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It is shown that a particle set possessing electric charges, masses, and weak couplings that co-
incide with those of the quarks and leptons can be produced with the aid of the symmetry of the
cuboctahedron. Specifically, it is shown that small powers of 4.1, in combination with the constants
0.1 and 3, are useful in economically reproducing the quark and lepton masses, and that these small
powers—and thereby the masses they represent—can be joined automatically with their correct
values for charge and generation with the aid of cuboctahedral symmetry.

PACS numbers: 12-15Ff

I. THE QUARK AND LEPTON MASS RATIOS

It is possible with the aid of the symmetry of the
cuboctahedron to generate a particle set possessing
charges, masses, and generations that coincide with
those of the quarks and leptons [1]. Note that the twelve
vertices of a cuboctahedron form a surface comprised of
four hexagonal rings, six squares, and eight triangles. In
Fig. 1 these vertices are labeled so as to assign values
for G, Q, and R to each quark and lepton, where:

• G = { −1, 0, +1 }, values that determine particle
generation and thereby weak coupling.

• Q = { 0, −1/3, +2/3, −1 }, the values for electric
charge.

• R = { 0, 1, 1, 2, 3, 5 }, values that will serve as
parameters to a mass formula used to generate
eight key quark and lepton mass ratios.

Notice that the cuboctahedron of Fig. 1 exhibits the
following symmetry:

• Each of its four hexagonal rings contains values for
R that equal { 0, 1, 1, 2, 3, 5 }, values for G that
equal { −1, −1, 0, 0, +1, +1 }, and three quarks
and three leptons.

• Each generation G contains the charges { 0, −1/3,
+2/3, −1 }.

• Each of its six squares has absolute values for Q
that sum to 2.

• Each of its eight triangles has values of R that sum
to 6.

The above observations demonstrate that the assign-
ments of Fig. 1 are significantly constrained by symme-
try. These assignments will now be used to generate a
set of twelve particles whose masses closely approximate
those of the quarks and leptons, where it is the symmet-
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rical interplay of the values for generation G, charge Q,
and the mass formula parameter R that will assure that
all charges, masses, and generations are correctly joined.

The rule for weak coupling via generation G will be
that particles can couple only if their values for G sum
to 0. So Fig. 1 yields weak couplings of u – d, b – t, s –
c, e – ν1, µ – ν2, and τ – ν3. But note that only µ and τ ,
or ν2 and ν3, can exchange differing values for G without
affecting the various forms of symmetry. Either swap of
values for G alters leptonic coupling to µ – ν3 and τ – ν2,
flexibility that can be seen as reflecting maximal mixing
between the +1 and −1 leptonic generations. In this way
the experimental weak couplings are approximated by G.

Before generating the quark and lepton masses (or,
more precisely, eight mass ratios), it is necessary to assign
values to an additional parameter T. Let T = 1 for the
u-, d-, c-, and b-quarks (which in the cuboctahedron of
Fig. 1 reside in a single plane), while letting T = 0 for
all other particles. Also let m = 1 for all heavy particles,
and m = 2 for all light particles. These assignments,
along with values for R taken from Fig. 1, allow the
empirical mass formula

M (∆R, ∆T, m) = 4.1∆R/m × 0.1∆T × 31/m (1)

to produce these mass ratios for heavy quarks and leptons

mτ/me = M (Rτ − Re, Tτ − Te, 1)

= 4.15 × 3 ,

mµ/me = M (Rµ − Re, Tµ − Te, 1)

= 4.13 × 3 ,

mt/mc = M (Rt − Rc, Tt − Tc, 1)

= 4.11 × 3 × 10 ,

mb/mc = M (Rb − Rc, Tb − Tc, 1)

= 4.10 × 3 ,
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as well as their light particle counterparts

mν3/mν1 = M (Rν3 − Rν1 , Rν3 − Rν1 , 2)

= 4.15/2 × 31/2 ,

mν2/mν1 = M (Rν2 − Rν1 , Rν2 − Rν1 , 2)

= 4.13/2 × 31/2 ,

ms/mu = M (Rs − Ru, Ts − Tu, 2)

= 4.11/2 × 31/2 × 10 ,

md/mu = M (Rd − Ru, Td − Tu, 2)

= 4.10 × 31/2 ,

which are readily summarized as follows

(
m(ν3)
m(ν1)

)2

=
m(τ )
m(e)

= 4.15 × 3 , (2)

(
m(ν2)
m(ν1)

)2

=
m(µ)
m(e)

= 4.13 × 3 , (3)

(
m(s)
m(u)

× 0.1
)2

=
m(t)
m(c)

× 0.1 = 4.11 × 3 , (4)

(
m(d)
m(u)

)2

=
m(b)
m(c)

= 4.10 × 3 . (5)

II. COMPARISON AGAINST EXPERIMENT

Tables I–III reveal that these equations closely repro-
duce their corresponding experimental values, where for
the tau- and muon-electron mass ratios the fit is espe-
cially precise: to roughly 1 part in 2,000 and 1 part in
40,000, respectively. However, for the neutrinos the fol-
lowing ratio between squared-mass splittings should also
hold

m(ν3)2 − m(ν1)2

m(ν2)2 − m(ν1)2
=

4.15 × 3 − 1
4.13 × 3 − 1

≈ 16.8 . (6)

Data exist for both of these splittings, namely [2]

|∆m2
31| = 2.40× 10−3 ∆eV2 (7)

and [2]

|∆m2
21| = 7.65× 10−5 ∆eV2 , (8)

which combine to yield

|∆m2
31|

|∆m2
21|

=
2.40× 10−3 ∆eV2

7.65× 10−5 ∆eV2 ≈ 31.4 . (9)

This ratio is about twice its calculated value and consti-
tutes the sole major discrepancy.

TABLE I: The heavy lepton mass ratios of Eqs. (2) and (3)
compared against experiment.

Ratio Calculated Experimental
mτ/me 4.15 × 3 = 3475.686 . . . 3477.15 ± 0.31a

mµ/me 4.13 × 3 = 206.763 206.768 282 3b

aDerived from the tau and electron masses taken from Ref. [3].
Fit to roughly 1 part in 2000.
bRef. [4]. Fit to roughly 1 part in 40 000.

TABLE II: Equations (4) and (5) allow the b- and c-quark
masses to be calculated from the top quark’s experimen-
tal mass of 173 300 ± 1100 MeV [5]; below these calculated
masses are compared against experiment.

Mass Calculated Experimentala

mb 4227 ± 27 MeVb 4130 to 4370 MeV
mc 1409 ± 9 MeVc 1180 to 1340 MeV

aRef. [3]. It is important to recognize, however, that the experi-
mental values for mb and mc are the “running” masses in the MS
scheme at µ = mb and µ = mc, respectively.
b173 300 ± 1100 MeV/(4.11 × 30 × 10) = 4227 ± 27 MeV.
c173 300 ± 1100 MeV/(4.11 × 31 × 10) = 1409 ± 9 MeV.

TABLE III: The light quark mass ratios of Eqs. (4) and (5)
compared against experiment.

Ratio Calculated Experimentala

ms/md 4.11/2 × 10 = 20.2 . . . 17 to 22
mu/md 1/31/2 = 0.577 . . . 0.35 to 0.6

ms
(md + mu) /2 25.6 . . . 22 to 30

aRef. [3].

III. SUMMARY AND CONCLUSION

It has been shown that the quark and lepton masses
can be produced economically with the aid of an empiri-
cal mass formula that relies on small powers of 4.1, used
in combination with the constants 0.1 and 3. It has also
been shown that these small powers—and thereby the
masses they represent—are readily joined with their cor-
rect charges and generations with the aid of the symme-
try of the cuboctahedron, which also plays an important
role in determining the values of these powers. All this
supports the general conclusion that the mass formula’s
success derives from hidden symmetry among the quark
and lepton charges, masses, and generatons. It is logical
to ask what physics might underlie this mass formula and
the symmetry it exploits.
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FIG. 1: A cuboctahedron is used to assign en masse values for generation G, electric charge Q, and mass formula parameter R
to all quarks and leptons, where the particles on the upper left each get their values for G, Q, and R from their corresponding
positions on the right and below. Note that the cuboctahedron’s vertices define four hexagonal rings, each containing (a) three
quarks and three leptons, (b) values for G that equal { −1, −1, 0, 0, +1, +1 }, and (c) values for R that equal { 0, 1, 1, 2,
3, 5 }. The cuboctahedron’s surface is comprised of six squares, each containing absolute values of Q that sum to 2 (at the
upper right), and eight triangles, each containing values of R that sum to 6 (at the lower right). Moreover, each generation G
contains charges of { 0, −1/3, +2/3, −1 }. The rule for how generation G governs weak coupling to a first approximation is
that particles can weakly couple only if their values for G sum to 0. But note that, uniquely, only µ and τ , or ν2 and ν3, can
swap differing values for G while (a) maintaining charges of { 0, −1/3, +2/3, −1 } in each generation, and (b) maintaining
values for G of { −1, −1, 0, 0, +1, +1 } in each hexagonal ring. Either swap alters leptonic coupling from µ – ν2 and τ – ν3

to µ – ν3 and τ – ν2, where this distinctive flexibility can be regarded as describing maximal mixing between the +1 and −1
leptonic generations. It is interesting to note that the quark and lepton distinction is 2-valued, G is 3-valued, Q is 4-valued,
and R is 6-valued, where G, Q, and R symmetrically co-reside on the same cuboctahedron to reproduce, fairly accurately, the
experimental couplings, charges, and masses of the quarks and leptons. It is, of course, a direct consequence of this symmetry
that the correct charges and generations are joined with the correct masses. But symmetry does not merely see to it that the
values for G, Q, and R correctly align: it also plays a major role in determining the values themselves. In particular, there are
few interesting “6-valued labelings” of the cuboctahedron to choose from, with {0, 1, 1, 2, 3, and 5}—the first six Fibonacci
numbers—appearing to be the simplest. Yet these are precisely the numbers required by Eq. (1), the mass formula, to produce
the eight mass ratios of Eqs. (2)–(5). (But note that the first six Fibonacci numbers in reverse of their normal direction {−3,
2, −1, 1, 0, and 1} can be used to generate identical mass ratios if the sign of ∆R in Eq. (1) is toggled.)


