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Abstract

The Diophantine equations a>+mb* =c", and a®+mb®=d? have infinitely many nonzero
integer solutions, Using the methods of infinite descent and infinite ascent we prove
y; £my, = R?. Using this method you prove Beal conjecture and obtain a prize of $100,000[4].

Using this method in 1978 Jiang has proved Fermat last theorem[ Chun-Xuan Jiang,A general
proof of Fermat last theorem,July 1978,Mimeograph papers].

The Diophantine equation

a’+b*=c’, (1
has infinitely many nonzero integer solutions. But it is difficult to prove this [1,2]. In this paper we
prove some theorems.
Theorem 1. The Diophantine equation

a’+mb®=c" (2)

has infinitely many nonzero integer solutions.
We define supercomplex number [3]

X —my
Z= =X+yJ, €P)
y X
where
0 -m )
J= , Jo=-m
1 0
Then from equation (3)
2"=(x+yJ)"=a+hJ. (4)



Let n be an odd number

(n-1)/2

a
k=0

Let n be an even number

n n
(_m)k Xn—2k y2k , b —
2) >

Then from (4) the circulant matrix

n/2

2

k=0

n

a
(Zk +1

x -my) (a -mb
b6
Then from (5) circulant determinant
x -myl" la -mb
y X b al’
Then from equation (6)
¢" =a’+mb?,
where
c=x>+my’.

We prove that (2) has infinitely many nonzero integer solutions.
Theorem 2. The Diophantine equation

a?—mb?=¢"

has infinitely nonzero integer solutions.
Define supercomplex number [3]

X

where

Then from equation (9)
2"=(x+yJ)"=a+hJ.

Let n be an odd number

n
[2k +1] (=m)"x

k y,n-2k-1,,2k+1

y

(n-1)/2 n (n-1)/2 n
a= Z kan—Zk y2k b — mkxn—2k—ly2k+l .
= 2k = (2k+1

Let n be an even number

j (_m)k Xn—2k—ly2k+l .

(5)

(6)

(7

(8)

D)

(10



a= n/zz n kan—Zk y2k b — nil n mkxn—Zk—ly2k+l .
~ | 2k & (2k+1

Then from (10) circulant matrix

n
X my a mb
= , 1D
y X b a
Then from (11) circulant determinant

n

X myl |a mb
= , (12)
y X b a
Then from equation (12)
¢" =a’-mb?, (13)
where
c=x>—my°.
We prove that (8) has infinitely many nonzero integer solutions.
Theorem 3. The Diophantine equation
a’+mb® +m°c® —3mabc=d" (14)
has infinitely many nonzero integer solutions
Define supercomplex number [3]
X mz my
w=ly x mz|=x+yJ+2z)?, (15)
zZ Yy X
where
0 0 m 0O m O
J=[1 0 0|, J°=|0 0 m|, J°=m
010 1 0 O
Then from (15)
W' =(x+yJ+2J%)"=a+bl +cl’ (16)
Then from equation (16) circulant matrix
x mz my) (a mc mb
y x mz|=lb a mc (17
Z Yy X c b a

Then from equation (17) circulant determinant



x mz my|" |a mc mb
y x mzl =lb a mc (18)
Z Yy X c b a

Then from equation (18)
d" =a®+mb®+m?c® - 3mabc (19)
where
d = x> +my® +m?z% —3mxyz (20)

We prove that (14) has infinitely many nonzero integer solutions.
Suppose N=2 and ¢ =0. Then from (19)

a’+mb®=d?’ (21)
when n=2 from (16)

a=x"+2myz=0, b=2xy+mz*#0, c=y’+2x2=0 (22
Then from (22) y=-2xz.

Let 7=-2, x=P% y=2P, (23)

where P >1 isan odd number.
Substituting (23) into (20) and (22)

d=P°+20mP°-8m? a=P*‘-80mP, b=4P°+4m (24)

Using equation (24) we prove that (21) has infinitely many nonzero integer solutions.
Theorem 4. The Diophantine equation

a®>—mb®*+m?c®+3mabc=d" (25)

has infinitely many nonzero integer solutions.
Define supercomplex number [3]

X —-mz -—my

w=ly x -mz|=x+yl+z2]°, (26)
z y X
where
0 0 —m 0 -m O
J=[1 0 0] J*=/0 0 -m|, JP=-m,
01 0 1 0 O
Then from (26)
W' =(x+yJ+2J%)"=a+bl +cl’ 27

Then from (27) circulant matrix



n
X —mz —my a —mc -mb
y X -mz|=b a -mc|,
z y X c b a
Then from equation (28) circulant determinant
n
X —-mz —-my| |a —-mc -—-mb
y x -mzl =b a -mc|.
z y X c b a

Then from (29)

d" =a®-mb® +m*c® +3mabc
where

d=x>—my®+m?z® +3mxyz.

We prove that (25) has infinitely many nonzero integer solutions.
Suppose N=2 and ¢ =0. Then from (30)

a’—mb® =d?
When n=2 from (27)

a=x"-2myz#0, b=-mz®+2xy#0, c=y*+2xz=0

Then from (33)  y* =-2xz
Let 7=-2, x=P? y=2P,
where P >1 isanodd numer.

Substitutin (34) into (31) and (33)
d =P°-20mP®-8m?, a=P*+8mP, b=4P°®-4m

Using (35) we prove that (32) has infinitely many nonzero integer solutions.
Theorem 5. Define supercomplex number

(28)

(29

(30

3D

X, —-mx, -mx, -mx,
X —-mx, —mx
w=| 2 % 4 Pl x % d + % d7+x,d°,
X, X, X, —Mx,
X4 X3 X2 X1
where
0 0 0 —m 0 0-m O 0O -m O
,|to0o 0| o0 0 -m 0 0 -m
lo10 o ~ 120 0 o " |o 0 o0
001 O 01 O 0 1 0 0

(32)

(33)

(34)

(35)

(36)



Then from (36)
W= (X +Xd + X7+ %,3%)" =y, +y,d +y, I P +y,J° (37)
Then from (37)
R™ =y, (38)

where
R =X +M(X; +2X2X2 — AX X2 X, + X, XX, )+ M (X5 + 2X2XE + 4% X, X2 — 4X, X, X2)
+m3x],

2

Vi = Vi + My, +2Y7Y5 =AY Yoy, +4Y, Y Y,) + M2 (ys + 2V, V5 +4Y, Vs Ys —4Y,Y,Ys)

+my;.
(39)
We prove that (38) has infinitely many nonzero integer solutions,
Suppose N=2,y,#0,y,#0,y,=0 and y, =0, from (38) and (39)
R* =y, +my, (40)
When n=2 from (37)
y, = X2 —mxZ —2mx,x, # 0, (41)
Y, :2(X1X2_mX3X4)¢0: (42)
Y, = X5 —mx; +2xX, =0, (43)
Y, =2(%X, +X,%;) =0, (44)
Then from (44)
X
Xy =— al (45)

Substituting (45) into (43)

Then from (46)
RZ = x' +mx; . 47

If (47) has no nonzero integer solutions, R, <R, using the method of infinite descent we prove

(40) has no nonzero integer solutions. If (47) has one nonzero integer solution, R, <R, using the

method of infinite ascent we prove (40) has infinitely many nonzero integer solutions.



Suppose m=1 from (47)

RZ=x* +x’ (48)
has no integer solutions.
Suppose m=2 from (47)

RZ = x* +2x} (49)
has no nonzero integer solutions.
Suppose M =8 [4] from (47)

R =X +8xX, (50)

We have a solution 3° =1 +8(1*). Let X, =1,x, =1. Then from (45) and (46) X, =1/2,
X, =—1/2.Then from (41)and (42) y,=7,Y,=6, 7 +8x6"' =113
Let X, =7,X,=6,X=-14/9,x,=4/3 . Then from (41) and (42) Yy, = —796%1,
y, =94927 . 7967" +8x9492" = 262621633".
Suppose m =73 [5]. From (47)

R =X +73xX; . (51)

We have 6*+73(1") =377, 1223* + 73x 444" = 2252593
Suppose M =89 [5]. From (47),
R =X +89xX; . (52)

We have 2% +89x3* =85%, 7193*+89x1020* = 52662001

If m=R’-1 and m=R}—X, then (40) has infinitely many nonzero integer solutions.

Theorem 6. The Diophantine equation

y, —my; =R?, (53)
where
y, = X2 +mx; +2mx,x, #0, (54)
Y, =2(X X, + Mx;X,) # 0, (55)
Y, = X5 +MX; +2% X, =0, (56)
Yy =2(%X, +X,%;) =0. (57)



Then from (57)

X
Xy =— a7l (58)
X2
Substituting (58) into (56)
2 + 4 mX4
X, = % ZN 2 (59)
mXx,
Then from (59)
X' —mx; =R/, (60)

If (60) has no nonzero integer solutions. R, <R, using the method of infinite descent we prove

(53) has no nonzero integer solutions. If (60) has one nonzero integer solution, R, <R, using the

method of infinite ascent we prove (53) has infinitely many nonzero integer solutions.
Suppose m=1 from (60)

X —x; =R’. (61)
has no nonzero integer solutions.
Suppose m = 2, from (60)
x; —2x; =R?, (62)
has no nonzero integer solutions.
Suppose m=7 from (60)
X' ~7x¢ =RZ. (63)
We have one solution
2'-7(1H) =3

Let X, =2,X,=1. Then from (58) and (59) X;=-2, X, =1. Then from (54) and (55)

y,=2x23, y,=-2x12. 23" -7x12* =367°. We prove (63) has infinitely many nonzero
integer solutions.

If m= Xf — Rf, then (53) has infinitely many nonzero integer solutions. Our method [3] is used
in studies of the Diophantine equations

yptmy, =R*,n=2,34,..;e=234,.,m=12,3,... (61)
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Automorphic Functions
And
Fermat’s Last Theorem(1)

Chun-Xuan Jiang
P.0.Box 3924,Beijing 100854,China
jlangchunxuan@vip.sohu.com

Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate
into two biquadrates, or in general any power higher than the second into powers of like degree: |
have discovered a truly marvelous proof, which this margin is too small to contain.”

This means: X" +y" =z"(n>2) has no integer solutions, all different from 0(i.e., it has
only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last

theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat



proved FLT for exponent 4. Euler proved FLT for exponent 3.
In this paper using automorphic functions we prove FLT for exponents 3P and P, where

P is an odd prime. The proof of FLT must be direct. But indirect proof of FLT is dishelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic

fields

n-1 ) n _

exp(z tiJ'j: S (1

i=1 i=1
where J denotesa nthrootof unity, J" =1, n isan odd number, t; are the real numbers.
S, is called the automorphic functions(complex hyperbolic functions) of order n with
n—1 variables [1-7].

n-1

S, L e +2) (-1 e cos(é’j +(_1)ij (2)
n =t n
where i=1,2,...,n;
n-1 n-1 ai aj7r
A=t , B, =) t,(-1) cos—=,
a-1 a=1
n-1
o nt . i 2
0, = (-1 t, (1) sin“T‘”, A+2> B, =0 3)
=1 j=1
(2) may be written in the matrix form
1 1 0 0 ]
— — . r A |
S, 1 —cosZ —sinZ ... —sinw €
s, n n 2n 2e™ cos 6,
33 :i 1 Cogz_ﬂ Sinz_” _Sinw 2e™ sin (91 (4)
n n n
S o 2expB, ,sind, ,
o 1 cosND7 G (D7 (=Y L ? -
L n n 2n |

where (n—1)/2 isan even number.

From (4) we have its inverse transformation

10



eA

e cosé,
e%sing,

exp(an)sin(@nj)

2 2

From (5) we have

1 1 1
T 27
1 —C0S— COS—
n n
0 —sin£ sinz—ﬁ
n n
0 —sinN=D7 g, (n=D7
2n n

n n-1 = H
e - ;Si . ecosd, =S, +Zl:Sl+i (-1)" cos”T”

n-1
Bj _ j+
e’ sing, =(-1)"">’s

1+i (_1)ij sin ”_72-1
1 n

cos (n-Dx

sin ("=97

2
_sin(n=D°7
2n

(6)

In (3)and (6) t, and S, have the same formulas. (4) and (5) are the most critical formulas of

proofs for FLT. Using (4) and (5) in 1991 Jiang invented that every factor of exponent n has the
Fermat equation and proved FLT [1-7] Substituting (4) into (5) we prove (5).

1 1 1
) R )
e T 27
1 —C0S— CoS—
e cosé, n n
e" sin 6, Yoo sin® sin 2%
n n n
exp(B,_)sin(d, )
- ? - 0 —sin(N=V7 g (=07
L 2n n
1 1 0 0
1 —cosZ _sinZ —sin (n—1)z
n n 2n
1 cosz—” sinz—” —sin (n—1)z
n n n
_ _ _ 2
1 cos(n DL sin(n )z sin(n )7
L n n 2n

11

1

n
sin (1=D7
n

_1\2
—sin—(n V7

2n

eA

2e® cos 4,
2e%sin g,

2exp(B,,)sin(9,)

2 2




n 0 O 0
eA
o X oo 0
2 2e™ cos 4,
— 1 0 0 E 0 2e™ sin 01
n 2
2exp(Bn—l)Sin(en—l)
0 0 0 uy 2 ?
L 2 |
_ o -
e cos 6,
_ e%sing, ,
exp(Bn—l)Sin(en—l)
L 2 2
where 1+ 3 (Cosj—ﬂ)z—E nf‘ (Sinj—ﬂ)2 _n
i1 n 2 , =1 n 2 '
From (3) we have
n-1
2.
exp(A+2) B;)=1.
j=1
From (6) we have
.S, S,| [S, (S
< S S S S S
eXp(A+ZZBJ): 2 1 3 — 2 ( 2)1
~ . .
Sn Sn—l Sl Sn (Sn)l
0S.
where S), =—1[7].
(S); a [7]
From (8) and (9) we have the circulant determinant
n-1 S1 Sn
< S S
exp(A+2) B)=|*
=
Sn Sn—l

(7
(8
(Sl)n—l
S
( Z)n—l , (9)
(Sn)n—l
SZ
S
7l=1 (10)
Sy

If S, #0,where i=12,---,n, then (10) has infinitely many rational solutions.

Assume S, #0, S,#0,

equations with n—1 variables. From (6) we have

12

S,=0 where i=34,---,n.5,=0 are n—2 indeterminate



e =5,+5,, % =52+524255,(-1) cos~
n

From (10) and (11) we have the Fermat equation

n-1 n-1

2 2 . i
exp(A+2) B;)=(S,+S,) jr:Il(Sl2 +872+2S,S,(-1)’ cosJT”) =S'+S) =1

j=1
Example[1]. Let n=15. From (3) we have

A=t +t,)+(t +t)+ (G +t,)+(t, +t,) + (& +t,) +(t +t)+ (L, +t)
2r 3 4
B, =—(t +t14)cosl5+(t +1,)C0S— s —(t, +t,)cos— 1 +(t, +t11)cosE

Y/4 67 1
—(t; + coS—+(t; +1;) cos——(t, +1t;)cos—,

o
N
Il

27 A7 67 8r
t+ cos—+(t, + cos—+(t,+t,)cos—+(t, +t,)cos—
(t+1,4) 008 T+ (t +4;) €05+ (t +1,) 008+ (¢, + ) c08 2

10z 127 14~
+(t. +t,)cos——+ (t, +t,)cos——+ (t, +t,) cOS——,
(t +1p) 15 (t; +15) s (t, +t) G

3 67 O 127
B,=—(t +t,)cos—+(t, +t.)cos——(t, +t.,)cos—+(t, +t.)CcOS——
o ==t +1,) 008 T (8 +1,5) 0087 — (8 +1,,) 008+ (¢, +1,,) 005 =~

157z 187 21x
—(t. + cos——+(t. +t,)cos———(t, +t,)cos—,
(t +1p) 15 (t; +1,) T —(t; +1,) T

A7 8r 127 167
B, =(t +t,)cos—+(t, +t.,)cos—+(t, +t.,)cos——+(t, +t,.,)COS——
= () 008 T (t +4,) 008+ (b +1,,) €08 ==+ (¢, + 1)

207 24 287
+(t. +t,,)cos——+ (t. +t,) cos——+ (t, +t,) coOS——,
(t +1p) 15 (t; +1,) I (t, +t) 1

Y4 10 157 207
B, = +t,)cos—+(t, +t,)cos———(t, +t.,)cos——+(t, +t.)COS——
~(t 1) €08+ (; +53) 008— =~ (t +1,) €05+ (t, +1,) c0s -

257 30z 357
—(t. + cos——+(t. +t,)cos—— +t,)cos—,
(5 t"lO) 15 (6 9) 15 ( ) 15
67 127 187 24rx
+t,)cos—+(t, + cos——+(t,+t,)cos——+(t, +t.)cos—
=(t +1,) 1 (t, +13) I (t+1,) T (t, +1,) L

30z 367 427
+(t. +t,)cos——+ (t, +t,)cos——+ (t, +t,)coOs—,
(t +1p) 15 (t; +15) T (t, +t) T

1 14~ 21r 287
t+ cos—+(t, + cos———(t, + cos——+(t, + coS——
==t 1) 008 T+ (t +115) COS == (t +1,) COS T+ (ty +1) COS

357 427 4977
t. + cos——+(t. +t,)cos———(t, +t,)cos—,
—(t; +1,) 15 (t; +1,) I —(t; +1,) 1

.
A+2) B, =0,  A+2B,+2B;=5(t; +1,).
Form (12) we have the Fermat equation

7
exp(A+2D B,) =S +5;" =(S7)° +(S;)° =1.

=1

13

1D

(12)

(13)

(14)



From (13) we have
exp(A+ 2B, +2B,) = [exp(t, +1,,)]°. (15)
From (11) we have
exp(A+2B, +2B,) =S +S;. (16)
From (15) and (16) we have the Fermat equation
exp(A+2B, +2B,)=S. +S; = [exp(t; +t,,)]°. (17

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17)
has no rational solutions for exponent 5[1].

Theorem 1. [1-7]. Let n=3P ,where P >3 is odd prime. From (12) we have the Fermat’s
equation

3P-1
exp(A+2) B,) =S +S;F =(S7)*+(S;)’ =1. (18)
j=1
From (3) we have
E
2
exp(A+ 22 st) =[exp(t; + tzp)]P . (19)
j=1
From (11) we have
E
2
exp(A+2) B;)=S+S;. (20)
j=1

From (19) and (20) we have the Fermat equation
P-1

z
exp(A+2) By) =S +S; =[exp(t, +1,,)]". (21)
i1

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21)
has no rational solutions for P >3 [1, 3-7].
Theorem 2. In 1847 Kummer write the Fermat’s equation

X" +yP=2° (22)
in the form
(X+ Y)(X+ry)(X+r2y)-- (x+r7y) = 2° (23)

2r . . 2
where P is odd prime, r=cosFﬂ+|smFﬁ.

Kummer assume the divisor of each factor is a P th power. Kummer proved FLT for prime
exponent p<100 [8]..
We consider the Fermat’s equation

x4y =2 (24)

we rewrite (24)

14



(") +(y") = (") (25)
From (24) we have

(X" +yP )X +ry?) (X" +r2yP) =2°° (26)

2r . . 27w
where =c0S—+1SIN—
3 3

We assume the divisor of each factor isa P th power.

X
Let S, =—, S, = 1. From (20) and (26) we have the Fermat’s equation
YA YA

X" +y" =[zxexp(t, +t,,)] (27)

Euler proved that (25) has no integer solutions for exponent 3[8]. Therefore we prove that (27) has

no integer solutions for prime exponent P .
Fermat Theorem. It suffices to prove FLT for exponent 4. We rewrite (24)

()" +(y°) = (2°)° (28)

Euler proved that(25)has no integer solutions for exponent 3 [8]. Therefore we prove that (28) has

no integer solutions for all prime exponent P [1-7].
We consider Fermat equation

x4P 4 y4P — 74P (29)

We rewrite (29)
") +((y") = (") (30)
)" +(y")" =" (31)

Fermat proved that (30) has no integer solutions for exponent 4 [8]. Therefore we prove that (31)
has no integer solutions for all prime exponent P [2,5,7].This is the proof that Fermat thought to
have had.

Remark. It suffices to prove FLT for exponent 4. Let n=4P , where P is an odd prime. We
have the Fermat’s equation for exponent 4P and the Fermat’s equation for exponent P [2,5,7].
This is the proof that Fermat thought to have had. In complex hyperbolic functions let exponent
n be n=IIP, n=2I1P and n=4I1P. Every factor of exponent N has the Fermat’s
equation [1-7]. In complex trigonometric functions let exponent n be n=IIP, n=2I1P
and n=4I1P. Every factor of exponent N has Fermat’s equation [1-7].Using modular elliptic
curves Wiles and Taylor prove FLT[9,10].This is not the proof that Fermat thought to have had.
The classical theory of automorphic functions, created by Klein and Poincare, was concerned with
the study of analytic functions in the unit circle that are invariant under a discrete group of
transformations. Automorphic functions are generalization of the trigonometric,hyperbolic,elliptic,
and certain other functions of elementary analysis. The complex trigonometric functions and
complex hyperbolic functions have a wide application in mathematics and physics.
Acknowledgments.We thank Chenny and Moshe Klein for their help and suggestion.
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