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Abstract

A unification model of 4D gravity and SU(3)×SU(2)×U(1) Yang-Mills
theory is presented. It is obtained from a Kaluza-Klein compactification
of 8D quaternionic gravity on an internal CP 2 = SU(3)/U(2) symmetric
space . We proceed to explore the nonlinear connection Aa

µ(x,y) formal-
ism used in Finsler geometry to show how ordinary gravity in D = 4 + 2
dimensions has enough degrees of freedom to encode a 4D gravitational
and SU(5) Yang-Mills theory. This occurs when the internal two-dim
space is a sphere S2 . This is an appealing result because SU(5) is one of
the candidate GUT groups. We conclude by discussing how the nonlinear
connection formalism of Finsler geometry provides an infinite hierarchical
extension of the Standard Model within a six dimensional gravitational
theory due to the embedding of SU(3)×SU(2)×U(1) ⊂ SU(5) ⊂ SU(∞).

Keywords: Quaternions, Gravity, Grand Unification, Finsler Geometry, Kaluza-
Klein.

1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative al-
gebras are deeply related and are essential tools in many aspects in Physics,
see [1], [2], [3], [4], [5] for references, among many others. In particular, a 15D
model of a Chern-Simons E8 Gauge theory of Gravity was proposed by [6] as a
unified field theory of a Lanczos-Lovelock Gravitational Lagrangian with a E8

Generalized Yang-Mills field theory in the 15D boundary of a 16D bulk space.
More recently, a Clifford Cl(5, C) Unified Gauge Field Theory of Conformal
Gravity, Maxwell and U(4)× U(4) Yang-Mills in 4D was provided by [14]. For
other results on grand unification based on Clifford algebras see [29], [30] and
references therein.
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It has been argued by [24] that a Kaluza-Klein compactification of 8D grav-
ity on CP 2 involving a nontrivial torsion may bypass the no-go theorems [26]
that one cannot obtain the group SU(3) × SU(2) × U(1) from a Kaluza-Klein
mechanism in 8D. It was assumed by [24] that if the torsion components
T a

µν were proportional to F I
µνea

I , where ea
I is a vielbein employed to change the

SU(2)×U(1) group index I = 1, 2, 3, 4 to the internal four-dim space CP 2 index
a = 1, 2, 3, 4, the 8D Lagrangian corresponding to the curvature scalar and as-
sociated with a connection with contorsion K : R(Γ+K) = R(Γ)+(K)2 +∇K
yields a gravitational and SU(3)× SU(2)× U(1) Yang-Mills theory upon com-
pactification on CP 2 = SU(3)/SU(2) × U(1). The problem was that no proof
was presented in [24] which shows why T a

µν is proportional to F I
µνea

I .
It is known that a horizontal-vertical splitting of the tangent space geom-

etry using the canonical distinguished d-connection (instead of the torsionless
Levi-Civita connection) within the formalism of Lagrange-Finsler spaces leads
to nontrivial torsion T a

µν components and which are related to the general-
ized field strength F a

µν associated with a nonlinear connection Aa
µ(xν , yb). The

coordinates xν , yb are the horizontal base space and internal vertical space co-
ordinates, respectively. A mapping between Finsler and Kaluza-Klein theories
and the comparison of the Finslerian gauge approach to the Yang-Mills one can
be found in [15], [16], respectively. In section 3 we will explore the nonlinear
connection Aa

µ(xν , yb) formalism of Finsler geometry to show how gravity in
4 + 2 dimensions has enough degrees of freedom to encompass 4D gravity and
a SU(5) Yang-Mills theory. This is an appealing result because SU(5) is a
candidate GUT group.

A complexification of ordinary gravity (not to be confused with Hermitian-
Kahler geometry ) has been known for a long time. Complex gravity requires
that gµν = g(µν) + ig[µν] such that gνµ = (gµν)∗. A treatment of a non-
Riemannan geometry based on a complex tangent space and involving a sym-
metric g(µν) plus antisymmetric g[µν] metric component was first advanced by
Einstein-Strauss [7] (and later on by [8] ) in their proposal to unify Electro-
magnetism (EM) with Gravity by identifying the EM field strength Fµν with
the antisymmetric metric g[µν] component. However this identification led to
several problems.

Borchsenius [10] formulated the quaternionic extension of Einstein-Strauss
unified theory of gravitation with EM by identifying the SU(2) Yang-Mills field
strength F i

µν , i = 1, 2, 3 with the internal degrees of a freedom (g[µν])i of a
quaternionic-valued ”metric tensor”. Again this approach is problematic. For
these reasons in section 2 we shall build an unification model of 4D gravity and
SU(3)×SU(2)×U(1) Yang-Mills theory obtained from a Kaluza-Klein compact-
ification of 8D quaternionic gravity on CP 2, rather than introducing by hand
the torsion squared terms [24]. In this way we avoid the problems encountered
by [7], [10], and also construct unified theories that contain the electro-weak
force and gravity in 4D. Our results differ also from the construction in [25] to
unify the electro-weak force with gravity in 4D after complexifying the de Sitter
group.
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The authors [11] much later provided the octonionic gravitational exten-
sion of Borchsenius theory involving two interacting SU(2) Yang-Mills fields
and where the exceptional group G2 was realized naturally as the automor-
phism group of the octonions. The octonionic geometry (gravity) construction
developed by [11] was extended further to spaces with noncommutative and
nonassociative spacetime coordinates and momenta in [12] and which set the
stage for the study of Exceptional Jordan Strings and Nonassociative Ternary
Gauge Field Theories [13]. Having presented this very brief introduction we
shall proceed with the main results of this work.

2 Gravity and Standard Model Unification from
8D Quaternionic Gravity

A geometrical treatment of a non-Riemannian geometry including an internal
complex, quaternionic and octonionic space has been investigated by several
authors [7], [10], [11], Castro-Jordan. A quaternionic-valued metric is defined
as

gµν = gµν eo + gi
[µν] ei, eiej = −δijeo + εijkek, i, j, k = 1, 2, 3 (2.1)

obeying the symmetry condition g†µν = gνµ where the Hermitian conjugation
is taken in the internal quaternionic space. Namely, one can represent the
generators of the quaternionic algebra in terms of the Hermitian Pauli spin
2× 2 matrices σi and the unit 2× 2 matrix as eo = 12×2; ei = −iσi. Hence the
Hermitian conjugation is carried on the 2×2 matrices. The physical distance is

ds2 =
1
2

Trace (gµνdxµdxν ) = g(µν) dxµ dxν (2.2)

due to the traceless condition of the Pauli spin matrices and commuting nature
of the coordinates. One may choose gµν = g(µν) + ig[µν] and maintain the
Hermiticity condition g†µν = gνµ if (ig[µν]eo)† = −ig[µν]eo; i.e. if one includes
a complex conjugation on i as well and which is compatible with the fact that
(ei)† = (−iσi)† = +iσi = −ei since the Pauli spin 2 × 2 matrices σi are taken
to be Hermitian.

The quaternionic-valued connection is

Υσ
µρ = ( Γσ

(µρ) + i Γσ
[µρ] )eo + (Θσ

[µρ])
iei (2.3)

we explicitly write (µρ), [µρ] to denote the symmetry and antisymmetry prop-
erties of the connection components. We will show how a Kaluza-Klein com-
pactification in the internal space CP 2, from 8D to 4D, yields a gravitational,
SU(3)× SU(2)× U(1) Yang-Mills theory in 4D.
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The gravitational and U(1) Maxwell’s EM sector are encoded, respectively,
in the symmetric piece Γσ

(µρ)eo and antisymmetric piece iΓσ
[µρ]eo corresponding

to the unit element eo of the quaternionic-algebra-valued connection. The SU(2)
sector is encoded in the internal part (Θσ

[µρ])
iei. The SU(3) Yang-Mills sector

arises upon the Kaluza-Klein compactification resulting from the isometry group
of the CP 2 internal space. Therefore, from a pure quaternionic gravity in 8D
one can obtain a grand unified field theory of gravity and the standard model
group SU(3)× SU(2)× U(1) in 4D.

This result can be attained by restricting Γσ
[µρ] = δσ

ρ Aµ − δσ
µAρ to be the

Einstein-Schrodinger connection, where Aµ is the EM field. Due to the antisym-
metry, Γσ

[µρ] transforms as a tensor. This is not the case with Γσ
(µρ). The internal

part of the connection Θσ
[µρ] is restricted to be of the form (δσ

ρ Θi
µ−δσ

µΘi
ρ) ei, i =

1, 2, 3, such that the commutator becomes [Θµ,Θν ] = 2 Θi
µ Θj

ν εijk ek. The
quaternionic-valued curvature

Rσ
µνρ = ∂µ Υσ

νρ − ∂ν Υσ
µρ + Υσ

µτ Υτ
νρ − Υσ

ντ Υτ
µρ =

( Rσ
µνρ + i Fσ

µνρ )eo + ( Pσ
µνρ )k ek + extra terms (2.4)

has for components the following terms : the standard Riemannian curvature
tensor written in terms of the Christoffel symbols as

Rσ
µνρ = ∂µ Γσ

(νρ) − ∂ν Γσ
(µρ) + Γσ

(µτ) Γτ
(νρ) − Γσ

(ντ) Γτ
(µρ) (2.5)

The tensor containing the Maxwell field strength is

Fσ
µνρ = δσ

ρ (∂µAν − ∂νAµ) + δσ
µ ∂νAρ − δσ

ν ∂µAρ (2.6)

such that the contraction Fσ
µνσ = (D − 1)Fµν in D-dim is proportional to the

U(1) EM field strength Fµν = ∂µAν − ∂νAµ. And, finally, the SU(2) field
strength is encoded in the internal part of the curvature tensor which can be
written as

Pµν = ∂µ Θν − ∂ν Θµ + [ Θµ, Θν ] =

( ∂µ Θk
ν − ∂ν Θk

µ ) ek + 2 Θi
µ Θj

ν εijk ek. (2.7)

leading to
Pσ

µνρ = ( Pσ
µνρ )k ek = δσ

ρ (Pµν)k ek =

δσ
ρ ( ∂µ Θν − ∂ν Θµ + [ Θµ, Θν ] )k

ek (2.8)

There are extra terms in eq-(2.4) involving products of the form

Γσ
(µτ) Γτ

[νρ], Γσ
(µτ) (Θτ

[νρ])
k, Γσ

[µτ ] Γτ
[νρ], Γσ

[µτ ] (Θτ
[νρ])

k (2.9)

and for simplicity are not written down. The first two terms in (2.9) can be
reabsorbed inside the ordinary derivatives to yield ”covariantized” SU(2)×U(1)
field strengths involving the analog of covariant-like derivatives ∇µ acting on
the gauge fields; and the last two terms are analogous (but not identical) to
torsion-squared terms and products of torsion terms.
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If one has quaternionic gravity in 8D, the indices are M,N,L = 1, 2, 3, ....., 8
and, if one wishes, one may build a Lagrangian out of the following tensorial
quantities found within the quaternionic-valued curvature above : namely the
8D Riemannian scalar curvature R = g(MN)RMN , the U(1) and SU(2) field
strengths FMN , F i

MN . In particular, let us start with a standard Lagrangian for
gravity plus SU(2)× U(1) Yang-Mills in 8D given by

L = R − 1
4

(FMN )2 − 1
4

(F i
MN )2, M,N = 1, 2, 3, ......, 8 (2.10)

where we set the numerical couplings to unity. The components of the Ricci
tensors after a Kaluza-Klein compactification are given by [23]

Rµν = Rµν − 1
2

Ka
I KaJ F I

µρ F Jρ
ν , Rµa =

1
2

KI
a DνF Iν

µ (2.11a)

Rab = Rab +
1
4

KI
a KJ

b F I
µν F Jµν (2.11b)

where KaI are the Killing vectors associated with the SU(3) isometry group
(metric preserving symmetry) of the internal space CP 2 = SU(3)/SU(2) ×
U(1). The range of the indices is µ, ν = 1, 2, 3, 4; a, b = 1, 2, 3, 4 and I, J =
1, 2, 3, ....., 8. Eqs-(2.11a, 2.11b) lead to the following decomposition of the 8D
scalar curvature

R = R[gµν ] − 1
4

F I
µν Fµν

I + gab Rab + .... (2.11c)

so that the Lagrangian (2.10) furnishes a four-dim theory of gravity and SU(3)
Yang-Mills interacting with a non-linear sigma model scalar field stemming from
the metric degrees of freedom in the internal space. The indices I = 1, 2, 3, ....., 8
span the 8 generators of the SU(3) algebra and R = g(µν)Rµν is the four-dim
scalar curvature.

Concluding, from a quaternionic-valued gravitational theory in 8D, one has
the necessary field ingredients to build the Lagrangian (2.10) and generate a
gravitational and SU(3)×SU(2)×U(1) Yang-Mills theory in 4D after a Kaluza-
Klein compactification on CP 2. For this reason, this kind of grand unification
program warrants further investigation. Closely related to the Lagrangian in
eq-(2.10) is that the authors [22] have shown how an Einstein-Yang-Mills theory
in 4 + d dimensions admits a solution (an spontaneous compactification) of the
form M4×G/H, where M4 is an Einstein space and G/H is a symmetric space,
if the gauge group of the Yang-Mills theory in 4 + d dimensions is H or larger.
This agrees with our results above which are based on having H = SU(2)×U(1)
and d = 4. The authors [22] focused in particular in the case when the four-dim
base space M4 is Minkowski or Anti de Sitter space.

Instead of having for Lagrangian the one provided by eq-(2.10), let us be-
gin with the real part of the quaternionic-valued scalar curvature, and set the
numerical physical (coupling) constants to unity, for simplicity
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L =
1
2

gMN RMN + quaternionic complex conjugate =

g(MN)RMN − g[MN ] FMN − (g[MN ])j F j
MN + ........ (2.12)

the Lagrangian (2.12) is the quaternionic version of the Einstein-Hilbert gravi-
tational one. If one imposes the correspondence g[MN ] ↔ FMN and (g[MN ])j ↔
F j

MN in (2.12) then one recovers the correspondence with the gravity-Yang-
Mills Lagrangian in (2.10). However, we must emphasize that the Lagrangians
of eqs-(2.10, 2.12) are not the same because an antisymmetric metric tensor is
not physically the same as a gauge field strength. Similarly, one could have
interpreted the Born-Infeld actions for EM and gravity, respectively∫ √

det|gµν + Fµν |,
∫ √

det|gµν + Rµν | (2.13)

as if one had the determinants of an effective ”metric” given by gµν + Fµν and
gµν + Rµν .

Before studying the quaternionic version of the Einstein-Hilbert Lagrangian
(2.12), let us focus now on the Kaluza-Klein compactification of complex grav-
ity. Earlier on we restricted the connection to be given as Γσ

[µρ] = δσ
ρ Aµ−δσ

µAρ,
and similarly, the internal part of the quaternionic connection Θσ

[µρ] = (δσ
ρ Θi

µ−
δσ
µΘi

ρ)ei. One may relax these restrictions and focus solely on a complex gravi-
tational theory (without including the imaginary quaternionic part) where the
antisymmetric part of the connection Γσ

[µρ] is now unrestricted and ask how a
Kaluza-Klein compactification of complex gravity might look like. Because real
gravity in 8D yields ordinary gravity and SU(3) Yang-Mills theory in 4D, upon
a compactification on CP 2, one may wonder if complex gravity might furnish a
complex gravitational and SU(3) Yang-Mills theory in 4D upon compactifica-
tion on CP 2.

It is known that the complexification of the su(N),u(N) algebras are re-
spectively the algebras sl(N,C),gl(N,C). Rather than focusing on SL(N,C)
Yang-Mills theories (involving noncompact groups) we shall concentrate on
complex-valued SU(N) Yang-Mills fields (AI

µ + iÃI
µ)TI where TI are the N2−1

generators of SU(N). The symmetric and antisymmetric metric components
gAB = g(AB) + ig[AB] in 8D admit the following 4 + 4 decomposition

g(µν) + i g[µν] = γ(µν) + i γ[µν] + φ(ab) Aa
µ Ab

ν + i φ[ab] Ãa
µ Ãb

ν (2.14a)

gab = φ(ab) + i φ[ab], gµa = φ(ab) Ab
µ + i φ[ab] Ãb

µ, gaµ = (gµa)∗ (2.14b)

and such that the interval ds2 is the same as in ordinary real gravity with
symmetric metrics

ds2 = φ(ab) dya dyb + (γ(µν) + φ(ab) Aa
µ Ab

ν) dxµ dxν + 2 φ(ab) Ab
µ dxµ dya.

(2.15)
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The antisymmetric metric components do not contribute to the distance due
to the commutativity of the coordinate differentials. Another geometrical set-
ting where the 4 + 4 decomposition of symmetric and nonsymmetric metrics
is relevant is in the study of Finsler geometry. A very rigorous treatment of
nonsymmetric theories of gravity [8] involving nonsymmetric metrics in Finsler
geometry was undertaken by [20] following the early work of Eisenhart [21].
Nonsymmetric metrics were very relevant in the study of Born’s deformed re-
ciprocal complex gravity and Noncommutative gravity [9].

It is reasonable to expect that a Kaluza-Klein compactification scenario
should yield a complexified SU(3) Yang-Mills theory based on the following
complex-valued field strength

F k
µν + i F̃ k

µν =

∂µ (Ak
ν +i Ãk

ν) − ∂ν (Ak
µ +i Ãk

µ) +f k
lj (Al

µ +i Ãl
µ) (Aj

ν +i Ãj
ν); k = 1, 2, 3, ...., 8

(2.16)
One may note that now one ends up with field strength components whose fields
Aa

µ, Ãa
µ mix due to the nonabelian nature of SU(3)

F k
µν = ∂µ Ak

ν − ∂ν Ak
µ + f k

lj ( Al
µ Aj

ν − Ãl
µ Ãj

ν) (2.17a)

F̃ k
µν = ∂µ Ãk

ν − ∂ν Ãk
µ + f k

lj (Al
µ Ãj

ν + Ãl
µ Aj

ν) (2.17b)

These expressions should be compared with the standard SU(3) × SU(3) field
strength, where the respective fields A

′a
µ and Ã

′a
µ do not mix

F
′k
µν = ∂µ A

′k
ν − ∂ν A

′k
µ + f k

lj A
′l
µ A

′j
ν (2.18a)

F̃
′k
µν = ∂µ Ã

′k
ν − ∂ν Ã

′k
µ + f k

lj Ã
′l
µ Ã

′j
ν (2.18b)

If one equates

F k
µν = F

′k
µν , F̃ k

µν = F̃
′k
µν (2.19)

it imposes a relationship among the gauge fields Ak
µ, Ãk

µ, A
′k
µ , Ã

′k
µ of the form

Ak
µ − A

′k
µ = ∂µΛk ≡ Λk

µ, Ãk
µ − Ã

′k
µ = ∂µΛ̃k ≡ Λ̃k

µ ⇒ (2.20a)

∂[νAk
µ] = ∂[νA

′k
µ], ∂[νÃk

µ] = ∂[νÃ
′k
µ], k = 1, 2, 3, ...., 8 (2.20b)

where the derivatives ∂µΛk = Λk
µ, ∂µΛ̃k = Λ̃k

µ are not arbitrary functions but
are constrained to satisfy the following set of stringent relations obtained by
imposing the equalities

f k
lj ( Al

µ Aj
ν − Ãl

µ Ãj
ν ) = f k

lj A
′l
µ A

′j
ν , k = 1, 2, 3, ......, 8 (2.21a)
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f k
lj ( Al

µ Ãj
ν + Ãl

µ Aj
ν ) = f k

lj Ã
′l
µ Ã

′j
ν , k = 1, 2, 3, ......, 8 (2.21b))

resulting from eqs-(2.19), and after using eqs-(2.20), leading to a complicated
functional relation among Λk

µ, Λ̃k
µ and A

′k
µ , Ã

′k
µ of the form Λk

µ[A
′k
µ , Ã

′k
µ ]; Λ̃k

µ[A
′k
µ , Ã

′k
µ ].

Hence, eqs-(2.20,2.21) provide a functional relation among the prime and un-
primed fields of the form

Ak
µ = A

′k
µ + Λk

µ[A
′k
µ , Ã

′k
µ ], Ãk

µ = Ã
′k
µ + Λ̃k

µ[A
′k
µ , Ã

′k
µ ] (2.22)

which permits us to equate the Yang-Mills kinetic terms

(F
′k
µν)2 + (F̃

′k
µν)2 = (F k

µν)2 + (F̃ k
µν)2 (2.23)

To sum up, by taking the real part of the complex scalar curvature for the 8D
Lagrangian : 1

2 [gABRAB + (gABRAB)∗], and after performing a Kaluza-Klein
compactification on CP 2, one would expect to generate the real part of the
complexified SU(3) Yang-Mills kinetic terms in 4D

1
2

[ (F k
µν + i F̃ k

µν)2 + (F k
µν − i F̃ k

µν)2 ] =

(F k
µν + i F̃ k

µν) (Fµν
k − i F̃µν

k ) = (F k
µν)2 + (F̃ k

µν)2 = (F
′k
µν)2 + (F̃

′k
µν)2 (2.24)

Therefore, after recurring to the relations (2.19-2.22), one could extract in prin-
ciple the SU(3) × SU(3) 4D Yang-Mills Lagrangian (2.24) from the complex
gravitational theory in 8D after a Kaluza-Klein compactification on the inter-
nal space CP 2. Because the latter group SU(3)× SU(3) contains the standard
model group SU(3) × SU(2) × U(1), this is an appealing construction in 8D
that does not require an ordinary gravitational theory in D = 11 [26] and which
differs from the proposals in [24], [25].

Having described heuristically the Kaluza-Klein compactification of complex
gravity and how a complex SU(3) Yang-Mills might arise, we now turn to the
pure quaternionic gravity case based on the metric g(µν)eo + gi

[µν]ei, when the
internal part of the connection is unrestricted (Θσ

[µρ])
iei 6= δσ

[ρΘ
i
µ]ei, and ask

firstly what a quaternionic analog of a SU(3) Yang-Mills theory might look
like. In general, a quaternionic-valued and SU(N)-valued gauge field can be
written as Aµ = Aam

µ (ea⊗Tm) involving the SU(N) algebra generators Tm,m =
1, 2, 3, ...., N2 − 1 and the quaternion algebra generators (including the unit
generator) ea = e0, e1, e2, e3; i.e. one has quaternionic-valued components for
the SU(N) gauge fields. The quaternionic-valued SU(N) commutator is defined
by

[ Aµ, Aν ] = [ Aam
µ (ea ⊗ Tm), Abn

ν (eb ⊗ Tn) ] =

1
2

Aam
µ Abn

ν {ea, eb} ⊗ [Tm, Tn] +
1
2

Aam
µ Abn

ν [ea, eb]⊗ {Tm, Tn} (2.25)

where
{ea, eb} = − 2 δab eo, [ea, eb] = 2 cabc ec (2.26)
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and

{Tm, Tn} =
1
N

δmn + dmnp Tp, [Tm, Tn] = fmnp Tp (2.27)

From eqs-(2.25-2.27) one arrives at the different components of the field strengths

F k
µν = ∂µ Ak

ν − ∂ν Ak
µ + f k

lj Al
µ Aj

ν − δab f k
lj Aal

µ Abj
ν (2.28a)

F c
µν = ∂µ Ac

ν − ∂ν Ac
µ + c c

ab

δlj

N
Aal

µ Abj
ν (2.28b)

F ck
µν = ∂µ Ack

ν − ∂ν Ack
µ + c c

ab d k
lj Aal

µ Abj
ν + f k

lj Al
µ Acj

ν (2.28c)

From the first three terms in the right hand side of eq-(2.28a) one learns
that F k

µν does contain explicitly the SU(N) field strength if δabf
k

lj Aal
µ Abj

ν 6=
f k

lj Al
µAj

ν . After requiring the summation over the l, j indices in eq-(2.28b)
to be δlj

N Aal
µ Abj

ν = Aa
µAb

ν , in the special case that the indices span the range of
values given by a, b = 1, 2, 3; l, j = 1, 2, ...N2−1, the field strength F c

µν becomes

F c
µν = ∂µ Ac

ν − ∂ν Ac
µ + c c

ab

δlj

N
Aal

µ Abj
ν =

∂µ Ac
ν − ∂ν Ac

µ + c c
ab Aa

µ Ab
ν (2.29)

and effectively behaves as a SU(2)-valued field strength since the quaternionic
structure constants cabc coincide with the epsilon symbols εabc when a, b, c =
1, 2, 3. When the index for c in eq-(2.28b) is c = 0 ⇒ c 0

ab = 0, and eq-(2.28b)
becomes in this case

F 0
µν = ∂µ A0

ν − ∂ν A0
µ (2.30)

and which behaves effectively as an U(1) field strength.
Therefore, when N = 3, the field strength components in eqs-(2.28a,2.28b)

associated with a quaternionic-valued SU(3) Yang-Mills theory, contain the
SU(3), SU(2), U(1) field strengths as special cases, and consequently, the Stan-
dard Model group. In this way one can see once more how a quaternionic-
valued gravitational theory in 8D can furnish a gravitational and SU(3) ×
SU(2) × U(1) Yang-Mills theory in 4D after a Kaluza-Klein compactification
on CP 2. There are additional field strength components F ck

µν stemming from
the noncommutativity of the quaternions which do not belong to the Standard
Model group and which are given by eq-(2.28c). As expected, the structure of
the quaternionic-valued SU(3) Yang-Mills theory is richer than a one based on
the standard model group SU(3)× SU(2)× U(1),

One may compare these results with the Clifford Cl(5, C) Unified Gauge
Field Theory of Conformal Gravity, Maxwell and U(4) × U(4) Yang-Mills in
4D [14], the Kaluza-Klein theory without extra dimensions involving a curved
Clifford space [30] and the Clifford Cl(8) algebra models of [29]

9



3 Gravity and SU(5) Yang-Mills Unification from
Nonlinear Connections in Finsler Geometry

In this section we will explore a different approach than the standard Kaluza-
Klein one to unification from gravity in higher dimensions. It will be based on
the nonlinear connection formalism of Finsler geometry, [17], [18], [19]. Some
time ago it was shown by [27] that a Kaluza-Klein-like formalism of Einstein’s
theory, based on the (2 + 2)-fibration of a generic 4-dimensional spacetime, de-
scribes General Relativity as a Yang-Mills gauge theory on the 2-dimensional
base manifold, where the local gauge symmetry is the group of the diffeomor-
phisms of the 2-dimensional fibre manifold. They found the Schwarzschild so-
lution by solving the field equations after a very laborious procedure. Their
formalism was valid for any m + n decomposition of the D-dim spacetime
D = m + n. The line element in m + n dimensions is parametrized as fol-
lows

ds2 = φab dya dyb + (γµν + φab Aa
µ Ab

ν) dxµ dxν + 2φab Ab
µ dxµ dya. (3.1)

where all fields depend on the xµ, ya coordinates and the metric is symmetric.
In particular, the nonlinear gauge connection is given by Aa

µ(xρ, yb) and the
span of indices is µ, ν, ρ = 1, 2, ....., m and a, b, c = 1, 2, ....., n. To find the
(m + n)-dimensional action principle of general relativity we must compute the
scalar curvature of space-times in the (m + n)-decomposition. For this purpose
it is convenient to introduce the following non-holonomic (non-coordinate basis)
∂̂A = (∂̂µ, ∂̂a) where

∂̂µ ≡ ∂µ −A a
µ (xρ, yb) ∂a, ∂̂a ≡ ∂a . (3.2)

From this definition we have

[ ∂̂A, ∂̂B ] = f C
AB (xρ, yb) ∂̂C ,

where the structure coefficients (non-holonomic coefficients) f C
AB are given by

f a
µν = − F a

µν , f b
µa = − f b

aµ = ∂aA b
µ , f C

AB = 0, otherwise (3.3)

The virtue of this non-holonomic basis is that it brings the metric (3.1) into a
block diagonal form

gAB =
(

γµν 0
0 φab

)
which drastically simplifies the computation of the scalar curvature. In this
non-holonomic (non-coordinate) basis the Levi-Civita connection is given by

Γ C
AB =

1
2
gCD(∂̂AgBD+∂̂BgAD−∂̂DgAB)+

1
2
gCD( fABD−fBDA−fADB ) (3.4)
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where fABC = gCDf D
AB . The field strength F a

µν corresponding to the (nonlin-
ear) gauge connection A a

µ is defined as

F a
µν = ∂µAa

ν − ∂νAa
µ − Ac

µ∂cA
a
ν + Ac

ν∂cA
a
µ (3.5)

For completeness, the connection coefficients components are [27]

Γ α
µν =

1
2
γαβ

(
∂̂µγνβ + ∂̂νγµβ − ∂̂βγµν

)

Γ a
µν = −1

2
φab∂bγµν −

1
2
F a

µν

Γ ν
µa = Γ ν

aµ =
1
2
γνα∂aγµα +

1
2
γναφabF

b
µα

Γ b
µa =

1
2
φbc∂̂µφac +

1
2
∂aA b

µ −
1
2
φbcφae∂cA

e
µ

Γ b
aµ =

1
2
φbc∂̂µφac −

1
2
∂aA b

µ −
1
2
φbcφae∂cA

e
µ

Γ µ
ab = −1

2
γµν ∂̂νφab +

1
2
γµνφac∂bA

c
ν +

1
2
γµνφbc∂aA c

ν

Γ c
ab =

1
2
φcd

(
∂aφbd + ∂bφad − ∂dφab

)
. (3.6)

The Torsion is defined as

TA
BC = ΓA

BC − ΓA
CB − fA

BC (3.7a)

giving vanishing torsion components, consistent with the fact that the Levi-
Civita connection is torsionless by definition. For example, from eqs-(3.3,3.6)
one arrives at the vanishing values

T a
µν = −F a

µν + F a
µν = 0, T b

µa = − T b
aµ = ∂aAb

µ− ∂aAb
µ = 0, ...... (3.7b)

The curvature tensors are defined as

R D
ABC = ∂̂AΓ D

BC − ∂̂BΓ D
AC + Γ D

AE Γ E
BC − Γ D

BE Γ E
AC − f E

AB Γ D
EC

RAC = R B
ABC , R = gACRAC . (3.8a)

Explicitly, the scalar curvature R is given by

R = γµν(R α
µαν + R a

µaν ) + φab(R c
acb + R µ

aµb ) (3.8b)
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which becomes, after a very lengthy computation

R = γµνRµν + φacRac +
1
4
φabγ

µνγαβF a
µα F b

νβ +

1
4
γµνφabφcd

{
(Dµφac)(Dνφbd)− (Dµφab)(Dνφcd)

}
+

1
4
φabγµνγαβ

{
(∂aγµα)(∂bγνβ)− (∂aγµν)(∂bγαβ)

}
+∇AjA (3.9)

where the ”gauged” Ricci tensor Rµν in the base manifold and the internal
space Ricci tensor Rac are defined by

Rµν = ∂̂µΓ α
αν − ∂̂αΓ α

µν + Γ α
µβ Γ β

αν − Γ β
βα Γ α

µν

Rac = ∂aΓ b
bc − ∂bΓ

b
ac + Γ b

ad Γ d
bc − Γ d

db Γ b
ac . (3.10)

The derivative terms ∇AjA in (3.9) are

∇AjA = ∇µjµ +∇aja, ∇µjµ =
(
∂̂µ + Γ α

αµ + Γ c
cµ

)
jµ

∇aja =
(
∂a + Γ c

ca + Γ α
αa

)
ja, (3.11)

where jµ and ja are given by

jµ = γµν
(
φab∂̂νφab − 2∂aA a

ν

)
, ja = φabγµν∂bγµν . (3.12)

Therefore, Einstein gravity in D = m + n dimensions describes an m-dim
generally invariant field theory under the gauge transformations corresponding
to the Diffs N of the internal n-dim space N . Aa

µ couples to the graviton γµν ,
meaning that the graviton is charged (gauged) in this theory and also to the
φab field on N which can be identified as a non-linear sigma field whose self
interaction potential term is given by φabRab [27].

When the internal manifold N is a homogeneous compact space one can
perform a harmonic expansion of the fields w.r.t the internal ya coordinates,
and after integrating the action w.r.t these ya coordinates, one will generate
an infinite-component field theory on the m-dimensional space represented by
the xµ coordinates. A reduction of the Diffs N , via the inner automorphims
of a subgroup G of the Diffs N , yields the usual Einstein-Yang-Mills theory
interacting with a nonlinear sigma field. But in general, the former theory
described above is much richer than the latter one.

When the internal space N is two-dimensional, the area-preserving diffeo-
morphisms subalgebra of the Diffs N algebra is generated by those vector fields
ξa which are tangent to the internal two-dim surface and are divergence-free
∂aξa = 0. If the internal surface is a sphere S2 one may recur to the find-
ing by Hoppe [28] showing that there exists a basis-dependent limit of SU(N)
such that SU(N = ∞) is isomorphic to the algebra of area-preserving diffs
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of the sphere S2. The SU(∞)-valued gauge fields Aµ(xµ) = AI
µTI , with

I = 1, 2, 3, ......, N = ∞, are mapped to c-functions depending on the xµ, ya

coordinates Aµ(xµ, ya). The Lie algebra SU(∞) commutators [Aµ(xρ),Aν(xρ)]
are replaced by the Poisson brackets {Aµ(xρ, ya), Aν(xρ, ya)}PB with respect to
the internal ya = y1, y2 coordinates of the sphere. In terms of the two angles
like θ, φ, the Poisson brackets are

{Aµ(xρ, ya), Aν(xρ, ya)}PB ≡ ∂Aµ

∂(cosθ)
∂Aν

∂φ
− ∂Aν

∂(cosθ)
∂Aµ

∂φ
(3.13)

The group trace operation in the N → ∞ limit is replaced by an integral with
respect to the internal ya coordinates of the sphere such that∫

d4x

∫
d2y

√
|det γµν |

√
|det φab| φab γµν γαβ F a

µα F b
νβ =∫

d4x

∫
d2y

√
|det γµν |

√
|det hab(y)| γµν γαβ Fµα Fνβ (3.14)

where hab(y) is the standard metric on the sphere and the field strengths in the
right hand side are defined in terms of the Poisson brackets as

Fµν(xρ, ya) = ∂µAν(xρ, ya) − ∂νAµ(xρ, ya) + {Aµ(xρ, ya), Aν(xρ, ya)}PB

(3.15)
Therefore, by restricting to the area-preserving Diffs S2 symmetry transforma-
tions ( (∂aξa = 0) the above horizontal-vertical decomposition of six dimensional
gravity (3.9), based on the nonlinear connection Aµ(x, y), yields a 4D theory
of (gauged) gravity and SU(∞) Yang-Mills. Because SU(5) ⊂ SU(∞), a grand
unification procedure from pure gravity in D = 4 + 2 dimensions is plausible,
in principle, after one truncates (or breaks) the infinite-dim symmetry SU(∞)
down to SU(5). An spontaneous breakdown of the SU(∞) symmetry to SU(5)
via the Higgs mechanism leads to an infinite number of massive spin 1 fields and
Higgs scalars along the infinite chain of steps from SU(∞) → SU(5). A trunca-
tion of the SU(∞) down to SU(5), rather than an infinite chain of spontaneous
symmetry breaking processes, from very high energies to lower energies, is an-
other possibility. Despite the fact that it does not seem very physically appealing
to have an infinite hierarchy of massive spin 1 fields, and Higgs scalars along
the infinite chain, one should not exclude this possibility from being realized
in Nature. Concluding, the nonlinear connection formalism of Finsler geometry
provides a hierarchical extension of the standard model, and the SU(5) GUT,
within a six dimensional gravitational theory in the form of the Lagrangian
described by eq-(3.9), when the internal two-dim space is a sphere S2.
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