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We present a simple quantum relativistic model of neutrino oscillations and propagation in space.
Matrix elements of the neutrino Hamiltonian depend on momentum and this dependence is re-
sponsible for the observed neutrino speed. On average neutrino travels with the speed of light, but
instantaneous speed oscillates around c in a pattern synchronized with flavor oscillations. Due to low
masses of the familiar neutrino species νe, νµ, ντ the predicted effect is extremely small. However,
if one assumes the existence of a fourth supermassive (m > 0.3 GeV/c2) neutrino flavor, then this
theory can explain the superluminal propagation of νµ seen in the MINOS and OPERA experiments.
Based on this assumption we provide specific predictions for future neutrino velocity measurements.
The consistence of our approach with fundamental principles of relativity and causality is discussed
as well.

I. INTRODUCTION

A recent preprint [1] published by the OPERA col-
laboration claims observation of a superluminal effect in
neutrino propagation. A similar result was obtained in an
earlier MINOS experiment [2], although the accuracy of
this measurement was not sufficient to insist on the pres-
ence of superluminality. The great importance of these
observations is obvious as they challenge the fundamen-
tals of Einstein’s special relativity, which forbids any kind
of superluminal propagation of particles and asserts that
any such effect would mean a violation of the principle
of causality. Dozens of attempts at theoretical explana-
tion of the OPERA effect have already appeared in the
literature – some of them were reviewed in [3, 4] – but no
one gained a universal acceptance. So, there is a great
deal of scepticism in the scientific community regarding
these remarkable observations, and the prevailing atti-
tude seems to be to blame a yet undiscovered systematic
experimental error. In this paper we will offer a possi-
ble explanation for the neutrino superluminality, which,
on one hand, is fully within mainstream quantum rela-
tivistic physics, and on the other hand, challenges the
traditional interpretation of Einstein’s relativity theory.

In section II we discuss the present experimental sit-
uation around the issue of neutrino superluminality. In
sections III - V we suggest a simple but realistic model of
neutrino propagation in space. Our model is formulated
in one spatial dimension, but its generalization for the
real 3D world is not expected to bring about any signif-
icant changes. The model is fully relativistic, meaning
that commutation relations of the Poincaré Lie algebra
are explicitly satisfied by operators of the total momen-
tum, total energy and boost. According to this model,
the velocity of high energy neutrinos oscillates around the
average value c, so that in certain conditions a superlu-
minal propagation speed can be detected. The oscillating

time dependence of the neutrino speed is directly related
to well-known flavor oscillations.

The simplest versions of our model, which involve two
or three neutrino flavors, agree with observations qualita-
tively but they have a serious defect that is explained in
detail in section VI: Small neutrino masses and the ob-
served persistence of the superluminal effect across a wide
energy range [1] imply that the magnitude of superlumi-
nality should be very small. The most natural resolution
of this contradiction can be found if one postulates exis-
tence of a fourth neutrino flavor having extremely large
mass exceeding 0.3 GeV/c2. In section VII we will see
that this idea allows us to reproduce all existing exper-
imental data and to make specific predictions for future
experiments. In section VIII we will discuss how these
results may affect our interpretation of the principles of
relativity and causality.

II. EXPERIMENTAL DATA

There were three major experiments [1, 2, 5] measuring
µ-neutrino propagation speed. Their essential parame-
ters are listed in Table I. All these experiments shared
the same basic design: An energetic proton beam from
accelerator collided with a target thus producing charged
π and K mesons which decayed in-flight into muon and
a µ-neutrino. The neutrino beam was captured by a dis-
tant detector. Then, knowing the time-of-flight t and the
propagation length L one could determine the apparent
propagation speed as vµ ≡ L/t. It is convenient to ex-
press experimental results in terms of the parameter

δv ≡ vµ − c

c
(1)

Positive values of δv correspond to superluminal propa-
gation.
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TABLE I. Experiments measuring neutrino velocity.

Property Fermilab [5, 6] MINOS [2] OPERA [1] SN1987A [7–9]

Neutrino flavor νµ νµ νµ νe

Average energy E (GeV) 32 - 195 3 17 0.0075 - 0.040

Base L (km) 0.55 - 0.895 734 730 15 × 1012

β = L/E (km/GeV) 0.003 − 0.028 245 43 (0.38 − 2.0) × 1015

δv exp. (0 ± 4) × 10−5 (5.1 ± 2.9) × 10−5 (2.37 ± 0.43) × 10−5 (0 ± 2) × 10−9

δv theor. 2.37 × 10−5 3.0 × 10−5 2.37 × 10−5 (fitted) ≈ 0

In the early experiment at Fermilab [5, 6] this scheme
was not followed as the propagation time t was not ac-
tually measured. Instead, the experimentalists have no-
ticed that neutrinos arrived in the detector almost simul-
taneously with muons originated from the same meson
decay. Since energetic muons are known to travel with
the speed of light, it was concluded that neutrino speed
does not exceed c as well. The experimental limit on the
parameter δv was found to be |δv| < 4× 10−5 for a num-
ber of neutrino energies E ranging from 32 GeV to 195
GeV.

A more recent MINOS experiment [2] used a lower neu-
trino energy of about 3 GeV and performed direct time
of flight measurements on a long baseline of 734 km. A
significant superluminal effect δv = 5.1 × 10−5 was ob-
served, but experimental uncertainties were too high to
definitively claim the discovery.

A similar design was used in the recent OPERA experi-
ment [1]: Muon-type neutrinos with energies of about 17
GeV were produced at the CERN accelerator site and
registered by the OPERA detector 730 kilometers away.
Due to improved time and distance measurement tech-
niques the superluminality δv = 2.37 × 10−5 was con-
firmed with an impressive 6σ significance. For our dis-
cussion below it is important that neutrino energies were
in a broad interval 13.8 GeV - 40.7 GeV, and no signifi-
cant energy dependence of δv was found.

Relevant data from a different kind of observation are
presented in the last column of the Table. In this case
electron antineutrinos emitted by the SN1987A super-
nova were detected on Earth [7, 8]. So, the propagation
length was L = 160000 light years. It was concluded that
parameter δv was essentially zero with an extremely low
uncertainty of 2× 10−9 [9].

For our discussion in this work we will also need nu-
merical values of essential neutrino properties, such as
their masses and mixing angles shown in Table II. These
numbers are useful not only for comparison of our re-
sults with experiments in section VII, but also for justi-
fying approximations in various formulas throughout this
work. Neutrino masses are not well established: neither
their free (non-interacting) values me,µ,τ nor eigenval-
ues m1,2,3 of the interacting mass operator. The present
consensus is that these masses are rather low – on the
order of 1 eV/c2. It is well established that in the course
of propagation neutrinos of one flavor experience partial

conversion into other flavors due to the effect of neutrino
oscillations [10, 11]. Experimental studies of neutrino
oscillation frequencies [12, 13] provide rather precise val-
ues of differences of squared mass eigenvalues shown in
the Table. Observed oscillation amplitudes are related
to mixing angles. Only the θ23 angle is relevant for this
work. Note that the mixing coefficient sin2 2θ23 is only
known to be higher than 0.9 [12]. In our calculations we
used the value of 0.97 for illustration purposes. The con-
sidered energy range from 3 GeV to 40 GeV covers values
characteristic for two experiments (OPERA and MINOS)
in which the superluminal effect in neutrino propagation
has been observed with some certainty.

TABLE II. Neutrino properties used in this work.

Property Value

Masses m1,2,3 ≈ 1 eV/c2

|m2
3 −m2

2| 2.43 × 10−3 eV2/c4 [12]

m2
2 −m2

1 8.0 × 10−5 eV2/c4 [13]

Mixing coefficient sin2 2θ23 0.97

Energy E 3 - 40 GeV [1, 2]

III. NON-INTERACTING NEUTRINOS

We would like to describe a free neutrino system os-
cillating between two states: µ-neutrino and τ -neutrino.
For simplicity, at this stage we will ignore the possible
effect of the third (electron) neutrino species. Then the
Hilbert space can be constructed as a direct sum of two
one-particle subspaces

H = Hµ ⊕Hτ (2)

This Hilbert space will be used for both non-interacting
and interacting neutrino systems. This introductory sec-
tion will cover the case in which the oscillation-causing
interaction is turned off.

A. Representation of the Poincaré group

Both Hµ and Hτ are Hilbert spaces carrying unitary
irreducible representations of the Poincaré group charac-



3

terized by (non-observable) free neutrino masses mµ and
mτ , respectively. In our 1-dimensional model neutrinos
are also spinless. The noninteracting representation of
the Poincaré group acting in the Hilbert space H can
be built as a direct sum of these two irreducible repre-
sentations. To write explicit formulas we will choose a
convenient basis set in (2). For each momentum p we se-
lect two orthonormal basis states of definite flavor. Then
each normalized state vector |ψ⟩ can be represented as
a 2-component momentum-dependent vector in this (fla-
vor) basis

|ψ⟩ ≡

[
Φµ(p)

Φτ (p)

]

where Φµ,τ (p) are complex wave functions satisfying the
normalization condition

∫
dp
(
|Φµ(p)|2 + |Φτ (p)|2

)
= 1

Projection operators on the particle subspaces Hµ and
Hτ are

Πµ =

[
1 0

0 0

]
(3)

Πτ =

[
0 0

0 1

]
(4)

respectively.
In this paper we adopt Schrödinger representation:

Any inertial change of the observer is reflected in a
change of system’s state vector or wave function. Dif-
ferent observers use the same Hermitian operator to de-
scribe a given observable. Finite transformations from
the Poincaré group (space translations, time translations
and boosts) are represented in the Hilbert space by ex-
ponential functions of generators [14]

e
i
h̄P0a|ψ⟩ =

[
e

i
h̄paΦµ(p)

e
i
h̄paΦτ (p)

]

e−
i
h̄H0t|ψ⟩ =

[
e−

i
h̄ωµ(p)tΦµ(p)

e−
i
h̄ωτ (p)tΦτ (p)

]

e
i
h̄K0cθ|ψ⟩ =

 √ωµ(Λµp)
ωµ(p)

Φµ(Λµp)√
ωτ (Λτp)
ωτ (p)

Φτ (Λτp)


where

ωµ,τ (p) ≡
√
m2

µ,τ c
4 + p2c2

Λµ,τp ≡ p cosh θ − ωµ,τ

c
sinh θ

and parameter θ is related to the boost velocity v by
formula v = c tanh θ.

The basis of the corresponding representation of the
Poincaré Lie algebra is provided by Hermitian operators
of total momentum P0, total energy H0 and boost K0.
Explicit matrix forms of these generators can be obtained
by differentiation

P0 = −ih̄ lim
a→0

d

da
e

i
h̄P0a =

[
p 0

0 p

]
(5)

H0 =

[
ωµ(p) 0

0 ωτ (p)

]
(6)

K0 = −ih̄

[
ωµ(p)
c2

d
dp + p

2ωµ(p)
0

0 ωτ (p)
c2

d
dp + p

2ωτ (p)

]
(7)

The Newton-Wigner (center of energy) position oper-
ator is given by formula [15]

R0 = −c
2

2
(K0H

−1
0 +H−1

0 K0) = ih̄

[
d
dp 0

0 d
dp

]
(8)

Position operators for individual particles can be ob-
tained by applying projection operators (3) - (4) to (8)

rµ = ΠµR0Πµ = ih̄

[
d
dp 0

0 0

]
(9)

rτ = ΠτR0Πτ = ih̄

[
0 0

0 d
dp

]
(10)

B. Particle trajectories

The above formalism allows us to obtain classical tra-
jectories of non-interacting neutrinos. By itself, this cal-
culation is rather trivial. We reproduce it here because
it provides a useful template for the more interesting in-
teracting case in section V. Suppose that at time t = 0
we prepared a state vector with one µ-neutrino having a
normalized momentum-space wave function ψ(p)

|ψ(0)⟩ ≡

[
ψ(p)

0

]
(11)∫

dp|ψ(p)|2 = 1

Let us now postulate that this wave function is localized
in a narrow region ∆p of the momentum space and that
the center of the wave packet is at a large positive mo-
mentum ⟨p⟩ > 3 GeV/c. Then we can safely conclude
that our particle is ultrarelativistic
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⟨p⟩ ≫ mµc ≈ mτ c (12)

ωµ(p) ≈ ωτ (p) ≈ cp (13)

The expectation value of the µ-neutrino position at
t = 0 is

⟨rµ(0)⟩ ≡ ⟨ψ(0)|rµ|ψ(0)⟩

= ih̄

∫
dp[ψ∗(p), 0]

[
d
dp 0

0 0

][
ψ(p)

0

]

= ih̄

∫
dpψ∗(p)

dψ(p)

dp
(14)

Since rµ is a Hermitian operator, this expectation value
must be real. To make this fact obvious, we can rewrite
(14) in an explicitly real form by using the fact that
the wave function ψ(p) vanishes at infinity ψ(−∞) =
ψ(+∞) = 0

⟨rµ(0)⟩ = ih̄|ψ(p)|2
∣∣∣+∞

−∞
−ih̄

∫
dpψ(p)

dψ∗(p)

dp

=
ih̄

2

(∫
dpψ∗(p)

dψ(p)

dp
−
∫
dpψ(p)

dψ∗(p)

dp

)
= −h̄

∫
Im

dpψ∗(p)
dψ(p)

dp

where
∫
Im

means the imaginary part of the integral. At
a non-zero time instant t

⟨rµ(t)⟩ = ⟨ψ(0)|e i
h̄H0trµe

− i
h̄H0t|ψ(0)⟩

= −h̄
∫
Im

dp[ψ∗(p)e
i
h̄ωµ(p)t, 0]

[
d
dp 0

0 0

][
ψ(p)e−

i
h̄ωµ(p)t

0

]

≈ −h̄
∫
Im

dpψ∗(p)
dψ(p)

dp
+ ct

∫
dp|ψ(p)|2

= ⟨rµ(0)⟩+ ct (15)

If the initial state is in the τ -neutrino sector then, anal-
ogously

⟨rτ (t)⟩ = ⟨rτ (0)⟩+ ct (16)

Within our linear approximation (13) we have ne-
glected the wave function “spreading” effect, which is
known to be superluminal but negligibly small [16–
22]. Formulas (15) - (16) show that high-energy non-
interacting neutrinos propagate with velocities just be-
low the speed of light. However, this result cannot be
applied directly to the OPERA and MINOS experiments,
because real neutrinos experience an ever-present inter-
action, which is responsible for the oscillation effect [10].
Our goal in this paper is to find out how this interaction

affects neutrino trajectories. Our calculation method is,
basically, similar to that outlined above. First, we need to
construct a representation of the Poincaré group, which
is responsible for oscillations in the Hilbert space H. We
are especially interested in the interacting Hamiltonian
H, whose construction will be done in section IV. Once
the Hamiltonian is known, we can use it in place of H0 in
(15) and (16) to get trajectories of oscillating neutrinos.
This calculation will be performed in sections V and VI.

IV. INTERACTION

A. Interacting Hamiltonian

In the Dirac’s instant form of dynamics [23, 24], rela-
tivistically invariant description of interaction is achieved
by adding extra terms to both the energy operator H =
H0+V and the boost operatorK = K0+Z, while keeping
the total momentum P0 unchanged. The choice of inter-
actions V and Z must ensure that Poincaré commutators
remain the same as in the non-interacting case

[H,P0] = 0 (17)

[K,P0] = − ih̄
c2
H (18)

[K,H] = −ih̄P0 (19)

In this work we will assume that the Hermitian interac-
tion operator is

V =

[
ξ(p) f(p)

f(p) ζ(p)

]

where diagonal elements ξ(p), ζ(p) and the off-diagonal
f(p) are smooth real functions [25]. Then in the fla-
vor basis we can write the full Hamiltonian as a 2 × 2
momentum-dependent matrix

H = H0 + V =

[
Ωµ(p) f(p)

f(p) Ωτ (p)

]
(20)

where Ωµ(p) ≡ ωµ(p) + ξ(p) and Ωτ (p) ≡ ωτ (p) + ζ(p).
The corresponding operator of interacting mass is defined
as M = +

√
H2 − P 2

0 c
2/c2.

B. Mass (energy) eigenstates

Our primary goal in this section is to calculate the
time evolution of neutrino states. This can be done most
easily if we find eigenvalues E2,3(p) and eigenstates of H.
So, we need to solve equation
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0 =

[
Ωµ(p)− E2,3(p) f(p)

f(p) Ωτ (p)− E2,3(p)

][
Φ2,3

µ (p)

Φ2,3
τ (p)

]
(21)

together with normalization conditions (i = 2, 3)

|Φi
µ(p)|2 + |Φi

τ (p)|2 = 1 (22)

For the eigenvalues E2, E3 we obtain two equations

f2(p) = [Ωµ(p)− E2(p)] [Ωτ (p)− E2(p)]

= [Ωµ(p)− E3(p)] [Ωτ (p)− E3(p)]

A necessary requirement for this theory to be relativisti-
cally invariant is that energy eigenvalues have the stan-
dard momentum dependence

E2,3(p) =
√
m2

2,3c
4 + p2c2 (23)

where m2,3 are neutrino mass eigenvalues. The true
Hamiltonian (20) is not known, so we are free to make
our guesses. We will assume that the mass eigenvalues
are known: m3 > m2 > 0. Then, having at our disposal
three adjustable real functions Ωµ(p), Ωτ (p) and f(p) we
can always choose them in such a way that condition (23)
is satisfied and

Ωµ(p) + Ωτ (p) = E2(p) + E3(p)

For example, we can express Ωτ (p) and f(p) in terms of
an arbitrarily chosen Ωµ(p)

Ωτ (p) = E2(p) + E3(p)− Ωµ(p) (24)

f2(p) = (Ωµ(p)− E2(p))(E3(p)− Ωµ(p)) (25)

As can be verified by direct substitution in (21) - (22),
common eigenvectors of H,M and P0 are

|2, p⟩ =

[
A(p)

−B(p)

]

|3, p⟩ =

[
B(p)

A(p)

]
where we introduced notation

A(p) ≡ +

√
Ωτ (p)− E2(p)

E3(p)− E2(p)
(26)

B(p) ≡ +

√
Ωµ(p)− E2(p)

E3(p)− E2(p)
(27)

A2(p) +B2(p) = 1 (28)

Parameters A and B can be written in a more standard
form [26]

A(p) ≡ cos θ23(p)

B(p) ≡ sin θ23(p)

but we will stick with A and B to keep our formulas
short.

Next we need to find a connection between the flavor
and mass-energy bases. If (Ψ2(p),Ψ3(p)) is a state vec-
tor written in the basis of mass eigenstates [27], then its
expansion in the flavor basis is obtained by a unitary
transformation

[
Φµ(p)

Φτ (p)

]
=

(
A(p) B(p)

−B(p) A(p)

)(
Ψ2(p)

Ψ3(p)

)
(29)

The transformation from the flavor basis to the mass ba-
sis is provided by the inverse matrix

(
Ψ2(p)

Ψ3(p)

)
=

[
A(p) −B(p)

B(p) A(p)

][
Φµ(p)

Φτ (p)

]
(30)

C. Interacting representation of the Poincaré group

The mass basis is useful because the interacting rep-
resentation of the Poincaré group takes especially simple
form there

e−
i
h̄Ht

(
Ψ2(p)

Ψ3(p)

)
=

(
e−

i
h̄E2(p)tΨ2(p)

e−
i
h̄E3(p)tΨ3(p)

)
(31)

e
i
h̄Kcθ

(
Ψ2(p)

Ψ3(p)

)
=

 √E2(Λ1p)
E2(p)

Ψ2(Λ1p)√
E3(Λ2p)
E3(p)

Ψ3(Λ2p)


where Λip ≡ p cosh θ − (Ei/c) sinh θ is the usual boost
transformation of momentum.

Poincaré generators in the mass basis can be obtained
by differentiation similar to (5) - (7)

H = ih̄ lim
t→0

d

dt
e−

i
h̄Ht =

(
E2(p) 0

0 E3(p)

)
(32)

K = −ih̄

(
E2(p)
c2

d
dp + p

2E2(p)
0

0 E3(p)
c2

d
dp + p

2E3(p)

)
(33)

P0 =

(
p 0

0 p

)
(34)

In this representation one can easily verify that commu-
tators (17) - (19) are satisfied. So, our theory is relativis-
tically invariant.
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V. INTERACTING TIME EVOLUTION

Obviously, the state vector with one µ-neutrino (11) is
not a stationary eigenstate of the Hamiltonian (20). Our
goal in this section is to calculate the time evolution of
pure flavor states.

A. Time-dependent wave function

In analogy with (12) - (13) and using neutrino param-
eters from Table I we can approximate

⟨p⟩ ≫ m2,3c

E2(p) =
√
m2

2c
4 + p2c2 ≈ cp

E3(p) =
√
m2

3c
4 + p2c2 ≈ cp+ γ(p)

dE2(p)

dp
≈ dE3(p)

dp
≈ c (35)

γ(p) ≈ (m2
3 −m2

2)c
3

2p
(36)

dγ(p)

dp
≈ 0 (37)

To find the time evolution of the initial state (11) we
use (30) to expand it in the mass basis

|ψ(0)⟩ = ψ(p)

(
A(p)

B(p)

)

and apply (31)

|ψ(t)⟩ = e−
i
h̄Ht|ψ(0)⟩ = ψ(p)

(
A(p)e−

i
h̄E2(p)t

B(p)e−
i
h̄E3(p)t

)
(38)

Wave function components in the flavor basis can be
found using transformation (29)

|ψ(t)⟩

= ψ(p)

(
A(p) B(p)

−B(p) A(p)

)(
A(p)e−

i
h̄E2(p)t

B(p)e−
i
h̄E3(p)t

)

= ψ(p)

[
A2(p)e−

i
h̄E2(p)t +B2(p)e−

i
h̄E3(p)t

A(p)B(p)
(
e−

i
h̄E3(p)t − e−

i
h̄E2(p)t

) ] (39)

B. Oscillations

The probabilities for finding µ-neutrino and τ -neutrino
in the state (39) can be found as expectation values of
operators (3) - (4) projecting on the corresponding fla-
vor subspaces. Before evaluating these integrals let us
make a few comments about how we are going to deal
with momentum integrals in this work. The integrands
always contain a momentum-space wave function ψ(p)
which was assumed to be localized within a small inter-
val ∆p centered at momentum ⟨p⟩ ≈ E/c, where E is
particle’s energy. Inside this interval we can treat func-
tions A(p), B(p), E2,3(p) and γ(p) as constants (denoted
simply by A, B, E2,3 and γ). These constants can be
moved outside the integral sign. In some integrals we will
also meet derivatives dA(p)/dp, dB(p)/dp, dΩµ(p)/dp,
etc. We will ignore their variations within ∆p as well
and replace them by constants denoted dA/dp, dB/dp,
dΩµ/dp . . .. With these considerations in mind we find
that flavor probabilities are sinusoidal functions of time
[10]

ρµ(t) ≡ ⟨ψ(t)|Πµ|ψ(t)⟩ ≈
(
A2e

i
h̄E2t +B2e

i
h̄E3t

)(
A2e−

i
h̄E2t +B2e−

i
h̄E3t

)∫
dp|ψ(p)|2

= A4 +B4 + 2A2B2 cos

(
γt

h̄

)
= 1− sin2 2θ23 sin

2 γt

2h̄
(40)

ρτ (t) ≡ ⟨ψ(t)|Πτ |ψ(t)⟩ ≈ A2B2
(
e

i
h̄E3t − e

i
h̄E2t

)(
e−

i
h̄E3t − e−

i
h̄E2t

)∫
dp|ψ(p)|2

= 2A2B2 − 2A2B2 cos

(
γt

h̄

)
= sin2 2θ23 sin

2 γt

2h̄

1 = ρµ(t) + ρτ (t)

In our ultrarelativistic limit the oscillation period is

T =
2πh̄

γ
≈ 4πh̄E

∆m2c4
(41)
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C. Conservation laws

The oscillatory behavior of neutrinos described above
may raise doubts about the validity of conservation laws.
However, there is no reason for concerns. Conservation
laws for the total momentum P0 and energy H are easily
verified using mass basis representation formulas (32),
(34) and (38)

⟨P0(t)⟩ ≡ ⟨ψ(t)|P0|ψ(t)⟩ = ⟨p⟩
⟨H(t)⟩ ≡ ⟨ψ(t)|H|ψ(t)⟩ = c⟨p⟩

More work is required to prove another conservation
law that says that the center of energy of any isolated
physical system moves with a constant velocity along a
straight line. This law follows from the definition of the
center-of-energy position [28]

R = −c
2

2
(KH−1 +H−1K)

and the relationship (written in the Heisenberg represen-
tation)

K(t) ≡ e
i
h̄HtKe−

i
h̄Ht = K − P0t

which is a direct consequence of basic commutators (18)
- (19). Combining these two formulas we obtain the fol-
lowing linear time dependence for the center-of-energy
expectation value in any state

⟨R(t)⟩ = ⟨R(0)⟩+ c2⟨P0(0)⟩
⟨H(0)⟩

t = ⟨R(0)⟩+ ct (42)

To verify this result explicitly for our state (38) we use
the matrix form of the boost operator (33) and definition

⟨K(0)⟩ =
∫
dpψ∗(p)Kψ(p)

Then with the help of eq. (28) we obtain

⟨K(t)⟩ ≡ ⟨ψ(t)|K|ψ(t)⟩

= −ih̄
∫
dpψ∗(p)

(
A(p)e

i
h̄E2(p)t, B(p)e

i
h̄E3(p)t

)( E2(p)
c2

d
dp + p

2E2(p)
0

0 E3(p)
c2

d
dp + p

2E3(p)

)
ψ(p)

(
A(p)e−

i
h̄E2(p)t

B(p)e−
i
h̄E3(p)t

)

≈
(
Ae

i
h̄E2t, Be

i
h̄E3t

)(
Ae−

i
h̄E2t

Be−
i
h̄E3t

)∫
dpψ∗(p)Kψ(p)

− ih̄⟨p⟩
c

(
Ae

i
h̄E2t, Be

i
h̄E3t

)( dA
dp e

− i
h̄E2t − iA

h̄ cte
− i

h̄E2t

dB
dp e

− i
h̄E3t − iB

h̄ cte
− i

h̄E3t

)∫
dp|ψ(p)|2

= ⟨K(0)⟩ − ih̄⟨p⟩
c

(
A
dA

dp
− iA2

h̄
ct+B

dB

dp
− iB2

h̄
ct

)
= ⟨K(0)⟩ − ⟨p⟩t

This means that the center-of-energy ⟨R(t)⟩ = −c2⟨K(t)⟩/⟨H⟩ moves with the light speed c, as expected from (42).

D. Neutrino trajectories

We find averaged trajectories of the two neutrino species as expectation values of their position operators (9) - (10)
scaled by corresponding probabilities ρµ,τ (t)

⟨rµ(t)⟩ =
⟨ψ(t)|rµ|ψ(t)⟩

ρµ(t)
(43)

⟨rτ (t)⟩ =
⟨ψ(t)|rτ |ψ(t)⟩

ρτ (t)
(44)

For the νµ trajectory we obtain



8

⟨ψ(t)|rµ|ψ(t)⟩

= −h̄
∫
Im

dpψ∗(p)
(
A2(p)e

i
h̄E2(p)t +B2(p)e

i
h̄E3(p)t

) d

dp
ψ(p)

(
A2(p)e−

i
h̄E2(p)t +B2(p)e−

i
h̄E3(p)t

)
≈ −h̄

(
A2e

i
h̄E2t +B2e

i
h̄E3t

)(
A2e−

i
h̄E2t +B2e−

i
h̄E3t

)∫
Im

dpψ∗(p)
d

dp
ψ(p)

− h̄ Im

[(
A2e

i
h̄E2t +B2e

i
h̄E3t

)(dA2

dp
e−

i
h̄E2t − iA2ct

h̄
e−

i
h̄E2t +

dB2

dp
e−

i
h̄E3t − iB2ct

h̄
e−

i
h̄E3t

)]∫
dp|ψ(p)|2

= ⟨rµ(0)⟩ρµ(t)− h̄

(
B2 dA

2

dp
sin

γt

h̄
− A4ct

h̄
− A2B2ct

h̄
cos

γt

h̄
−A2 dB

2

dp
sin

γt

h̄
− A2B2ct

h̄
cos

γt

h̄
− B4ct

h̄

)
= ⟨rµ(0)⟩ρµ(t) + ρµ(t)ct− h̄

(
B2 dA

2

dp
−A2 dB

2

dp

)
sin

γt

h̄

= ⟨rµ(0)⟩ρµ(t) + ρµ(t)ct+ h̄
dB2

dp
sin

γt

h̄

With the help of (27), (35) and (37) we can simplify

dB2

dp
=

d

dp

(
Ωµ − E2

γ

)
≈ 1

γ

(
dΩµ

dp
− c

)
In what follows we place the origin of our coordinate
system at the point where µ-neutrino was created at t =
0. Then, finally, we obtain our main result for the µ-
neutrino trajectory

⟨rµ(t)⟩ ≈ ct+
h̄

γρµ(t)

(
dΩµ

dp
− c

)
sin

γt

h̄
(45)

The second term on the right hand side is the interac-
tion correction, which is responsible for the superluminal
effect observed in the MINOS and OPERA experiments,

according to our model. This term can take both posi-
tive and negative values depending on the yet unspecified
value dΩµ/dp and on time t. Thus µ-neutrino position
oscillates around the center-of-energy (42). Defining the
apparent propagation velocity as vµ(t) ≡ ⟨rµ(t)⟩/t we
obtain the superluminality parameter comparable with
experiments

δv(t) ≡ vµ(t)− c

c
=

h̄

γρµ(t)ct

(
dΩµ

dp
− c

)
sin

γt

h̄
(46)

E. The νµ − ντ asymmetry

To get trajectory of the ντ component of the state (38)
we evaluate (44)

⟨rτ (t)⟩ = − h̄

ρτ (t)

∫
Im

dpψ∗(p)A(p)B(p)
(
e

i
h̄E3(p)t − e

i
h̄E2(p)t

) d

dp
ψ(p)A(p)B(p)

(
e−

i
h̄E3(p)t − e−

i
h̄E2(p)t

)
= ⟨rτ (0)⟩ −

h̄A2B2

ρτ (t)
Im

[(
e

i
h̄E3t − e

i
h̄E2t

)(
− ict
h̄
e−

i
h̄E3t +

ict

h̄
e−

i
h̄E2t

)]
= ⟨rτ (0)⟩+

A2B2ct

ρτ (t)

(
e

i
h̄E3t − e

i
h̄E2t

)(
e−

i
h̄E3t − e−

i
h̄E2t

)
= ⟨rτ (0)⟩+ ct (47)

This means that, unlike its νµ counterpart, the τ -
neutrino trajectory always coincides with the center of
energy (42).

Interestingly, if the τ -neutrino were created first, i.e.,
the initial state was

|ψ(0)⟩ ≡

[
0

ψ(p)

]
instead of (11), then the ντ trajectory would exhibit the
oscillatory pattern, while the accompanying µ-neutrino
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would travel with the constant velocity c.
It seems strange that behaviors of νµ and ντ depend

so much on which species was created originally (at time
t = 0). For example, suppose that in the case of full
mixing (A2 = B2 = 1/2) we have prepared a pure µ-
neutrino state (11) at t = 0. According to (39), at time
equal to the half-period of oscillation t = T/2 = πh̄/γ
the system evolves into a τ -neutrino state

|ψ(T/2)⟩ ≈ ψ(p)e−
i
2h̄E2T

[
A2 +B2e−iπ

AB
(
e−iπ − 1

) ]

= ψ(p)e−
i
2h̄E2T

[
0

−1

]
(48)

At the first sight this state is supposed to behave in the
same manner as if the τ -neutrino was prepared initially
(with the exception of the overall time shift by T/2 and
spatial shift by cT/2), i.e., the µ-component should have
a straight trajectory while the ντ trajectory should oscil-
late in disagreement with our results (45) and (47). This
“paradox” is caused by approximation used in (48). In a
rigorous treatment, the vector components on the right
hand side of (48) are not exactly 0 and -1. They have
small (but not negligible) p-dependent contributions. So,
|ψ(T/2)⟩ is not a pure ντ state and it is not required to
behave exactly as the pure ντ state.

VI. FITTING MODEL PARAMETERS

A. OPERA experiment

Now let us take a closer look at the OPERA experi-
ment whose essential parameters are listed in the third
column of table I. The energies of νµ were in the broad
interval 13.8 - 40.7 GeV. So, using formula (41) we can
estimate that oscillation period was about T ≈ 47− 139
ms. These values are much higher than the time of flight
Tf ≈ 2.4 ms. Therefore, in (46) we can set ρµ(t) ≈ 1,
sin(γt/h̄) ≈ γt/h̄ and

δv(0) =
1

c

dΩµ

dp
− 1 (49)

Recall that function Ωµ(p) is basically a free parameter
of our model, which can be adjusted to represent the
neutrino speed excess δv(0) ≈ 2.37 × 10−5 measured by
the OPERA team for all studied energies. So, we are
going to postulate that dΩµ/dp is nearly constant

dΩµ

dp
≈ 1.0000237c (50)

within the entire energy range of interest (3 - 40 GeV,
see Table II).

cp

E

E1

E2

E3

Ωμ(p)

FIG. 1. Neutrino energy diagram. Theoretical consistency
requires function Ωµ(p) to remain within the shaded area for
a broad range of momenta.

This reasonable assumption presents a serious chal-
lenge for our model. The trouble is that the right hand
side of (25) must be positive. This can happen only if
Ωµ(p) is in the interval [E2, E3], which is a very strong
restriction meaning that the line representing function
Ωµ(p) in Fig. 1 should lie entirely within the shaded
area. But this is difficult to achieve, because the tiny
width of this area γ < 10−12 eV cannot accommodate
the rather large slope (50) implied by the experiment.
The only possibility to squeeze function Ωµ(p) inside the
narrow band [E2, E3] is to assume that Ωµ(p) has a saw-
tooth shape shown by the thin line in the Figure. This
is a rather unnatural behavior, and we will try to find
other explanations.

B. Three neutrinos

In reality there are three known neutrino flavors (νe,
νµ and ντ ), which oscillate among each other. So, it
seems reasonable to try to resolve the above paradox by
allowing all three neutrinos in our theory. The model
is similar to the two-neutrino case above. The Hilbert
space is

H = He ⊕Hµ ⊕Hτ

The full Hamiltonian is given by the 3 × 3 matrix with
real matrix elements (compare with (20))

H = H0 + V =

 Ωe(p) g(p) h(p)

g(p) Ωµ(p) f(p)

h(p) f(p) Ωτ (p)

 (51)

One can show that similar to the two-neutrino case, the
νµ propagation speed is controlled essentially by the pa-
rameter dΩµ/dp. So, our goal is to understand under
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t1 t2 t3

t

R=2(|s|/3)1/2

0

FIG. 2. Graphic solution of the cubic equation (53).

what conditions its value can exceed the speed of light.
Eigenvalues of (51) E1(p) < E2(p) < E3(p) are obtained
from the cubic equation

E3 + bE2 + uE + d = 0 (52)

where

b = −Ωe − Ωµ − Ωτ

u = ΩeΩµ +ΩeΩτ +ΩµΩτ −Q2

d = −ΩeΩµΩτ + f2Ωe + h2Ωµ + g2Ωτ − 2fgh

Q2 = f2 + g2 + h2

Just as in subsection IVB we are going to assume that

solutions E1,2,3(p) =
√
m2

1,2,3c
4 + p2c2 are known (for

the mass eigenvalues m1,2,3 see Table II) and see what
we can say about dΩµ/dp. First we simplify equation
(52) by shifting the variable E → t− b/3

0 = t3 + st+ q (53)

q =
2b3

27
− bu

3
+ d

s = u− b2

3

= −1

3
(Ω2

e +Ω2
µ +Ω2

τ ) +
1

3
(ΩeΩµ +ΩeΩτ +ΩµΩτ )−Q2

(54)

A beautiful theorem [29] says that three real solutions of
(53) can be found as (k = 1, 2, 3)

tk = 2

√
−s
3
cos

[
1

3
cos−1

(
3q

2s

√
−3

s

)
− 2πk

3

]

Geometrically, they can be understood as projections on
the horizontal axis of three equidistant points on the cir-
cle of radius 2

√
−s/3 (see Fig. 2). A few important

properties follow from this observation. First, parameter
s must be negative. Second, the maximum distance be-
tween the roots tk is not greater than 4

√
|s|/3. At this

point we will abandon our rigorous approach and switch
to more qualitative considerations, keeping in mind that
we are interested in order-of-magnitude estimates only.
So, we will ignore all factors, comparable with 1, such
as 4/

√
3, and claim that (E3 − E1)

2 = (t3 − t1)
2 = |s|.

It then follows from (54) that Ωe, Ωµ, Ωτ are related to
each other via equation

(E3 − E1)
2 −Q2 = Ω2

e +Ω2
µ +Ω2

τ − ΩeΩµ − ΩeΩτ − ΩµΩτ

(55)

describing an ellipsoid centered at Ωe = Ωµ = Ωτ = 0

whose approximate “radius” is Σ =
√
(E3 − E1)2 −Q2.

In order to have real solutions for Ωe, Ωµ, Ωτ the left hand
side of (55) must be positive. Moreover, absolute values
of individual coordinates |Ωe|, |Ωµ|, |Ωτ | of points on the
ellipsoid surface cannot exceed Σ. From these conditions
we get the following restrictions on matrix elements of
the Hamiltonian (51)

f2(p), g2(p), h2(p) < (E3(p)− E1(p))
2

|Ωe,µ,τ (p)| < E3(p)− E1(p) ≈
(m3

3 −m2
1)c

3

2⟨p⟩

This means that the derivative dΩµ/dp cannot be sig-
nificantly different from c unless a weird behavior is as-
sumed. So, the three-neutrino case is not qualitatively
different from the two-neutrino case discussed in subsec-
tion VIA. In both instances the value of our crucial
parameter dΩµ/dp is severely restricted by low neutrino
masses.

C. Fourth supermassive neutrino

In this subsection we will explore the idea that there
exists a very massive neutrino νη, which has not been
seen in experiments yet. The mass eigenvalue m4 related
to this particle is assumed to be large, not smaller than
few hundreds of MeV/c2. For simplicity, here we will
ignore the existence of νe and choose an approximate
Hamiltonian in the Hilbert space Hτ ⊕ Hµ ⊕ Hη as the
following 3× 3 matrix

H =

 E3(p) 0 0

0 Ωµ(p) g(p)

0 g(p) Ωη(p)

 (56)

where rows and columns are in the order τ, µ, η. One
major requirement for this Hamiltonian is to produce
energy eigenvalues with correct relativistic momentum

dependencies E2,3,4(p) =
√
m2

2,3,4c
4 + p2c2. Note that
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the first row and column are decoupled from the rest of
the matrix. So, one energy eigenvalue E3(p) can be found
immediately. Similar to subsection IVB we pretend that
solutions E2,4(p) are also known, so that

E4(p) > E2(p) ≈ E3(p) (57)

To make sure that µ-neutrino is superluminal in the
entire energy range, we assume that the diagonal element
Ωµ(p) has a linear momentum dependence

Ωµ(p) = Ωµ(0) + (1.0000237× 10−5)pc (58)

Then from equations analogous to (24) and (25) we have
a unique solution for two other matrix elements Ωη(p)
and g(p)

Ωη(p) = E2(p) + E4(p)− Ωµ(p)

g2(p) = [Ωµ(p)− E2(p)][E4(p)− Ωµ(p)]

which implies that

E2(p) < Ωµ(p) < E4(p) (59)

The resulting energy diagram is shown in Fig. 3. Note
that, unlike in Fig. 1, here we assumed E2(p) > E3(p),
which is also compatible with experimental data from
Table II. If we choose function Ωµ(p) only slightly greater
than E2(p), then Ωη(p) ≈ E4(p) and the mixing angle
cos θ24 will be close to zero

θ24 = cos−1

(√
Ωη − E2

E4 − E2

)
≈ 0

This means that for an initially created pure µ-
neutrino the probability of finding η-neutrino ρη(t) =

sin2 2θ24 sin
2[(E4 − E2)t/(2h̄)] will remain low at all

times. Thus the presence of the supermassive η-neutrino
may have a negligible effect on the observable νe−νµ−ντ
sector. The frequency of νµ−νη oscillations is extremely
high due to the large energy difference E4 − E2.
Let us estimate the lower bound on the fourth neu-

trino mass eigenvalue m4. Assuming that formula (58)
remains valid in a broad energy interval up to 40 GeV
and that Ωµ(0) ≈ 0, we obtain Ωµ(40 GeV/c) ≈ 40.001
GeV. According to (59), this value should be lower than

E4(40 GeV/c) ≈ 40 GeV +
m2

4c
4

80 GeV

which results in m4 > 300 MeV/c2.
Of course, the Hamiltonian (56) is only an approxima-

tion as it ignores the effect of νµ − ντ oscillations. How-
ever, based on our experience with the general 3-neutrino

cp

E

E3
E2

E4

Ωμ

0

Ωη

m3c
2

m4c
2

m2c
2

FIG. 3. Energy diagram with a supermassive neutrino νη.

case in subsection VIB, it seems possible to perturb this
Hamiltonian slightly, so that its non-diagonal matrix ele-
ments become non-zero, the correct oscillation pattern is
reproduced and, at the same time, the overall relativistic
invariance and the superluminality of νµ are preserved.
We will not attempt explicit construction of such a real-
istic Hamiltonian in this work.

VII. SUPERLUMINAL EFFECTS

A. Model predictions

In the preceding section we have postulated existence
of a new supermassive neutrino and a linear behavior
(58) of the function Ωµ(p) in the energy interval 3 - 40
GeV. Now we will provide more details on how the su-
perluminal effect depends on the neutrino energy E and
propagation distance L. Inserting (50) in formula (45)
we obtain

⟨rµ(t)⟩ ≈ ct+
2.37× 10−5h̄c

γρµ(t)
sin

γt

h̄
(60)

The quantity of interest is the ratio (1)

δv =
1

L
(⟨rµ(L/c)⟩ − L) =

2.37× 10−5h̄c

Lγρµ(L/c)
sin

γL

h̄c

To evaluate this expression we use formulas (36), (40)
and neutrino parameters from Table II. For further sim-
plification we introduce parameter β = L(km)/E(GeV),
whose values for relevant experiments are listed in Table
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β(km/GeV)
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1.5
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-3.0

3.0

4.5
δv (10-5)
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OPERA

MINOS

Fermilab

FIG. 4. Deviation of the apparent µ-neutrino velocity from
the speed of light as a function of parameter β = L/E.

I. Then δv becomes a universal function of β, which is
applicable for all values of L and E

δv(β) =
3.85× 10−3 sin(6.2× 10−3β)

β(1− 0.97 sin2(3.1× 10−3β))
(61)

This function is plotted in Fig. 4. The maximum super-
luminal effect δv ≈ 5× 10−5 occurs at β ≈ 430 km/GeV.
Unfortunately, this is exactly the region of β where the
probability of finding a µ-neutrino in the beam is at its
lowest point ≈ 3%. For higher values β > 430 km/GeV
the superluminal effect rapidly decreases, and the prop-
agation becomes subluminal at β > 510 km/GeV. For
even higher β the function δv(β) oscillates between pos-
itive and negative values and gradually decays δv ∝ β−1

as β tends to infinity. The values of δv(β) calculated for
actual experimental conditions are reported in the last
row of Table I.

It is also interesting to calculate trajectory (60) for
a single νµ particle with fixed energy E. On average
this trajectory coincides with the path r(t) = ct of the
center of energy (c.o.e). However, the second term on the
right hand side of (60) is responsible for small oscillations
around this linear path. Right after the emission neutrino
speed exceeds the light speed by the factor 1 + δv(0) =
1.0000237. Then, gradually, neutrino slows down, so that
at the end of the first half-period (T/2) the c.o.e. catches
up. During the second half-period neutrino moves behind
the c.o.e., and at t = T their positions coincide again.
This cycle repeats indefinitely, so, if averaged over a long
time interval, neutrino speed is the same as the speed of
light.

It is convenient to measure neutrino position oscilla-
tions in terms of neutrino-c.o.e. separation ∆L = Lδv.
This quantity is plotted in Fig. 5 as a function of the
traveled distance L for two neutrino energies E = 3 GeV
and E = 17 GeV taken from the MINOS and OPERA
experiments, respectively.

L(km)
1000 1500 2000 2500 3000

-30

-60

30

60 ΔL (m)

500

E=3GeV

E=17GeV

MINOS

OPERA

Fermilab

FIG. 5. Separation between the µ-neutrino and r(t) = ct
trajectory as a function of traveled distance for two particle
energies 3 GeV and 17 GeV. Positive values of ∆L correspond
to superluminal propagation.

B. Comparison with experiments

The values of δv and ∆L along with their error bars
obtained in three relevant experiments [1, 2, 5] are com-
pared with theoretical curves in Figs. 4 and 5. The
perfect match of the OPERA results is meaningless, be-
cause they were used to fit the major parameter of our
model dΩµ/dp. The agreement with two other mea-
surements is reasonable, though our model predictions
are slightly lower than MINOS observations. This dis-
crepancy can be easily explained in more than one way:
For example, in our calculations we have assumed that
sin2 2θ23 = 0.97. If this parameter were chosen to be
closer to 1.0, then the superluminal effect would be
more pronounced. Another possible explanation is that
dΩµ(p)/dp does not remain constant across the entire en-
ergy spectrum (as we assumed in (60) and in Fig. 3) but
somewhat increases at its lower end, e.g., around E ≈ 3
GeV. Our model also predicts that observations of τ -
neutrinos in the OPERA setup [11] would not detect any
superluminality. This provides yet another opportunity
to falsify the model in future experimental studies.

Our results agree well also with SN1987A observations
[7, 8]. The corresponding data points β ≈ 1015 km/GeV
and L = 15× 1012 km are not shown in Figs 4 and 5 as
these points are far beyond ranges of the plots. More-
over, our calculations did not address νe neutrinos di-
rectly. Nevertheless, if we assume that our qualitative
conclusions are still applicable to νe, then from (61) we
expect parameter δv to be close to zero in agreement
with observations. Parameter ∆L is expected to be on
the order of few meters, which is negligible at the level of
accuracy characteristic for astronomical measurements.
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VIII. DISCUSSION

In this article we have formulated a simple model of
oscillating neutrinos. This model satisfies all require-
ments of relativistic quantum theory: A unitary repre-
sentation of the Poincaré group is constructed explicitly
in the neutrino Hilbert space, and this representation
takes into account interaction responsible for neutrino
oscillations. Relativistic invariance requires that matrix
elements Ωµ(p),Ωτ (p), f(p) . . . of the neutrino Hamilto-
nian have non-trivial momentum dependencies. This im-
plies that in the classical limit neutrinos are not required
to propagate with the constant speed c. Their speed can
oscillate around the speed of light, so that in some condi-
tions one can observe a superluminal propagation. The
allowed magnitude of superluminality depends on neu-
trino masses. In this work we have assumed that there
exists a fourth neutrino type with a very high mass eigen-
value m4 > 0.3 GeV/c2. Then the theory developed here
permits relatively large superluminal effects observed in
MINOS and OPERA experiments.
In this work we have considered only a simplest ver-

sion of our model. The model can be developed further
and thus made more realistic. Obviously, it is desirable
to perform a full 3-dimensional treatment of neutrinos
taking into account their spins. One can also try to ex-
plore more complicated versions of oscillation Hamiltoni-
ans (20), (51) and (56). For example, in [30] we have sug-
gested an alternative explanation of neutrino superlumi-
nality by assuming that the non-diagonal matrix element

of the Hamiltonian (20) is complex: f(p) = |f(p)|e− i
h̄χp

with χ ≈ 18 meters. Since this explanation went into
contradiction with experiments [5, 6], in this work we
deliberately set χ = 0. Nevertheless, it is still possible
that parameter χ is non-zero (though |χ| ≪ 18 m) and
that the mechanism of superluminality discussed in [30]
has some contribution to the overall effect in addition
to the dominant “dΩµ/dp” mechanism discussed in the
present work.
It is not clear if Hamiltonians of the type (20) ex-

haust all Poincaré invariant possibilities. Perhaps it is
also possible to have matrix elements non-local in the p-
representation, i.e., containing derivatives d/dp. It would
be interesting to learn how this generalization could af-
fect the neutrino superluminality.

A. Comments on causality

It is remarkable that our model, while being explicitly
Poincaré-invariant, predicts something – the superlumi-
nal propagation of particles – which is expressly forbid-
den by Einstein’s special relativity. According to com-
mon views, this violation of the universal speed limit is
impossible, because it implies a violation of the principle
of causality as well. So, it appears that we have a para-
dox here. To clarify this situation recall that traditional
arguments establishing the propagation speed limit in-

voke Lorentz transformations of special relativity. They
say that if (x, t) are space-time coordinates of a physical
event in the reference frame at rest, then in the iner-
tial frame moving with velocity v ≡ c tanh θ space-time
coordinates of the same event are given by formulas

x′ = x cosh θ − ct sinh θ (62)

t′ = t cosh θ − (x/c) sinh θ (63)

Special relativity postulates that these formulas remain
valid in all circumstances, independent on the physical
nature of the event occurring at (x, t) and on interactions
responsible for this event. The tacit or explicit assump-
tion used in many discussions of quantum relativistic ef-
fects is that space-time arguments of wave functions must
transform by the same formulas, i.e., that the position-
space wave function in the moving frame is

ψ(θ;x, t)

= ψ(0;x cosh θ − ct sinh θ, t cosh θ − (x/c) sinh θ)(64)

If this were true, then the observed superluminal prop-
agation of neutrinos would be scandalous, because, ac-
cording to (62) - (64), one would be able to find a moving
reference frame in which neutrino arrival in the detector
happened before its creation in the meson decay process.
So, in this moving frame the effect would occur before its
cause, which is impossible.

However, there are logical gaps in the above argu-
ments. These gaps allow us to suggest that violation of
causality in our model is not obvious at all. In our work
we have used fully relativistic approaches: the Newton-
Wigner’s definition of particle’s position [31] and Wigner-
Dirac formulation of quantum dynamics [23]. In this the-
ory, formula (64) is not valid even in the case of non-
interacting particles. The correct non-interacting wave
function transformation law is [32]

ψ(θ;x, t) = ⟨x|e− i
h̄H0te

i
h̄K0cθ|ψ⟩ (65)

where |x⟩ is an eigenvector of the particle position oper-
ator. Clearly, this formula is not the same as (64). Their
fundamental difference is exemplified by the well-known
effects of superluminal spreading of wave packets and the
loss of particle localization in the moving frame [16–21]
predicted by (65).

In the interacting case the picture is even more com-
plicated as one needs to use interacting energy and boost
operators to find the wave function transformation

ψ(θ;x, t) = ⟨x|e− i
h̄Hte

i
h̄Kcθ|ψ⟩ (66)

We will not analyze this formula in detail here, just men-
tion two remarkable features of (66) that disagree with
traditional interpretations of special relativity. First, the
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neutrino oscillation period observed from a moving frame
does not scale with velocity according to the usual Ein-
stein’s time dilation formula: T ′ ̸= T cosh θ [33]. Sec-
ond, if according to the observer at rest the initial state
(at t = 0) is prepared as a 100% µ-neutrino then in the
moving frame (even at t = 0) the probability of finding µ-
neutrino is less than 1 and the probability of finding other
flavors is greater than 0 [30]. This means that definitions
of neutrino flavors are different for different observers.
This also implies that the oscillating system lacks clearly
identified and observer-independent local events (such as
points where ρµ = 1), whose space-time coordinates can
be used in a rigorous discussion of causality. These un-
usual features are very similar to properties of unstable
particles discussed in [34–37].
Even if the above difficulty with event definitions is re-

solved, formula (66) cannot provide a clear answer about
causality in the moving frame, because in real experi-
ments we are not dealing with free (albeit oscillating)
neutrinos: The event that causes neutrino appearance in
the detector is the meson decay at t = 0. Thus, in order
to investigate the cause-effect relationships in different
frames we need to include in our description a realistic
model of this event, i.e., we need a model that incorpo-
rates the unstable meson and its decay products as well
as interactions responsible for the meson decay and neu-
trino oscillations. To the best of author’s knowledge, a
rigorous quantum relativistic time-dependent description

of such a complicated interacting system has not been de-
veloped yet.

From a more general standpoint one can argue that
superluminal propagation of signals is not forbidden
in interacting systems. Just as in the above discus-
sion, the crucial point is that transition to the moving
frame should be performed by using a boost operator
K = K0 +Z that depends on interactions. Therefore, in
relativistic Hamiltonian systems of interacting particles
boost transformations of space-time locations of events
are different from simple and universal Lorentz formu-
las of special relativity (62) - (63) even in the classical
(non-quantum) limit [38]. This fact is essential for the
proof that instantaneous action-at-a-distance potentials
remain instantaneous in all reference frames, so that the
principe of causality is not violated even if interactions
between particles are not retarded [39].

These arguments lead us to the conclusion that the
oscillating neutrino system does not behave in a way
expected from a näıve application of special relativity.
However, this does not mean that the causality postulate
is violated by superluminal effects. A proper discussion
of causality requires more realistic modeling of the neu-
trino preparation and propagation in different reference
frames. Such a modeling would be a promising line of fur-
ther research, but it is beyond the scope of the present
paper.
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