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Abstract

Shnoll and collaborators have discovered strange repeating patterns of random fluctuations of
physical observables such as number n of nuclear decays in a given time interval. Periodically
occurring peaks for the distribution of the number N(n) of measurements producing n events in
a series of measurements as a function of n is observed instead of a single peak. The positions of
the peaks are not random and the patterns depend on position and time varying periodically in
time scales possibly assignable to Earth-Sun and Earth-Moon gravitational interaction.

These observations suggest a modification of the expected probability distributions but it is
very difficult to imagine any physical mechanism in the standard physics framework. Rather,
a universal deformation of predicted probability distributions would be in question requiring
something analogous to the transition from classical physics to quantum physics.

The hint about the nature of the modification comes from the TGD inspired quantum mea-
surement theory proposing a description of the notion of finite measurement resolution in terms of
inclusions of so called hyper-finite factors of type II1 (HFFs) and closely related quantum groups.
Also p-adic physics -another key element of TGD- is expected to be involved. A modification of
a given probability distribution P (n|λi) for a positive integer valued variable n characterized by
rational-valued parameters λi is obtained by replacing n and the integers characterizing λi with
so called quantum integers depending on the quantum phase qm = exp(i2π/m). Quantum integer
nq must be defined as the product of quantum counterparts pq of the primes p appearing in the
prime decomposition of n. One has pq = sin(2πp/m)/sin(2π/m) for p 6= P and pq = P for p = P .
m must satisfy m ≥ 3, m 6= p, and m 6= 2p.

The quantum counterparts of positive integers can be negative. Therefore quantum distri-
bution is defined first as p-adic valued distribution and then mapped by so called canonical
identification I to a real distribution by the map taking p-adic −1 to P and powers Pn to P−n

and other quantum primes to themselves and requiring that the mean value of n is for distribution
and its quantum variant. The map I satisfies I(

∑
Pn) =

∑
I(Pn). The resulting distribution

has peaks located periodically with periods coming as powers of P . Also periodicities with peaks
corresponding to n = n+n−, n+

q > 0 with fixed n−
q < 0, are predicted. These predictions are

universal and easily testable. The prime P and integer m characterizing the quantum variant of
distribution can be identified from data. The shapes of the distributions obtained are qualitatively
consistent with the findings of Shnoll but detailed tests are required to see whether the number
theoretic predictions are correct.

The periodic dependence of the distributions would be most naturally assignable to the grav-
itational interaction of Earth with Sun and Moon and therefore to the periodic variation of
Earth-Sun and Earth-Moon distances. The TGD inspired proposal is that the p-dic prime P and
integer m characterizing the quantum distribution are determined by a process analogous to a
state function reduction and their most probably values depend on the deviation of the distance R
through the formulas ∆p/p ' kp∆R/R and ∆m/m ' km∆R/R. The p-adic primes assignable to
elementary particles are very large unlike the primes which could characterize the empirical distri-
butions. The hierarchy of Planck constants allows the gravitational Planck constant assignable to
the space-time sheets mediating gravitational interactions to have gigantic values and this allows
p-adicity with small values of the p-adic prime P .
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1 Introduction

Usually one is not interested in detailed patterns of the fluctuations of physical variables, and assumes
that possible deviations from the predicted spetrum are due to the random character of the phenomena
studied. Shnoll and his collaborators have however studied during last four decades the patterns
associated with random fluctuations and have discovered a strange effect described in detail in [15,
16, 17, 18, 19, 20]. The examples of [15] give the reader a clear picture about what is involved.

1. Some examples studied by Shnoll and collaborators are fluctuations of chemical and nuclear
decay rates, of particle velocity in external electric field, of discharge time delay in a neon lamp
RC oscillator, of relaxation time of water protons using the spin echo technique, of amplitude
of concentration fluctuations in the Belousov-Zhabotinsky reaction. Shnoll effect appears also
in financial time series [21] which gives additional support for its universality. Often the mea-
surement reduces to a measurement of a number of events in a given time interval τ . More
generally, it is plausible that in all measurement situations one divides the value range of the
studied observable to intervals of fixed length and counts the number of events in each interval
to get a histogram representing the distribution N(n), where n is the number of events in a given
interval and N(n) is the number of intervals with n events. These histograms allow to estimate
the probability distribution P (n), which can be compared with theoretical predictions for the
spectrum of fluctuations of n. Typical theoretical expectations for the fluctuation spectrum are
characterized by Gaussian and Poisson distributions.

2. Contrary to the expectations, the histograms describing the distribution of N(n) has a distribu-
tion having several maxima and minima (see the figures in the article of Shnoll and collabora-
tors). Typically -say for Poisson distribution - one expects single peak. As the duration of the
measurement period increases, this structure becomes gets more pronounced: standard intuituin
would suggest just the opposite to take place. The peaks also tend to be located periodically.
According to [15] the smoothed out distribution is consistent with the expected distribution in
the case that it can be predicted reliably.

http://home.t01.itscom.net/allais/blackprior/shnoll/shnoll-1.pdf
http://home.t01.itscom.net/allais/blackprior/shnoll/shnoll-1.pdf
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3. There are also other strange features involved with the effect. The anomalous distribution for
the number n of events per fixed time interval (or more general value interval of measured ob-
servable) seems to be universal as the experiments carried out with biological, chemical, and
nuclear physics systems demonstrate. The distribution seems also to be same at laboratories
located far away from each other. The comparison of consecutive histograms shows that the
histogram shape is likely to be similar to the shape of its nearest temporal neighbors. The
shapes of histograms tend to recur with periods of 24 hours, 27 days, or 365 days. The regular
time variation of consecutive histograms, the similarity of histograms for simultaneous inde-
pendent processes of different nature and occurring in different geographical positions, and the
above mentioned periods, suggest a common reason for the phenomenon possibility related to
gravitational interactions in Sun-Earth and Earth-Moon system.

In the case that the observable is number n of events per given time interval, theoretical consider-
ations predict a distribution characterized by some parameters. For instance, for Poisson distribution
the probabilities P (n) are given by the expression

P (n|λ) = exp(−λ)
λn

n!
. (1.1)

The mean value of n is λ > 0 and also variance equals to λ. The replacement of distribution with
a many-peaked one means that the probabilities P (n|λ) are modified so that several maxima and
minima result. This can occur of course by the randomness of the events but for large enough samples
the effect should disappear.

The universality and position independence of the patterns suggest that the modification changes
slowly as a function of geographic position and time. The interpretation of the periodicities as periods
assignable to gravitational interactions in Sun-Earth system is highly suggestive. It is however very
difficult to imagine any concrete physical models for the effect since distributions look the same even for
processes of different nature. It would seem that the very notion of probability somehow differs from
the ordinary probability based on real numbers and that this deformation of the notion of probability
concept somehow relates to gravitation.

In the following the possibility that direct p-adic variants of real distribution functions such as
Poisson distribution could allow to understand the findings is discussed. It turns out that this is not
the case but that the replacement of integers with quantum integers [25] nq identified as the products
of quantum integers associated with their prime factors with quantum phase q = exp(i2π/m), where
m ≥ 3 is not of form m = p or m = 2p, p prime, leads to a well-defined correspondence between p-adic
probabilities P (n) and real probabilities conserving the sum of probabilities.

Usually quantum groups are assigned with exotic phenomena in Planck length scale. In TGD
they are assignable to a finite measurement resolution [11]. TGD inspired quantum measurement
theory describes finite measurement resolution in terms of inclusions of hyper-finite factors of type
II1 (HFFs) and quantum groups related closely to the inclusions and appear also in the models of
topological quantum computation [26] based on topological quantum field theories [27].

The universal modification of probability distributions P (n|λi) characterized by rational numbers
predicts patterns analogous to the ones observed by Shnoll. The parameters P and m characterize
the deformation of the probability distribution and the periodic slow variation of the p-adic prime P
and explain the periodically occurring peaks of the histograms for N(n) as function of n. Also the
dependence of the distribution of N(n) on the direction of the momentum of alpha particle [18, 19]
can be understood in terms of the effect of the measurement apparatus on many-sheeted space-time
topology and geometry.

The p-adic primes P in question are small. This makes sense in TGD framework only if one accepts
that a very large value of Planck constant is involved. TGD indeed predicts a hierarchy of Planck
constants and identifies dark matter as phases with a large value of Planck constant. The Planck
constant associated with the space-time sheets mediating gravitational interaction is predicted to be
gigantic meaning macroscopic quantum coherence in astrophysical scales. This modification allows
also to formulate a general correspondence principle between real and p-adic physics as a rule stating
that all primes p except the p-adic prime P itself appearing in various formulas are replaced with
their quantum counterparts and P is mapped to its inverse in the modified distribution.



2 P-ADIC TOPOLOGY AND THE NOTION OF CANONICAL IDENTIFICATION 4

For the reader not familiar with TGD the article series in Prespacetime journal [30] and the two
articles about TGD inspired theory of consciousness and of quantum biology in Journal of Conscious-
ness Research and Exploration [31, 32, 33] are recommended. Also the online books at my homepage
provide the needed background.

2 p-Adic topology and the notion of canonical identification

p-Adic physics has become gradually a central part of quantum TGD [13] and the notion of p-
adic probability has already demonstrated its explanatory power in the understanding of elementary
particles masses using p-adic thermodynamics [14]. This encourages the attempt to understand Shnoll
effect in terms of an appropriate modification of probability concept based on p-adic numbers.

p-Adic topology [23] is characterized by p-adic norm given by |x|p = p−k for x = pk(x0 +∑
k>0 xkp

k), x0 > 0. This notion of nearness differs radically from its real counterpart. For in-
stance, numbers differing bya large power of p are p-adically near to each other. Therefore p-adic
continuity means short range chaos and long range correlations in real sense. One might hope that
p-adic notion of nearness allow the existence of p-adic variants of standard probability distributions
characterized by rational valued parameters and transcendental numbers existing also p-adically such
that these distributions can be mapped to their real counterparts by canonical identification mapping
sum of probabilities to the sum of the images of the probabilities.

2.1 Canonical identification

In the case of p-adic thermodynamics [14] the map of real integers to p-adic integers and vice versa
relies on canonical identification and its various generalizations and canonical identification is also
now a natural starting point.

1. The basic formula for tge canonical identification for given prime p characterizing p-adic number
field Qp is obtained by using for a real number x pinary expansion x =

∑
xnp

−n, xn ∈ {0, p−1}
analogous to decimal expansion. The map is very simple and given by

∑
n

xnp
−n → I(x) =

∑
n

xnp
n . (2.1)

The map from reals to p-adics is two-valued in the case of real numbers since pinary expansion
itself is non-unique (p = (p − 1)

∑
k≥0 p

−k as the analog of 1=.99999.. for decimal expansion).
The inverse of the canonical identification has exactly the same form. Canonical identification
maps p-adic numbers to reals in a continuous manner and also the inverse map is continuous
apart from the 2-valuedness eliminated if one introduces pinary cutoff which is indeed natural
when finite measurement resolution is assumed.

2. The first modification of canonical identification replaces pinary expansion of real number in
powers of p with expansion in powers of pk: x =

∑
xnp

−nk, xn ∈ {0, pk − 1} and reads as

∑
n

xnp
−nk → Ik(x) =

∑
n

xnp
nk . (2.2)

3. A further variant applies to rational numbers. By using the unique representation q = r/s of
given rational number as ratio of co-prime integers one has

Ik(q =
r

s
) =

Ik(r)

Ik(s)
. (2.3)
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2.2 Estimate for the p-adic norm of factorial

In the p-adic variant of Poisson distribution canonical images of the factorial n! appear and the the
basic properties of I(n!) as function of n will be needed in the sequel.

1. Given integer n can be written as n = pk(n)m(n) such that m(n) has unit norm p-adically. n!
in turn can be written as

n! =

n∏
r=1

pk(r)m(r) = pK(n) ×
∏
r

m(r) , K(n) =
∑
r

k(r) . (2.4)

2. The p-adic norm of n! is given by

Np(n!) = p−K(n) . (2.5)∏
rm(r) has unit norm p-adically and its p-adic canonical image satisfies the upper bound

Ik(
∏
r

m(r)) ≤ pk . (2.6)

3. Np(n!) is reduced by the power pk(r) in the step n = r − 1 → r. Therefore I(n!) ≡ Ik=1(n!)
is a decreasing function with discontinuous drops of the value which are especially large when
n is proportional to a large power of p. The peaks corresponding to given value k of k(r)
occur periodically and one has fractal pattern with periodicities define by powers of p. Similar
consideration applies to Ik(n!): now the periodicities correspond to powers of pk rather than
p. In both cases one has local chaos and long range correlations due to the fact that in p-adic
topology nearby points differing by a large power pn are far away in real sense. The natural
question is whether the periodicity of peaks in histograms of [15] could represent a special case
of of these periodicities.

In the sequel an estimate for the maximal power of p dividing n! defining the norm Np(n!) is
needed. The following estimate gives Np(n!) ' p−n for n� p.

1. What is needed is an estimate for the number N(n, k) of for the number of integers k(r) with
given value of k ≥ 1. If this estimate is available for large values of n, one obtains for the
exponent defined associated with the p-adic norm of n! the formula

K(n) ≡
∑

(kr) =
∑

N(k)k . (2.7)

2. By studying the 2-adic numbers one finds that the formula

K(n = 2m) =
∑

N(k)k , N(k) =
2m

2k
= 2m−k (2.8)

holds true.

3. The generalization of the this formula to for p > 2 reads as

K(n = pm) =
∑

N(k)k , N(k) = (p− 1)
pm

pk+1
= pm−k . (2.9)

This would give at the limit n→∞

K(n = pm) =
pm+1

p− 1
' pm = n . (2.10)

There one has K(n) = n in this special case.



3 ARGUMENTS LEADING TO THE IDENTIFICATION OF THE DEFORMED POISSON DISTRIBUTION6

4. For a general value of n the approximate formula would be

K(n) ≤
∑

N(k)k , N(k) ' (p− 1)
n

pk
. (2.11)

Also now one would have K(n) ' n so that the p-adic norm of n! would be approximately p−n

. The justification for this formula comes by noticing that the number of integers smaller than
n with p-adic norm pk is roughly (p− 1)n/pk since the numbers kpk +X with Np(X) ≤ p−k−1

and k running from 1, ..., p− 1 satisfy the required conditions.

3 Arguments leading to the identification of the deformed
Poisson distribution

The following argument represents a trial and error procedure to a unique identificaiton of deformed
Poisson distribution P (n|λ) with a rational value of λ and more generally, to a modication of any
distribution P (n, λi) characterized by rational parameters λi.

3.1 The naive modification of Poisson distribution based on canonical iden-
tification fails

To gain some intuition it is instructive to study the possible variants of Poisson distribution based on
canonical identification. The discussion generalizes to more general distributions for probabilities of
integer valued observables provided the parameters of the distribution exist p-adically. The idea is to
start from a p-adic variant of probability theory [24], assume that the p-adic valued probability dis-
tributions are mappable to their real counterparts using canonical identification, and to look whether
this procedure yields something consistent with the findings of Shnoll.

To begin with, assume that the notion of p-adic valued probability makes sense. This requires that
the probabilities exist as p-adic numbers. This is true if probabilities are rational numbers which can
be regarded as being common to reals and padic numbers. Also the sum of probabilities must make
sense p-adically so that it can be normalized to to unity. In absence of cutoff to the values of N this
condition is highly non-trivial.

The condition that the canonical identification commutes with the summation of probabilities is
especially strong and would state

∑
(P (n))R = (

∑
Pn)R . (3.1)

Here xR denotes the image of x under canonical identification. For ordinary p-adic numbers this
condition requires that the probabilities are just powers of p. If one allows algebraic extensions of
p-adic numbers defined by quantum phases defined by roots of unity mapped to real numbers as such,
the probabilities can be of form Xpn where X is function of these phases. This condition excludes
automatically the naivest attempts to define canonical image of p-adic variant of Poisson distribution.
This is due to the presence of 1/n! and possible rational appearing in λ.

Optimist could give up the normalization condition and consider instead of probabilities rational
numbers. There are problems also now.

1. The first problem is that normalization factor is defined only up to a multiplication with a
rational and each choice of the normalization factor gives different real counterpart of the p-adic
distribution irrespective of the manner how the real probabilities are defined.

2. The normalization factor exp(−λ) is p-adic number only if λ is proportional to a positive power
of p. This condition also implies that the powers λk/k! approach to zero with respect to p-adic
norm since the p-adic norm of λk is always small than that of k!. The naive guess for the
canonical identification map of p-adic probabilities to their real counterparts is given by the
formula
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λn → I(λn)/I(n!)

One can consider also other other variants but for the purposes of argument one can restrict the
consideration to this one. The problem is that I(λn) does not increase but decreases like p−n

so that λR < 1 would hold true. The decrease of the factor 1/n! guarantees the convergence of
probabilities for Poisson distribution. The canonical image I(1/n!) = 1/I(n!) however increases.
The same result is obtained irrespective of the detailed definition of canonical identification.
Therefore the first guess for the canonical image of the proposed p-adic variant of Poisson
distribution has very little to do with ordinary Poisson distribution. The attempts to cure the
situation by modifying the map from p-adics to reals fail. This suggests that one must modify
the p-adic variant of the Poisson distribution itself.

3.2 Quantum integers as a solution of the problems

The problems associated with the naive generalization of the Poisson distribution relate to the behavior
of canonical identification when applied to integers other than powers of p. This suggests that one
should replace the integers systematically with some of kind of deformations of integers guaranteeing
also that canonical identification maps sum of probabilities the sum of their images. The notion of
quantum integer [25] is what comes first in mind.

TGD based motivation for the notion of quantum integer comes from the fact that the so called
hyper-finite factors of type II1 (HFFs) play a key role in quantum TGD and allow to formulate the
notion of finite measurement resolution in terms of inclusions of HFFs [11] to which the quantum
groups assignable to roots of unity are closely related. The findings of Shnoll would therefore relate
to the delicacies of quantum measurement theory with finite measurement resolution.

The quantum groups based on quantum phases

q = Um = exp(iφm) , φm =
2π

m
. m ≥ 3 (3.2)

appear in TGD framework and the long standing intuitive expectation has been that there might
exist a deep connection between p-adic length scale hypothesis and quantum phases defined by roots
of unity defining algebraic extensions of p-adic numbers.

3.2.1 The standard definition of quantum integer does not help

The first thing to do is to see whether the standard notions of quantum integer and quantum factorial
[25] could allow to get rid of the problems.

1. Quantum integers for q = Um are given by

nUm =
Unm − U

n

m

Um − Um
=
sin(nφm)

sin(φm)
. (3.3)

For n� m one has

nUm
' n . (3.4)

This property makes quantum integers a good candidate if one wants to generalize the notion of
Poisson distribution and more generally, any probability distribution P (n|λi) parametrized by
rationals. The rule would be very simple: replace all integers by their quantum counterparts:
n→ nq.

This proposal has however some problematic features.
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1. nq is negative for n mod m > m/2 so that in the case of Poisson distribution one would have
negative probabilities in real context. In the p-adic context there is no well-defined notion of
negative number so that one avoids this difficulty. Quantum integers have unit norm p-adically
so that p-adic Poisson distribution makes sense for Np(λ) < 1.

2. nUm
vanishes for n = m always and for even values of m also for n = m/2. Therefore nq! defined

as a product of quantum integers smaller than n vanishes for all n > m. One way out is to
restrict the values of n to satisfy n < m/2. This number theoretic cutoff would mean in the
p-adic case that the sum of p-adic probabilities is finite without the condition Np(λ) < 1.

3. Quantum integers defined in the standard manner are periodic with period m so that quantum
factorial obtained by dropping the vanishing terms would behave like a product of factorial
associated with m − 1 times quantum factorial of k ≤ m − 1. Ordinary factorial n! increases
much faster. It seems that the standard definition of quantum integer is not correct.

3.2.2 Quantum integers must allow factorization to quantum primes

.
Physics as a generalized number theory vision [13] suggests a manner to circumvent above described

problems.

1. Quantum integers defined in the standard manner do not respect the decomposition of integers
to a product of factors- that is one does not have

(mn)q = mqnq . (3.5)

The preferred nature of the quantum phases associated with primes in TGD context however
suggests that one should guarantee this property by hand by simply defining the quantum integer
as a product of quantum integers associated with its prime factors:

nq ≡
∏

(pi)
ni
q for n =

∏
pni
i . (3.6)

This would guarantee that the notion of primeness and related notions crucial for p-adic physics
would make sense also for quantum integers. Note that this deformation would not be made for
the exponents of integers for which sum is the natural operation.

2. If q = Um is such that m is not of form m = p or m = 2p, p prime, the quantum phases asso-
ciated with primes are always non-vanishing and quantum integers and therefore also quantum
factorials nq! defined using the proposed definition of quantum integers are non-vanishing for all
values of n. In p-adic context this would mean that the probabilities associated with Poisson
distribution are finite and for Np(λp) < 1 sum up to a finite value.

3. The number theoretic definition of quantum integers does not solve the problem of negative
quantum integers. If the number N− of prime factors of n satisfying p mod m > m/2 is odd, the
product of minus signs coming from them is odd and the over all quantum integer is negative.
Since the p-adic probabilities are well defined in p-adic context, one could consider the mapping
of these probabilities to real probabilities by the basic form of canonical identification. If also
λ is expressed in terms of quantum primes only the real image of overall minus sign must be
determined. p-Adically −1 corresponds to a positive p-adic integer (p− 1)(1 + p+ p2 + ...) for
which one has I(−1) = p from the basic definition of canonical identification. Hence the p-adic
and real quantum variants of Poisson distribution would be unique.

This prescription would predict peaks of Poisson distribution for n = n+n−, such that (n+)q
is positive and has only prime factors p+ mod m < m/2 and (n−)q is having therefore odd
number of negative prime factors (p−)q satisfying p− mod m > m/2. These peaks would occur
periodically with period n−. Large number of this kind of periods would be present. It might
be possible to identify the periodicities of the peaks of the histograms of Shnoll in this manner.

http://home.t01.itscom.net/allais/blackprior/shnoll/shnoll-1.pdf
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3.2.3 The most general choice of λ

Consider next the most general choice of λ consistent with the constraint that canonical identification
conserves probabilities. Denote by P the p-adic prime characterizing the deformed Poisson distribution
and by p a generic prime.

1. If one assumes the following product representation

λq = PnQUm
, (3.7)

where P is the p-adic prime and QUm
is quantum rational in the proposed sense, p-adic prob-

abilities P (n) are finite for positive values of n and m satisfying the proposed constraints. The
expression for the real counterpart λRof λq is given by

λR =
QUm

P−n . (3.8)

With a proper choice of QUm
arbitrary large values are possible for λR and standard form of of

canonical identification for a well-defined p-adic probability distribution produces a real variant
of quantum Poisson distribution which is in a well-defined sense a small deformation of the
Poisson distribution.

2. The value of the parameter λ assignable to the ordinary Poisson distribution giving rise to q-
Poisson does not correspond to λR as such. For given λq the value of λ can be determined from
the condition that the average values of n are same for the two distributions:

λ = 〈n〉P = 〈n〉qP . (3.9)

3. For m = P the vanishing of PUP
would require a cutoff n < P in Poisson distribution. One could

however argue that all values of m must be allowed. The manner to circumvent the difficulty is
to to treat prime p = P as an exception and define in the most general case

Pq ≡ P . (3.10)

A stronger condition would be that P appears as a factor of m and it might well be that there
could exist a number theoretical justification for this. Canonical identification would introduce
to P (n) a factor PK(n) defined by the largest power PK(n) dividing n!. By the rough estimate n!
of Eq. 2.11 one has K(n) ∼ n. This would introduce additional peaks to the distribution coming
with periodicities defined by pm besides those coming with periodicities defined by integers n−,
which involve odd number of integers p mod m > m/2. This requires

λq = PnQUm
, n > 1 (3.11)

in order that the sum of p-adic probabilities is well-defined. The sum of real probabilities
converges due to the properties of quantum factorial defined in the manner respecting the de-
composition of integer to a product of primes.

4. This definition of quantum Poisson satisfies also the strongest possible constraint on the map
of p-adic probabilities to real ones. One can indeed include the p-adic normalization factor to
the distribution and rational canonical identification commutes with the normalization factor in
the sense that one has

∑
(P (n))R = (

∑
Pn)R. This is due to the fact that the canonical image

of the sum of probabilities is by definition a sum of images of probabilities since only numbers
expressible in terms of roots of unity and not allowing expression as ordinary p-adic number
multiplied by powers of p and p-adic −1 appear in the sum.
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5. Fig. 1 represents a comparison of q-Poisson distribution characterized by (p = 7,m = 300, λ0 =
100, k = 1) giving λq = pk×λ0 = 700 and λR = 14.229 with the corresponding ordinary Poisson
distribution characterized by λ = 25.256 which is almost twice the value of λR. The presence
of peaks with periodicity p = 7 due to the identification pq = p for the prime defining p-adicity
and mapped to 1/p in canonical identication is clearly visible in the distribution.

These considerations are for Poisson distribution but they generalize in an obvious manner to any
distribution P (n|λi) for which parameters λi) are rational numbers.

Figure 1: A comparison of q-Poisson distribution with Poisson distribution with the same mean value
of n assuming pq = p and that p is mapped to 1/p and −1 in numerator is mapped to p in canonical
identification. The values of quantum parameters are (p = 7,m = 300, k = 1, λ0 = 100) giving
λq = pk × λ0 = 700 and λR = 14.229. The mean value of Poisson distribution turns out to be
λ = 〈n〉q = 25.256.

3.2.4 Quantum integers and correspondence between real and p-adic physics

The understanding of the relationship between real and p-adic physics has been plagued by the fact
that canonical identification and its variants do not make sense when applied to say energy levels
characterized by integers. In this case the correspondence via common rationals is assumed or Ik for
large enough k is used.

The replacement of ordinary integers with their q-counterparts using the proposed rules provides
much more general correspondence principle relating p-adic and real physics to each other in the case
that the formulas of real physics involve only rationals. For instance, in p-adic mass calculations [14]
the integers characterizing conformal weights would be replaced by their quantum counterparts defined
in the proposed manner mapping products to products. This does not affect p-adic mass calculations
if the exceptional prime corresponds to p-adic prime and m which is equal to p or contains p as a
factor. One can also define p-adic harmonic oscillator and p-adic hydrogen atom and for n > m/2 is
large exotic effects become possible. For large values of p-adic prime P and for m � P these effects
are not detectable.

This correspondence could apply also more generally at space-time level and imbedding space-
level when preferred coordinates are introduced for imbedding space. This would allow to map the
rational imbedding space points of a real space-time surface to their p-adic counterparts by canonical
identification. For (p,m) → (∞,∞) this map would effectively reduce to the identification along
common rationals but with respect to p-adic norm it would have totally different behavior.

4 Explanation for the findings of Shnoll

One should be able to undertand both the many-peaked character of the distributions as well as their
spatial and temporal variation involving correlations with the gravitational physics of Sun-Earth and
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Earth-Moon systems.

4.1 The basic characteristics of the distributions

The properties of the deformed distributions might allow to explain the findings of Shnoll at least
qualitatively. The testing of numerical predictions would require detailed numerical data.

1. The presence of maxima and minima due to canonical identification mapping p-adic distribution
function to its p-adic counterpart is consistent with the basic property of the fluctuation distri-
butions as expressed by the histograms for the number N(n), where n is the fluctuating number
n of events per fixed time unit or discretization interval for the values of some observable.

2. The basic predictions are following. Modified distributions are characterized by a relatively
small prime -call it P - and integer m which is not expressible as m = p or m = 2p, p prime. The
peaks in histogram for N(n) should appear with periods in n giving rise to short range chaos
and long range order in variable n. Periods of first kind come as powers of P . A small change
of P corresponds to a small change of periodicities. The periods for second kind correspond to
integers n− which contain an odd number of primes p mod 4 > m/2. The spectrum of integers
n± changes as m changes but if the change is small, the new spectrum contains integers in
old spectrum. For instance, if n− corresponds to single prime which is in the middle region of
interval (m/2,m) a change |∆m| < m/4 does not remove n− from spectrum.

3. For instance, in one of the experiments (Fig.1 of [15]) the histogram for N(n) has peaks, which
seem to occur periodically with a separation ∆n of about 100 units. If these periods correspond
to P , its value must be smaller than 100. The nearest primes are P = 89, 97, 101, 113. In Fig. 2
of same reference one has also periodicity and P must be near 10. Hence there are good hopes
that the proposed model might be able to explain the findings.

4. According to the earlier proposal the selection of p-adic prime is outcome of a process analogous
to quantum measurement. This interpretation would suggests that there is a sequence of quan-
tum measurements in which various p-adic primes are selected with some probability each and
that the probability distribution for the primes depends on external astrophysical parameters
varying periodically. One can also consider the possibility that P and m behave as classical
variables.

4.2 The temporal and spatial dependence of the distributions

One should also understand the variation of the shape of the distribution with time and its spatial
variation.

1. The situation is sensitive to the values of P and m. The values of P and m could change in such a
manner that λR = P−kQUm

is affected only slightly. The change of P would affect the positions
of the peaks but small changes of P would not mean too dramatic changes. Periodic time
dependence of these parameters would explain the findings of Shnoll. Gravitational interactions
in Sun-Earth-Moon system and therefore the periodic variations of Sun-Earth and Earth-Moon
distances is the first guess for the cause of the periodic variations.

2. The correlation of the fluctuation periods with astrophysical periods assignable to Earth-Sun
system (diurnal period and period of Earth’s orbit) suggests that the gravitational interaction of
the measurement apparatus with Sun is involved. Also the period 27.28 days which corresponds
to sidereal period of Moon measured in the system defined by distant star. In [15] this period
is somewhat confusingly referred to as synodic period of Sun with respect to Earth (recall
that synodic period corresponds to a period for the appearance of third object (say Moon)
in the same position relative to two other objects (say Earth and Moon)). Therefore also
Moon-Earth gravitational force seems to be involved. Moon-Earth and Earth-Sun gravitational
accelerations indeed have roughly the same order of magnitude. That gravitational accelerations
would determine the effect conforms with Equivalence Principle. The most natural dimensionless
parameter characterizing the situation is |∆agr|/agr expressible in terms of ∆R/R and ∆r/r,
where R resp r denotes the distance between Earth and Sun resp. Earth and Moon, and the

http://home.t01.itscom.net/allais/blackprior/shnoll/shnoll-1.pdf


4 EXPLANATION FOR THE FINDINGS OF SHNOLL 12

ratio R/r and cosine for the angle θ between the direction vectors for the positions of Moon and
Sun from Earth. The observed palindrome effect [20] is consistent with the assumed dependence
of the effect on the distances of Earth from Sun and Moon. Also the smallness of the effect as
one approaches North Pole conforms with the fact that the variations of distances fro Sun and
Moon become small at this limit .

3. In 24 hour time scale it is enough to take into account only the Earth-Sun gravitational inter-
action. One could perform experiments at different positions at Earth’s surface to see whether
the the variation of distributions correlates with the variation of the gravitational potential.
The maximal amplitude of ∆R/R is 2RE/R ' .04 so that for ∆p/p = k∆R/R one would have
∆p/p = .04k. Already for p ∼ 100 the variation range would be rather small. For ∆m/m one
expects that analogous estimate holds true.

4. One observes in alpha decay rates periodicities which correspond to both sidereal and solar
day [18]. The periodicity with respect to solar day can be understood in terms of the periodic
variation of Sun-Earth distance. The periodicity with respect to sidereal day would be due to
the diurnal variation of the Earth-Moon distance. Similar doubling of periodicities are predicted
in other relevant time scales.

In the case of alpha decay the effect reveals intricacies not explained by the simplest model [18, 19].
In this case one studies random fluctuations random fluctuations for the numbers of alpha particles
emitted in a fixed direction. Collimators are used to select the alpha particles in a given direction and
this is important for what follows. Two especially interesting situations correspond to a detector which
is located to North, East, or West from the sample. What is observed that the effect is different for
East and West directions and there is a phase shift of 12 hours between East and West. In Northern
direction the effect vanishes. Also other experiments reveal East-West asymmetry called local time
effect by the authors [16, 17].

1. What the findings mean is that P and m characterizing the distribution for the counts of alpha
particles in a given angle depend on time and and the time dependence sensitive to the direction
angle of the alpha particle. This might be however only apparent since collimators are used to
select alpha particles in given direction. The authors speak about anisotropy of space-time and
Finsler geometry [28] could be considered as a possible model. In this approach the geometry
of space-time would be something totally independent of measurement apparatus.

In TGD framework the space-time is topologically non-trivial in macroscopic scales and the
presence of collimators making possible to select alpha particles in a given direction affect the
geometry of many-sheeted space-time sheets describing the measurement apparatus and there-
fore the details of the interaction with the gravitational fields of Earth, Sun, and Moon. As a
consequence, the values of P and m should reflect the geometry of the measurement apparatus
and depend only apparently on the direction of vα. If this interpretation is correct, a selection
of events from a sample without collimators should yield distributions without any dependence
on the direction of vα.

2. At quantitative level the distribution for counts in a given direction can depend on angles defined
by the vectors formed from relevant quantities. These include at least the tangential velocity
v = ω × r of the laboratory, the direction of the velocity vα of alpha particle with respect to
sample actually reflecting the geometry of collimators, the net gravitational acceleration anet,
and the direction of Earth’s gravitational acceleration g.

3. The first task is to construct from these vectors a scalar or a pseudo-scalar (if one is ready to
allow large parity breaking effects), which vanishes for North-East direction, has opposite signs
for East and West direction and has at least approximately a behavior consistent with the phase
shift of 12 hours between East and West. The constraints are satisfied by the scalar

X = E · anet , E =
(v × g)× vα
|(v × g)× vα|

. (4.1)

Unit vector E changes sign in East-West permutation and also with a period of 12 hours meaning
the change of the roles of East and West with this period in the approximation that the net
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acceleration vector is same at the opposite sides of Earth. The approximation makes sense if the
change of sign induces much large variation than the change of the Earth-Sun and Earth-Moon
distances. Unless P and m are even functions of X, the predicted effect can be consistent with
the experimental findings in the approximation that anet is constant in 24 hour time scale.

5 Hierarchy of Planck constants allows small-p p-adicity

In particle physics applications of p-adic physics [14] the values of p-adic primes are very large and
favor p-adic primes near powers of two. For instance, electron is characterized by a p-adic prime
M127 = 2127 − 1. Small p-adic primes correspond to very short time and length scales, which are not
plausible in the recent situation. Biological systems however suggest the possibility of small values
of p. This is consistent with p-adic length scale hypothesis if one accepts the hypothesis that dark
matter corresponds to a hierarchy of Planck constants coming as integer multiples of the ordinary
Planck constant ~0: ~/~0 = r, r integer.

5.1 Estimate for the value of Planck constant

In the recent formulation of quantum TGD the hierarchy of Planck constants there is an argument
reducing the hierarchy of Planck constants to the basic quantum TGD and one can say that scaled
up values of Planck constant are effective values of Planck constant. The scaling of the p-adic prime
scales up the secondary time scale assignable with the particle characterized by prime p as Tk =
2kTCP2

→ rTk. Here TCP2
denotes CP2 time expressible as TCP2

= 2−127T (2, 127) ' 5.877 × 10−40

seconds. There T (2, 127) ' .1 seconds is secondary p-adic time scale assignable to Mersenne prime
M127 characterizing electron. TCP2

is 1.0902× 104 times Planck time TPl = 5.391× 10−44 s.
To obtain small-p p-adicity one must have very large value of r. The proposed quantum model for

dark matter in astrophysical scales indeed predicts gigantic values of gravitational Planck constant
of order GMm for a system of two masses. This would suggests that gravitational interaction allows
large values of Planck constant and small-p p-adicity in macroscopic time scales.

In the experiments described in [15] one studies the number of events per fixed time interval τ .
This time interval is macroscopic in the measurements studied. One has τ = 36 seconds (τ = 6
seconds) in the experiment whose histogram is represented by Fig. 1 (Fig. 2) of [15]. One could argue
that the secondary p-adic time scale TP (2) = rPTCP2 for scaled up Planck constant ~ = r~0 should
of the same order of magnitude as τ . This gives the condition

r ∼ τ

PTCP2

<
τ

TCP2

.

For τ = 36 seconds one has τ
TCP2

' 360×M127. For r = 2127 this would give P ∼ 360. The value of

P estimated from the distribution of Fig.1 of [15] is about P ∼ 100 which is about 3.5 times smaller
than the upper bound. This suggests that one p-adic time scale must be shorter than τ but of same
order of magnitude. For the second experiment (Fig. 2 of [15]) one would obtain P ≤ 50 which is 5
times larger than the estimate for P ∼ 10 from periodicity.

r = 2127 might make sense since M127 defines the secondary p-adic length scale of electron which
is .1 seconds, a fundamental bio-rhythm, and corresponds to photon wavelength which is of order of
circumference of Earth. This would also suggest that the modification of distributions could correspond
to same value of P and m for laboratories at different sides of globe. Whether this is the case is easy
to test in principle.

The notion of causal diamond (intersection of future and past directed lightcones central for the
notion of zero energy ontology. The proper time distance between its tips is given by 2kTCP2 and
assign to each elementary particle a macroscopic time scale identifiable as secondary p-adic time scale
characterizing the particle. T (127) = 2127TCP2

characterizes the causal diamond of electron, which in
turn corresponds to the length scale assigned with P = 2 and r = 2126. Could r = 2126 be in preferred
role that the findings of Shnoll would reflect new physics associated with electron, possibly with its
gravitational interactions?
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5.2 Is dark matter at the space-time sheets mediating gravitational inter-
action involved?

The periodic variation of the distributions in time scales assignable to gravitation encourages to ask
whether the gigantic value of Planck constant could correspond to gravitational Planck constant
introduced originally by Nottale [29] and assumed in TGD Universe to characterize space-time sheets
mediating gravitational interaction and carrying dark manner -at least gravitons- with gigantic value
of Planck constant implying quantum coherence in astrophysical scales [9, 10].

The formula proposed by Nottale [29] for the gravitational Planck constant is dictated by Equiv-
alence Principle and reads as

rgr =
~gr
~0

=
GMm

v0
. (5.1)

Here v0 is a parameter with dimensions of velocity and one has v0/c ' 2−11 for the inner planets in
the model of Nottale and 5 times smaller for outer planets. As a matter fact, the order of magnitude
of the rotation velocity of planet around Sun is related to v0 by numerical constant of order unity by
Bohr rules, which in TGD Universe are an exact part of quantum theory.

If the large value of ~gr is associated with the gravitational interaction of smaller system with
Earth with mass ME = 5.9737×1024 kg, the mass of the system in question should be estimated from
the condition

r = M127 =
GMEm

v0~0
. (5.2)

This gives m ' 135× v0
c kg. For v0 = 2−11 this would give mass about m = .05 g which might represent

mass for some part of measurement apparatus. The mass of Sun is MSun ' .333×106ME and similar
estimate gives a mass m = .15× 10−9 kg to be compared with Planck mass mPl = 4.3× 10−9 kg. For
c/v0 = 70 the estimate would give Planck mass. Note however that it is difficult to relate this value
of v0 to any velocity in Earth-Sun system. For the density of water Planck mass corresponds to a size
scale 10−4 m assignable to a large cell.

Maybe dark matter systems representing the quanta of gravitational flux equal to Planck mass
analogous to quanta of electric flux are involved and are important also for biological systems. The
interaction of Planck mass with Earth’s gravitational field would correspond to r = 3 × 2107: M107

defines the p-adic length scale assignable to hadrons.

6 Conclusions

The proposed model has the potential of explaining the findings of Shnoll but detailed numerical work
is required to find whether the model works also at the level of details.

1. The universality of the modified distributions would reduce to the replacement of various rational
numbers characterizing the probability distribution with their quantum variants defined in a
manner respecting the decomposition of integers to primes. p-Adic counterparts of probability
distributions are essential for understanding how to avoid the difficulties resulting from negative
values of quantum integers. The model makes very detailed predictions about the periodically
occurring positions of the peaks of the probability distribution as function of P and m based on
number theoretical considerations and in principle allows to determined these parameters for a
given distribution.

2. If the value of P is outcome of state function process, it is not determined by deterministic
dynamics but should have a distribution. If this distribution is peaked around one particular
value, one can understand the findings of Shnoll.

3. The slow variation of the p-adic prime P and integer m characterizing quantum integers would
explain the slow variation of the distributions with position and time. The periodic variations
occurings withboth solar and sidereal periods can be understood if the values of P and m are
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characterized by the sum of gravitational accelerations assignable to Earth-Sun and Earth-Moon
systems.

4. Various effects such as the dependence of the probability distributions on the direction of alpha
particles selected using collimators and 12 hour phase shift between the directions associated
with East and West direction can be understood as direct evidence for the effects of measurement
apparatus on the many-sheeted space-time affecting the values of P and m.

5. The small value of p-adic prime P involved can be understood in TGD framework in terms of
hierarchy of Planck constants [8]. The value of Planck constant could correspond to Mersenne
prime M127 characterizing electron but this is not required by any deep principle. Gravitational
Planck constant can indeed have gigantic values and for the interaction of a system with mass
of order Planck mass with Sun the gravitational Planck constant is of the required order of
magnitude.
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