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Careful reading of the reported geometry of Einstein’s gravitational field re-
veals that the physicists have committed fatal errors in the elementary differ-
ential geometry of a pseudo-Riemannian metric manifold. These elementary
errors in mathematics invalidate much of the reported physics of Einstein’s
gravitational field. The consequences for astrophysical theory are significant.

I. Introduction

In the usual interpretation of Hilbert’s [1, 2, 3] ver-
sion of Schwarzschild’s solution, the quantity r therein
has never been properly identified. The physicists have
variously and vaguely called it “ the radius” of a sphere
[4, 5], the “radius of a 2-sphere” [6], the “coordinate
radius”[7], the “radial coordinate” [8, 9], the “radial
space coordinate” [10], the “areal radius” [7, 11], the
“reduced circumference” [12], and even “a gauge choice:
it defines the coordinate r” [13]. In the particular case
of r =2GM/c2 it is invariably referred to by the physi-
cists as the “Schwarzschild radius” or the “gravitational
radius”. However, the irrefutable geometrical fact is
that r, in the spatial section of Hilbert’s version of the
Schwarzschild/Droste line-element, is the radius of Gaus-
sian curvature [14, 15, 16, 17], and as such it does not in
fact determine the geodesic radial distance from the cen-
tre of spherical symmetry located at an arbitrary point
in the related pseudo-Riemannian metric manifold. It
does not in fact determine any distance at all in the
spherically symmetric metric manifold. It is the radius
of Gaussian curvature merely by virtue of its formal ge-
ometric relationship to the Gaussian curvature. It must
also be emphasized that a geometry is completely deter-
mined by the form of its line-element, a fact that the
physicists, with few exceptions [18], have not realised.

It immediately follows from the invalidity of Ric = 0
that Einstein’s conceptions of the conservation and lo-
calisation of gravitational energy are erroneous and in
conflict with the usual conservation of energy and mo-
mentum, and that the current search for Einstein’s grav-
itational waves is ill-conceived. Also, the concepts of
black holes and their interactions are ill-conceived and
the two-body problem has been neither correctly for-
mulated nor solved by means of the General Theory of
Relativity.

II. Gaussian curvature

Recall that Hilbert’s version of the “Schwarzschild”
solution is (using c=G =1),

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2

−r2
(
dθ2 + sin2 θdϕ2

)
, (1)

wherein r can, by assumption (i.e. without any proof), in
some way or another, go down to zero, and m is allegedly
the mass causing the gravitational field. Schwarzschild’s
[19] actual solution, for comparision, is

ds2 =
(
1− α

R

)
dt2 −

(
1− α

R

)−1

dR2

−R2
(
dθ2 + sin2 θdϕ2

)
,
(2)

R = R(r) =
(
r3 + α3

) 1
3 , 0 ≤ r < ∞,

α = const.

Note that (2) is singular only when r =0 (in which case
the metric does not actually apply), and that the con-
stant α is indeterminable (Schwarzschild did not assign
any value to the constant α for this reason).

For a 2-D spherically symmetric geometric surface
[20] determined by

ds2 = R2
c(dθ2 + sin2 θdϕ2), (3)

Rc = Rc(r),

the Riemannian curvature (which depends upon both
position and direction) reduces to the Gaussian curva-
ture K (which depends only upon position), given by
[14, 21, 22, 23, 24],

K =
R1212

g
,
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where Rijkm = ginRn
.jkm is the Riemann tensor of the

first kind and g = g11g22 = gθθgϕϕ (because the metric
tensor is diagonal). Recall that

R1
.212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γk

22Γ
1
k1 − Γk

21Γ
1
k2,

Γα
αβ = Γα

βα =
∂

∂xβ

(
1
2

ln |gαα |
)

,

Γα
ββ = − 1

2gαα

∂gββ

∂xα
, (α 6= β),

and all other Γα
βγ vanish. In the above, k, α, β =1, 2,

x1 = θ and x2 =φ, of course. Straightforward calculation
gives for expression (3),

K =
1

R2
c

,

so that Rc is the inverse square root of the Gaussian
curvature, i. e. the radius of Gaussian curvature, and so
r in Hilbert’s “Schwarzschild’s solution” is the radius of
Gaussian curvature. The geodesic (i.e. proper) radius,
Rp, of the spatial section of Schwarzschild’s solution (2),
up to a constant of integration, is given by

Rp =
∫

dR(r)√
1− α

R(r)

, (4)

and for Hilbert’s “Schwarzschild’s solution” (1), by

Rp =
∫

dr√
1− 2m

r

.

Thus the proper radius and the radius of Gaussian curva-
ture are not the same. The radius of Gaussian curvature
does not determine the geodesic radial distance from the
arbitrary point at the centre of spherical symmetry of
the metric manifold. It is a “radius” only in the sense of
it being the inverse square root of the Gaussian curva-
ture. A detailed development of the foregoing, from first
principles, is given in [14] and [15].

Note that in (2), if α =0 Minkowski space is recov-
ered:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

0 ≤ r < ∞.

In this case the radius of Gaussian curvature is r and the
proper radius is

Rp =
∫ r

0

dr = r,

so that the radius of Gaussian curvature and the proper
radius are identical. It is for this reason that in the space-
time of Minkowski the radius of Gaussian curvature can
be substituted for the proper radius (i.e. the geodesic
radius). However, in the case of a (pseudo-) Rieman-
nian manifold, such as (1) and (2) above, only the great
circumference and surface area can be determined via
the radius of Gaussian curvature. Distances from the
arbitrary point at the centre of spherical symmetry to a
geodesic spherical surface in a Riemannian metric man-
ifold can only be determined via the proper radius, ex-
cept for particular points (if any) in the manifold where
the radius of Gaussian curvature and the geodesic ra-
dius happen to be identical, and volumes by a triple
integral involving a function of the radius of Gaussian
curvature. In the case of Schwarzschild’s solution (2)
(and hence also for (1)), the radius of Gaussian curva-
ture, Rc =R(r), and the proper radius, Rp, are identical
only at Rc ≈ 1.467α. When the radius of Gaussian cur-
vature, Rc, is greater than ≈ 1.467α, Rp > Rc , and when
the radius of Gaussian curvature is less than ≈ 1.467α,
Rp < Rc.

The upper and lower bounds on the Gaussian curva-
ture (and hence on the radius of Gaussian curvature) are
not arbitrary, but are determined by the proper radius
in accordance with the intrinsic geometric structure of
the line-element (which completely determines the ge-
ometry), manifest in the integral (4). Thus, one cannot
merely assume, as the physicists have done, that the ra-
dius of Gaussian curvature for (1) and (2) can vary from
zero to infinity. Indeed, in the case of (2) (and hence also
of (1)), as Rp varies from zero to infinity, the Gaussian
curvature varies from 1/α2 to zero and so the radius of
Gaussian curvature correspondingly varies from α to in-
finity, as easily determined by evaluation of the constant
of integration associated with the indefinite integral (4).
Moreover, in the same way, it is easily shown that ex-
pressions (1) and (2) can be generalised [17] to all real
values, but one, of the variable r, so that both (1) and
(2) are particular cases of the general radius of Gaussian
curvature, given by

Rc = Rc(r) =
(∣∣r − r0

∣∣n + αn
) 1

n

, (5)

r ∈ <, n ∈ <+, r 6= r0,

wherein r0 and n are entirely arbitrary constants.
Choosing n =3, r0 =0 and r > r0 yields Schwarzschild’s
solution (2). Choosing n =1, r0 =α and r > r0 yields
line-element (1) as determined by Johannes Droste [25]
in May 1916, independently of Schwarzschild. Choosing
n =1, r0 =α and r < r0 gives Rc =2α − r, with line-
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element

ds2 =
(

1− α

2α− r

)
dt2 −

(
1− α

2α− r

)−1

dr2

−(2α− r)2
(
dθ2 + sin2 θdϕ2

)
.

Using relations (5) directly, all real values of r 6= r0 are
permitted. In any case, however, the related line-element
is singular only at the arbitrary parametric point r = r0

on the real line (or half real line, as the case may be),
which is the only parametric point on the real line (or
half real line, as the case may be) at which the line-
element fails (at Rp(r0)= 0 ∀ r0 ∀ n). Indeed, substi-
tuting (5) for R(r) in (4), and evaluating the constant of
integration gives

Rp =
√

Rc (Rc − α) + α ln

(√
Rc +

√
Rc − α

√
α

)
,

where Rc =Rc(r) is given by (5).
Note that in the Standard Model interpretation of

(1), only g00 and g11 are modified by the presence of
the constant m. However, according to (2) and (5) all
the components of the metric tensor are modified by the
constant α, and since (1) is a particular case of (5), all
the components of the metric tensor of (1) are modified
by the constant α as well.

The Kruskal-Szekeres coordinates do not take into ac-
count the Gaussian curvature of the spherically symmet-
ric geodesic surface in the spatial section of the
Schwarzschild manifold. These coordinates thereby vi-
olate the geometric form of the line-element, produc-
ing a completely separate pseudo-Riemannain manifold
that does not form part of the solution space of the
Schwarzschild manifold [36], and are consequently in-
valid. The concept of the Black Hole is therefore invalid.

III. The non-existence of point-mass singularities

According to Special Relativity, infinite densities are
forbidden because their existence implies that a mate-
rial object can acquire the speed of light c in vacuo (or
equivalently, the existence of infinite energies), thereby
violating the very basis of Special Relativity. Since Gen-
eral Relativity cannot violate Special Relativity, Gen-
eral Relativity must thereby also forbid infinite densi-
ties. Point-mass singularities are alleged to be infinitely
dense objects. Therefore, point-mass singularities are
forbidden by the Theory of Relativity.

Let a cuboid rest-mass m0 have sides of length L0.
Let m0 have a relative speed v < c in the direction of one
of three mutually orthogonal Cartesian axes attached to
an observer of rest-mass M0 . According to the observer

M0 , the moving mass m is

m =
m0√
1− v2

c2

, (6)

and the volume V thereof is

V = L3
0

√
1− v2

c2
. (7)

Thus, the density D is

D =
m

V
=

m0

L3
0

(
1− v2

c2

) , (8)

and so v → c ⇒ D → ∞. Since by (6) no material
object can acquire the speed c (this would require an
infinite energy), infinite densities are forbidden by Spe-
cial Relativity, and so point-mass singularities are for-
bidden. Since General Relativity cannot violate Special
Relativity, it too must thereby forbid infinite densities
and hence forbid point-mass singularities [1, 15, 17, 19].
Point-charges too are therefore forbidden by the Theory
of Relativity since there can be no charge without mass.

IV. Ric = 0 is inadmissible

According to Einstein [26], his ‘Principle of Equiv-
alence’ (equivalence of gravitational and inertial mass)
requires that Special Relativity manifest in any freely
falling inertial frame located in a sufficiently small re-
gion of the gravitational field. Now Special Relativity
permits the presence of arbitrarily large (but not infi-
nite) masses in spacetime, which are subject to the mass
dilation relation (expression (6) above; and hence also
to expressions (7) and (8) as well), and the definition
of a relativistic inertial frame requires the a priori pres-
ence of two masses; the mass of the observer and the
mass of the observed (to define relative motion of ma-
terial bodies). In addition, at any instant the masses
defining the freely falling inertial frame (and hence any
other masses present therein) can have a speed up to but
not including the speed of light in vacuo, by the action
of the gravitational field. However, Rµν =0 precludes,
by definition, the presence of any masses and energies
in the gravitational field because the energy-momentum
tensor Tµν =0 by hypothesis. Therefore, Special Rel-
ativity cannot manifest in any “freely falling” inertial
frame in the spacetime of Rµν =0. Indeed, a “freely
falling” inertial frame cannot even be present since its
very definition requires the presence of two masses which
are, at any instant, subject to mass dilation under the
action of the gravitational field. Similarly the equiva-
lence of gravitational and inertial mass cannot manifest
in the absence of matter in the gravitational field. Thus,
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Rµν =0 violates Einstein’s ‘Principle of Equivalence’ and
is therefore inadmissible – it does not describe Einstein’s
gravitational field. Matter can only be introduced into
Einstein’s gravitational field via the energy-momentum
tensor since it alone is what specifies that which phys-
ically causes the curvature of spacetime (i.e. the grav-
itational field). Clearly, the standard a posteriori and
ad hoc introduction of matter as the physical cause of
spacetime curvature, into the so-called “Schwarzschild
solution” for Rµν =0, violates the requirements of Ein-
stein’s theory because the energy-momentum tensor is
set to zero in that case.

V. Gravitational energy cannot be localised

Since Rµν =0 does not describe Einstein’s gravita-
tional field, the energy-momentum tensor can never be
zero (i.e. if Tµν =0 there is no gravitational field), so
Einstein’s field equations

Gµν = Rµν −
1
2
gµνR = −κTµν

can be written as [21, 27, 28]

1
κ

Gµν + Tµν = 0, (9)

wherein the Gµν/κ are the components of a gravitational
energy tensor. Thus, Gµν/κ and Tµν vanish identically ;
the total energy is always zero; there is no localisation of
gravitational energy (i.e. there are no Einstein gravita-
tional waves). The current international search for Ein-
stein’s gravitational waves is destined to detect nothing.

It is of interest to note that Einstein’s pseudo-tensor
is frequently utilised as a basis for the localisation of
gravitational energy [9, 18, 21, 26, 29, 30]. From the
foregoing it is evident that this cannot be correct. This
is reaffirmed by the fact that Einstein’s pseudo-tensor
is mathematically (and hence also physically) meaning-
less, because it implies the existence of an invariant that
has no mathematical existence [28]. Indeed, Einstein’s
pseudo-tensor,

√
−g tµν , is defined as [9, 18, 21, 26, 28,

29, 30],
√
−g tµν =

1
2

(
δµ
ν L− ∂L

∂gσρ
,µ

gσρ
,ν

)
wherein L is given by

L = −gαβ
(
Γγ

ακΓκ
βγ − Γγ

αβΓκ
γκ

)
.

Contracting the pseudo-tensor and applying Euler’s the-
orem yields, √

−g tµµ = L,

which is a 1st-order intrinsic differential invariant that
depends only upon the components of the metric ten-
sor and their 1st derivatives. However, the mathemati-
cians Ricci and Levi-Civita [31] proven in 1900 that such

invariants do not exist. Consequently, everything built
upon Einstein’s pseudo-tensor is invalid. Eddington’s
[30] other objections to the pseudo-tensor are therefore
quite well-founded.

Similarly, Einstein’s field equations cannot be lin-
earised because linearisation implies the existence of a
tensor that, except for the trivial case of being zero, does
not otherwise exist, as proven by Hermann Weyl in 1944
[32].

Since it has already been proven elsewhere [33] that
the so-called “cosmological constant” must be precisely
zero, expression (9) can contain no other terms.

Einstein’s General Theory of Relativity is therefore
in conflict with the usual conservation of energy and mo-
mentum. The usual conservation of energy and momen-
tum is well established experimentally, so if the usual
conservation of energy and momentum is valid, then
General Relativity is invalid, taking with it the alleged
expansion of the Universe and the Big Bang cosmology.

VI. The two-body problem

Einstein’s field equations are non-linear, so the ‘Prin-
ciple of Superposition’ cannot apply. Therefore, before
one can talk of relativistic binary systems it must first
be proven that the two-body system is theoretically well-
defined by General Relativity. This can be done in only
two ways:

(a) Derivation of an exact solution to Einstein’s field
equations for the two-body configuration of mat-
ter; or

(b) Proof of an existence theorem.

There are no known solutions to Einstein’s field equa-
tions for the interaction of two (or more) masses, so op-
tion (a) has never been fulfilled. No existence theorem
has ever been proven, by which Einstein’s field equations
even admit of latent solutions for such configurations of
matter, and so option (b) has never been fulfilled. The
black hole is allegedly obtained from a line-element sat-
isfying Ric =0. Ignoring for the moment that Ric =0
violates Einstein’s ‘Principle of Equivalence’, and, for
the sake of argument, assuming that black holes are pre-
dicted by General Relativity, since Ric =0 is a state-
ment that there is no matter in the Universe, one can-
not simply insert a second black hole into the spacetime
of Ric = 0 of a given black hole so that the resulting
two black holes (each obtained separately from Ric =0)
mutually interact in a mutual spacetime that by defini-
tion contains no matter ! One cannot simply assert by
an analogy with Newton’s theory that two black holes
can be components of binary systems, collide or merge
[34, 35], because the ‘Principle of Superposition’ does
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not apply in Einstein’s theory. Moreover, General Rela-
tivity has to date been unable to account for the simple
experimental fact that two fixed bodies will attract one
another when released.

Thus, the concepts of black holes, black hole binaries,
collisions and mergers are all invalid.
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