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Here is presented a new exact solution of Ice dynamics in Glaciers in terms of viscous-

plastic theory of movements, for 2-dimensional case:  x (t) = y (t). In general case, 2-D 

solution of Ice dynamics could be classified as Riccati’s type. Due to a very special 

character of Riccati’s type equation, it’s general solution is proved to have a proper gap 

of components of such a solution.

It  means  a  possibility  of  sudden  gradient  catastrophe at  definite  moment  of  time-

parameter, in  regard  to  the  components  of  solution  (2-D  profile  of  Glacier,  2-D 

components of ice velocity moving).

That’s why Glacier seems to be accelerating from time to time: it’s velocity of moving 

is suddenly rising from few meters to hundreds meters /per day.
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A glacier is a massive, slowly moving mass of compacted snow and ice. The action of 

gravity moves the mass of ice down the slope side: glaciers are being moved from a 

millimeter to hundreds meters a day. There are two kinds of motion: 1) a slow sliding 

motion and an avalanche like flow; 2) the internal movement of glacial  ice, is a flow 

similar to plastic flow and viscous flow.

Glaciers move by two mechanisms: basal slip and viscous-plastic flow. In basal slip, 

the entire glacier slides over bedrock. A glacier also moves by plastic flow, in which it 

flows as a viscous fluid.

In accordance with [1], 2-dimensional case of glacial ice viscous-plastic flow should be 

represented in the Cartesian system of coordinates as below (axis Ox coincides to initial  

direction of glacial ice flow, which is assumed to be a plane-parallel flow:  z = const):
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-  where  ρ –  is a density of  glacial  ice;  vx – is the component of ice velocity in the 

direction  x of  the Cartesian  system  x, y;   vy –  the  component  of  ice  velocity  in  the 

direction y;  p – is an internal pressure in glacial ice;  g – is an acceleration of gravity;  α 

– is a proper  angle of slope where glacial ice is moving;   Sxx,  Sxy – are the appropriate 

components of stress tensor;  μ – is a coefficient of glacial ice dynamic viscosity;  τs – is a 

critical maximal level of stress in shared layer of glacial ice (stage of plastic flow) when it 

starts to move as viscous flow.

From (1.1) we obtain the appropriate equalities below:

 

In our modeling we assume that the left part of (1.1)  equals to zero due to negligible 

terms for the case of slowly moving glacial ice. Besides, on open air:  p (x, y) = const.

So, system (1.1) should be reduced as below

3

.)(2

,
4

1
2

2

U
s

x

v

s
sU

s
xx

x

s
xy

xx

τ
µ

τ
µ

+=
∂
∂














−+⋅=

( )

.
4

1

,)(2,0

2.1,sin0

,sin0

2
2














−+⋅=

+=
∂
∂=

∂
∂

+
∂
∂

∂
∂

−
∂

∂
+⋅⋅=

∂
∂

+
∂

∂
+⋅⋅=

s
xy

xx

s
xx

xyx

xxxy

xyxx

s
sU

U
s

x

v

y

v

x

v

y

s

x

s
g

y

s

x

s
g

τ
µ

τ
µ

αρ

αρ



Let’s  obtain  a  proper  cross-differentiating of  1-st  & 2-nd equation  (1.2)  (in  regard  to  

coordinates x & y), then a proper linear combination:

- it means that Sxy – is the harmonic function [2].

According to Liouville's theorem  :   “if  f  is a harmonic function defined on all of  Rn
  which 

is bounded above or bounded below, then  f  is constant” [2].

It is evident that Sxy, being the component of stress tensor, is bounded above (in regard to  

it’s absolute meanings) - due to general physical sense [3]. So, we have: Sxy is a harmonic  

function as well as it is bounded above – thus, Liouville's theorem lets us conclude that 

Sxy is a constant:  Sxy = const = 2√C.  Then from (1.2) we obtain

- besides  

- where (C0 = 0):

Further integral way of calculating leads us to equality below

- if we choose all the constants of above integrating are equal to zero ≡ 0.

Taking also into consideration the continuity equality (see (1.2)):
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- we obtain, by the same calculating in regard to the component of ice velocity vy:  

Thus, the initial system (1.1) has been reduced to representation below:

- or

 Subtracting from 1-st the 2-nd equation (1.2), we obtain:

- a  Riccati’s type equations [3-4], the evident solution of which is  x =  y.  In this case, 

system (1.3) could be reduced to a proper solution below ( t ≥  0 ):
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- it means the inverse way of coordinates x, y to depend on time-parameter t (see Fig.1).

Fig.1. An example of exact solution:  x (t) = y (t).
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