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Abstract. We consider electro-optical constructions in which the Casimir force is

modulated in opposition to piezo-crystal elasticity, as in a stack of alternating tunably

conductive and piezo layers. Adjacent tunably conducting layers tuned to conduct,

attract by the Casimir force compressing the intermediate piezo, but when subsequently

detuned to insulate, sandwiched piezo layers expand elastically to restore their original

dimension. In each cycle some electrical energy is made available from the quantum

zero point (zp). We estimate that the maximum power that could be derived at

semiconductor THz modulation rates is megawatts/cm3 !

Similarly a permittivity wave generated by a THz acoustic wave in a single crystal

by the acousto-optic effect produces multiple coherent Casimir wave mode overtones

and a bulk mode. We model the Casimir effect in a sinusoidally graded medium finding

it to be very enhanced over what is found in a multilayer stack for the equivalent

permittivity contrast, and more slowly decreasing with scale, going as the wavelength

1/λ2. Acoustic waves give comparable theoretical power levels of MW/cm3 below

normal crystal damage thresholds. Piezo thermodynamic relations give conditions

for effective coupling of the Casimir bulk mode to an external electrical load. Casimir

wave modes may exchange energy with the main acoustic wave too, which may partially

account for THz attenuation seen in materials. We outline feasibility issues for building

a practical crystal power generator.

PACS numbers: 77.65.Dq, 78.20.hb, 42.50.Pq, 43.25.Ed

1. Introduction

Though it is well accepted conceptually that the lowest energy quantum state contains

energy, the quantum zero-point (zp) or vacuum fluctuation energy seems regarded

somewhat distrustfully by many physicists as a real energy. The zp energy seems

indispensable in the self-consistent formulation of many different physical processes: pair

creation and annihilation, spontaneous emission, the Lamb shift, electron fluctuations,

black-body radiation, van der Waals particle, and vacuum cavity forces (see Milonni’s

excellent overview book [1]), but the possibility that it could provide a significant energy

transfer for human use gets too close to looking like a violation of energy conservation,

getting something for nothing, or perpetual motion. Though zp energy is well accepted
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as the source for the synthesis of the universe out of nothing in the big bang by pair

creation [2] with enhancement effects possible in dynamical expansion processes [3], its

importance in more common physical processes seems less acceptable. Still methods

that may give a significant transfer of energy out of the quantum vacuum for practical

utilization have been shown to be theoretically possible [4], and possible implementations

are being discussed and explored [5, 6, 7].

Vacuum cavity forces, especially in the example of the Casimir effect, give a

macroscopic manifestation of the zp energy. Casimir [8, 9] showed that large-area

closely spaced parallel conducting plates in a vacuum exhibit a force of attraction,

which arises due to the distribution of electromagnetic fluctuations in the quantum

zp field introduced by the conductors. We might suppose that the Casimir force is

conservative like gravity, and parallel conducting plates should lose in their separation

whatever mechanical energy was obtained by their attraction. However, it seems that

this is really not the case: We know that the Casimir force can be turned on or off

as tunably conductive plates are changed to conduct or insulate. If parallel tunably

conductive plates operate elastically as against a spring between them, the work done in

the attraction of the plates when the Casimir effect is turned on need not be returned in

their subsequent separation when the Casimir effect is turned off. That excess of energy

might be harvested, in effect, taking energy out of the quantum zp. The modulation of

the Casimir effect by the conductive cycling of semiconductors with laser light has been

demonstrated in precise differential tests, which have validated the theoretical estimates

to within 1% [10, 11].

Figure 1. Thought Experiment: Multilayer stack of alternating tunably conductive

and piezo layers. Changing the tunably conductive layers to conduct and then insulate

produces a Casimir compression followed by its elastic reexpansion, which does net

work on the piezo crystals from which useful electrical energy might be derived.

To understand the possibilities for energy extraction, we consider as an idealization

a stack of alternating tunably conductive and piezo layers bounded by conducting

electrodes as illustrated in Figure 1. The Casimir effect between two conductive layers

produces a net attractive force per unit area F in the intermediate piezo layer that

drops off rapidly with the increasing piezo layer thickness ℓ−, so the piezo layers must

be quite thin to obtain a strong effect. Sandwiching conductive plates separated by a

small intermediate dielectric of permittivity εe− and thickness ℓ− exhibit a near-field
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Casimir force F⟨(ℓ−) that follows a 1/ℓ3− power law up to some cross-over separation ℓ⟨⟩,

and then switches to a steeper 1/ℓ4− power law, written for perfectly conducting infinite

area bounding layers from the Lifshitz formulation [12]

F⟩ =
π2~c

240
√
εe−ℓ4−

=

[
270 nm

ℓ−

]4
dyn/cm2, (1)

where the static permittivity of the piezo layer is εe−; as usual ~ is Planck’s constant

over 2π and c the speed of light. For the rightmost equality, a static permittivity of

εe−=6 (index-of-refraction squared) was used for moderate-index insulators, and gives a

Casimir force per unit area of just 1 dyn/cm2 or 1 erg/cm3 = 1E−7 Joules/cm3 for the

piezo thickness ℓ− = 270 nm (using the ‘E’ notation for the power of 10). Though the

Lifshitz solution is for infinitely thick sandwiching plates, his solution represents a good

approximation too when the plates are comparable in thickness to their separation

ℓ+ ∼ ℓ−, as we discuss. The cross-over separation where the power law switches to

1/ℓ3− is characteristically less than 7 nm for near conducting sandwiching layers, as we

elaborate in Appendix A.

In acting against an intermediate elastic material, the attractive force per unit area

F produces a dimensionless strain −sF or a compressional displacement sFℓ− in a layer

of thickness ℓ−, where s is the material elastic compliance for the stress component in

the forcing direction. The average work done per unit area by the Casimir force in

compressing the intermediate layer by a continuous motion is the integral through a

half cycle of the force F times the infinitesimal displacement sℓ−∂F or sℓ−F
2/2 for F

the maximum force in the cycle, giving the total work done per unit of time and volume

W =
1

4
sνF 2, (2)

for cycling at a rate ν, and supposing equal odd-even layer thicknesses ℓ+ = ℓ−, so

half of the volume participates in the compression at any time. This formula is an

approximate form useful for estimating the amplitude of the effect, as it supposes the

idealization of high piezo efficiency, a static piezo response, and ignores contributions

from the converse piezo effect, as we elaborate in Section 6.

Semiconductor modulation at rates up to about ν=1E13 Hz by electrical

modulation in adjacent oppositely doped layers for modern transistor design has been

demonstrated [13]. Material compliances range from about s ∼1E−7 to 1E−12 Pa−1 for

soft rubber to the hardest crystals like diamond. For estimating the amplitude of the

effect, we suppose most conservatively s ∼ 1E−12 Pa−1 = 1E−13 cm2/dyn, and obtain

a power per unit volume W=0.25 erg/s/cm3 in a stack with layer thickness ℓ− = 270 nm

from (2). As the power scales inversely as ℓ8−, with a tenth that layer thickness ℓ−=27

nm, we obtain a much larger W=2.5 Watts/cm3, and for ℓ−=5 nm, W=1.8 megawatts

(MW)/cm3 ! Actually the estimate is somewhat high for normal good conductors, which

fall significantly short of the ideal of perfect conductivity. Still our more careful estimate

gives power up to megawatts/cm3 for idealized stacks of alternating tunably conducting

and piezo layers, as we discuss in Section 4. Physical constructs could be possible as we

elaborate in the text as deposition of layers only ℓ−=5 nm, about 10 molecular layers
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in thickness, are reached in microlayer nanotechnology, like what is used in integrated

circuits.

Figure 2. ZP energy from a standing acoustic wave in a piezo crystal. Successive

close permittivity plane wave fronts introduced by an acoustic wave interact like

alternating layers, giving an added Casimir force that is modulated in time with the

wave oscillation.

From the thought experiment, we recognize a basic physical principle and study

processes that systematically modulate the Casimir effect, like a pressure wave standing

or traveling, longitudinal or transverse, which produces a periodic sinusoidal permittivity

variation by the acousto-optic effect, as illustrated in Figure 2. As with the alternating-

layer stack, adjacent plane wave fronts in permittivity must interact via the Casimir

effect giving an added longitudinal stress at the extremes of the temporal oscillation, as

illustrated by the force vectors F . The Casimir effect in acoustic waves too may produce

a voltage difference across a piezo crystal from which electrical power might be derived.

The Casimir effect in graded permittivity media has been considered mainly to

understand effects of soft boundaries on three-layer solutions, and shown to exhibit

quantum divergences unlike what is found for solutions with discrete layers, suggesting

an enhanced effect [14, 15, 16]. We formulate the problem again for a general 1D

spatial graded permittivity variation in Sections 2 and 3. Numerical models for stacks

of alternating permittivity layers are presented in Section 4, and for permittivity waves

in uniform media in Section 5. Besides being enhanced for the equivalent permittivity

contrast, the Casimir effect also exhibits a much slower falloff with the scale of the

variation than what is seen with discrete layers.

The zp energy dynamics are examined using the piezo thermodynamic relations in

Section 6, which shows formally the transfer of energy out of or back into the quantum

zp in the Casimir modulation of piezo crystals for certain acoustic wave conditions.

Energy that is not used is cycled into and out of the quantum zp, with the strain and

stress modulated in phase. Estimates for power production for alternating-layer stacks

and acoustic waves in crystals from our numerical models are given in Section 7. Casimir

wave modes may interact with the principle acoustic wave too to drive its attenuation

or growth, as we discuss in Section 8. Some practical issues for design of a zp-power
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harvester based upon acoustic waves in single uniform piezo crystals are discussed with

conclusions in Section 9.

2. Casimir Effect with a 1D Permittivity Variation

The Casimir force arises in a medium with a 1D permittivity variation ε̂(ξ, z) in a spatial

coordinate z as in the multilayer stack illustrated in Figure 1 or the single crystal in

Figure 2. The general complex permittivity ε̂(ξ, z) characterizes fully the electro-optic

properties of a medium, defining the index-of-refraction and absorption variations as a

function of light frequency ξ. The Casimir force is derived in many places especially

after the general Lifshitz formulation [12]. We write it as a force per unit area or a

pressure as a function of z with positive as compressive

F (z) =
kBΘ

πc2

∞∑
n=0

′
∫ ∞

0

ϖκ(z) (Ds(z) + Dp(z)) dϖ, (3)

for kB Boltzmann’s constant and Θ the temperature. The sum is over the Matsubara

frequencies ξ = n2πkBΘ/~ = n[Θ/300K] 2.47E14 rad/s, where the integer index n

counts the frequency intervals, and the prime on the summation indicates that the

zero frequency n = 0 term receives half weight. The two terms D(sp)
represent the

Fresnel reflection variation for perpendicular s (senkrecht) and parallel p zp polarized

rays defined

D(sp)
(z) =

R(sp)+
(z)R(sp)−

(z)

1−R(sp)+
(z)R(sp)−

(z)
, (4)

for Fresnel reflection coefficients R(sp)±
, which depend upon the permittivity. The

wavenumber κ(z) is for zp dissipative electromagnetic modes and is defined in by the

Matsubara sum and integration frequencies ξ and ϖ

κ(z) =
1

c

(
ε(ξ, z)ξ2 +ϖ2

) 1
2 . (5)

The definition for κ(z) and Fresnel reflection coefficients R(sp)±
use the function

ε(ξ, z) ≡ ε̂(iξ, z), the projection of the complex permittivity on its imaginary frequency

axis, which casts the complex ε̂ into a real function ε consistent with Kramers-Krönig

causality constraints [17]. This solution may be applied to represent index, absorption,

conductivity, or magnetic permeability variations in a medium.

It is usual to replace the finite sum over Matsubara frequencies in (3) by an

integral. Symbolically the sum might be approximated
∑∞

n=0
′ . . . →

∫∞
0

. . . dn, which

takes properly into account the half-size interval around the lower limit n = 0. Using

the Matsubara formula with dξ = (2πkBΘ/~)dn gives on substitution the integral

approximation for the Casimir force

F (z) =
~

2π2c2

∫ ∞

0

∫ ∞

0

ϖκ(z) (Ds(z) + Dp(z)) dϖdξ. (6)

A general substitution for the sum that takes into account singularities in the complex

permittivity function ε̂(iξ) must include Cauchy principle values as represented by the
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Abel-Plana formula [18]. The singularities in the complex function ε̂(iξ) are on the

positive real axis in its complex argument iξ and enclosed in the upper half plane of iξ

by the infinite integral along the imaginary axis of iξ, as contained in the sum over the

real Matsubara frequencies ξ from zero to infinity in the formula (3). Simply substituting

the integral for the sum represents a good approximation for all temperatures when the

scales of variation are smaller than about 1 µm [19] as we illustrate in numerical models

in Section 4.

Fresnel reflection coefficients R(sp)±
(z) for the relevant dissipative waves of

wavenumber κ(z) in the s and p polarizations are propagated by recursion on the left

side (−) from R(sp)−
(z) = 0 as z → −∞ or on the right side (+) from R(sp)+

(z) = 0 as

z → +∞. The left-side reflection coefficients R(sp)−
(or right-side R(sp)+

) change moving

a distance ∆z (or moving −∆z for the right-sided coefficients) to cross a permittivity

jump at some z following the comprehensive formula [Section 1.6][20]

R(sp)±
(z) =

r(sp)±
(z) +R(sp)±

(z ±∆z)e−2κ(z±∆z)∆z

1 + r(sp)±
(z)R(sp)±

(z ±∆z)e−2κ(z±∆z)∆z
, (7)

with ∆z always positive, where the coefficients for the jump at z, r(sp)±
(z), are defined

by the relative differences

rs±(z) =
κ(z ∓ δz)− κ(z ± δz)

κ(z ∓ δz) + κ(z ± δz)
, (8)

rp±(z) =
ε(z ± δz)κ(z ∓ δz)− ε(z ∓ δz)κ(z ± δz)

ε(z ± δz)κ(z ∓ δz) + ε(z ∓ δz)κ(z ± δz)
, (9)

for any infinitesimal (positive) distance δz < ∆z. We observe the sign convention that

the differences are between the wavenumber nearer z = 0 minus the wavenumber further

out, which leads to convenient solution symmetries. With no permittivity change over

an interval ∆z, the jump coefficients are zero r(sp)±
= 0, and the Fresnel reflection

coefficients decrease exponentially in +z for the left-sided solutions R(sp)−
(z) or in −z

for the right-sided solutions R(sp)+
(z) with R(sp)±

(z) = R(sp)±
(z±∆z) exp(−2κ∆z). The

formulae are relevant for reflection coefficients crossing discrete permittivity jumps, but

are applicable in graded-media too, as we elaborate in the next section. We sometimes

denote the variables as εj(ξ) or κj using subscripts rather than functions of z for discrete

layers counted from a middle layer j = 0 as illustrated in Figure 3. The ± subscript

is also used for even and odd layers with alternating-layer stacks, where the reversed

state is of special interest with interchanged permittivities ε+ ↔ ε− and wavenumbers

κ+ ↔ κ−.

For a symmetric permittivity variation ε(z) = ε(−z), recursive application of

the formula (7) gives R(sp)+
(z) = R(sp)−

(−z), or for the product R(sp)+
(z)R(sp)−

(z) =

R(sp)+
(−z)R(sp)−

(−z), for D(sp)
(z) = D(sp)

(−z) from (4), and a symmetric Casimir force

in (3) or (6) with F (z) = F (−z).

In a multielement stack or square permittivity wave, the Casimir force can be seen

to be constant in every constant permittivity zone. The left/right-sided (∓) Fresnel
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Figure 3. Plane-parallel multilayer sandwich with nℓ layers of differing permittivities

on each side of a layer j = 0 of principle interest

reflection coefficients are propagated from bounding permittivity jumps at z = ∓ℓ0/2

to a given z in a middle layer of thickness ℓ0 as in Figure 3 with

R(sp)±
(z) = R(sp)±

(±ℓ0
2
)e−2κ0( ℓ0

2
∓z), (10)

so in the product, the z dependence vanishes with

R(sp)+
(z)R(sp)−

(z) = R(sp)+
(
ℓ0
2
)R(sp)−

(−ℓ0
2
)e−2κ0ℓ0 , (11)

giving D(sp)
from (4) and F from (3) and (6) independent of z across the layer.

Solution z independence is evident across the middle layer in the multilayer

solutions given in the literature. For a three-layer stack the jumps at

z = ±ℓ0/2 define the products of Fresnel reflection coefficients R(sp)+
R(sp)−

=

r(sp)+
(ℓ0/2)r(sp)−

(−ℓ0/2) exp(−2κ0ℓ0) from (8) and (9), which agrees with the Lifshitz

formula (Eq. (4.14) in Dzyaloshinskii et al. [21], with some substitutions). For

a five-layer stack nℓ = 2 with layers of thicknesses ℓj counted by −2 ≤ j ≤ 2

as in Figure 3, we obtain products of Fresnel reflection coefficients as in (11) with

the reflection coefficients R(sp)±
(±ℓ0/2) defined by (7) using the two upstream jump

coefficients r(sp)±
(±(ℓ±1 + ℓ0/2)) defined in (8) and (9), which agrees with Zhou and

Spruch (Eqs. (3.8) and (3.12)–(3.16) in [22]). The formulae give similar agreement for

the Casimir force in (3) or (6) with any number of layers as developed in numerous

studies [23, 24, 25].

3. Casimir Effect in a Graded-Permittivity Medium

The definition for the Casimir force from Eqs. (3) or (6) is applicable too in a

graded-permittivity medium with a 1D continuous permittivity ε(z), as can be seen

by approximating the permittivity variation by discrete layers, for some small layer

thickness ∆z, as illustrated in Figure 4. A spatially shifted form of the recursion

formula (7) lends itself directly to numerical computations for propagation of the Fresnel

reflection coefficients far from the domain of interest with initial R(sp)±
= 0 through

intervals with centered permittivity jumps written for the left-sided coefficients

R(sp)−
(z) =

r(sp)−
(z −∆z/2) +R(sp)−

(z −∆z)e−κ(z−∆z)∆z

1 + r(sp)−
(z −∆z/2)R(sp)−

(z −∆z)e−κ(z−∆z)∆z
e−κ(z)∆z, (12)
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for jump coefficients r(sp)−
(z − ∆z/2) still defined as in (8) and (9). The right-

sided reflection coefficients R(sp)+
could be propagated similarly from z → ∞ in

the −z direction, but in our numerical models they are defined using the relation

R(sp)+
(z) = R(sp)−

(−z) applicable to symmetric arrangements around a middle z = 0.

A direct computational approach like this one has been applied to estimate the Casimir

effect in linearly graded media by Inui [26].

Figure 4. Direct calculation of Fresnel reflection coefficients in a graded-permittivity

medium. A continuous permittivity variation ε(z) is approximated by discrete layers

of small thickness ∆z.

The Fresnel recursion formula for a graded-index medium (7) or (12) with (8) and

(9) is written in the limit that the interval ∆z becomes infinitesimal ∆z → 0 by the

differential equation for the continuous variation of the Fresnel reflection coefficients

R(sp)±
(z), as in the example [20, Section 1.6]. Retaining only terms to first order in ∆z,

we obtain from either recursion relation

∂R(sp)−

∂z
= r(sp)−

(z)
(
1−R(sp)−

(z)2
)
− 2κ(z)R(sp)−

(z), (13)

with the jump coefficients approximated by derivatives for the spatially continuously

permittivity ε(z)

rs−(z) =
1

2κ(z)

∂κ

∂z
=

(
ξ

2cκ(z)

)2
∂ε

∂z
, (14)

rp−(z) =

(
1

2κ(z)

∂κ

∂z
− 1

2ε(z)

∂ε

∂z

)
=

((
ξ

2cκ(z)

)2

− 1

2ε(z)

)
∂ε

∂z
, (15)

with the wavenumber κ(z) still defined by Eq. (5); ε(z) and κ(z) retain their

dependencies on the frequencies ξ and/or ϖ implicitly.

We examine bounded solutions with everywhere-small reflection coefficients

|R(sp)−(z)| ≪ 1, which is consistent with our main interest in small periodic permittivity

fluctuations on top of a constant permittivity background. Thus we are able to linearize

Eq. (13) and obtain the closed-form integral solution

R(sp)−
(z) = e−2

∫
κ(z)dz

[∫
e2

∫
κ(z)dzr(sp)−

(z)

(
1−R′

(sp)−
(z)2

)
dz

]
. (16)

The function R′
(sp)−

(z) represents a prior approximation to the Fresnel reflection

coefficients, which we apply in our numerical iterations. For our analytic evaluation,
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we leave the integrals all as indefinite and functions of z. A lower bound on the

integral in the exponential integrating factor is of course arbitrary, as any constant

in the exponential factors out of the main integral to cancel with the same constant

from the outer exponential.

With an added constant of integration in the square brackets in (16), a term is

added to the reflection coefficient due to the leading external exponential integrating

factor, which diverges as z → −∞ for R(sp)−
(z) as κ(z) is always positive, or as z → +∞

in the similar expression for R(sp)+
(z). Leaving the main integral in square brackets as

indefinite always gives bounded solutions.

Bounded reflection coefficients must also be periodic with a periodic permittivity

fluctuation, as shifting the origin of the calculation by any number of wavelengths nλ

in z cannot change the form of the solution. For a periodic permittivity fluctuation, the

wavenumber from (5) can always be written as a constant plus a spatially periodic

term κ(z) = κ̃0 + κ̃1(z), giving an exponential integrating factor that decomposes

into the product of constant and spatially periodic functions exp(2
∫
κ(z)dz) =

exp(2κ̃0z) exp(2
∫
κ̃1(z)dz), as the integral of a periodic function with zero average like

κ̃1(z) is also periodic. Thus shifting the origin of the main indefinite integral in (16) by

an integer number n of wavelengths z → z + nλ, factors the constant exp(2nκ̃0λ) out

from the square brackets leaving the square brackets unchanged, and this constant just

cancels with its inverse from the outer exponential. Even the perturbation term R′
(sp)−

(z)

defined by a previous iteration must be periodic, so periodic solutions generalize beyond

the linear case with R(sp)−
(z) = R(sp)−

(z + nλ).

Leaving the main integral as indefinite in (16) is convenient for our analytic

evaluation, but in numerical implementations, the integral must be evaluated between

specified limits. Then we include an added constant of integration in the square brackets,

which we define by the periodicity condition R(sp)−
(z) = R(sp)−

(z+λ) for arbitrary z for

periodic permittivity variations. A computationally desirable form for the constant of

integration for numerical applications is derived in Appendix B.

The Fourier decomposition for the spatial variation of a permittivity wave in z with

minimum permittivity at z = 0 is written

ε(z) = ε̃0 − ε̃1c cos
2πz

λ
, (17)

using the tilde ε̃k(cs) to denote the (real) spatial Fourier wave mode with wavenumber

k in cosine (c) or sine (s) elements. The Fourier wave modes retain the Matsubara

frequency ξ dependence implicitly ε̃0 = ε̃0(ξ) and ε̃1c = ε̃1c(ξ). We do not introduce

temporal varying factors here as wave changes are always assumed to be slow compared

to frequencies that are important for the Casimir effect. The permittivity variation

ε(z) might represent a standing wave like what is indicated in Figure 2, which does

not change its spatial form but exhibits a sinusoidal temporal variation through an

external temporal factor, as ε(z) → ε(z) cos 2πνt or in the usual analytically continued

form with ε(z) → ε(z) exp(i2πνt) and cos(2πz/λ) → exp(i2πz/λ) as we employ
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in spatial/temporal Fourier analyses in Section 6. Solutions for traveling waves are

obtained similarly with a ±z moving wavefront by the replacement z → λνt∓ z.

Assuming a relatively small wave amplitude |ε̃1c| ≪ |ε̃0|, the jump coefficients

r(sp)−
(z) and the wavenumber κ(z) are written to first order in ε̃1c using the z derivative

of the permittivity from (14) and (15) and the definition (5)

r(sp)−
(z) = r̃(sp)1s

sin
2πz

λ
, (18)

κ(z) = κ̃0 − κ̃1c cos
2πz

λ
, (19)

where

r̃s1s =
πξ2ε̃1c
2c2λκ̃2

0

, r̃p1s = r̃s1s −
πε̃1c
λε̃0

,

κ̃0 =
1

c
(ε̃0ξ

2 +ϖ2)1/2, and κ̃1c =
ξ2ε̃1c
2c2κ̃0

.

Note that to first order, κ̃0 is independent of ε̃1c, and all of the other coefficients are

proportional to ε̃1c.

Substituting into (16) and retaining terms only to first-order in the permittivity

fluctuation ε̃1c, leaves the analytic integral for the Fresnel reflection coefficients

R(sp)−
(z) = r̃(sp)1s

e−2κ̃0z

∫
e2κ̃0z sin

2πz

λ
dz =

r̃(sp)1s

2

κ̃0 sin
2πz
λ

− π
λ
cos 2πz

λ

κ̃2
0 +

(
π
λ

)2 . (20)

The indefinite form of the integral gives a periodic solution as we expect.

The Fresnel reflection coefficients R(sp)±
(z) make contributions to the Casimir force

in (3) or (6) through their products R(sp)+
(z)R(sp)−

(z). Remembering that R(sp)+
(z) =

R(sp)−
(−z) for a symmetric permittivity variation around z = 0 as in the wave from

(17), we obtain

R(sp)+
(z)R(sp)−

(z) =
λ2

8π2
r̃ 2

(sp)1s

(
1

χ2 + 1
cos

4πz

λ
− χ2 − 1

(χ2 + 1)2

)
, (21)

defining the new variable χ ≡ κ̃0λ/π.

The jump coefficient r̃p1s from (15) is of order and r̃s1s from (14) of order or

smaller than the relative permittivity fluctuation ε̃1c/ε̃0, being possibly smaller since

κ̃2
0 = ε̃0ξ

2/c2 +ϖ2/c2 ≥ ε̃0ξ
2/c2. Thus the product R(sp)+

(z)R(sp)−
(z) is no larger than

second order in the relative permittivity change. The offset in the denominator of

D(sp)
(z) in (4) introduces a still smaller-order effect, so for a small-amplitude standing

permittivity wave, the Casimir force from Eq. (6) is written to most-significant order

in the relative permittivity fluctuation as

F (z) =
π~
2λ3

(∫ ∞

0

∫ ∞

0

χ2Rs+(z)Rs−(z)dχdξ +

∫ ∞

0

∫ ∞

0

χ2Rp+(z)Rp−(z)dχdξ

)
, (22)

having eliminated the variables κ0 and ϖ by substituting with the new variable χ. The

jump coefficients from (14) and (15) are written in terms of χ as

r̃s1s =
ξ2λε̃1c
2πc2χ2

, r̃p1s = r̃s1s −
π

λ

ε̃1c
ε̃0

. (23)
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The polarization product Rs+(z)Rs−(z) goes like 1/χ6 asymptotically for χ ≫ 1,

which makes a 1/χ4 contribution to the first integral in (22), whereas the second

polarization product Rp+(z)Rp−(z) goes like 1/χ2 at large χ, so the second integral

in (22) is linearly divergent. The second divergent p polarization integral is dominant,

so we drop the integral over s polarizations in (22) and obtain

F (z) =
π~
16λ3

(∫ ∞

0

(
ε̃1c
ε̃0

)2

dξ

)(
cos

4πz

λ

∫ χc

0

χ2

χ2 + 1
dχ−

∫ χc

0

χ2 χ2 − 1

(χ2 + 1)2
dχ

)
, (24)

having factored out the ξ integral with the permittivity contrast ε̃1c/ε̃0, supposing

no dependence upon ξ in the cutoff χc. The χ integral cutoff is determined by a

cutoff frequency ωc that is much higher than the maximum frequency for permittivity

fluctuations, which is the electronic vibration frequency, and so can be approximated

χc ≃ λωc/(πc).

The divergent integral is treated by introducing a smooth Lorentzian cutoff function

into integrations around an upper χc in our numerical calculations as a form of covariant

regularization [27, Section 9.6][28, Section 9.2], and by simply truncated the integral at

χc in this analytic derivation. Both procedures give very similar estimates for the

Casimir force as we discuss in Section 5.

Regularization by imposing a maximum frequency cutoff natural to the physical

process seems sufficient for our interest in estimating the amplitude and in exploring

general properties of the Casimir effect in permittivity waves. We argue that electronic

reactivity to virtual photons must be limited by a maximum recoil due to the small but

finite electron inertia, or perhaps equivalently the qed calculation exhibits a small but

finite correlation length represented by the Compton wavelength [29, Chapters 8-9]. In

either case, the Compton frequency seems the only relevant choice for an upper frequency

cutoff in ordinary materials, as is used in other studies that test the Casimir effect, and

as has been successfully applied with other zp effects, historically and most famously

with the Lamb shift [30], [28, Section 9.6.2]. Thus we take ωc = mec
2/~=7.76E20 rad/s

for me the electron mass.

The χ integrals in (24) are analytic and both well approximated by the value of

their upper limits χc for χc ≫ 1, thus giving

F (z) =
~ωc

16λ2c

(∫ ∞

0

(
ε̃1c
ε̃0

)2

dξ

)(
cos

4πz

λ
− 1

)
. (25)

The Casimir force in a medium with a small-amplitude relative permittivity

fluctuation goes as 1/λ2 at all wavelengths, and is second-order in the relative

permittivity fluctuation. The force exhibits significant power in its spatially constant

and cos(4πz/λ) wave modes only, and ranges from zero, where cos = 1, to a maximum

negative value where cos = −1. Thus the Casimir effect in small-amplitude permittivity

waves is always repulsive. We refer to the Casimir modes separately equating terms in

the spatial Fourier expansion F (z) = F̃0 + F̃2c cos 4πz/λ.

This largest-amplitude spatial wave mode contributing to the Casimir force from

(25) does not change sign with the changing sign of the permittivity wave, as the
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permittivity contrast enters only with its squared value. The Casimir force vanishes

when the wave permittivity contrast vanishes at zero temporal phase, and so the Casimir

force is modulated with twice the permittivity wave frequency 2ν. It can be seen that

spatial wave modes other than cos(4πz/λ) exhibit terms proportional to r̃(sp)1s
and so

do exhibit variations at the normal wave frequency ν, but these terms are of lesser

order in powers of the relative permittivity fluctuation. We study the properties of the

smaller-order Casimir wave modes numerically in Section 5.

4. Casimir Effect in an Alternating-Layer Stack

Figure 5 illustrates the Casimir force in the middle layer of an alternating-layer stack

as a function of the spatial scale λ = ℓ− + ℓ+ for permittivities ε±(ξ) as in the drawing

Figure 1 or from Figure 3 with equal layer thicknesses ℓ+ = ℓ−. The three-layer

calculation (nℓ = 1) derived by integrating numerically Eq. (6) is shown with three-layer

calculations for three temperatures using the Matsubara sum from (3) (solid lines), with

the 41-layer calculation (nℓ = 20) with (6) (dot dot long-dash), and with limiting power-

law forms F⟨ (dot dash) and F⟩ (long dash) from Eqs. (A.3) and (A.6), respectively,

discussed in Appendix A. The lower panel illustrates the same data on an expanded

scale with the 3-layer curve subtracted.

Figure 5. Casimir force as a function of scale λ = ℓ− + ℓ+, from 1E−8 cm=1Å to

1E−3.6 cm=2.5µm, with alternating static-permittivity contrast ∆εe/εe = 0.01, for

3 layers and for three temperatures (solid lines), for 41 layers nℓ = 20 (dot dot long-

dash), compared with limiting power laws F⟨ (dot dash) and F⟩ (long dash). The same

data are shown in the lower panel on an expanded vertical scale with log10 F for 3

layers subtracted.

For our models, we adopt a usual form for the complex permittivity as a function

of light frequency ξ

ε̂(ξ) = 1 +
εe − 1

1− ξ2/ω2
e

−
ω2
p

ξ(ξ + iγp)
, (26)



Crystal Power: Piezo Coupling to the Quantum Zero Point 13

which is defined by a single electronic band at frequency ωe characteristically ∼2E16

rad/s of strength εe−1, and a conductive term defined by the plasma frequency ωp, which

ranges from 0 to 2E15 rad/s in semiconductors, and reaches about 1.6E16 rad/s in doped

semiconductors or in the best room-temperature metallic conductors, with the Drude

collision frequency γp, characteristically ∼2E14 rad/s. The simplified form contains the

important terms for the Casimir effect [17]. A lattice vibration band at lower frequency

(typically 9E12 rad/s) represents the next lower frequency effect in crystals, but is both

below the important frequency range and of relatively small oscillator strength to make

a significant contribution to the Casimir effect. The main contribution to the static

permittivity comes from the electronic vibration band with ε̂(ξ = 0) = εe; εe ∼6 for

materials of interest.

Due to causal restrictions, models for the complex permittivity must always be real

on its imaginary frequency axis. The real projected permittivity from (26) is defined

ε(ξ) ≡ ε̂(iξ), which gives

ε(ξ) = 1 +
εe − 1

1 + ξ2/ω2
e

+
ω2
p

ξ(ξ + γp)
. (27)

The projected permittivity ε(ξ) must be a slowly varying monotonically decreasing

function [17], and is plotted in many places for conductors or nonconductors (e.g.

see Figure 20 [11]). For the calculations for Figure 5, the material is assumed to be

nonconductive (ωp = 0), with ωe=2E16 rad/s and εe=6, with static permittivities εej in

successive layers j alternating between εe± = εe ± ∆εe; for the figure the permittivity

contrast used was ∆εe/εe=0.01. Following the convention used in earlier sections, the

middle j = 0 and even j layers are denoted by the subscript ‘−’ and the odd j layers

by ‘+’. Though the formulation discussed is mostly applicable to arbitrary multilayer

stacks with numbered layers, we remain interested primarily in stacks of alternating ±
layers.

For small permittivity changes |∆ε| ≪ ε, the parametric representation in the

model (26) and (27) is assumed to remain accurate. Then the permittivity change can

be described by the derivative expansion

∆ε =
∂ε

∂εe
∆εe +

∂ε

∂ωe

∆ωe +
∂ε

∂ωp

∆ωp +
∂ε

∂γp
∆γp. (28)

Physical processes in materials change permittivity parameters in different ways, so we

explore the Casimir effect with different changing parameters in our numerical models.

Although such parametric processes should give the most-significant contribution to the

Casimir effect that can be introduced with acoustic waves, additional spectral effects not

represented in the permittivity model of (26) also enter. The permittivity spectrum ε(ξ)

exhibits significant changes with pressure in the vicinity of lattice vibration resonances

commonly described as a spectral variations in the photoelastic coefficient [31, Chapter

9]. The photoelastic coefficient enters in the phenomenological acoustic wave theory,

which we describe at the beginning of Section 8. We note in our numerical experiments

the very different limiting forms that arise when different parameters controlling the

permittivity are perturbed.
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As is well-known and evident in Figure 5, the Casimir force for a three-layer stack

exhibits relatively small- and large-scale limiting power-law forms. Our Figure 5 in

the 41-layer nℓ = 20 calculation (dot dot long-dash) suggests the generalization of this

property to arbitrary multilayer stacks. As long as the jump coefficients for a multilayer

stack are small |r(sp)±| ≪ 1, their contribution to the reflection coefficients R(sp)±
in

(7) are increasingly exponentially attenuated with increasing distance from the middle

z = 0. The final exponential factor in the recursion formula exp(−2κ(0)ℓ0) as it appears

in (11), must always be the dominant one, and increasing the number of layers cannot

much change the limiting form of the integral. We reexamine and explore the scope of

the Lifshitz limiting solution forms in Appendix A.

We find it convenient to use the spatial period in alternating layers as the relevant

scale, i.e. the wavelength λ = ℓ−+ℓ+ . Though the thickness of the middle layer ℓ− alone

would be the natural choice, the full period facilitates comparison with the wavelength

for the Casimir effect in graded media described in subsequent sections. Though we use

wavelength for the dependent variable, and assume equal odd-even layer thicknesses in

all the figures shown in this section with λ = ℓ− + ℓ+ = 2ℓ−, the Casimir effect in an

alternating-layer stack is essentially determined by the even layer thickness ℓ− alone,

and changes little with changes in the relative thickness of the odd layers ℓ+/ℓ− over

several orders of magnitude.

In our numerical calculations, the infinite-frequency integrals in ξ and ϖ in Eqs.

(3) and (6) are written as finite angular integrals by substituting for each ξ or ϖ with

ωe tan
ι θ and integrating from θ = 0 to π/2. The ξ integral is convergent because the

permittivity goes to zero for ξ ≫ ωe. Though the ϖ integral is divergent in general,

an effect evident for graded media as we have discussed, it is convergent for multilayer

stacks due to exponential attenuation of reflection coefficients from (11), which cuts off

at wavenumbers κ(0) ≫ 1/ℓ0 in the middle layer or frequencies ϖ ≫ κ(0)c = c/ℓ0.

We find that the integrals converge consistently in the fewest integration steps with the

power ι = 6, and obtain relative accuracies better than 1E−3 using Simpson’s rule with

120 steps, which is what we used for all the multilayer calculations described here.

Figure 6 shows the Casimir force F (λ) for alternating static permittivity εe in (a),

electronic vibration frequency ωe in (b), and plasma frequency ωp in (c). The static

permittivity (a) and the electronic frequency (b) alternate with the small differences

identified in the figure, but the plasma frequency (c) alternates between ωp = 0 in

the nonconducting even layers and ωp+ in conducting odd layers with γp=2E14 rad/s.

Results are overplotted for calculations made with increasing numbers of layers nℓ = 1,

2, 3, 5, . . . (all shown as dashed), and nℓ = 20 (solid). Relative changes less than 5E−3

in the estimated Casimir force over the range of scales are found with increasing the

number of layers used in the calculation above about nℓ = 3.

The Casimir force estimates all follow the 1/λ3 or 1/ℓ30 thin-limit power-law form,

but the thick-limit power law 1/ℓ40 does not apply with fluctuations of the electronic

vibration frequency ∆ωe/ωe as we elaborate in Appendix A. The numerical experiments

for the fluctuating electronic vibration frequency ωe (b) suggest another definite thick-
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Figure 6. Casimir force F (λ = ℓ− + ell+ = ℓ−/2) in the central layer of a multilayer

stack with alternating static permittivity εe (a), alternating electronic vibration

frequency ωe (b), and plasma frequency in the odd layers ωp+ (c). Calculations with

different parameter contrasts for 41 layers nℓ = 20 (solid) and fewer nℓ=1, 2, 3, 5,

. . . (dashed) are shown.

layer power-law form of 1/ℓ80. Though power-law dependencies 1/ℓ30 and 1/ℓ40 are seen

over ranges in λ or ℓ0 with alternating plasma frequency in panel (c), these do not

show a single cross-over separation, but effects depend strongly and specifically upon

the plasma frequency contrast.

The separation between the successive force curves with increasing permittivity

contrast goes as the relative contrast squared, (∆εe/εe)
2 in panel (a), and as (∆ωe/ωe)

2

in (b), with deviations in the Casimir force across the range in λ no larger than 5E−3

up to relative contrasts 0.01. For higher contrasts, larger variations arise as nonlinear

effects begin to be important. A squared dependence is natural, as the Casimir force



Crystal Power: Piezo Coupling to the Quantum Zero Point 16

from (6) goes like R2

(sp)±
. The reflection coefficients feel their main contribution from

the first jump, and so must go like R(sp)±
(ℓ0/2) ∼ r(sp)±

as in the discussion following

(11), and the jump coefficients follow the relative derivative r(sp)±
∼ (∂ϵ/∂z)/ϵ in their

most significant contributions to the integrals, as might be seen from (14) and (15).

Figure 7. Casimir force difference ∆F (λ) between normal and permittivity-reversed

stacks for alternating static permittivity εe (a), alternating electronic vibration

frequency ωe (b), and plasma frequency in odd layers ωp+ (c). Calculations with

different parameter contrasts for 41 layers nℓ = 20 (solid) and fewer nℓ=1, 2, 3, 5,

. . . (dashed) are shown.

Though the Casimir effect is mainly unchanged between the normal and the odd-

even reversed stacks, small residual systematic differences do exist. The change in

Casimir force between normal and reversed static-permittivity states ∆F (λ) is shown

in Figure 7 for alternating static permittivities εe in panel (a), alternating electronic

vibration frequency ωe in (b), and plasma frequency in odd layers ωp+ in (c). Force
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differences have to be computed before frequency integrals in (6) to avoid a large relative

numerical noise, as the difference is small compared to the force itself. Force differences

are overplotted for increasing numbers of adjacent layers used in the calculation nℓ = 1,

2, 3, 5, . . . (all shown as dashed), and nℓ = 20 (solid). Relative changes no larger than

about 0.05 are found for calculations made with more than about 7 layers (nℓ = 3).

Force differences between normal and reversed stacks ∆F (λ) increase as the permittivity

contrast cubed in (a) and (b), as is natural for small differences between forces that are

the same to second order in their even and odd permittivity contrasts.

Force differences exhibit good thick-layer power-law forms with fluctuating static

permittivity εe following the same power law as what is seen as for the Casimir force 1/ℓ40
in (a), and a much steeper thick-layer power-law form 1/ℓ100 for fluctuating electronic

frequency ωe in (b). Force differences between a normal and reversed plasma-frequency

change in (c) show characteristic power-law forms 1/ℓ30 and 1/ℓ40 over ranges in scale,

but with no obvious dependence of the cross-over separation upon the plasma frequency

contrast. Force differences do not exhibit very well-defined thin-layer power-law forms,

but go only approximately as 1/ℓ1.50 in all panels (a)–(c).

As the modulation of the Casimir force cycles between the nearly identical

normal and reversed permittivity states it passes through zero, so with a permittivity

modulation at frequency ν, the Casimir force is modulated mainly at the frequency 2ν.

5. Casimir Effect in a Permittivity Wave

Figure 8 shows an example Casimir force profile F (z) over one wavelength in permittivity

ε(z) (illustrated on top), for λ=E−6.5 cm = 3.16 nm and contrast ∆εe/εe = 0.1. The

Casimir force profile (upper panel) is everywhere repulsive and ranges from zero for no

effect at the permittivity wave maxima and minima to a maximum effect in the most

slopping portions of the wave. Though most of the power is in the λ/2 wave F̃2c and

bulk F̃0 modes, as expected from our analytic derivation in Section 3, a small residual

remains, which is evident when the main Casimir wave modes are subtacted (middle

panel). The residual mainly contains just the F̃1c and F̃3c modes. The Casimir force

difference between normal and sign-reversed permittivity waves (bottom panel) closely

follows the residual in the middle panel, showing twice its amplitude with matching

relative F̃1c and F̃3c mode profiles. The main Fourier modes F̃0 and F̃2c do not change

with the reversal of the permittivity wave phase and so vanish in the ∆F profile, however

both of the other significant wave modes do fully. Thus the principle Fourier modes

F̃0 and F̃2c are modulated with twice the frequency of the permittivity wave as we

anticipated in Section 3, and the two residual modes F̃1c and F̃3c are modulated with

the same frequency as the permittivity wave.

All of the Casimir force profiles for small amplitude permittivity waves ∆εe/εe . 0.1

look qualitatively alike, being dominated by Casimir wave modes F̃0 and F̃2c. However

the Casimir force profile at large permittivity contrasts does noticeable change its

appearance as illustrated in Figure 9, showing an increased contribution from secondary
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Figure 8. Casimir force profile F (z) for λ=1E−6.5 cm= 3.16 nm (upper panel), with

principle wave modes F̃0 and F̃2c subtracted (middle panel), and the force difference

∆F (z) between the normal and reversed permittivity waves (bottom panel), showing

decomposition of profiles into wave modes F̃1c (dashed), F̃3c (dot dash), and secondary

residual F̃4c (long dash), for a permittivity wave of contrast ∆εe/εe = 0.1 (illustrated

on top), with ωe=2E16 rad/s and εe=6.

Casimir wave modes F̃1c and F̃3c, and a small but here significant contribution from

F̃4c (long dash). For larger amplitude permittivity waves, profiles of the residual force

(middle panel), and force difference (lower panel) differ noticeably, indicating that the

secondary wave mode F̃4c oscillates at twice the frequency of the permittivity wave with

the principle wave modes F̃0 and F̃2c.

For our numerical calculations the infinite integrals from (6) are evaluated as finite

angular integrals as for the multielement stacks in Section 4 with sampling at 100 evenly

spaced angular intervals. Integrals in ξ become negligible above the electronic vibration

frequency ωe and are cut off with a smooth function around 100ωe. For general graded

media, the integral in frequency ϖ is divergent, and so is smoothly truncated around

the Compton frequency using a smooth Lorentzian, as we have described.

Reflection coefficients at each ξ and ϖ were derived in two ways, using the recursion

relation Eq. (12) starting many wavelengths from the domain of interest, and using the

integral method from (16). For self-consistent results within a percent, each method

requires many samples per unit of the dissipative length scale 1/κ̃0, 100 samples with

the recursion relation (12), and 10 with the integral method (16) using Simpson’s rule.
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Figure 9. Casimir force profiles as in Figure 8 for a larger amplitude permittivity

wave ∆εe/εe = 0.5.

For the longest wavelength tested λ=1E−4 cm at the highest frequency ϖ=1E20 rad/s

for wavenumber κ̃0 = ϖ/c, 100κ̃0λ=3.3E7 recursion samples are needed or 10κ̃0λ=3.2E6

integration samples per wavelength. The integral method was iterated three times in

the reflection coefficients R(sp)−
(z), and always gave good convergence showing changes

no larger than 10% after the initial iteration.

Both methods give nearly identical results, except that the recursion method is

noisier, with noise comparable to signal for a relative permittivity fluctuation of about

1E−4. The integral solution gives consistent solutions even for relative permittivity

fluctuations as small as 1E−8. The figures shown here were obtained using the integral

method.

The strength of the Casimir effect for a fluctuating static permittivity is

approximated using (25) evaluating the integral with the permittivity model (27) for a

nonconductor ωp = 0 and estimating the wave contrast by the derivative ε̃1c/ε̃0 = ∆ε/ε

with ∆ε = (∂ε/∂εe)∆εe, which gives an analytic integral that is evaluated as

F (z) =
π~ωeωcε

1/2
e

64λ2c

(
∆εe
εe

)2(
cos

4πz

λ
− 1

)
. (29)

For the parameters used in the Figure 8, the force has its most negative value for

cos = −1 of F = −1.31E10 dyn/cm2, a little larger than the most negative value for

the numerical integrations from the figure. The small discrepancy arises because the



Crystal Power: Piezo Coupling to the Quantum Zero Point 20

frequency cutoff in the numerical integrations is approximated by a smooth function

rather than the sharp cutoff used in the analytic integral from (29).

Figure 10 shows the Casimir wave modes F̃kc(λ) (upper panel) and wave modes in

the force difference ∆F̃kc(λ) (lower panel) as functions of wavelength λ for a number of

static-permittivity contrasts ∆εe/εe= E−0.3, E−1, E−2, E−3, E−4, and E−5. Each of

the wave modes follows the 1/λ2 power law predicted in Section 3.

Figure 10. Casimir wave modes for the force F̃kc(λ) (upper panel) and the force

difference ∆F̃kc(λ) (lower panel) as functions of wavelength λ for different static-

permittivity fluctuations ∆εe/εe showing the principle wave modes F̃0 and F̃2c

(everywhere coincident solid), residuals F̃1c and F̃3c (coincident dashed), and F̃4c (long

dash). As wave modes overlap considerably, vectors are drawn to connect the successive

F̃0 with F̃1c and F̃1c with F̃4c in each permittivity contrast group. Only F̃1c and F̃3c

appear in the force difference.

For the Casimir force (upper panel), the principle wave modes F̃2c (solid) are

separated by two orders 2 log10(∆ε/ε), so its amplitude goes like the permittivity

contrast squared. The residual wave modes F̃1c (dash) and F̃3c (dot dash) always

exhibit the same power and are exactly one order log10(∆ε/ε) below the principle F̃2c

(solid) in each permittivity contrast group. The Casimir wave mode F̃4c (long dash) is

also consistently reproduced, but everywhere two orders 2 log10(∆ε/ε) below the main

component in each permittivity contrast group. In every case, the bulk mode F̃0 follows

exactly the wave mode F̃2c. In the difference spectra (lower panel) the principle Casimir

wave mode F̃2c and residual F̃4c disappear entirely. The difference spectra are composed

of only the residuals F̃1c (dash) and F̃3c (dot dash), which exactly overlap and are
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separated by two orders of permittivity contrast between groups.

Comparing the vertical scales between Figures 6 to 10 shows that the Casimir

force for a sinusoidal wave of small wavelength scale λ=1E−7 cm=1 nm is almost a

1000 times larger than what is found for the equivalent square permittivity wave or

multilayer stack. The relative sinusoidal-wave strength grows considerably larger too

at larger wavelength since the Casimir force for for sinusoidal waves goes only as λ−2

whereas for square waves or multilayer stacks drops off as λ−3 or λ−4.

Figure 11. Casimir wave modes for the force F̃kc(λ) (upper panel) and the force

difference ∆F̃kc(λ) (lower panel) as functions of wavelength λ for different plasma

frequency fluctuations ∆ωp/ωp identifying wave modes as in Figure 10. A plasma

frequency of ωp=1.6E16 rad/s was used characteristic of the best normal conductors.

Almost identical results are obtained with permittivity variations due to

fluctuations in the electronic vibration frequency ωe, so these are not shown. That

solution is approximated from (25) with ∆ε = (∂ε/∂ωe)∆ωe, giving

F (z) =
π~ωeωc

16λ2c

(εe − 1)2

(ε
1/2
e + 1)3

(
∆ωe

ωe

)2(
cos

4πz

λ
− 1

)
. (30)

Equating the force amplitude with that of (29) with the same relative permittivity

contrasts ∆εe/εe = ∆ωe/ωe, and solving numerically the transcendental equation shows

that the forces are equal when εe=6.038948 , very close to the static permittivity we

use in our models. A slightly larger Casimir force is obtained with static permittivity

fluctuations in materials of lower static permittivity, and with fluctuations in electronic

vibration frequency in materials of higher static permittivity.
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Casimir profiles for a fluctuating plasma frequency or Drude collision frequency

resemble the profiles shown in Figures 8 and 9, except that the sign of the fluctuations

is reversed for fluctuations in the Drude collision frequency. Figure 11 shows the Casimir

mode amplitude as a function of acoustic wavelength for a fluctuating plasma frequency

with plasma frequency ωp=1.6E16 rad/s and Drude collision frequency γp=1E14 rad/s

for good normal conductors (with εe=6 and ωe=2E12 rad/s). The Casimir wave modes

F̃1c and F̃3c (dashed) here actually slightly exceed the principle modes F̃0 and F̃2c (solid)

in the largest amplitude wave. The amplitude of the Casimir effect for plasma frequency

fluctuations is proportional to the plasma frequency, and is little affected by changes in

the other parameters.

Similar numerical tests made using the Matsubara sum from (3) in place of the

integral from (6), with reflection coefficients derived using the integral method (16),

show no temperature effect in the Casimir force in permittivity waves, having tested

with contrasts up to ∆ε/ε=0.5 and out to wavelengths as long as λ =E−3.5 cm=3.16

µm. We see no temperature effect whatsoever, perturbing any of the four parameters

that enter the permittivity model (26).

6. Piezo ZP Energy Dynamics

The practical utilization of zp energy requires that the Casimir-induced variations in

a crystal couple effectively to an external electrical load. In this section we consider

the piezo effect for the Casimir wave solutions from Eq. (25) from Section 3 in both

traveling and standing waves. The general energy transfer is described by assuming the

conservation of an internal energy U (equivalent to the Gibbs free energy) in a stressed

piezo crystal [32]

dU = TijdSij + EidDi, (31)

using the summation rule over repeated indices in a term, with the usual stress Tij and

strain Sij 3× 3 symmetric tensors containing both longitudinal and sheared components,

and the electric field Ei and electric displacement Di 3-element spatial vectors. Indices

count coordinates i = x, y, z; xi is the spatial coordinate (x1, x2, x3) = (x, y, z).

For nonpyroelectric or magnetically affected piezo crystals and crystals that do not

experience changes of state in the relevant ranges, the internal energy must be constant

dU = 0, and the Casimir-forced internal stress couples exclusively to the crystal

capacitance, so the total mechanical work TijdSij over one wave cycle must balance

the capacitive energy gain −EidDi.

Material parameters are taken to be linearly coupled connected by two constitutive

relations [32]. We choose the most convenient pair for this work [33]

Tij = cDijkℓSkℓ − hkijDk, (32)

Ei = −hijkSjk + βS
ijDj, (33)

with the constant impermittivity at constant stress βS
ij a 3× 3 real matrix, which is the

inverse of the unperturbed permittivity matrix εij for low frequencies where the electric
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fields are important in the generation of capacitances that drive external currents.

The elastic stiffness cijkℓ is a 3 × 3 × 3 × 3 real tensor, which is the inverse of the

elastic compliance tensor sijkℓ, cijpqspqkℓ = δ(ij)δ(kℓ), for the Kronecker delta δ(ij). The

piezoelectric constant hijk is a 3×3×3 real tensor, which enters symmetrically between

the material response for the inverse piezo effect in (32) and in the voltage response for

the normal piezo effect in (33).

Stress-caused energetic processes do not give a capacitive transfer when the

mechanical work done TijdSij over a cycle vanishes. In such cases the stress Tij and

strain Sij vary in phase. Then the electric displacement Di and electric field Ei must

also vary in phase for conservation of the total energy U from (31) and for consistency

with the constitutive relations (32) and (33). Such zp energetics are conservative, so

that whatever Casimir work is done in the compressive part of the cycle is returned in

the elastic reaction, giving a Casimir force with no external effect.

As described in the introduction, in a stack of alternating tunably conductive and

piezo layers, the Casimir force might be equated to the material tension, which represents

a static piezo response, relevant when the piezo layer is acoustically isolated from the

rest of the stack and incommensurate in scale compared to the acoustic wavelength.

The Casimir tension is on during the conductive or compressive part of the forcing cycle

and off during the nonconductive elastic response, and thus maps out the area W as

defined in Eq. (2) in the T -S phase space. As that calculation simply took the stress

T to be proportional to the strain S and ignored the additional electrical displacement

contribution D in (32) representing the converse piezo effect, it needs to be increased

by a multiplicative factor 1 + kp, equating the amplitudes of the total mechanical work

and dielectric energies from (31). The piezo coupling constant kp is defined in Section

6.31 of Mason 1966 [32]. It is typically small, kp ∼ 0.1 in Mason’s example.

In general the Casimir force F (z, t) in a permittivity wave in a crystal acts to

introduce coupled stress Tij, strain Sij, electric field Ei, and electric displacements

Di, which depend upon the orientation of the natural crystal axes with respect to

the acoustic wave z axis of the system. The attractive Casimir force per unit area

is a traction force that acts internally in the crystal in the z direction and only as a

function of z in our plane-parallel approximation, and thus must satisfy the force balance

equation [34, Section 2.B]

ρ
∂2ui

∂t2
− ∂Tij

∂xj

=
∂F (z, t)

∂z
δ(iz), (34)

with ρ the density of the medium, and ui the particle displacement 3 vector. In

addition the spatially varying component to Dz must vanish due to Maxwell’s equation

in an acoustic wave for charge conservation, written for a nonconducting medium as

∇ · {Di} = ∂Di/∂xi = 0, denoting the vector of elements as {Di}, which reduces to

its z component ∂Dz/∂z = 0 when ∂/∂x = ∂/∂y = 0 as we suppose everywhere in the

interior of the crystal. Also Maxwell’s vanishing curl of the electric field in an acoustic

field ∇×{Ei} = 0, requires that the spatially varying transverse electric field in (Ex, Ey)

also be zero.
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Particle displacements define the strain tensor

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (35)

which, for vanishing x and y derivatives everywhere in the interior of the crystal, gives

the Casimir-force driving equations for the three nonvanishing strain elements Szz, Sxz,

and Syz, by taking the z derivative of (34)

ρ
∂2Szz

∂t2
− ∂2Tzz

∂z2
=

∂2F (z, t)

∂z2
, (36)

2ρ
∂2Siz

∂t2
=

∂2Tiz

∂z2
, (37)

for i = x, y.

Using Eq. (33) to eliminate the tension terms in the force equations (36) and (37)

defines the strain for a given Casimir force F and electric displacement Di, for Szz

ρ
∂2Szz

∂t2
− cDzziz

∂2Siz

∂z2
=

∂2

∂z2
(F (z, t)− hizzDi) , (38)

and for Sxz and Syz

2ρ
∂2Siz

∂t2
− cDizjz

∂2Sjz

∂z2
= −hjiz

∂2Dj

∂z2
. (39)

The set of coupled linear differential equations are simplified by Fourier and

eigenvalue analyses. Only strain waves and electric displacements at the frequency

2ν for the Casimir forcing are relevant, but because of the Casimir bulk mode in

the driving force from (25), a general spectrum of wavenumbers kz are possible.

We analytically continue by supposing the complex temporal variation in every term

exp(i4πνt) and Fourier transform with spatial z functions going over into wavenumber

kz functions denoted by overbars. Then diagonalizing the matrix that multiplies the

longitudinal/shear strain vector (S̄xz(kz), S̄yz(kz), S̄zz(kz)) from the left sides of Eqs. (38)

and (39) gives eigenvalue equations for at most three independent strain eigenvectors

S̄(kz) =
k2
z

k2
z0 − k2

z

(
φF̄ (kz) + hD̄(kz)

)
; (40)

where the stain eigenstate is denoted S̄(kz). The Casimir forcing function is denoted

F̄ (kz) with φ a factor that projects the purely longitudinal z force into the strain

eigenvector, and the projection of the shear electric displacement (Dx, Dy) written D̄(kz)

with its projection into the eigenvector contained in the single scalar coefficient h for

the effective piezo force. The resonant wavenumber is defined kz0 = 4πν/cs for a sound

speed cs that contains the density ρ and the crystal stiffness from cDijkℓ for the eigenvector.

The common temporal variation exp(i4πνt) has been factored out of each of the terms,

but possible temporal phase delays for the strain and electric displacement compared

to the Casimir forcing may be contained as complex factors exp(iδS) or exp(iδD) in the

functions S̄(kz) and D̄(kz).

A transfer of energy between the mechanical and dielectric terms occurs if the

integral of TijdSij (or equally −EijdDij) over a cycle is nonzero. As can be seen by
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examining T -S phase diagrams, if the strain lags behind the stress, the integral TdS

is positive and mechanical work is converted to dielectric energy. In some processes

it is possible that the strain may lead the stress, corresponding to the transfer from

an external electrical load into the quantum zp. The possible electric displacement and

electric fields are defined by the boundary conditions, and by their coupling to the stress

and strain from (32) and (33), but with phase delays that depend upon the external

circuit load.

We examine the piezo energy transfer arising with the Casimir wave and bulk

modes for a permittivity wave in a uniform medium from (25) of Section 3. A strain

wave eigenstate may be driven as described in Eq. (40) by the Casimir wave (standing

or traveling) from (25) at wavenumber kz = |4π/λ| if it is near resonance with the

vanishing denominator at kz = kz0 = 4πν/cs. Resonance thus requires that λ = ν/cs, or

that the sound speed for the acoustic wave is the same as that for the strain eigenstate,

which has twice the frequency (and wavenumber). However high frequency acoustic

waves with wavelength much smaller than the scale of the crystal do not normally

couple capacitively anyway, as the spatially varying displacement field Di must be

perpendicular to the wave direction and the electric field Ei parallel, and being always

mutually perpendicular can do no work in the energy Eq. (31). We can imagine certain

exotic arrangements perhaps like what is described in the literature [35] that may allow

piezo coupling to the main Casimir wave mode. However with such arrangements it may

be difficult to avoid dissipating the acoustic wave too that drives the Casimir effect.

The Casimir bulk mode for standing waves from (25) couples more straightfor-

wardly. That mode is described as a spatial boxcar between uniform z-facing electrodes

as in the drawing Figure 2. Charge buildup on the electrode surfaces defines a boxcar

function too for the electric displacement Dz(t) giving sinc functions in the kz Fourier

domain for F̄ (kz) and D̄(kz) in (40). Thus the strain S̄(kz) is proportional the multiplier

k2
z/(k

2
z0 − k2

z) times a sinc function in wavenumber space. Both functions are illustrated

in Figure 12.

Figure 12. Wavenumber-space multiplier and forcing function for a strain response

comparable in scale to the dimension of the crystal.

If the resulting strain spatial function S(z) is small in magnitude compared to the

electric displacement for the projected eigenstate |S(z)| ≪ |D(z)| over z, then the stress

T (z) and electric field E(z) are determined solely by the electric displacement using
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the constitutive relations (32) and (33), and significant phase differences between the

quantities are precluded, so no energy transfer possible. The total mechanical work

done through the volume in a wave cycle is determined by the spatial-temporal integral

of T (z, t)∂S(z, t), which feels its determining contribution from the spatial-temporal

integral of S(z, t) times the boxcar forcing. By the Fourier power theorem, the spatial

integral can be equated to a wavenumber integral of the multiplier for S̄(kz, t) from

(40) times a sinc function squared. As long as strain variations are on the scale of the

crystal, the integral over wavenumber of the product of the two functions is large and

comparable to what would be obtained if the strain response were a pure boxcar. A

significant strain response to longitudinal boxcar forcing on the scale of the crystal thus

requires a small wavenumber kz0 ∼ 0 corresponding to a wavelength for the eigenstate

comparable to the size of the crystal. Characteristically phonon optical modes do exhibit

zero wavenumber crossings corresponding to the Brillouin zone center at around 10 THz

frequency in crystals [31, Chapter 3].

Perpendicular uniform surface electrodes say in x might be effective too, as electric

displacement Dy(z) and electric fields Ey(z) constant in y may strongly couple to the

induced strain field S(z). As the Casimir forcing is everywhere one directional, power

generation must be relatively tolerant against incoherence in the standing waves due

to partial or incomplete acoustic wave reflection, crystal imperfections, or acoustic

attenuation effects.

The voltage difference between electrodes is defined by the electric field, the order

of which is determined by the piezo relation E ∼ gT ∼ −gF for g the piezoelectric

voltage constant; characteristically g ≃7E−5 Volt cm/dyn for crystals. For a strength

of Casimir bulk mode from Figure 10 of around 5E8 dyn/cm3, we estimate an electric

field of E=35000 V/cm, which gives a current of 28.6 Amperes per cm2 of electrode

surface area for a nominal total power of 1 MW/cm3, which is the product of the two.

Though it has not been our main interest, stacks of alternating layers, the basis

for our thought experiment, might give another practical design for a crystal power

generator. A stack of alternating p- and n-doped piezo semiconductor layers are

conductive throughout except in the depletion zones between the layers, which may

be tuned conductively via electric or light fields. The design satisfies the need for

fast and easy tuning as semiconductors operating differentially at p- to n- doped

junctions exhibit a low excitation potential, and the Casimir force across the thin

nonconductive depletion zone between conductive layers exhibits a strong piezo effect

in many semiconductor materials. Fine tuning of the material parameters, doping

concentrations, layer thicknesses, and frequency are needed to fix the thickness of the

depletion zone. The light-travel distance c/ν= 30 µm for ν=10 THz is smaller than

the size of multilayer stacks of interest, but larger than a useful layer thickness, but

the stack need not be modulated in-phase. With slow in-phase cycling, an AC voltage

across the total stack area and thickness is produced, whereas fast out-of-phase cycling

feels differing contributions across the stack at any one time giving a more nearly DC

voltage.
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7. Power Estimates

Figure 13. Available power per unit of crystal volume W as function of layer

thickness λ = ℓ− + ℓ+ with ℓ+ = ℓ− in a stack with alternating static permittivity

(a), electronic vibration frequency (b), and plasma frequency (c) for modulation at

frequencies corresponding to the sound speed cs = νλ=5E5 cm/s. Horizontal power

levels (dashed) are for material compliance s=1E−13 cm2/dyn.

A stack of alternating layers cycled at a rate ν produces a Casimir forcing that

cycles at twice that rate 2ν as discussed at the end of Section 4. Thus our estimate

for the maximum power that might be extracted represented by the formula (2) needs

ν replaced by 2ν. Noting too the participation of the full volume in the process and

supposing equal even-odd layer thicknesses ℓ+ = ℓ−, we obtain

W = sνF 2. (41)

The formula ignores the small force difference ∆F ≪ F between the two half cycles.
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Figure 14. Available power per unit of crystal volume W as function of wavelength

λ in a static-permittivity wave of indicated contrast for modulation at frequencies ν

defined by the sound speed cs = νλ=5E5 cm/s. Horizontal power levels (dashed) are

for a material compliance s=1E−13 cm2/dyn.

Figure 13 gives estimates of the available power from (41) for modulating the

static permittivity εe (panel (a)), the electronic frequency ωe (b), and the plasma

frequency (c), using the numerical computations from Section 4 supposing the acoustic

relation between frequency and wavelength ν = cs/λ, and using a sound speed

cs=5E5 cm/s, characteristic of dense materials at least at frequencies below 2 THz,

or λ=2.5E−7 cm=2.5 nm. The varying dispersion and possible phonon modes at small

wavelengths may change greatly the appearance of the figure, but power levels should

be representative. The available power goes like the Casimir force squared, and so

drops quite rapidly with λ, and also depends quite critically on the relative permittivity

fluctuation going as the 4th power.

Estimates for the plasma frequency modulation in (c) are similar in their maximum

values, but form a relatively tight group for the range of possible plasma frequencies. For

an idealized perfect conductor with plasma frequency above ωp=1E18 rad/s, the curves

show little change, and represent an available power of about 1 MW/cm3 with ℓ0=5

nm (λ=10 nm=1E−6 cm), for the conservative piezo compliance s=1E−13 cm2/dyn,

consistent with the estimate given in the introduction. However power levels drop off

rapidly when the plasma frequency contrast is less than 1E18 rad/s as with normally

conductive materials, which exhibit plasma frequencies only as high as 1.6E16 rad/s.

Figure 14 shows power per unit volume W from (41) for the main Casimir modes,

the bulk mode F̃0 or main wave mode F̃2c as they are of equal amplitude, as a function

of the acoustic wave wavelength for static-permittivity fluctuations of differing relative

strength. The figure illustrates the high power levels that are possible even with a modest

relative permittivity wave amplitude of ∆ε/ε=1E−3 and shows the much greater range

into longer wavelengths for the permittivity waves compared to multilayer stacks. Such

amplitudes are easily below normal crystal damage thresholds [20].
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8. Mode Growth and Attenuation

Casimir modes should arise in any material, not just a piezo crystal, and may feed back

producing either growth or attenuation in the principle acoustic wave. An acoustic wave

exhibits an associated permittivity variation due to the acousto-optic effect, which is

determined phenomenologically by the Pockels second-order nonlinear response due to

the piezo-induced electric field caused by an acoustic wave of pressure amplitude P̃

∆ε

ε
= εpsP̃ , (42)

with s the material compliance relevant for the propagation direction and shear. The

photoelastic coefficient p is a dimensionless parameter for the material in the wave

direction for an unsheared or sheared stress for longitudinal or transverse waves,

respectively; characteristically p ∼ 0.1 and usually positive.

The Casimir mode F̃1c must always couple linearly to the principle acoustic wave

as it is of same frequency and wavenumber. For materials of positive photoelastic

coefficient p, the acousto-optic effect from (42) exhibits a pressure variation correlated

with the induced permittivity wave ε(z), giving a Casimir wave mode F̃1c with the

same sign as the pressure in the acoustic wave and so amplifying. But in materials of

negative photoelastic coefficient p < 0, such as GaAs or Ruby, the Casimir wave mode

F̃1c is dissipative. In each acoustic wave cycle for standing or traveling waves at a given

spatial location, the Casimir mode F̃1c is generated from quantum zp energy and forces

the principle acoustic wave. All of the energy in the Casimir mode F̃1c feeding into the

pressure wave amplitude P̃ gives the maximum growth rate

Γ1c =
∂ ln P̃

∂t
= 2πν

F̃1c

P̃
. (43)

Taking F̃1c from (29) with P̃ from (42), and using the static-permittivity fluctuation

for the permittivity variation ε → εe with the result from Figures 8-10 that F̃1c/F̃0 =

∆εe/εe, we obtain

Γ1c =
π2~ωeωc

32c

psε
3/2
e ν3

c2s

(
∆εe
εe

)2

=
[ ν

0.216 GHz

]3(∆εe
εe

)2

, (44)

now using the acoustic wave frequency ν rather than its wavelength λ in the formula,

with sound speed cs = λν, and using characteristic parameters for the rightmost

equality p=0.1, s=1E−13 cm2/dyn, cs=5E5 cm/s, ωe=2E16 rad/s, ωc=7.76E20 rad/s,

the Compton frequency, and εe=6. The growth rate represents an amplitude e-folding

in a distance cs/Γ for the often-used attenuation factor α = −(20 log e)Γ/cs dB, giving

α1c = −
[ ν

35.3 GHz

]3(∆εe
εe

)2

dB/cm, (45)

in units of decibels per cm. For a wave of frequency ν = 1 THz and high amplitude

∆εe ≃ εe, we obtain a maximum growth rate of 28 dB/cm. The growth rate drops off

rapidly with decreasing acoustic wave amplitude going as (∆εe/εe)
2.
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Unless it is an phonon eigenstate, the primary Casimir mode F̃2c will be

strongly dissipated by interference from out-of-phase driving by F̃2c modes in adjacent

wavelengths of the principle acoustic wave, leading to a rapid exponential attenuation

rate. Though of frequency 2ν, the mode F̃2c is coherent with the principle acoustic wave

and might exchange energy effectively with it if there is a sufficient nonlinear interaction

between the two. Coherent acoustic modes may exhibit nonlinear interactions similar to

coherent electromagnetic states, which exchange energy easily between overtones, and

generally satisfy a principle of energy equipartition [36]. If there is a strong coupling,

the attenuation rate for the principle acoustic wave may be as much as half the F̃2c

mode amplitude per acoustic wave cycle to give an attenuation rate or negative growth

rate in the principle acoustic wave a factor (∆εe/εe) larger than the growth rate for the

smaller F̃1c mode from (43) – (45). Such attenuation would go like ν3 and be nonlinear

as it depends upon the mode amplitude.

If the Casimir mode F̃2c is a longitudinal phonon eigenstate, it may similarly

affect growth in the principle acoustic wave of comparable magnitude. Thus it may

be desirable to match frequencies and crystal orientations in materials where both of

the main Casimir modes with frequency 2ν are phonon eigenstates: the bulk mode with

wavenumber kz ∼ 0 and wave mode of wavenumber twice that of the acoustic wave.

Further discussion on the growth or attenuation of the principle acoustic wave that

might be caused by Casimir modes is material dependent and discussion of possible

nonlinear interactions seems beyond the scope of this paper.

Noncrystalline substances do exhibit a limiting high-frequency attenuation that

increases faster than ν2 and appears to be close to a ν3 form [37, Figure 10]. Though such

measured THz attenuation factors are much larger than ours, these are for noncrystalline

substances, which are known to exhibit a much stronger acoustic attenuation than what

is seen in pure crystals [38, 39, 40]. Attenuation effects exhibit a strong temperature

dependence below 100 GHz, but become temperature independent above that frequency,

as we expect for Casimir modes. Measured attenuation effects in noncrystalline materials

are found to have a nonlinear amplitude dependence at least at 10 GHz frequency [39].

9. Conclusion

We have studied the Casimir effect in multilayer stacks and in graded-permittivity media

both analytically and with numerical models. In a stack of alternating high- and low-

permittivity layers, an attractive Casimir force is produced throughout the volume,

which follows closely solutions for a three-layer sandwich, with thin- and thick- central-

layer ℓ0 limiting power-law forms that go like 1/ℓ30 and 1/ℓ40, respectively. The Casimir

force switches power laws at fairly small scales depending upon the permittivity contrast,

as at thickness ∼ 7 nm for usual parameters. The compressive force is only slightly

smaller across the high-permittivity layers than across the low-permittivity layers. By

modulating the permittivity in the layers, it is possible to cycle the Casimir force on and

off through the volume and harvest energy in each cycle by the piezo effect. The concept
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might be implemented in a stack of alternating p- and n- doped piezo semiconductor

layers, which are conductive and might rapidly tune the conducting state of depletion

zones between the layers by an electric field or light.

Similarly a short wavelength permittivity wave in a uniform material produces

large Casimir half-wavelength and bulk expansive modes. The Casimir effect in a 1 nm

acoustic wave is about 1000 times stronger than that found in a stack of alternating

layers of the same permittivity contrast and scale of variation, and extends to much

larger scales decreasing only as 1/λ2. The Casimir effect in a wave does not feel a

natural frequency cutoff as arises across a uniform layer due to retardation extinction,

but feels contributions out to the frequency cutoff for the zp interactions, which we take

to be the Compton frequency. Smaller amplitude Casimir modes arise too as higher

wavenumber overtones of the principle wave with amplitudes proportional to increasing

powers of the relative permittivity contrast. Unlike for a multilayer, the Casimir effect

in a permittivity wave exhibits no temperature dependence at least within the scope of

our numerical models.

Casimir modes induced by THz acoustic waves in a piezo crystal may couple

effectively to an external electrical circuit, in effect taking energy out of, or returning it

to the quantum zp, as we have shown through the piezo thermodynamic formalism. A

significant energy transfer is possible for standing acoustic waves of frequency ν through

the Casimir bulk mode, but only if matched to a low wavenumber eigenstate at frequency

2ν, like a phonon optical mode. Acoustic waves might be introduced and coherently

maintained in different ways, like by shining monochromatic microwave light on one or

opposite piezo crystal surfaces through transparent electrodes [41]. The standing wave

coherence that is possible for nm waves might be greatly limited by surface or crystal

imperfections, or other sources of acoustic attenuation. However since the Casimir bulk

mode is expansive, the voltage effect is single signed and so should add constructively

through the volume with partially coherent standing waves for a partial ac or dc voltage

difference across the crystal.

We estimate that significant power may be derived of maximum order a MW/cm3

for 1 nm=1E−7 cm wave even with a modest relative permittivity contrast of 1E−3.

A significant effect persists even out to 100 nm acoustic wavelengths due to the slow

falloff of the Casimir force with wavelength. Casimir modes may be important in the

attenuation or driving of hypersonic (10 GHz - 10 THz) acoustic waves through nonlinear

or direct linear feedback, as we have discussed.

Author’s Note

It is the author’s expressed intent that the guidance, concepts, and designs described

remain unpatentable but in the public domain. It is his belief that energy derived from

the quantum zp is God given for the free and beneficial use by all on His good earth.
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Appendix A. Limiting Solutions for Multilayer Stacks

Power laws arise for the Casimir force in the thin- and thick-layer limits for certain forms

of permittivity variations. In this appendix, we parallel the Lifshitz derivation [12, 21]

for the Casimir force integral from (6) for permittivity variations defined by contrasts

in each of the parameters contained in (27).

A rearrangement of the Casimir force integral in (6) facilitates evaluation of the

force in the middle layer. Using the new variable χ = 2κ0ℓ0 = (ε0(ξ)ξ
2 +ϖ2)1/2ℓ0/c to

eliminate κ0 under the integral, and substituting for the integration variable ϖ using

dχ2 = (4ℓ20/c
2)dϖ2, gives

F =
~

16π2ℓ30

∫ ∞

0

∫ ∞

0

χ2 (Ds + Dp) dχdξ. (A.1)

denoting layers by subscript number with ℓ0, ε0, and κ0 for the middle layer. The force

integral in (A.1) is dominated by the single value χ ≃ 1 due to the tradeoff between

the χ2 weighting factor under the integral, which increases with χ, and the decreasing

exponential exp(−2κ0ℓ0) = exp(−χ), which determines the reflection terms D(sp)
in (4),

through the products of Fresnel reflection coefficients from Eq. (11).

As Lifshitz points out [12], when the middle layer is sufficiently thin ℓ0 ≪ c/ωe, the

dominant wavenumber κ0 ∼ 1/ℓ0 is higher than the wavenumber for electronic vibrations

κ0 ≫ ωe/c. The permittivity εj(ξ) between layers changes little at frequencies ξ ≫ ωe

as is evident in Eq. (27), so the wavenumber between layers κj changes little too.

The jump coefficients rs± from (8) contribute little to the integral, and s polarization

effects and Ds can be ignored. Also dependencies upon κ in the p polarization jump

coefficients rp± from (9) or in Dp divide out. Taking contributions from only the nearest

jump in the Fresnel reflection terms, and dropping the product of reflection coefficients

from the denominator of Dp in (4), as it introduces a fourth-order effect in the relative

permittivity change compared to the main second-order effect, we obtain the Lifshitz

thin-layer Casimir force formula written for permittivities symmetric about a middle

j = 0 (Eq. (4.18) [21])

F⟨ =
~

8π2ℓ30

∫ ∞

0

(
∆ε(ξ)

ε(ξ)

)2

dξ. (A.2)

using a compact notation to denote the permittivity contrast ∆ε = (ε0 − ε±1)/2 =

(ε− − ε+)/2, and the average ε = (ε0 + ε±1)/2 = (ε− + ε+)/2 for layers numbered 0,

±1, even −, or odd +. As the permittivity ε(ξ) does not depend upon χ, the χ integral

factors out in the derivation as a Gamma function
∫∞
0

χ2e−χdχ = 2.

Supposing that the permittivity contrast arises due to static-permittivity

fluctuations ∆ε = (∂ε/∂εe)∆εe for permittivities defined in (27), we obtain an analytic

integral in (A.2) with the solution

F⟨ =
~ωe

√
εe

32πℓ30

(
∆εe
εe

)2

, (A.3)
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assuming a nonconductor ωp = 0 for simplicity. The thin-layer limiting force with a

fluctuating electronic vibration frequency ∆ε = (∂ε/∂ωe)∆ωe similarly gives

F⟨ =
~ωe

8πℓ30

(εe − 1)2

(ε
1/2
e + 1)3

(
∆ωe

ωe

)2

. (A.4)

Corresponding limiting behavior with varying plasma frequency or Drude parameter is

less obvious, as suggested in the numerical solutions described in Section 4.

When the middle layer is sufficiently thick, the main contribution to the Casimir

force in (A.1) comes from low frequencies, and wavenumber changes from layer to

layer cannot be ignored. If static-permittivity variations exist, then it seems a good

approximation to suppose that the permittivity is constant in frequency and well

approximated by its static value ε(ξ = 0) . A critical integral substitution allows

all of the variables of the problem to factor out and renders the integral essentially

constant over parameter ranges of interest. Such a substitution is suggested by the

behavior of the jump coefficients rs− in the low-frequency limit, which are equal to the

wavenumber contrast between layers rs− = ∆κ/κ. Differentiating κ with respect to ε in

the wavenumber definition in (5) allows us to translate the wavenumber contrast into a

static-permittivity contrast as

∆κ

κ
=

(
ξ
√

ε(0)

2cκ

)2
∆ε(0)

ε(0)
≃
(
ν

χ

)2
∆ε(0)

ε(0)
, (A.5)

where χ = 2κ0ℓ0 ≃ 2κℓ0 for small fluctuations ∆κ/κ, and defining a new variable

υ = ξℓ0
√

ε(0)/c. By substituting the new variable υ for ξ, the wavenumber contrast

becomes consolidated into a permittivity contrast with dimensionless coefficients defined

by the variables of integration. Such a substitution indeed factors out all spatial scale

dependencies and simplifies the integral in (A.1), giving

F⟩ ≃
µ~c√
ε(0)ℓ40

(
∆ε(0)

ε(0)

)2

. (A.6)

with the coefficient µ approximately constant over a wide range of static permittivity

contrasts. Lifshitz has shown this simplification to an equivalent expression for

noninfinitesimal permittivity contrasts, which leads to a nonanalytic exponential-type

integral he denotes ϕdd(ε1(0)/ε0(0)), which relates to our coefficient µ = (π2/240)ϕdd(1+

2∆ε(0)/ε(0)), writing the argument of ϕdd for small static-permittivity fluctuations

∆ε(0) ≪ ε(0). He evaluates the integral numerically and obtains ϕdd = 0.35 for

ε1(0)/ε0(0) & 0.3 (Eq. (4.22) [21]), which gives µ = 0.0144 for relative static-

permittivity fluctuations ∆ε(0)/ε(0) & −0.35. From the Lifshitz more general

formulation, when the sandwiching layers are nonconductors with large permittivity

contrast |∆εe| ≫ εe or pure conductors, the Casimir force is approximated as F⟩ in (1)

discussed in the introduction.

Only as long as the main permittivity fluctuations have a low-frequency component,

as in fluctuations of the static permittivity εe, the plasma frequency ωe, or the Drude

collision frequency Γp does the limiting thick-layer solution form (A.6) apply. It does not
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apply with permittivity fluctuations produced by fluctuations of the electronic vibration

frequency ωe as illustrated in the numerical examples from Section 4.

The cross-over thickness between the two power laws ℓ⟨⟩ is defined as F⟨(ℓ⟨⟩) =

F⟩(ℓ⟨⟩). Using (A.3) and (A.6) for static-permittivity fluctuations, we obtain

ℓ⟨⟩ = 1.448
c

ωeεe
, (A.7)

supposing that a permittivity contrast arises due to static-permittivity fluctuations with

∆ε(0) = ∆εe and ε(0) = εe. For the case in Figure 5 with ωe=2E16 rad/s and εe=6, we

obtain ℓ⟨⟩=3.62E−7 cm or λ⟨⟩=7.24E−7 cm=7.24 nm=E−6.14 cm, in good agreement

with the intersection of lines seen in the figure. The cross-over distance decreases

with increasing static permittivity, suggesting a smaller cross-over distance in more

conductive media.

Appendix B. Computational Considerations with a Graded Medium

Calculations of the Casimir effect in a medium with a small amplitude graded 1D

permittivity variation are based upon the force integral Eq. (6) with (4), with Fresnel

reflection coefficients defined by the integral (16) with (14) and (15). For numerical

calculations the spatial integral in (16) is best defined in the specific way

R(sp)−
(z) = Υ(sp)−

(z) + e−2
∫ z
za

κ(z′)dz′C(sp)−
, (B.1)

where

Υ(sp)−
(z) =

∫ z

zb

e2
∫ z′
za

(κ(z′′)−κ(z))dz′′r(sp)−
(z′)

(
1−R′

(sp)−
(z′)2

)
dz′, (B.2)

now including lower bounds on the integrals za for the integrating factor and zb for the

main integral. The lower bounds are arbitrary, and C(sp)−
is a constant of integration.

We have taken the external exponential factor under the integral, which is a form more

suitable for numerical calculations, as the wavenumber difference helps avoid very large

exponential factors at the limits of normal computer precision that arise in integrals of

the wavenumber κ(z). Integrals over a full long wave λ=1 µm are of order 1E6 at the

highest frequencies ϖ=6E20 rad/s, which would lead to cancelling exponential factors

of order exp(1E6).

Periodic solutions of wavelength λ require the condition R(sp)−
(zc) = R(sp)−

(zc+nλ)

for any origin zc and integer n. The condition uniquely determines the constant of

integration C(sp)−
, since the solutions must be periodic, as we have described in Section

3. Substituting with (B.1) then gives, with careful handling of the limits of integration

in the sums and differences of integrals that arise, the expression

e−2
∫ z
za

κ(z′)dz′C(sp)−
= e−2

∫ z
zc

κ(z′)dz′

(
Υ(sp)−

(zc + λ)−Υ(sp)−
(zc)

1− e−2
∫ zc+λ
zc

κ(z′)dz′

)
. (B.3)

Using this form to represent the constant of integration avoids other possible occurrences

of large exponential factors. The term is the offset in (B.1), which may be directly added
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to the integrals Υ(sp)−
(z) to give periodic solutions for the Fresnel reflection coefficients

R(sp)−
(z).
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