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Abstract

Although an unambiguous definition of heat is available in the classical thermodynamics for closed
systems, the question of how best to define heat transfer in open systems is not yet settled.

After an introduction to the basic formalism of modern thermodynamics, this article reviews the
different definitions of heat for open systems used by Callen, Casas-Vázquez, DeGroot,
Fox, Haase, Jou, Kondepudi, Lebon, Mazur, Misner, Prigogine, Smith, Thorne, and
Wheeler, emphasizing their main pros and cons.

A posterior section deals with the main objective of this article and introduces a new definition
of heat that avoids the main difficulties of the existent definitions, providing us (i) a complete
distinction between open and closed systems, (ii) high non-redundancy, (iii) natural variables for
the thermodynamic potentials, and (iv) a sound and complete but intuitive generalization of classical
thermodynamic expressions. The application of the new definition of heat to termoelectricity is used
for showing new advantages over the previous definitions, including corrections to misleading and
contradictory expressions for the density of production of entropy obtained by other authors for solid
conductors. Finally, some consequences of this generalization of classical thermodynamic expressions
to open systems are given and misleading recent comments done in black hole literature are corrected.
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1 Introduction

The true nature of heat, as a form of energy that can interconvert to other forms of energy,
was established after much debate in the last part of the 19th century [1]. However, an
unambiguous definition was lacking until Born introduced his definition in 1921 [2, 3]

Q ≡ ∆E −W , (1)

with E and W being the total energy and work, respectively. This classical thermodynamics
definition can be restated in differential form –with the help of imperfect differentials [4]–

δQ ≡ dE − δW . (2)

Although the Born definition (1) and its differential version (2) are not valid for open systems
[1, 2] –i.e., for systems that can interchange matter as well as energy–, this restriction has not
been, in practice, a difficulty for its usage in the classical thermodynamic theory of equilibrium;
essentially, because the basic problem of classical thermodynamics is, according to Callen,
«the determination of the equilibrium state that eventually results after the removal of internal
constraints in [an isolated], composite system» [5, 6].

The difficulties begin with the extension of classical thermodynamics to irreversible processes.
In modern thermodynamics [1], systems in a nonequilibrium thermodynamic state are divided
into small elements of volume and each element is assumed to be locally at equilibrium [7].
Now, these elements of volume can interchange matter with adjacent elements, which requires
a new definition of heat valid for open systems as well.

The importance of a generalization of the closed-systems definition of heat has been empha-
sized many years ago; however, in despite of the existence of several proposed generalizations,
the question of how best to define heat transfer in open systems is not yet settled [8].

The next section gives an introduction to the basic formalism of modern thermodynamics,
including balance equations for general thermodynamic quantities. The section 3 reviews the
available definitions of heat for open systems in irreversible thermodynamics, emphasizing
their main pros and cons for simple thermodynamic systems. The section 4 emphasizes the
non-equivalence between the different definitions proposed in the literature up to now.

This author introduces, in the section 5, a new definition of heat for simple thermodynamic
systems that avoids the main difficulties of the existent definitions and, in the section 6 presents
the new definition for general thermodynamic systems. The application of the new definition of
heat to termoelectricity is discussed in the section 7, where new advantages over the previous
definitions are shown, including corrections to misleading and contradictory expressions for
the density of production of entropy obtained by other authors for solid conductors.

Finally, some consequences of the generalization of the classical thermodynamic expressions
to open systems are commented and misleading recent comments done in black hole physics
literature corrected.
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2 Basic formalism of modern thermodynamics

In this section, we follow closely «Modern Thermodynamics» by Kondepudi & Prigogine.
Readers would consult [1] for details.

Consider a general thermodynamic quantity Y , its variation can be expressed as a sum of two
parts

dY = diY + deY , (3)

in which deY is the change in Y due to exchanges with the exterior and diY is the change
produced by processes in the interior of the thermodynamic system. If the density of Y is
denoted by y , the change in the amount of Y in a volume V can be written as∫

V

∂y

∂t
dV =

∫
V

σY dV −
∫
A

JY · dA, (4)

where JY is the flux of Y , dA the vector representing an area element, and σY the amount
of Y produced per unit volume per unit time [1]. Applying Gauss’ theorem to (4) gives the
usual local form of the balance equation for Y

∂y

∂t
= σY −∇ · JY . (5)

Specific expressions for σY for several quantities as internal energy, amount of substance,
entropy, and others are given in the literature [1].

Finally, it must be emphasized that modern thermodynamics does not rely in the use of
imperfect differentials because is defined over an extended thermodynamic space that includes
time [4]. This means that classical thermodynamics expressions as (2) are modernized to

dQ ≡ dE − dW , (6)

with both dQ and dW well-defined and measurable physical quantities. Of course, this modern
definition of heat continues being valid for closed systems only.

3 Review of available definitions of heat flux

We start by considering one-component elements of volume that can interchange internal
energy and matter, without chemical reactions σN = 0, for which internal energy is conserved
σU = 0, and that verify the generalized Gibbs equation [2, 7]

Tds = du − µdn, (7)

for thermodynamic temperature T , density of entropy s, density of internal energy u, chemical
potential µ, and mole unit per unit volume n. This kind of simple thermodynamic systems is
enough for the purposes of this section, more general systems will be considered in a posterior
section.
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Taking partial derivatives ∂/∂t in the generalized Gibbs equation (7) and using the local
balance equations for internal energy and composition we obtain the well-known balance
equation for entropy [1, 5]

∂s

∂t
= σS −∇ · JS , (8)

with the density of production of entropy σS and the entropy flux JS given by

σS = JU · ∇
(

1

T

)
− JN · ∇

(
µ

T

)
(9)

and
JS =

JU − µJN
T

. (10)

In the above expressions, JU and JN are the flows of internal energy and matter, respectively.

The density of production of entropy (9) is the usual product of flows and thermodynamic
forces [1]. This will be our starting point to revise the different definitions of heat flux proposed
up to now.

A first definition of heat flux follows from considering it as the flux associated with the gradient
of temperature in the first product of (9), i.e., JQ [1] ≡ JU . Using this definition, the density
of production of entropy (9) can be rewritten as

σS = JQ [1] · ∇
(

1

T

)
− JN · ∇

(
µ

T

)
(11)

and (10) as

JS =
JQ [1] − µJN

T
. (12)

Notice that TJS = JQ [1] only holds for closed systems, which means that the flux JQ [1] allows
a physical distinction between open and closed systems at the entropic level. Effectively,
integrating (12) over the area A of an isothermal system, and multiplying by dt we obtain
DeDonder entropic term for open systems [1, 2, 9]

deS = dt

∫
A

JS · dA =
dQ [1]

T
+ (deS)matter . (13)

For closed systems JN = 0 and (13) reduces to DeDonder [10] entropic term for closed
systems –see equation (III.4) in DeGroot & Mazur [9]–

deS = dt

∫
A

JS · dA =
dQ [1]

T
. (14)

This first definition JQ [1] is used by DeGroot & Mazur [9], Fox [11] and Jou, Casas-
Vázquez, & Lebon in irreversible thermodynamics [12]; by Jou, Casas-Vázquez, & Lebon
in extended thermodynamics [12] –in this case with equations (11) and (12) being generalized
to an extended thermodynamic space–; and is the standard in kinetic theory of gases [9, 13].

The main advantages of this first definition of heat flux, JQ [1] , are its use of natural variables
for the thermodynamic potentials and its distinction between open and closed systems through
DeDonder entropic term: (13) versus (14). The main disadvantages of JQ [1] are found in its
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redundancy and that does not distinguish between open and closed systems at the energetic
level. Both disadvantages are analyzed with detail below.

In the first place, JQ [1] is highly redundant. Effectively, any instance of JQ [1] in the equations
could be substituted by JU without physical or mathematical changes, just as any instance
of «heat flux» in the text of the above references [9, 11, 12] could be reverted to «internal
energy flux» without any appreciable change, doing unneeded the introduction of the concept
of heat in the formalism. Notice the difference with the rest of definitions considered in this
work, which are non-redundant and really introduce a physical concept of heat flux different
from the concept of internal energy flux.

In the second place, JQ [1] does not completely distinguish between open and closed systems.
This disadvantage can be shown by using JQ [1] in the balance equation for the internal energy
of a homogeneous thermodynamic system, at rest and in absence of external field,

∂u

∂t
= σU −∇ · JQ [1] (15)

integrating over the volume V of the system and multiplying by dt for obtaining

dU = dQ [1] − pdV . (16)

According to this expression, the only possible changes in the internal energy U are due to
flow of heat and to mechanical work dW ≡ −pdV [9]. There is not possibility to modify the
internal energy of the system by a flow of mass. However as Smith remarks [8]:

«It is therefore expected that the usual version of the first law of thermodynamics
for closed systems, namely dU = dQ + dW , will not be valid for open systems.»

Notice that for the kind of systems considered here dE = dU; therefore, the restriction of
(16) to closed systems is directly related to the same restriction for the Born definition (2)
and for its modern thermodynamic version (6). Below we will show how the extension of the
first law to open systems has to be performed.

The underlying physical reason for the inadequacy of JQ [1] to distinguish between open and
closed systems, at the energetic level, must be traced to the important fact that internal energy
U is an extensive thermodynamic quantity and, therefore, JU = JQ [1] does not differentiate
between changes in internal energy due to flows of mass –transferring the internal energy per
particle in the flow– and changes due to genuine heat flows.

The two disadvantages of JQ [1] reported here are a motivation for the search of improved
definitions for open systems. A second definition of heat follows by separating the gradient
of µ from the gradient of (1/T ) in (9). Using

∇
(
µ

T

)
= µ∇

(
1

T

)
+

(
1

T

)
∇µ, (17)

the density of production of entropy (9) can be rewritten as

σS = JQ [2] · ∇
(

1

T

)
− JN ·

(
∇µ
T

)
(18)
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and the entropy flux (10) as

JS =
JQ [2]

T
, (19)

where JQ [2] ≡ JU−µJN . This new definition of heat flux is only used by Callen [5], although
Misner, Thorne, & Wheeler use a weird variant [14] in curved spacetime thermodynamics
–in this case with equations (11) and (12) being formulated in curved spacetime– [15].

The main advantages of this second definition are its use of natural variables for the thermo-
dynamic potentials, its non-redundancy, and that differentiates between changes in internal
energy due to flows of mass and due to genuine heat flows: JU = JQ [2] + µJN . The main
disadvantage being that does not distinguish closed from open systems at the entropic level.

Effectively, integrating (19) over the area A of an isothermal system, and multiplying by dt
we obtain the following DeDonder entropic term

deS = dt

∫
A

JS · dA =
dQ [2]

T
, (20)

which is not valid for open systems [1, 2, 9] because is missing a (deS)matter term for matter
exchange –compare with (13) for open systems and with (14) for closed systems–.

The underlying physical reason for the inadequacy of JQ [2] to distinguish between open and
closed systems, at the entropic level, must be traced to the important fact that entropy S
is an extensive thermodynamic quantity and, therefore, (19) does not differentiate between
changes in entropy due to flows of mass –transferring the entropy per particle in the flow–
and changes due to genuine heat flows.

Precisely Callen introduces his JQ [2] = TJS «in analogy» [5] with δQ = TdS for classical
thermodynamics. The problem is that the classical δQ = TdS is not valid for open systems
[10] by the same reason that modern (20) is not valid, and the same physical defect is inherited
by JQ [2] = TJS .

Although JQ [2] has a pair of advantages over JQ [1] , its main disadvantage is a motivation for
the search of improved definitions for open systems. It is interesting to remark a kind of
complementarity between JQ [1] and JQ [2] : the first fails at the energetic level, whereas the
second does at the entropic level. A new definition of heat working at both levels is evidently
needed.

A third definition of heat can be obtained by noticing that the gradient of chemical potential
∇µ in (17) is still a function of the temperature T . This means that extra heating effects
due to gradients of temperature were not included in the previous definitions of heat flow.

Introducing the next separation [1], where µ = µ(T , n) and sn ≡ (∂s/∂n)T is a pseudo-molar
entropy [16],

∇µ = (∇µ)T − sn∇T (21)

in (17), the density of production of entropy (9) can be rewritten as

σS = JQ [3] · ∇
(

1

T

)
− JN ·

(∇µ)T
T

(22)
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and the entropy flux (10) as

JS =
JQ [3]

T
+ snJN (23)

for a heat flux JQ [3] ≡ JU − (µ+ Tsn)JN .

Notice that TJS = JQ [3] only holds for closed systems, which means that JQ [3] allows a physical
distinction between open and closed systems at the entropic level. Effectively, integrating (23)
over the area A of an isothermal system, and multiplying by dt we obtain DeDonder entropic
term for open systems [1, 2, 9]

deS = dt

∫
A

JS · dA =
dQ [3]

T
+ (deS)matter . (24)

For closed systems JN = 0 and (24) reduces to DeDonder [10] entropic term for closed
systems –see equation (3.4.9) in Kondepudi & Prigogine [1]–

deS = dt

∫
A

JS · dA =
dQ [3]

T
. (25)

This new JQ [3] also allows a physical distinction between open and closed systems at the
energetic level. This advantage, regarding the first law of thermodynamics, can be shown by
using JQ [3] in the balance equation for the internal energy of a homogeneous thermodynamic
system, at rest and in absence of external field,

∂u

∂t
= σU −∇ · JQ [3] −∇ · (unJN). (26)

A pseudo-molar internal energy un = µ + Tsn has been used [1, 16]. Integrating over the
volume V of the system and multiplying by dt we obtain –see equation (2.2.12) in [1]–

dU = dQ [3] + dW [3] + dUmatter . (27)

«For open systems, there is an additional contribution due to the flow of matter dUmatter»
[1] in the first law of thermodynamics –see also the Smith quotation, reproduced after (16),
emphasizing how the term dUmatter is missing in (16)–.

Unlike the previous definitions, this new JQ [3] completely distinguishes between open and
closed systems, at both energetic and entropic levels, because JQ [3] considers the extensive
thermodynamic character of both entropy S and internal energy U. Notice that (23) is able
to distinguish changes in entropy due to flows of mass from changes due to genuine heat
flows, whereas JU = JQ [3] + unJN distinguishes between changes in internal energy due to
flows of mass and those due to genuine heat flows. As a consequence, JQ [3] provides the
needed (deS)matter term at the entropic level [1, 2, 9] plus a waited dUmatter term at the
energetic level [8]. The heat flux JQ [3] is used by Kondepudi & Prigogine [1], Haase [2]
and by Smith [8].

The main advantages of this JQ [3] over the two previous definitions JQ [1] and JQ [2] are its
complete distinction between closed and isolated systems and its high non-redundancy. The
main disadvantage being that JQ [3] is not defined in natural variables.

Indeed, the above expressions explicitly involve the use of sn = sn(T , n), un = un(T , n), and
µ = µ(T , n). Precisely Kondepudi & Prigogine [1] introduce the definition JQ [3] after a
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change of variables (s, n)→ (T , n) in the internal energy balance equation. As is well-known
internal energy is not a thermodynamic potential in a temperature-composition state space
and when considering expressions that use JQ [3] , this important fact has to be taken into
account.

Moreover, their change of variables introduces a divergence with ordinary thermodynamic
expressions. For instance, (27) cannot be directly reduced to the usual first law for closed
systems dU = dQ − pdV , because dW [3] ≡ (∂U/∂V )T ,NdV 6= −pdV –see their boxed
equation (2.2.12) in [1]–.

Although JQ [3] has advantages over both JQ [1] and JQ [2] , its main disadvantage is a motivation
for the search of an improved definition, not only for open systems but even also for closed!
A new definition of heat working at both entropic and energetic levels, which directly reduces
to ordinary classical thermodynamic expressions, and maintains natural variables is evidently
needed, but before presenting our new definition it will be interesting to review the reasons
for the non-equivalence between the different definitions of heat flux considered up to now.

4 Non-equivalence of the different definitions of heat

Although it is sometimes stated that different definitions of heat are ’equivalent’, this really
means that the density of production of entropy σS is invariant when is expressed in terms
of JQ [1] , JQ [2] , or JQ [3] . Effectively, (11), (18), and (22) are equivalent to the original density
of production (9). However, the equivalence of the production of entropy does not imply a
complete equivalence of the different definitions of heat flux.

Different instances of the non-equivalence of the different definitions of heat flux were given
in the previous section. For instance, the flux JQ [2] introduced by Callen is not compatible
with DeDonder entropic term for an open system, whereas the flows used by DeGroot &
Mazur and by Kondepudi & Prigogine, Smith, and Haase are compatible.

As was emphasized in the previous section, this deficiency of JQ [2] must be traced to its neglect
of the important fact of that entropy S is an extensive thermodynamic quantity and, therefore,
entropy can vary due to flows of mass and due to genuine heat flows. This deficiency of JQ [2]

cannot be perceived in the density of production of entropy (18), because is therein being
compensated by the JN · (∇µ/T ) term; however, the deficiency is detected in (20), because
(20) relies exclusively on JS where the compensation term is lost –see (19)–.

It is not a surprise that neither DeGroot & Mazur nor Kondepudi & Prigogine consider
that JQ [2] was a valid heat flux and that all these authors avoid even to name it [1, 9]. Smith
and Haase also avoid JQ [2] completely [2, 8].

Another instance of the non-equivalence of the different definitions of heat flux follows from
the demonstration, done in the previous section, of that JQ [1] is not compatible with the first
law of thermodynamics for open systems, whereas the flow used by Kondepudi & Prigogine,
Smith, and Haase is compatible.

As was emphasized then, this deficiency of JQ [1] must be traced to its neglect of the important
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extensive thermodynamic character of the internal energy U, which can vary due to flows of
mass and due to genuine heat flows. This deficiency of JQ [1] cannot be perceived in the density
of production of entropy (11), because is therein being compensated by the JN ·∇(µ/T ) term;
however, this deficiency is detected in (16), because (16) relies exclusively on JU = JQ [1] where
the compensation term JN · ∇(µ/T ) is lost.

By all these technical reasons, both Smith and Haase avoid JQ [1] completely and only use JQ [3]

[2, 8]. In his own analysis of different definitions of heat, Smith confirms the non-equivalence:

«In irreversible thermodynamics [...] there exist several definitions of heat flux
[...] although many authors employ non-equivalent definitions (see e.g. deGroot
and Mazur 1962)»

In its turn, JQ [3] has deficiencies as well. JQ [3] obligates us to work always in a different
state space –where internal energy is not thermodynamic potential, for instance– and with
non-ordinary thermodynamic expressions such as dW [3] ≡ (∂U/∂V )T ,NdV 6= −pdV even for
closed systems. Of course, one can work in a (T , n) state space in thermodynamics, but the
Legendre transformation was precisely invented to obtain the corresponding thermodynamic
potentials in new state spaces and no such transformation is applied in the definition of JQ [3] .
Of course, there is not any objective reason which one has to work in another state space
exclusively to use the concept of heat! Additional disadvantages of JQ [3] are given in the
section 7 for the case of thermoelectricity. The deficiencies shown in this work were not
reported previously in the literature [1, 2, 8, 9].

Evidently if all the definitions were equivalent, thermodynamicians would not waste their time
analyzing the existent definitions, identifying their weak points, and providing new definitions.
For instance, Kondepudi & Prigogine do not use an old definition introduced by Prigogine
and criticized by Smith and others [8], but use the definition introduced by Haase [2]. That
defective old definition has been completely abandoned in the literature and has not been
even considered here.

After showing that the available definitions of heat flux are completely redundant (JQ [1]), do
not properly generalize the thermodynamic expressions to open systems (JQ [1] and JQ [2]), and
do not use natural variables for the thermodynamic potentials –introducing a divergence with
many classical thermodynamic expressions– (JQ [3]), we will propose a new definition without
such deficiencies.

5 New definition of heat flux

We will continue with the simple system considered in the section 3 for the sake of comparison
with the previous definitions. More general systems will be considered in the next section.

A new definition of heat can be obtained by considering extra heating effects in the chemical
potential, due to gradients of temperature, that were not included in the previous definitions
JQ [1] and JQ [2] . Starting with the Gibb & Duhem like equation corresponding to (7)

s∇T −∇p + n∇µ = 0 (28)
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and considering a system at mechanical equilibrium, we obtain the next identity(
1

T

)
∇µ =

(
Ts

n

)
∇
(

1

T

)
. (29)

Notice that we continue working in a natural variables state space (u, n), because µ = µ(u, n),
s = s(u, n), and T = T (u, n) hold in the above identity.

Using (29) together with (17), the density of production of entropy (9) can be rewritten as

σS = JQ · ∇
(

1

T

)
(30)

and the entropy flux (10) as

JS =
JQ
T

+

(
s

n

)
JN , (31)

using a new heat flux defined as

JQ ≡ JU −
(
µ+

Ts

n

)
JN . (32)

The physical interpretation of this new definition of heat is sound and complete, but intuitive
because the parenthesized term in (31) is a molar entropy, whereas the parenthesized term in
(32) is a molar internal energy. For instance, (31) is saying us that JQ is proportional to an
entropy flow J∗S where the entropy transfered through a mass flow has been subtracted

JQ = TJ∗S ≡ T

[
JS −

(
s

n

)
JN

]
. (33)

Notice that TJS = JQ only holds for closed systems, which means that JQ allows a physical
distinction between open and closed systems at the entropic level. Effectively, integrating
(31) over the area A of an isothermal system, and multiplying by dt we obtain DeDonder
entropic term for open systems [1, 2, 9]

deS = dt

∫
A

JS · dA =
dQ

T
+ (deS)matter . (34)

For closed systems JN = 0 and (34) reduces to DeDonder [10] entropic term for closed
systems

deS = dt

∫
A

JS · dA =
dQ

T
. (35)

The new JQ also allows a physical distinction between open and closed systems at the energetic
level. This advantage regarding the first law of thermodynamics can be shown by using JQ
in the balance equation for the internal energy of a homogeneous thermodynamic system, at
rest and in absence of external field,

∂u

∂t
= σU −∇ · JQ −∇ ·

(
u

n
JN

)
, (36)

where the molar internal energy (u/n) = µ + T (s/n) has been used [16]. Integrating over
the volume V of the system and multiplying by dt we obtain

dU = dQ + dW + dUmatter (37)
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in agreement with extensive discussions and quotations, about the first law for open systems,
reproduced on the section 3.

Unlike other definitions, this new JQ is able to distinguish between open and closed systems
completely, at both energetic and entropic levels, because JQ considers the extensive thermo-
dynamic character of entropy S but also of internal energy U. Notice that (31) distinguishes
changes in entropy due to flows of mass from changes due to genuine heat flows, whereas
JU = JQ + (u/n)JN distinguishes between changes in internal energy due to flows of mass
and those due to genuine heat flows. As a consequence, JQ provides the needed (deS)matter

term at the entropic level [1, 2, 9] plus a waited dUmatter term at the energetic level [8].

Moreover, JQ is defined in natural variables space and allows for a smooth generalization
of classical thermodynamic expressions to open systems. For instance, (37) can be directly
reduced to the ordinary first law for closed systems dU = dQ − pdV because dW ≡ −pdV .
This contrasts with the equation (27), using JQ [3] , which could not be directly reduced because
in it dW [3] 6= −pdV .

The main advantages of JQ over the previous definition are (i) complete distinction between
open and closed systems, (ii) its high non-redundancy, (iii) its use of natural variables, and
(iv) that properly generalizes classical thermodynamic expressions.

In the following section, we will present the general definition of heat and will show other
important advantages over the previous definitions.

6 Heat for general thermodynamic systems

Instead considering a simple system as we did in the section 3, we will consider now a generic
kind of thermodynamic systems. We start our analysis with a multi-component element of
volume that can interchange internal energy, matter, and a collection of «work coordinates»
[2] –whose densities are zj–. This thermodynamic element of volume verifies a generalized
Gibbs equation [2, 7]

Tds = du −
∑
j

ζjdzj −
∑
k

µkdnk (38)

for thermodynamic temperature T , density of entropy s, density of internal energy u, and
chemical potential µk and mole unit per unit volume nk of component k . The coefficients ζj ,
conjugate to the densities zj , are «work coefficients» [2]. Examples of work coefficients and
work coordinates are given in the literature for specific thermodynamic interactions, such as
those due to transfer of density of charge dq across a potential difference φ, change of density
of electric dipole moment dp in the presence of an electric field E, and change of density of
magnetic dipole moment dm in the presence of a magnetic field B [1, 2]∑

j

ζjdzj = φdq − E · dp− B · dm + · · · (39)

Taking partial derivatives ∂/∂t in the generalized Gibbs equation (38) and using the local
balance equations for internal energy, composition, and work coordinates, we obtain the
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balance equation (8) for entropy but now with a generalized density of production of entropy

σS =
σU −

∑
j ζjσzj −

∑
k µkσNk

T
+JU ·∇

(
1

T

)
−
∑
j

JZj ·∇
(
ζj
T

)
−
∑
k

JNk
·∇
(
µk

T

)
(40)

and with a generalized entropy flux

JS =
JU −

∑
j ζjJZj −

∑
k µkJNk

T
. (41)

In the above expressions, JU , JZj , and JNk
are the flows of internal energy, work coordinate

j , and component k , respectively; whereas σU , σzj , and σNk
are their corresponding densities

of production. For instance, the density of production of component k by chemical reactions
can be expressed in terms of the reaction velocities vα and the corresponding stoichiometric
coefficients ναk as σNk

=
∑
α vαναk .

Once again, the production of entropy (40) contains the usual product of flows and thermo-
dynamic forces [1]. This will be our starting point for the introduction of a new definition of
heat.

The new definition of heat flux follows by separating the gradient of (1/T ) from the gradient
of ζj

∇
(
ζj
T

)
= ζj∇

(
1

T

)
+

(
1

T

)
∇ζj (42)

and from the gradient of µk

∇
(
µk

T

)
= µk∇

(
1

T

)
+

(
1

T

)
∇µk , (43)

and by using the identity (
1

T

)
∇µk =

(
Ts

nk

)
∇
(

1

T

)
+

(
γk
T

)
, (44)

with γk ≡ ∇µk + (s/nk)∇T . This γk can be explicitly worked out using the Gibb & Duhem
like equation corresponding to (38)

s∇T −∇p +
∑
j

zj∇ζj +
∑
k

nk∇µk = 0, (45)

but, in general, leads to a too convoluted expression, which is not really needed for applications
where γk can be directly computed from a measurement of the densities of entropy s and
composition nk , and of the gradients ∇µk and ∇T . An exception are mono-component
isobaric systems without any work coordinate j , because then (45) can be used to reduce (44)
to the simple identity (29).

Using (42), together with (43) and (44), the density of production of entropy (40) can be
rewritten as

σS =
σU −

∑
j ζjσzj −

∑
k µkσNk

T
+ JQ · ∇

(
1

T

)
−
∑
j

JZj ·
(
∇ζj
T

)
−
∑
k

JNk
·
(
γk
T

)
(46)
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and the entropy flux (41) as

JS =
JQ
T

+
∑
k

(
s

nk

)
JNk

, (47)

for a heat flux

JQ ≡ JU −
∑
j

ζjJZj −
∑
k

(
µk +

Ts

nk

)
JNk

. (48)

Notice that the factor (s/nk) continues having units of molar entropy, which implies that
(µk + Ts/nk) continues having units of molar energy. This allows us to directly apply the
sound, complete, and intuitive physical interpretation of our new definition of heat for simple
systems –previously presented in the section 5– also to multi-component generalized thermo-
dynamic systems. Effectively, (47) is saying us that JQ for generalized thermodynamic systems
continues being proportional to an entropy flow J∗S where the entropy transfered through the
mass flows has been subtracted

JQ = TJ∗S ≡ T

[
JS −

∑
k

(
s

nk

)
JNk

]
. (49)

We can use the definition (48) of the new heat flux for generalizing classical thermodynamics
as well. Integrating the definition (48) of the new heat flux JQ over the area A of the whole
system and over the time interval dt needed to achieve a final equilibrium state –from an
initial equilibrium state–, downgrading from modern to classical thermodynamic space [4],
and considering the relation between total energy and internal energy, gives a generalization
of the classical Born definition of heat (2) for open systems

δQ ≡ dE − δW −
∑
k

(
TS

Nk

)
δeNk . (50)

In this expression E and W are the total energy and work, respectively. Although in modern
thermodynamics, (50) is really a derived result, it can be used in classical thermodynamics as
definition of heat, instead of (2). Evidently (50) reduces to (2) for closed systems, satisfying
the requirement number (iv), for any reliable definition of heat. Analogously, we can obtain,
from (47), the generalization of the classical Clausius theorem to open systems

dS ≥ δQ

T
+
∑
k

(
S

Nk

)
δeNk . (51)

7 Application to thermoelectricity

Although the main advantages of the new definition of heat have been presented in previous
sections, further advantages can be shown by application to thermoelectric phenomena. We
will consider a conductor at mechanical equilibrium ∇p = 0 with both electric and heat flux
–the electric flux being carried by electrons. This is a system where the only thermodynamic
variables in (38) will be the density of internal energy u, the density of charge q –see the first
term in (39)–, and the mole unit per unit volume n of electrons. Substituting all in (46) and
using (45), we obtain the density of production of entropy for this system

σS = JQ · ∇
(

1

T

)
. (52)
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This concise form predicts zero production of entropy under isothermal conditions. Now we
will show how the other definitions of heat flux can give, and in fact give, misleading and
self-contradictory conclusions under the same conditions.

Using again the Gibbs & Duhem relation (45) –recall that ∇p = 0–, we can write the
alternative expression

σS =

(
JQ +

Ts

n
JN

)
· ∇
(

1

T

)
− JN ·

(
∇µ+ q/n ∇φ

T

)
. (53)

Using now the relation (47), the definitions for the electric field E ≡ −∇φ and the electric
current I ≡ q/n JN , and multiplying both sides by temperature, we obtain

TσS = −JS · ∇T − I ·
[
∇
(

µ

q/n

)
− E

]
. (54)

This last expression is, with a slightly different notation, the basic equation XIII.61 used by
DeGroot & Mazur in their analysis of the same system [9]. Their study of thermoelectricity
is twice interesting; first, because they apply equation (54) under isothermal conditions –see
their equation XIII.62–

TσS = I ·
[
E−∇

(
µ

q/n

)]
. (55)

without noticing the zero production of entropy under such conditions (52) and, second,
because of their lengthy and convoluted derivation.

Regarding the first point, DeGroot & Mazur are considering thermoelectric systems at me-
chanical equilibrium which implies, for isothermal conditions and electronic monocomponent,
the following constraint –see their equation XIII.50–

∇µ− q/n E = 0. (56)

Substituting this back into (55) –i.e., into their equation XIII.62–, we obtain σS = 0, in
complete agreement with the prediction done by (52) under the same isothermal conditions.
DeGroot & Mazur do not notice that their equation XIII.62 trivially vanishes, which would
lead to confusions about the dissipative character of the system under study.

Regarding the second point –i.e., their lengthy and convoluted derivations [9]–, it is important
to notice that DeGroot & Mazur start by re-defining internal energy –see their equation
XIII.32– in presence of electromagnetic fields. There exits a difficulty, their redefinition is not
compatible with the usual meaning of internal energy. Internal energy is the energy that has
a system at rest in absence of external fields [2]; however, their redefinition is not considering
the Coulomb interaction energy between particles within the system, for example. As is now
well-known, the van der Waals equation for internal energy contains a term due to the
interactions between molecules in a gas.

DeGroot & Mazur redefinition of the well-established concept of internal energy is clearly
motivated by their need to identify JQ [1] with JU –see the corresponding redefinition of heat
flux in XIII.33–. It must be further emphasized that DeGroot & Mazur propose Boltzmann
kinetic theory of gases as foundation for their approach to irreversible thermodynamics [9].
Within such restricted framework, their definition of heat flux is consistent with a special
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concept of internal energy which consists, entirely, of the kinetic energy of translation of
particles.

Nevertheless, there are not objective reasons which we would use two different concepts of
internal energy at once: one in classical thermodynamics –where internal energy includes the
interaction energies between particles– and other concept in irreversible thermodynamics when
using JQ [1] . Our new definition of heat flux JQ maintains the traditional concept of internal
energy [2] and this universality must be considered as another advantage.

DeGroot & Mazur give the density of production of entropy for thermoelectric phenomena
in their equation XIII.39. Next, they recognize that their own expression, using JQ [1] , is not
adequate «for the discussion of irreversible phenomena connected with electrical conduction»
[9] and then eliminate JQ [1] from the equations. After several pages of technical developments,
they finally obtain their basic equation XIII.61 –i.e., equation (54) above–. The relevant fact
here is that the same expression (54) has been obtained in a much more simple way from (52)
thanks to our new JQ .

Similar difficulties arise with the use of JQ [3] by Kondepudi & Prigogine [1]. Their study of
thermoelectricity is twice interesting as well; first, because they propose, by fiat, a density of
production of entropy without noticing the incompatibility with their own theory and, second,
because of their somewhat convoluted derivations.

Regarding the first point, Kondepudi & Prigogine begin with their general expression for
the density of production of entropy –see their equation A15.1.13–

σS = JQ [3] · ∇
(

1

T

)
−
∑
k

JNk
· (∇µk)T
T

+
I · E
T
−
∑
k

µkσNk

T
. (57)

Readers would be warned that their approach is full of typos and inconsistencies [17]. Readers
would also maintain in mind that their expression (57) is not so general as our (46).

In the section «16.3 Thermoelectric phenomena», and without any explanation, Kondepudi
& Prigogine present the following density of production –see their 16.3.1–

σS = JQ [3] · ∇
(

1

T

)
+

I · E
T

. (58)

Evidently, the last term in (57) vanishes in absence of chemical reactions, but the elimination
of the (∇µk)T term is not that evident. In fact, Kondepudi & Prigogine are considering
solid conductors at rest, and these systems verify the constrain –see equation XIII.49 in [9]–

(∇µk)T − q/n E = 0. (59)

This constraint implies that the I · E term in (58) must be eliminated as well, because the
electric current I ≡ q/n JN . Otherwise, (58) would predict σS 6= 0 under isothermal condi-
tions. A nonzero density of production of entropy would be not only in disagreement with our
(52), but also in disagreement with the equation XIII.62 by DeGroot & Mazur –i.e., with
equation (55)–.

Effectively, the thermoelectric expressions (58) by Kondepudi & Prigogine and the (54)
by DeGroot & Mazur only can hold together, under isothermal conditions –see also the
constrains (56) and (59)–, if both vanish in agreement with our (52).
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Regarding the second point –the convoluted derivations by Kondepudi & Prigogine [1]–,
it is worth to mention that the tandem of authors begin with a redefinition of their heat flux
JQ [3] in presence of electromagnetic fields –see their equation 15.4.20–. There exits a difficulty,
initially they consider a definition that satisfies JU = JQ [3] + unJN , but in their redefinition
of heat for systems in presence of fields, this changes to JU = JQ [3] + u0nJN , where u0n is
computed in absence of fields! Their redefinition implies a mixture of field-dependent and
field-less terms in their formalism. Our new definition (48) avoids such mixtures of terms.

There are more difficulties with their approach. For instance, since their definition of JQ [3] has
changed, their previous relation (23) separating the entropy transfered by a heat flux from the
entropy transfered by a matter flux is no longer valid in presence of fields. This is in contrast
with our new definition of heat flux JQ , which maintains the separation (31) also valid in
presence of fields (47) and this fact must be considered as another advantage.

Although technical reasons for the rejection of Callen’s heat flux JQ [2] were given in sections
3 and 4, it is worth to analyze the density of production of entropy proposed by him for
thermoelectricity under isothermal conditions, because in this case JQ [2] is absent. He proposes
the following expression

σS = −JN ·
(
∇µ̃
T

)
, (60)

with µ̃ ≡ µ+qφ/n being the electrochemical potential –see 14.50 in [5]–. Using the definitions
for the electric field E ≡ −∇φ and the electric current I ≡ q/n JN , we rewrite it as

σS = − I

T
·
[
∇
(

µ

q/n

)
− E

]
. (61)

Once again, we can check that (61) coincides with (58) –by Kondepudi & Prigogine– and
with (54) –by DeGroot & Mazur–, under isothermal conditions –see also the constrains
(56) and (59)–, only if all them vanish at once, in complete agreement with our (52) for the
same system and identical conditions.

8 Final remarks

Finally, some consequences of the generalization of the classical thermodynamic expressions
to open systems –equations (50) and (51)– deserve to be commented.

For an isolated system, the integration of (51) between an initial and a final equilibrium state
predicts that the entropy S of the system never decreases with time ∆S ≥ 0. This is a
well-known result, but is often misunderstood. For instance, for an open system transporting
isothermally energy and matter to the surroundings, and in absence of chemical reactions, the
integration of the general expression (51) yields

∆S −
[
Q

T
+
∑
k

(
S

Nk

)
∆Nk

]
≥ 0. (62)

Effectively, the venerable second law of thermodynamics, ∆iS ≥ 0, continues to hold for
open systems [1, 2, 9], but now the entropy S can increase, decrease, or remain constant in
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function of the flow term ∆eS enclosed in brackets. Contrary to a common confusion, the
decreasing of entropy S in an open system is perfectly compatible with the second law of
thermodynamics.

Fortunately, this kind of confusions about the second law of thermodynamics for open systems
have been successfully corrected in the literature in biological thermodynamics. It is now well-
understood that living systems are open systems with maintain dissipative structures, in full
agreement with the second law of thermodynamics, thanks to flows of entropy ∆eS with the
surrounds.

Unfortunately, such confusions still remain in black holes physics. For instance, the general
relativist Robert M. Wald writes [18]:

«Even in classical general relativity, there is a serious difficulty with the ordinary
second law of thermodynamics when a black hole is present, as originally empha-
sized by J.A. Wheeler: One can simply take some ordinary matter and drop it
into a black hole, where, according to classical general relativity, it will disappear
into a spacetime singularity. In this process, one loses the entropy initially present
in the matter, and no compensating gain of ordinary entropy occurs, so the total
entropy, S , of matter in the universe decreases. One could attempt to salvage
the ordinary second law by invoking the bookkeeping rule that one must continue
to count the entropy of matter dropped into a black hole as still contributing to
the total entropy of the universe. However, the second law would then have the
status of being observationally unverifiable [...] the ordinary second law will fail
when matter is dropped into a black hole.»

This is incorrect. As already mentioned at the start of this section, the second law of thermo-
dynamics does not predict that the entropy of an open system must always increase. Indeed,
a simple analysis of (62) shows that a decrease in the total entropy, S , of matter in universe
offers absolutely no difficulty for the ordinary second law. Moreover, the second law continues
being observationally verifiable in open systems, with all the known observations up to the
date –including laboratory experiments– being in complete agreement with the predictions
done by ordinary thermodynamics for open systems [1, 2, 9].

We must accept that such claims as «the ordinary second law will fail when matter is dropped
into a black hole» [18] must be traced to the insistence of some general relativists to apply the
expression of the second law for isolated systems ∆S ≥ 0 to systems which are not isolated!
Wald and others would be consistent and apply the open systems expression of the second
law to open systems.

If we consider ordinary matter plus a black hole, it is interesting to note that the total entropic
flow term ∆eS is proportional to the area A separating the matter system from the black hole
–see (3) and (4)–. Precisely an entropic term proportional to the area of the black hole
is postulated in black hole physics [18], but this is completely misleading for the following
reasons.

First, the presence of an entropic term proportional to area is not related to the exotic nature
of black holes, but a mere consequence of ordinary thermodynamics for non-isolated systems.
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Second, the total flow ∆eS is not minus the total variation in the black hole entropy, but
only the entropy transfered between black hole and matter outside. The true total variation,
∆SBH , would contain the production term due to dissipative processes within the black hole.
Wald, as many others, confounds ∆SBH with ∆eSBH = −∆eS .

Third, since ∆eS is not a production of entropy, but a flow term, it can be positive, negative
or zero. For instance, if there is not flow of matter –i.e., we are considering a closed black
hole [19]– and if the black hole is radiating heat away, then Q > 0 in (62), and can be written
as

∆S + ∆eSBH ≥ 0, (63)

where, evidently, ∆eSBH ∝ ∆A < 0.

By confounding ∆eSBH with ∆SBH , general relativist are obligated to consider that the evap-
oration of a black hole via emission of radiation is not a dissipative process! Moreover, by the
same confusion, general relativists claimed for decades that one of the fundamental laws of
black hole physics was the law of increasing of area ∆A ≥ 0 [18]; although presented then as
the black hole analogue of the second law of thermodynamics is now currently accepted that
the area law is violated during evaporation [18]. From the perspective of the thermodynamics
of open systems, a result as ∆eSBH < 0 for a radiating heat process is perfectly valid and
understandable.

There are many more fundamental issues with the traditional literature on black hole physics,
but a discussion goes beyond the scope of this work.

Summarizing, the new definition JQ ≡ JU −
∑

j ζjJZj −
∑

k(µk +Ts/nk)JNk
provides us (i) a

complete distinction between open and closed systems, (ii) high non-redundancy, (iii) natural
variables for the thermodynamic potentials, and (iv) a sound and complete but intuitive
generalization of classical thermodynamic expressions –such as Clausius TdS ≥ δQ and the
Born definition (2)– to open systems.
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