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Abstract
A method is outlined to enable a navigator or an automated system

to fix a ship’s position in charted interstellar space with the assistance of
a three dimensional computer based stellar chart and star camera spec-
trometers capable of measuring angular separations between three sets of
pair stars. The method offers another tool for the navigator to rely on if
alternative position fixing methods are not available or if the navigator
wishes to verify the validity of one’s position given by other means.

1 Introduction
"To drop a pea at the end of every mile of a voyage on a limitless
ocean to the nearest fixed star, would require a fleet of 10,000 ships
of 600 tons burthen, each starting with a full cargo of peas."

John Herschel, c.1850.

Before looking into the interstellar case, it is first useful to look into the following
known position fixing method used in nautical coastal navigation which uses
Horizontal Sextant Angles (HSA) to obtain a position fix at sea [2] provided
suitably charted landmarks can be identified. The angular separation between
(for eg) lighthouses is measured by using the sextant horizontally to give us the
angle. Let A, B and C shown in Figure 1 be lighthouses, the ship is located
somewhere off the coast and the navigator needs to fix its position on the chart.

As an example, the HSA between A and B was measured to be 30◦ and
the HSA between B and C to be 50◦. Before going through the mathematical
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Figure 1: Three lighthouses A, B and C.
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Figure 2: Constructing triangle ABD.

proof of the method, it is useful to describe first how the method is used. A
line is drawn on the chart between A and B. Then draw a line from A which is
(90◦ −HSA◦) from this line so in this case a line is drawn at 90◦ − 30◦ = 60◦

from the line AB to seaward with the aid of a protractor. Similarly draw another
line 60◦ from BA. These lines intersect at D as shown in Figure 2 forming the
triangle ABD. If this was done correctly, the triangle ABD is an isoceles triangle
as the angle DAB = DBA = 60◦ in this example and hence AD = BD. A
drawing compass is now used, by placing the center of the compass at D and a
full circle is drawn with a radius AD or DB which are equal, see Figure 3. The
circle will intersect A and B. This is known as the ship’s position circle. The
ship could be anywhere to seaward on this blue circle and the navigator will
measure a HSA between lighthouses A and B to be 30◦ (why this is the case
will be shown later) however it is not known at this stage where on this circle
the ship is located hence the name position circle.

This method is now repeated by measuring the HSA between lighthouses B
and C. Ideally the ship is stopped or moving very slowly between these mea-
surements. A HSA of 50◦ is measured between B and C and the second position
circle is now plotted using the above method as shown in Figure 4. As before
the ship musy be anywhere to seaward on this green position circle for a HSA
between B and C to be 50◦. Since the ship must also be on the blue position
circle as well, the only position where this qualifies is where both position circles
intersect: the ship’s position is now plotted on the chart. Notice there is another
location where both position circles also intersect however this is at the light-
house B and is on land so this can be ruled out. Any slight measurement errors
in the first two HSAs (vessel rolling in heavy seas, intrument errors etc) using
the sextant will affect the accuracy of the position fix and a third position circle
needs to be plotted to confirm the ship’s position. Ideally all three position
circles should intersect at one spot however in practice sometimes (and often)
they don’t as shown in Figure 5. The aim of the position fix is to obtain the
smallest “cocked hat”. The ship’s position is marked in the middle of the “hat”
or closest to any dangers such as nearby reefs, rocks etc. A very large cocked
hat indicates that one or more of the HSAs has a large error or a wrong charted
landmark was used. However very accurate position fixes can be obtained with
this method [3].
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Figure 3: A position circle.

Figure 4: Two position circles showing the ship’s position.
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Figure 5: Three position circles showing a cocked hat.

Figure 6: The case where HSA is greater than 90◦.

In the example given above the measured HSAs were less than 90◦ and in
this case the center of the position circles lie on the ship’s side. What if the
measured HSA was over 90◦? Consider a HSA between two lighthouses A and
B to be 120◦. In this case the center of the position circle lies on the opposite
side of the line joining the lighthouses from the vessel and the base angles of
the triangle becomes 120◦− 90◦ = 30◦ as shown in Figure 6. The ship could be
anywhere on this position circle to seaward. Notice the arc where the position
could be located is smaller now than the landward arc as opposed to the previous
HSAs when they were less than 90◦, the arcs that were part of the position circle
to seaward were greater then the landward arcs (these major and minor arcs
will be discussed further on).

The situation where the measured HSA = 90◦ is now considered as shown
in Figure 7. As an example consider the ship is now located somewhere on the
ocean at night and the only landmarks closeby are two small islands each with a
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Figure 7: Position circle for HSA = 90◦.

lit lighthouse having their own unique light sequence. With the measured HSA
between these lighthouse of 90◦, the center of the position circle is now at the
bisecting point of the line joining the lighthouses (again why this is so will be
shown later), there is no isoceles triangle as with the previous examples because
90◦− 90◦ = 0◦ and the line AB is the diameter of the circle. Note that the ship
could be anywhere on this position circle (except the islands) because in this
case the navigator could also have measured a HSA of 90◦ if the ship was on
the other side of the islands since there is water there as well.

The following three cases have been covered for measured:

• HSA < 90◦

• HSA = 90◦

• HSA > 90◦

and it has been shown how to construct a position circle on a two dimensional
chart for each case.

2 Mathematical background
The mathematical proof of the above method it now shown and an explanation
is given as to why it works. A number of theorems concerning circles apply
here. An inscribed angle is an angle formed by two chords in a circle which
have a common endpoint. A chord of a circle is a line joining any two points
on the circumference. This common endpoint forms the vertex of the inscribed
angle. The other two endpoints define what is called an intercepted arc on the
circle. The intercepted arc might be thought of as the part of the circle which
is “inside” the inscribed angle, see Figure 8.

A central angle is any angle where the vertex is located at the center of a
circle. A central angle necessarily passes through two points on the circle, which
in turn divide the circle into two arcs: a major arc and a minor arc. The minor
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Figure 8: A is an inscribed angle, B is a central angle.

arc is the smaller of the two arcs, while the major arc is the bigger. The arc
angle is defined to be the measure of the central angle which intercepts it.

Fixing one’s position using the geometrical method described previously re-
lies on a number of well know geometrical theorems. In the Appendix, proofs
for the following are shown:

• The measure of the intercepted arc (equal to its central angle) is exactly
twice the measure of the inscribed angle.

• All angles subtended by a chord at the circumference are equal.

• If A, B and C are points on a circle where the line AC is a diameter of
the circle, then the angle ABC is a right angle.

• Opposite angles in any quadrilateral inscribed in a circle are supplements
of each other. (Their measures add up to 180◦).

From the above theorems it has been shown why the method is correct and why
the ship needs to be on the position circle for a given measured HSA between
two landmarks.

3 The Interstellar case
The navigator who sailed the oceans on Earth has now moved on to a new ship
(a starship), venturing in interstellar space and has to fix the ship’s position in
three dimensions between a vast array of stars available in our galaxy. Previous
investigations [9, 10, 11] have shown the options available in obtaining inter-
stellar position fixes and the limitations associated with each of the different
methods are outlined. To use the position fixing method outlined in this paper,
a number of tools are required: a reasonably accurate computer based 3D stel-
lar chart and star camera spectrometers which allows the navigator to identify
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the stars measured and to measure angles between them. This could also be
a computer controlled system which will do these tasks automatically for the
crew.

A 3D stellar chart is required to fix the ship’s position among the stars. How
accurate does the chart have to be? Stars have radial and proper motions and
hence the chart will have to be corrected regularly to keep track of the changing
stellar positions (similarly to nautical charts which are updated regularly via
Notices to Mariners). Our Sun is moving approximately 22Km/s towards the
constellation of Crater or Leo with respect to the average motion of our local
stars and gas with typical star motions of the order of 10Km/s relative to us
(0.003 ly / 100 years) [4]. With current baselines for parallax data available
(Earth’s orbit), distances to stars can be relatively difficult to measure and a
standard error of 1% is considered high accuracy however the distance accuracy
of closer stars is better, with a distance to Proxima Centauri, closest star to our
Sun, given at 4.243 ± 0.002 ly [5]. As probes are sent further out to the rims of
the solar system and beyond thus extending the parallax baseline measurement,
the standard error in distance measurements will be reduced [1]. Depending on
the interstellar mission scenario and ship design, high accuracy of the order of
± 0.0001 ly may be required [4].

The coordinate system used for the chart also needs to be considered. One
may use standard spherical coordinates (Right Ascension / Declination) based
from Earth’s vantage however for an interstellar navigator travelling between
different star systems, one should preferably use Galactic rectilinear x, y, z
coordinates to facilitate navigation purposes. Both coordinate systems can be
readily converted to each other if required [12, 13]. Figure 9 is an example of
a 3D representation showing all 32 stars within 14 lightyears (ly) from our Sun
using Right Ascension / Declination coordinates [6]. As more ships venture
further into the interstellar medium, these charts can be refined as more data
is obtained.

Another problem to consider is the ship’s velocity during the measurement
of the angular separation of pair stars (HSAs). The faster the ship is travelling,
the more pronounced will be stellar aberration which is an apparent position
change of stars due to the finite speed of light c. If the ship is travelling at a
relativistic velocity (V), stellar aberration must be calculated and is given as
follows [8]:

cos θ1 =
cos θ + V

c

1 + V
c cos θ

where θ1 is the apparent angle of a star from the velocity vector of the ship
and θ is the apparent angle to the same star when the ship is at rest relative
to the star. This also means if we know θ and we measure θ1, we can deduce
the ship’s velocity relative to the reference star. At 0.1 c, aberration causes an
apparent shift of star positions to be shifted forward by 6◦ for those located on
the sides and less for stars in front and behind. Brightness of stars is affected
as well, for the same velocity, causing an increase in brightness by 20% for
those in front and decreasing brightness by 20% for those behind [4, 15]. The
most accurate measurements with this method will be obtained when the ship
is stopped or travelling at a slow velocity of less than 0.01c with the propulsion
drive off. This may not be an option due to the mission requirements or the
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Figure 9: Map showing all 32 star systems within 14 ly from our Sun.

energy limitations for the propulsion drive used by the ship [14], in this case
relativistic mathematics will have to be employed to take into account the ship’s
velocity. Ship velocity data could also be obtained from measurements of the
doppler shift in the stellar spectral lines and the ship should have an extensive
database of stellar spectra when at rest for onboard comparaison with at velocity
measured spectra over a wider range than just the visible spectrum to account
for the doppler shifts at high relativistic velocities [10]. Another method which
could also provide accurate GPS-like interstellar position fixes involves using
X-Ray pulsars (also known as XNav or X-Ray Navigation). Astronomers have
mapped a substantial number of X-Ray pulsars whose pulsed emissions are as
regular as atomic clocks. Since these sources are highly reliable and relatively
fixed in position, phase measurements can be used to obtain a position fix
potentially anywhere in the galaxy [7].

Ideally the navigator will choose closeby pairs of stars to do the position fix
which means the navigator should have a rough idea where the ship is located
in the galaxy. After two suitable stars are identified, the navigator measures the
HSA between them and constructs a position circle in the 3D stellar chart. For
the interstellar case, we don’t know which plane to draw the position circle and
our position can lie in any plane. Because of the extra third dimension, we need
to draw in all position circles that satisfy the measured HSA between these
two stars around the axis formed by the line drawn between these two stars
as shown in Figure 10. The surface formed by the locus of all position circles
rotated around the axis formed by the line drawn between these two stars yields
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a torus and our position can be anywhere on the surface of this torus, this a
position torus. This will need to be constructed with the aid of a computer
in the 3D stellar chart. The process is now repeated and the navigator needs
to pick two more pairs of stars to plot two more position torii on the chart to
obtain a position fix. It was shown previously that for the ocean navigator’s
case, ideally all three position circles should intersect at one point however in
practice they don’t because of errors in measurements etc. Figure 11 shows an
example of three position torii plots.

The geometrical center of the enclosed curved surface formed by all three
position torii is the ship’s position. The smaller the three dimensional “cocked
hat”, the more confident the navigator can be on the accuracy of the obtained
position fix. Figure 12 is an example of the volume intersection of three position
torii resulting in the cocked hat.

Figure 12: Three dimensional cocked hat showing the ship’s position in the
geometrical center of the obtained volume. Each coloured surface belongs to a
unique position torus.

The ship’s position is located in the geometrical center of such volume. If
the 3D stellar chart is using galactic rectilinear x, y, z coordinates in lightyears,
then the uncertainty of the position fix can be evaluated directly from the cocked
hat dimensions. It will be noted that the construction method of the position
torii or position spheres follows the rules described earlier for all three cases
HSA < 90◦, HSA = 90◦ and HSA > 90◦ ie draw a position circle in any plane
according to the HSA measured between the two stars and perform a full 360◦

rotation around the axis formed between the pair stars used to obtain either
the position torii (for HSA < 90◦ or HSA > 90◦) or the position sphere (for
HSA = 90◦) and after repeating the procedure for two more times, obtain the
ship’s position by obtaining the geometrical center of the volume enclosed by
the cocked hat plotted in the 3D stellar chart. Any large errors in the position
fix will be immediately visible as this would result in a large cocked hat. If the
navigator is confident on the accuracy of the 3D stellar chart then more HSAs
can be measured for replotting if required.
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Figure 10: A position torus using two stars
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Figure 11: An interstellar position fix using three position torii (6 stars).
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4 Conclusion
A method is shown to enable an interstellar navigator or automated system
to obtain a position fix in charted interstellar space. The method shown can
be used to complement other position fixing methods or be used to double
check the validity of a position obtained by other means. The method relies
on measurements of angular separations between stars alone which are easily
measured.

5 Appendix
The following propositions together with their proofs are shown. These are
relevant to the position fixing method described.

Proposition: The measure of the intercepted arc (equal to its central angle)
is exactly twice the measure of the inscribed angle.

Consider line AB in Figure 13 to be a screen for a drive in movie theater
and the professionals informed the owner on the optimum angle θ that the
movie screen AB should present to the viewer. But only one customer can sit
in the preferred spot V directly in front of the screen. The owner is interested
in locating other points, U, from which the screen subtends the same angle θ.
The answer is the circle passing through the three points A, B and V. AUB is
measured by the same arc as AVB, the angle at U is the same as the angle at
V as only one circle can pass through three points not in the same straight line.
This is also the HSA that was measured between the lighthouses.

Figure 13: Optimum viewing angles.

Proof:
Let O be the center of a circle as shown in Figure 14. Choose two points on

the circle, and call them V and A. Draw line VO and extended past O so that
it intersects the circle at point B which is diametrically opposite the point V.
Draw an angle whose vertex is point V and whose sides pass through points A
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Figure 14: Central and inscribed angles.

and B. ∠BOA is a central angle; call it θ. Draw line OA. Lines OV and OA are
both radii of the circle, so they have equal lengths. Therefore triangle 4V OA is
isoceles, so ∠BV A (the inscribed angle) and ∠V AO are equal; let each of them
be denoted as Ψ.

Angles BOA and AOV are supplementary. They add up to 180◦, since line
VB passing through O is a straight line. Therefore ∠AOVmeasures 180◦ − θ.

It is known that the three angles of a triangle add up to 180◦, and the three
angles of a triangle VOA are 180◦ − θ, Ψ and Ψ. Therefore

2ψ + 180◦ − θ = 180◦.
Subtract 180◦ from both sides,
2ψ = θ,
where θ is the central angle subtending arc AB and ψ is the inscribed angle

subtending arc AB. The inscribed angle is only defined for points on the major
arc (the longest path around the circle between the two given points) hence the
inscribed angle is undefined in the shorter (minor) arc. Further below another
theorem will be shown to find the angle in the minor arc.

Consider now an inscribed angle with the center of the circle in their interior,
Figure 15.

Given a circle whose center is point O, choose three points V, C and D on
the circle. Draw lines VC and VD: ∠DV C is an inscribed angle. Now draw
line VO and extend it past point O so that it intersects the circle at point E.
∠DV C subtends arc DC on the circle.

Suppose this arc includes point E within it. Point E is diametrically opposite
to point V. Angles DVE and EVC are also inscribed angles, but both of these
angles have one side which passes through the center of the circle, hence the
above theorem can be applied to them. Therefore:

∠DV C = ∠DV E + ∠EV C.
then let
ψ0 = ∠DV C,
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Figure 15: Inscribed angles.

ψ1 = ∠DV E,
ψ2 = ∠EV C,
so that
ψ0 = ψ1 + ψ2. (Eq.1)
Draw lines OC and OD. ∠DOC is a central angle, but so are angles DOE

and EOC, and
∠DOC = ∠DOE + ∠EOC.
Let
θ0 = ∠DOC,
θ1 = ∠DOE,
θ2 = ∠EOC,
so that
θ0 = θ1 + θ2 (Eq. 2)
From the above theorem it was shown that θ1 = 2ψ1 and θ2 = 2ψ2. Com-

bining these results with Eq. 2 yields
θ0 = 2ψ1 + 2ψ2
therefore, by Eq. 1,
θ0 = 2ψ0.

This is known as the Central Angle Theorem: the measure of the inscribed
angle is always half the measure of the central angle. The inscribed angle is the
HSA that was measured with the sextant.

Proposition: If A, B and C are points on a circle where the line AC is a
diameter of the circle, then the angle ABC is a right angle.

Proof:
The following facts are used:

• The sum of the angles in a triangle is equal to two right angles (180◦).
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Figure 16: Angle ABC is a right angle

• The base angles of an isoceles triangle are equal.

Let O be the center of the circle, Figure 17. Since OA = OB = OC, 4OAB
and 4OBC are isoceles triangles, and by equality of the base angles of an
isoceles triangle, ∠OBC = ∠OCB and ∠BAO = ∠ABO. Let α = ∠BAO and
β = ∠OBC. The three internal angles of 4ABC are α, α+ β and β. Since the
sum of the angles of a triangle is equal to two right angles, then

α+ (α+ β) + β = 180◦

then
2α+ 2β = 180◦

or simply
α+ β = 90◦

This is known as Thales’ Theorem: the diameter of a circle always subtends
a right angle to any point on the circle. This applies to the situation where a
HSA of 90◦ was measured.

Proposition: Opposite angles in any quadrilateral inscribed in a circle are
supplements of each other. (Their measures add up to 180◦).

Proof:
From Figure 18, the main result needed is that an inscribed angle has half

the measure of the intercepted arc. Here, the intercepted arc for ∠A is the
Arc(BCD) and for ∠C is the Arc(DAB).

Arc(BCD) = 2∠A and Arc(DAB) = 2∠C
Arc(BCD) +Arc(DAB) = 360◦

2∠A+ 2∠C = 2 (∠A+ ∠C) = 360◦

∠A+ ∠C = 180◦.
Hence opposite angles in any quadrilateral inscribed in a circle add up to

180◦.
Now consider the situation where the measured HSA was 120◦ and see why

the navigator needs to draw the triangle opposite to the ship’s position, refer
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Figure 17: Angles α+ β = 90◦.

Figure 18: Opposite angles in a quadrilateral inscribed in a circle.
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to Figure 19. Recall the method was started off by drawing the base of the
triangle with angles of 120◦ − 90◦ = 30◦. Following from the inscribed angles
theorem, if the ship was anywhere on the major arc (landward) the navigator
would measure a HSA of 60◦. However the ship cannot be on that side as the
measured HSA = 120◦. From the above theorem it was found that opposite
angles in any quadrilateral inscribed in a circle add up to 180◦. This is only
true if the ship is on the minor arc since 60◦ + 120◦ = 180◦.

Figure 19: HSA over 90◦.
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