=1 �h22mj r2jRR : (34)In the single partile ase the quantum potential is responsible for the in-terferene e�ets of quantum mehanis, but in the N partile ase Q is alsoresponsible for quantum non-loality ([5℄, p. 57).The lassial ounterpart of the Shrödinger equation an be dedued thesame way as in the single partile ase, and it is simply:i�h�	=�t = �[ NXj=1 �h22mjr2j	℄� [ NXj=1 exp(iS=�h)r2jR℄ + V	; (35)where R and S are de�ned as in (29). Using (34) we an write the equation(35) as: i�h�	=�t = � NXj=1 �h22mjr2j	+ (V �Q)	: (36)Now the partile veloities are given by (33) as in the quantum ase.8 A generalized family of equationsIn the previous setions we have presented two fundamentally di�erent methodsfor retrieving lassial mehanis from quantum mehanis:1. replaing �h by ��h and letting �! 0, (setion 4)2. replaing V by V �Q, (setion 5)We will ombine these two approahes to get a more general result. We shallonsider the one partile ase, sine the generalization to many partiles istrivial. 7



First, we an replae �h by ��h in the equation (5) to get the equation�S�t = �[ (rS)22m + V � (��h)22m r2RR ℄: (37)This is equivalent to replaing �h by ��h in the Shrödinger equation (1) andusing the relation 	 = R exp[iS=(��h)℄ (38)instead of (2).Seond, we an add the quantum potential Q multiplied by a onstant ��2to the right side of the equation (37)�S�t = �[ (rS)22m + V � (�2 � �2)�h22m r2RR ℄: (39)This equation oupled with the equation (6) is equivalent to the following mod-i�ed Shrödinger equation:i(��h)�	=�t = � (��h)22m r2	+ (V � �2Q)	: (40)Now, it an be seen from the form of the equation (39) that if �2 � �2 =0 it beomes the Hamilton-Jaobi equation and thus (40) gives the lassialmehanis and, similarly, if �2 � �2 = 1 the equation (40) represents quantummehanis. However, are must be taken to use the orret de�nition of S (38)and veloity (8), whih using 	 takes the formv(x; t) = ��hm Imr		 : (41)9 TablesWe have olleted the main results of our analysis of the lassial and quantumequations into a table. For simpliity, only the single partile ase is presented.	 Quantum Mehanis Classial MehanisWave eq. i�h�	�t = � �h22mr2	+ V	 i�h�	�t = � �h22mr2	+ (V �Q)	Quantum pot. Q = � �h22m r2j jj j Q = � �h22m r2j jj jProb. dens. P (x; t) = j	(x; t)j2 P (x; t) = j	(x; t)j2Veloity v(x; t) = �hmImr		 v(x; t) = �hmImr		Eq. of motion md2xdt2 = �r(V +Q) md2xdt2 = �rVH.-Jaobi �S�t = �[ (rS)22m + V +Q℄ �S�t = �[ (rS)22m + V ℄Cons. prob. �P�t = �r � (Pv) �P�t = �r � (Pv)Generalized Shrödinger equation i(��h)�	�t = � (��h)22m r2	+ (V � �2Q)	
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10 DisussionWe ould also keep to the standard interpretation of quantum mehanis ininterpreting the equations (23) and (35). It would be interesting from a peda-gogial point of view, sine many features of quantum physis now have lassialounterparts. Suh onepts as the preparation of the system, unitary evolu-tion, and ollapse of the wave funtion ould be studied and ompared withtheir lassial ounterparts.One ruial di�erene between lassial partile mehanis and quantummehanis is the existene of interferene in quantum mehanis. In the ausalinterpretation it is preisely the quantum potential Q that is responsible for theinterferene e�ets. Sine there is no interferene in lassial partile physis, itmust be that adding the term �Q	 to the right side of the Shrödinger equationsomehow wipes out all the interferene e�ets of quantum mehanis. However,this an be understood as a result of the vanishing of �h from the equation (15)when ompared with (5).The approah presented in this paper gives the possibility of treating somepartiles of a problem as �lassial� and the others as �quantum� partiles. Thisan be ahieved by omitting one or more terms from the seond sum of theequation (35). One ould, for example, study the behaviour of one �lassial�partile in an environment of purely �quantum� partiles, or vie versa. Thisould help in understanding how the ombined e�et of many randomly movingpartiles reates a (more or less) onstant and uniform potential.Sine this paper has so far only onsidered non-relativisti partile quantummehanis, it would be interesting to see what form the relativisti partileequations, or even �eld equations, would take if similar proedures to the onepresented in this paper would be applied to them. The onsequenes to theLorentz invariane of the equations would be one point of interest sine theoriginal lassial relativisti equations are (by de�nition) Lorentz invariant andthe orresponding quantum equations also have a ovariant form.Referenes[1℄ L. de Broglie, La Nouvelle Dynamique des Quanta, in [2℄, p. 105[2℄ Életrons et Photons: Rapports et Disussions du Cinquième Conseil dePhysique tenu a Bruxelles du 24 au 29 Otobre 1927 sous les Auspies del'Institut International de Physique Solvay, Gauthiers-Villars, Paris (1928)[3℄ D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of�Hidden� Variables I, Phys. Rev. 85 (1952), p. 166, also in [4℄, p. 369[4℄ J. A. Wheeler and W. H. Zurek (editors), Quantum Theory and Measure-ment, Prineton University Press, Prineton (1983)[5℄ D. Bohm and B. J. Hiley, The Undivided Universe, Routledge, London andNew York (1993)
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