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ABSTRACT

The presentation here is based on the presumption that the total energy of a
particle and photon is localized, and conserved on entering a static
gravitational field. A mass particle thus entering a static gravitational field
has an increasing velocity, but a decreasing rest mass, or a mass defect. On
stopping at the surface of a gravitating body the kinetic energy of the particle
is radiated away leaving the system with a mass defect, the same as in all
other conservative particle field interactions. From Noether’s theorem, it is
known that energy in the Riemannian representation cannot be localized; it
must be a property of the field. It is asserted here that a theory of gravitation
can be formulated, that properly predicts known dynamic features, has
proper covariant transformations, local conservation of energy, and an
absence of Black Holes, without resorting to curved space. The Shapiro
velocity of light can be deduced, and thus the proper stellar bending of light
can be shown. The ideas presented here are not completely new, but the
proposal will be shown to be all that is necessary to reproduce the
phenomenology of GR. There are points of this development that are
testable, and should prove or disproved validity in experiments on Black
Holes and, Event horizons.
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INTRODUCTION

As is well known, but presumed unimportant, are aspects of the Ricci tensor
representation that illustrate the theory is an approximation to the correct
representation, but is not complete or accurate representation

The obvious shortfalls are that:

1. mass is represented as a continuous density function, when reality
requires discrete point functions, and there is insufficient complexity
in the tensor expressions to represent mass as a collection of point
particles.

2. it does not scale down, nor properly function at microscopic level,
though the theory recognizes no scaling limits.

3.it is a gauge field, with an infinite number of infinitesimal
generators. Because of this, Noether’s theorem illustrates that energy
tensor is not covariant under general coordinate transformations, and
there can be no local conservation of energy, meaning the flow of
energy in and out of a spacetime volume is not conserved[9]. This
leads directly the concept of black holes, since the source of the
kinetic energy gained by a particle entering a gravitational field comes
from the field and not the rest mass. There is no mass defect.

4. it is not covariant under general coordinate transformations. Local
energy balance is dependent on the coordinates used for the
calculation, consequently different results are obtained for different
coordinate frames[4].

5. the distance between any two points in the defined curved space is
ambiguous, and dependent on the path[4].



Researchers who do not view GR as an approximation do not consider these
issues shortcomings, but the reality of physics.

The dynamic particle interactions presented here are formulated in covariant
differential and algebraic relations between mass points, and only because of
physical symmetry, would they apply to massive bodies of particles. It is
shown that the phenomenology of GR can be reproduced without resorting
to Riemannian space curvature and does not result in unphysical
singularities. This development will adhere to a flat Minkowski space
( t 0  ) and a variable speed of light.

The most likely test should come from observations of ray tracings of light
rays following Fermat paths pass near the Schwarzschild radius, or neutron
stars larger than allowed by GR. GR predicts rays cannot pass closer that the
Schwarzschild radius without being captured however this presentation has a
boundary at the gravitational radius.

Our first assumption will be that the total energy of a particle is localized in
the volume of the particle, and that there is no static energy content in the
fields related to the particle.

The rest mass being defined, has similarity to the Komar mass in GR, in that
it is dependent on the Gravitational potential. The Komar mass is determined
by integrating Einstein’s Equation

 t t
t t 1/ 2R 8 T T   , (1.1)

over a large volume in the 3-space generated with t = constant [10]. In some
Kerr configurations this integral can become negative, which some
researchers consider to be unphysical [11].

In this presentation, we will take the mass of a particle to be defined relative
to an observer, noting that the mass of the observer is also dependent on the
gravitational potential. The total energy is considered to reside locally at the
point of a particle, and would be observed to have a different value for an
observer located at a different gravitational potential.

Current views of photon energy in GR are contrary to Einstein’s original
view that the photon energy is constant and the shift is due slower clock



associated with the emission. [12]. Current views of GR are that the photon
looses energy to the field on rising.

This development is cast in Minkowski space, and ascribes the frequency of
a photon rising in a gravitational field to have a lower frequency at the
elevated receptor due to the lower rest mass of the emitter not a change in
the time scale of a loss of energy. After taking account of the rest mass
change at different elevations, the results of the Pound-Rebka-Snider
experiment indicates that the energy of the photon must be conserved. [6]

GENERAL DEVELOPMENT

Our initial assumption is that for a massive particle in a gravitational
potential, the total mass of a particle at rest relative to an observer external to
the field is defined by:

2
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Where 0M is the rest mass external to the gravitational potential. The
relativistic mass is then:
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Though similar this is a 2nd order departure from standard expressions. It is
easy to show that this expression the same as the well known Lagrangian
within measurable accuracy. i.e.
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Eq.(1.3) , is the fundamental relation, but there are subtle relativistic issues
related to the interaction  term that must be included.

GMm
r

  , (1.5)



First to be noted is that the mass terms have to be the relativistic mass. This
is obvious from the fact that, if the particles happen to be spinning the
kinetic energy must be included, meaning the mass is relativistic mass. In
addition each mass experience the other as if it is moving with their relative
velocity.

From our knowledge of the Thomas precession, it is known that the distance
a particle traveling the circumference of a circle around an attracting
potential is shortened by the relativistic contraction. We would assert that if
the circumference of a circle is contracted as the result of the relativistic
velocity, the radius must also be contracted.

With those considerations the gravitation term in Eq.(1.4) , must be:
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or:
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Orbital Mechanics

We now have a differential expression relating, the velocity, and the distance
to the local gravitating mass. We should thus be able to solve for the orbital
motion, without need to make assumptions about the force mass relation.

In the following it will be shown that the equations of motion produces
orbital relations, equivalent to the weak field GR relations, with the same
perihelion advance:

Noting. (1.7), and putting this into E. (1.3), we have:
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Noting that there is only one significant cross term this becomes:
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We can separate this into:
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Setting the left term in this to , we note that in a conservative system, this
term is constant. This is because 0M is a defined constant and the total
energy is constant.

Using the procedures for finding as outlined in Robertson & Noonan,[4] the
perihelion precession, in agreement with GR is:
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The detailed calculations for this are included in Appendix I.

q.e.d. It has been shown that the proper orbital equations can be derived
without resorting to Riemannian spacetime.

Photon Energy

From the defining relation of this theory Eq.(1.3), the view of the Pound-
Rebka-Snider[6], Mossbauer effect experiment (1960–1965)[6] changes.
Instead of the photon losing energy as the photon rises in the tower, the
emission of the photon at the bottom of the tower is from a less massive
generator, and at a lower frequency. The generated frequency plus the added
Doppler frequency provided by the velocity of the source in the experiment
equals the frequency at the top, thus the photon loses no energy in the flight
up the tower.
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This is a departure from General Relativity. GR requires a photon escaping
from a gravitational field to lose energy to the field, and in the case of a
black hole the entirety of the energy is lost before escapement. Since the
energy in discussed here is localized and not lost to the gravitational field,
the Schwarzschild radius is no barrier.

Proper Deflection and Velocity of Light

The purpose of the following thought experiment is to deduce the change in
value of the relative velocity of light inside a gravitational field, based on the
fact that the rest mass is dependent on the elevation in the gravitational
potential.

Assumptions

1) The emitted frequencies of photons from an atom, and thus extended to
an atomic clock, is proportional to the rest mass. This assumption
correspondes to the potential time dilation of General Relativity, however
in this case, the change is the result, not of a change in the time scale, but
a change in the rest mass.

2) The physical dimensions of a material object at rest are invariant in a
gravitational potential.

In order to determine the speed of light shift in a gravitational potential a
thought experiment based on the above assumptions can be devised.

1) A laser interferometer is set up in an elevator on the top floor of a
building, with a standing wave, having an integral number of wavelength
across a resonating cavity.

2) The apparatus is lowered to the bottom floor.



3) We will make the assumption that there is no observable difference in the
number of standing waves in the resonating cavity. This is also required
by the equivalence principle

Using our assumptions, and Eq(1.12). the frequency has decreased as a
result of the decreased rest mass of the system at the lower position, and is:

0 1
r
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 
(1.13)

If the frequency has declined by the potential factor then the wavelength
would extend beyond the interferometer space, if there were not an
equivalent reduction of the wavelength by the same factor.
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Since the product of  is the velocity of light, we have for a change in the
velocity:
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The first two terms of this expression are the correct values by way of the
measured Shapiro effect, and thus by way of Fermat’s principle the proper
stellar deflection of light has been has been deduced and is in agreement
with GR, as shown by Blandford et al [7]. It is the third term 2 / r that is
not present in GR and yet to be measured that distinguishes this theory.

From the velocity of light in shown in Eq.(1.15), and the fact that the photon
rising in a gravitational field does not lose energy to the field, shown in
Eq.(1.12), it is apparent that the Fermat photon trajectories for this theory
would be established by the index of refraction:

 2

0 1 r/ /    (1.16)

Whereas the GR trajectories would be established by the Shapiro Velocity
and index of refraction:
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The second order differences in these two expressions should be soon
measurable by deflection experiments, either by black holes (Event Horizon
Telescope) or by solar experiments (LATOR mission).

CONCLUSION

With simple assumptions regarding the relation between rest mass, and
relativistic mass, proper gravitational dynamics and stellar deflection
phenomena can be predicted. The proposed theory yields the proper orbital
equations, with the proper perihelion advance, deflection of light and
gravitational red shift. The gravitational potential exchanges no energy with
photons, thus photons are not bound in a gravitational field, and there are no
black holes, a belief often expressed by Einstein [13]. Precision light
deflection experiments near large masses, or discoveries of neutron star
masses larger than GR allows, will validate or invalidate this theory.
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Appendix I

Details of Perihelion Advance

The general rest mass velocity relation proposed is:
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Where the velocity invariant potential is:
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Taking square root:
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Binomial expansions:
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The simple expansion would be:
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Expanding all the terms in Eq. (2.3).
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and:
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There is only one cross term of significant value.
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Simplifying and separating the mass terms:
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multiplying by 2c , & noting that in a conservative system where the total
energy is constant, the mass term is constant.
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Thus:
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The corresponding GR term per Robertson & Noonan.
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Some conventional coordinate transformations:
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making the substitutions, we have:
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Now taking the derivative with respect to the angular coordinate:
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Making some substitutions.
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Differentiating the three terms, designating each as A,B, & C:
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So the B term is:
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And the C term:
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Collecting and factoring a common term gives:
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collecting common terms reduces the number of terms:
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Dividing by the coefficient of the second order term gives:
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or:
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The equation for a circle is:
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Where f is a perturbation of the orbit.

The precession, per the procedure of Robertson & Noonan is 1
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Where in this case f is:
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Where  is a ratio of the perihelion advance to the orbit circumference
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Then we have for the precession:
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 
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The units are the ratio of the advance to the orbital circumference.

Comparing with the GR value from Robertson & Noonan:

2 2 2
2 2

2 2 2
0

1 dr u uu u u
2 2 h 3 h 3 u

2 u dt uc c c

                    
(2.30)

Thus our procedure yields the proper perihelion precession.


