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Abstract

It is briefly shown that, due to the growth conditions in their defi-
nition, the Colombeau algebras cannot handle arbitrary Lie groups,
and in particular, cannot allow the formulation, let alone, solution of
Hilbert’s Fifth Problem.

“History is written with the feet ...”

Ex-Chairman Mao, of the Long March fame ...

Science is not done scientifically, since it is mostly
done by non-scientists ...

Anonymous

A “mathematical problem” ?
For sometime by now, American mathematicians
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have decided to hide their date of birth
and not to mention it in their academic CV-s.
Why ?
Amusingly, Hollywood actors and actresses have their
birth date easily available on Wikipedia.
Can one, therefore, trust American
mathematicians ?
Why are they so blatantly against transparency ?
By the way, Hollywood movies have also for long
been hiding the date of their production ...

A bemused non-American mathematician

1. Global Lie Group Actions on PDEs : the Parametric
Method

The advantages of being able to define global actions for arbitrary Lie
groups are well known for at least six decades by now, as presented
systematically in the celebrated text of Chevalley, [2], for instance.
Yet, even in the case of Lie groups acting on Euclidean spaces, and
not on manifolds in general, the customary approach has not been
able to go beyond a mere local definition, when it comes to actions on
functions by arbitrary Lie groups, see for instance [1,6,11-13].

Rather surprisingly, this failure to define globally the action on func-
tions of arbitrary Lie groups is due to an elementary difficulty, which
can easily be overcome by a parametric definition of functions, as
shown for the first time in [21], see also [22,24,25].

This parametric approach proves to have in fact two important ad-
vantages, namely, one of calculus, and the other of functorial nature.
The calculus advantage relates to the simple and well known fact that
the partial derivatives of any order of a parametrically given function
can be computed from it, without first having to bring the function
to the usual, nonparametric form. The functorial advantage, relating
perhaps even to a simpler fact, is the one which will actually allow the
most easy, direct and natural global definition of arbitrary Lie group
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actions on functions. In fact, as shown in [21,22,24,25] and mentioned
in the sequel, it allows as well for the equally easy global definition of
a far larger class of Lie semigroup actions.

As a general remark about the parametric approach to the global def-
inition of arbitrary Lie group actions on functions, it is rather ironic
to note that, in an embryonic, partial and local manner, this approach
has in fact been in use for a long time by now.

Indeed, suppose given a smooth function f : Ω −→ R, with Ω ⊆ Rn

nonvoid, open. Further, suppose given an arbitrary Lie group G act-
ing on M = Ω× R according to

G×M −→M

Then the usual way this Lie group action on M is extended to such
functions f , and thus to C∞(Ω,R), is as follows. We consider the
graph of f , that is, the set

γf = { (x, f(x)) | x ∈ Ω } ⊆M

Therefore, for any g ∈ G, we can define point-wise the action gγf and
obtain again a subset of M .

Unfortunately however, in general, it will not be true that

gγf = γh

for a certain smooth function h : Ω −→ R, which function h if it
existed, it would obviously correspond to the global action of g on f ,
that is, we would have

gf = h

And then, the usual way to define arbitrary Lie group actions on
functions overcomes this difficulty at the cost of no less than a double
localization, [11-13], namely

• g is restricted to a neighbourhood of the identity e ∈ G, and in
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addition

• f is restricted to suitable nonvoid, open subsets 4 of Ω.

It is clear, however, that the consideration of the graph γf of f amounts
to replacing f : Ω −→ R by the following special parametric form
of it, see (3.3), (3.4) in the sequel, namely f∗ : Ω −→ M , where
Ω 3 x 7−→ f∗(x) = (x, f(x)) ∈ M . Furthermore, in this case gγf is
nothing else but gf∗, that is, the action of g on f∗, which can always
be defined globally, irrespective of the function f , or of the Lie group
action G on M .

Thus it becomes clear that the only difficulty we have ever faced when
trying to define globally arbitrary Lie group actions on functions is
not at all related to Lie groups or functions, but solely to our rather
unformulated, and yet quite implacable intent to have gf∗ retranslated
into a usual, nonparametric function h : Ω −→ R.

On the other hand, the parametric approach to Lie group actions in-
troduced in [21,22,24,25], is adopted and pursued in its full extent,
that is, without any sort of localization, this being the simple and
fundamental reason for the fact that arbitrary Lie group actions can
be defined globally on smooth functions.
Furthermore, as shown in [21,22,24,25], this possibility to define glob-
ally arbitrary Lie group actions on smooth functions can easily be
extended to actions on large classes of generalized functions, and in
particular, distributions, one of the effects of such an extension being
the first general solution of Hilbert’s Fifth Problem, [21,22].
Also as mentioned and shown briefly in the sequel, one can define
globally on functions the action of far larger classes of Lie semigroups.
This comes as a rather unexpected bonus, and the effect of the men-
tioned functorial nature of the parametric approach to Lie group ac-
tions which allows the definition of arbitrary smooth - thus typically
noninvertible - actions. Such noninvertible actions can, of course, no
longer belong to Lie group actions, but only to Lie semigroup actions,
[21,22,24,25].

Let us mention here in passing that the interest in such Lie semigroups
of actions comes from the fact that they range over a significantly
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larger class of actions than those corresponding to Lie groups. There-
fore, when applied to the study of solutions of PDEs - this time as
semisymmetries - they can offer new additional insights.
Furthermore, as pointed out by P J Olver, semigroups of actions ap-
pear quite naturally in several aspects of the classical Lie theory, see
for details [21, chap. 13], [???].

Let us briefly illustrate the essence of difficulties with Lie Group ac-
tions on usual functions.

Classical Lie Group Actions. For convenience, let us consider the
familiar and important setup when Lie group actions are used in the
study of PDEs. In such cases, we are given a linear or nonlinear PDEs
of the general form

(1.1) T (x,D)U(x) = 0, x ∈ Ω ⊆ Rn

where Ω is nonvoid open, U : Ω −→ R is the unknown function,
while T (x,D) is a C∞-smooth linear or nonlinear partial differen-
tial operator. The relevant Lie groups G act on the open subset
M = Ω× R ⊆ Rn+1, according to

(1.2) G×M 3 (g, (x, u)) 7−→ g(x, u) = (g1(x, u), g2(x, u)) ∈M

where x ∈ Ω, u ∈ R are the independent and dependent variables,
respectively, and

(1.3)
G×M 3 (g, (x, u)) 7−→ g1(x, u) ∈ Ω
G×M 3 (g, (x, u)) 7−→ g2(x, u) ∈ R

with g1 and g2 being C∞-smooth.

We note that, given g ∈ G, in view of the Lie group axioms, it follows
that the mapping

(1.4) M 3 (x, u)
g7−→ g(x, u) ∈M

is a C∞-smooth diffeomorphism.
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A first basic problem in Lie group theory, when applied to PDEs, is
how to extend the action in (1.2), (1.3) of the Lie group G on the open
subset M , to an action of G on the C∞-smooth functions

(1.5) U : Ω −→ R

or more generally, on C∞-smooth functions

(1.6) U : 4 −→ R

where 4 ⊆ Ω is nonvoid, open. And unless one solves this problem,
one simply cannot speak about the Lie group invariance of classical
solutions of PDEs.

From this point of view, the Lie group actions (1.2), (1.3) are divided
in two types, [11,12].

The simpler ones, called projectable, or fibre preserving, satisfy the
condition, see (1.3)

(1.7) g1(x, u) = g1(x), g ∈ G, (x, u) ∈M

The special interest in Lie group actions (1.7) comes from the fact that
they allow an easy global extension to action on C∞-smooth functions.
Indeed, in this case, in view of (1.4), it follows that for g ∈ G, we
obtain the C∞-smooth diffeomorphism

(1.8) Ω 3 x g17−→ g1(x) ∈ Ω

Now, given g ∈ G and U in (1.6), it is easy to define the respective
global Lie group action

(1.9) g U = Ũ : 4̃ = g1(4) −→ R

by

(1.10) Ũ(g1(x)) = g2(x, U(x)), x ∈ 4
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Indeed, (1.4) implies that in (1.9), we have 4̃ ⊆ Ω nonvoid, open,
while (1.10) is equivalent with

(1.11) Ũ(x̃) = g2(g−1
1 (x̃), U(g−1

1 (x̃))), x̃ ∈ 4̃

However, an arbitrary Lie group action (1.2), (1.3) need not be pro-
jectable. And in such a case the global extension of the Lie group
action (1.2), (1.3) to C∞-smooth functions (1.5), or in general (1.6),
will typically fail. In this way, we are obliged, [11,12], to limit our-
selves to local Lie group actions on functions, and thus return to the
pre-Chevalley stage of Lie group theory.

Indeed, in the case of general, nonprojectable Lie group actions (1.2),
(1.3), we may immediately run into the problem of possible noninvert-
ibility. Namely, certain C∞-smooth mappings involved in the definition
of the group action g U = Ũ : 4̃ −→ R may fail to have inverses, let
alone, C∞-smooth ones. Let us illustrate this phenomenon in more
detail. Given g ∈ G, let us write (1.3) in the form

(1.12)
x̃ = g1(x, u)
ũ = g2(x, u)

where (x, u), (x̃, ũ) ∈ M. Given now U : 4 −→ R as in (1.6), the

natural way to define the group action gU = Ũ : 4̃ −→ R would be
by the relation, see (1.12)

(1.13) Ũ(g1(x, U(x))) = g2(x, U(x)), x ∈ 4

which means that Ũ(x̃) = ũ. However, in order that (1.13) be a cor-
rect definition, we have to be able to obtain x ∈ 4 as a C∞-smooth
function of x̃ ∈ 4̃, by using the first equation in

(1.14)
x̃ = g1(x, U(x))
ũ = g2(x, U(x))

and thus by replacing x ∈ 4 in the second equation above, in order to
obtain ũ as a function of x̃, that is, the relation (1.13). Furthermore,

one also has to obtain 4̃ ⊆ Ω as being nonvoid, open. The crucial
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issue here is, therefore, the C∞-smooth invertibility of the mapping

(1.15) 4 3 x α7−→ g1(x, U(x)) ∈ Ω

which obviously depends on g and U . And as seen in the very simple
example next, this in general is not possible.

Example 2.1.

Let us consider the following nonprojectable case of the Lie group ac-
tion (1.2), (1.3), where Ω = R, M = Ω × R = R2, G = (R,+), and
for ε = g ∈ G = R, (x, u) ∈M , we have

x̃ = x+ εu2

ũ = u

Let us take 4 = Ω = R and the simple function U : 4 −→ R defined
by U(x) = x, with x ∈ 4. Then (1.15) becomes

R 3 x α7−→ x+ εx2 ∈ R

which is not invertible as a function, let alone as a C∞-smooth function,
except for the trivial group action corresponding to ε = 0, that is, to
the identical group transformation.

�

The usual way to deal with this situation, [11,12], is to consider the
group action (1.2), (1.3) as well as the mapping α in (1.15), and there-
fore the function to be acted upon U : 4 −→ R, only locally, that is,
to restrict all of them to such suitable neighbourhoods of the neutral
element e ∈ G, as well as of points x ∈ 4, on which α is C∞-smooth
invertible.

It is useful to note however that, depending also on the function U in
(1.6), the mapping α in (1.15) can sometime happen to have a global,
and not only local C∞-smooth inverse, even in the case of a nonpro-
jectable Lie group action. For instance, this happens if in the above
Example 2.1., we consider x̃ = x+ εu.
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Let us mention what happens when the mapping α in (1.15) is in-
vertible, regardless of the Lie group action being projectable or not,
and when its inverse α−1 is also a C∞-smooth mapping. Then we can
indeed turn to (1.13) in order to define the group action g U = Ũ by

(1.16) Ũ (x̃) = g2(α−1(x̃), U(α−1(x̃))), x̃ ∈ 4̃

where

(1.17) 4̃ = α(4) is open

Obviously, the case of projectable Lie group actions in (1.7) - (1.11) is
included in (1.16), (1.17).

As mentioned in the Introduction, here, following [21,22], we take a
new route, when dealing with the difficulties in (1.12) - (1.15), which
we face in the case of general, nonprojectable Lie group actions (1.2),
(1.3). This new route will not require the above mentioned traditional
localisation of g ∈ G, α or U . In other words, we are able to per-
form globally arbitrary Lie group actions on functions U defined on
the whole of their unrestricted, original domains, as for instance in
(1.5) and (1.6). Fortunately, this construction is particularly simple
and applicable without any undue restrictions.

A Simple, Basic Observation. To summarize. The basis upon
which we can delvelop this global approach is the following rather
simple observation :

• The usual impediment which prevents us from extending arbi-
trary Lie group actions (1.2), (1.3) to global actions on functions
(1.5) or (1.6) is not at all related to Lie groups, but to the usual
way of representing functions, by discriminating between inde-
pendent and dependent variables. Once one does away with such
a discrimination, by using a parametric representation of func-
tions, the way to a natural and easy global Lie group action on
functions is open.

Parametrisation in its essence amounts to the following embedding
of the usual definition of a function into a larger concept. Namely, a
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usual function

(1.18) A 3 x f7−→ y = f(x) ∈ B

is actually constrained to be a correspondence from the set A of its
independent variable x, to the set B of its dependent variable y.

On the other hand, a parametric representation of f can be given by
any pull-back type mapping

(1.19) P 3 p h7−→ h(p) = (x(p), y(p)) ∈ A×B

which maps any suitably given parameter domain P into the graph of
f , under the following two conditions :

(1.20) y(p) = f(x(p)), p ∈ P

and

(1.21) P 3 p 7−→ x(p) ∈ A is surjective

With respect to P , this, in general, only implies that its cardinal is
not smaller than that of A.

However, when dealing with Lie group actions, the parameter domain
P is required to be a suitable open subset in an Euclidean space, while
the parametrisation h is assumed C∞-smooth.

It follows that, in general, a parametric representation will introduce
an additional variable p, ranging over P , which this time is mapped
into the pair (x(p), y(p)) of the original independent and dependent
variables, pair which is an element in the cartesian product A×B.

This kind of embedding, obtained by introducing an additional vari-
able, and thus going beyond the constraint of only dealing with the
usual independent and dependent variables, proves to have an impor-
tant and naturally built in advantage. Namely, it allows for the first
time - and in a straightforward manner - the global definition of arbi-

10



trary Lie group actions on functions.

In the usual, that is, nonparametric approach, however, when one
wanst to define the Lie group action on a function, and obtain again a
function, one cannot in general do so, unless at the end one is able to
separate the independent and dependent variables, by expressing the
latter as a function of the former. And in the nonprojectable case of
Lie group actions, this typically is not possible, except locally in the
independent variable, and also, near to the trivial, identical Lie group
transformation.

On the other hand, if one starts, and ends, with parametrically given
functions, then as shown in [21,22] and seen in the sequel, one has no
difficulties at all.

2. A Solution of Hilbert’s Fifth Problem

In [21] a complete solution to Hilbert’s Fifth Problem was obtained
for the first time in the literature.

3. The Growth Conditions in Colombeau Algebras
Cannot Handle Arbitrary Lie Groups

Let us briefly recall the way growth conditions are essential in defining
the Colomebau algebras [3,4,14]. For simplicity, we shall consider the
case of the domains Ω = Rn, and on them, of the general Colombeau
algebras first introduced in [3]. Their construction starts with the
auxiliary family of smooth functions

(3.1) Φm(Ω) =

φ ∈ D(Ω)
(i)

∫
Ω
φ(x)dx = 1

(ii)
∫

Ω
xpφ(x)dx = 0, p ∈ Nn, 1 ≤ |p| ≤ m


Further, for ε > 0 and φ ∈ D(Ω), we define φε ∈ D(Ω) by

(3.2) φε(x) = φ(x/ε)/εn, x ∈ Ω
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Now, our basic space of function will be

(3.2) E(Ω) = (C∞(Ω))Φ(Ω)

which is obviously a differential algebra with the term-wise operations.

The general Colombeau algebra on Ω = Rn is constructed in three
steps.

First, we consider the differential subalgebra A(Ω) in E(Ω), given by
all the functions f ∈ E(Ω) which satisfy the growth condition

(3.3)

∀ compact K ⊆ Ω, p ∈ Nn :

∃ m ∈ N, m ≥ 1 :

∀ φ ∈ Φm(Ω) :

∃ η, c > 0 :

∀ x ∈ K, ε ∈ (0, η) :

|Dpf(φε, x) | ≤ c/εm

Second, we consider in the algebra A(Ω) the ideal I(Ω) given by by
all the functions f ∈ A(Ω) which satisfy the growth condition
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(3.4)

∀ compact K ⊆ Ω, p ∈ Nn :

∃ k ∈ N, k ≥ 1, β ∈ B :

∀ m ∈ N, m ≥ k, φ ∈ Φm(Ω) :

∃ η, c > 0 :

∀ x ∈ K, ε ∈ (0, η) :

|Dpf(φε, x) | ≤ c εβ(m)−k

where

(3.5) B =

 β ∈ (0,∞)N
(i) β is non-decreasing

(ii) limm→∞ β(m) =∞


Third, the general Colombeau algebra of generalized functions on
Ω = Rn is the quotient algebra

(3.6) G(Ω) = A(Ω)/I(Ω)

The reason for the failure of the Colombeau algebras (1.6) in dealing
with arbitrary Lie groups which can appear in the study of PDEs be-
comes now easily obvious. Namely, the algebras A(Ω) in (3.3) which
are used in the definition (3.6) of the Colombeau algebras do not al-
low arbitrary smooth, and not even arbitrary analytic operations on
Colombeau generalized functions. And this is obviously due to the spe-
cific growth conditions in the definition (3.3) of these algebras A(Ω).
Indeed, let us consider the following set of slowly increasing smooth
functions

(3.7) O(Rr) =

α ∈ C∞(Rr)
∀ p ∈ Nr :

Dpα is slowly increasing
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where a function β ∈ C∞(Rr) is called slowly increasing, if and only if
there exist K, c > 0, such that

(3.8) | β(ξ) | ≤ K( 1 + | ξ | )c, ξ ∈ Rr

The mentioned limitation regarding smooth operations on Colombeau
generalized functions is described by the following result, [3,19], :

Given Colombeau generalized functions T1, . . . , Tm ∈ G(Ω) and α ∈
O(R2n), then there exists a Colombeau generalized function α(T1, . . . , Tm) ∈
G(Ω), and it is defined by

(3.9) α(T1, . . . , Tm) = α(f1, . . . , fm) + I(Ω) ∈ G(Ω)

where

(3.10) Ti = fi + I(Ω) ∈ G(Ω), 1 ≤ i ≤ m

The problem here clearly is in the fact that, as soon as a smooth non-
linear operation α is no longer in O(R2n), one cannot in general obtain
the growth condition (3.3) being satisfied by α(f1, . . . , fm) in (3.9) for
all Colombeau generalized functions T1, . . . , Tm ∈ G(Ω).

In view of the above it is obvious that the Colombeau algebras can-
not deal with Lie groups which are associated with a variety of large
classes of PDEs.

4. The Inevitable Infinite Branching in the Multiplication
of Singularities

The rather amusing fact, after decades of studies in the nonlinear al-
gebraic theory of generalized functions, see subject 46F30 in the AMS
classification, is what appears to be the inability on the part of not
a few specialists involved to realize and understand that multiplica-
tion of generalized functions does quite inevitably branches when faced
with dealing with singularities, [18-20,28-30]. And as seen easily, this
branching has most simple algebraic, more precisely, ring theoretic
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reasons.

As it happens, however, realizing the presence and importance of that
branching seems not to be so easy, since it has so far eluded several
notable mathematicians, as mentioned for instance in [30].

The immediate and most obvious consequence of the mentioned in-
evitable infinite branching is that a variety of differential algebras of
generalized functions should be considered when, for instance, solving
nonlinear PDEs, or studying Lie group actions on solutions of such
equations. After all, such an approach is in no way a novelty in the
solution of PDEs, as for more than seven decades by now a large va-
riety of Sobolev spaces have been used for such a purpose.

As for the Colombeau algebras, they obviously have a number of con-
venient properties. Moreover, as stressed in [19,20], their construction
has a rather important natural feature which, however, is seldom men-
tioned, let alone used in the literature.
However, as with all mathematical constructs, so with the Colombeau
algebras, they manifest clear limitations in certain important situa-
tions.
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