Can the external directed edges of a complete graph form a radially symmetric field at long distance?

S. Halayka* May 9, 2010

Abstract

Using a numerical method, the external directed edges of a complete graph are tested for their level of fitness in terms of how well they form a radially symmetric field at long distance (e.g., a test for the inverse square law in 3D space). It is found that the external directed edges of a complete graph can very nearly form a radially symmetric field at long distance if the number of graph vertices is great enough.

1 Introduction

Complete graphs have been used to construct models of quantum gravity [1–4]. It is considered here that a complete graph G_1 consists of:

- 1. $n(G_1)$ vertices $V(G_1)$ that are uniformly distributed along a shell $S(G_1)$ of radius $r(G_1)$.
- 2. $(n(G_1)^2 n(G_1))/2$ internal non-directed edges $I(G_1)$ (e.g., line segments) that join the vertices together.
- 3. $n(G_1)^2 n(G_1)$ external directed edges $E(G_1)$ (e.g., rays) that are extensions of $I(G_1)$.

See Figure 1 for a diagram of a complete graph where $n(G_1) = 5$.

It seems fundamentally important to question whether or not the external directed edges $E(G_1)$ can form a radially symmetric field at long distance.

2 Method

If the field is to be considered radially symmetric, then the following two fitness criteria must be met:

^{*}shalayka@gmail.com

- 1. With regard to a second shell $S(G_2)$ of larger radius $r(G_2) > r(G_1)$, the $n(G_2) = n(G_1)^2 n(G_1)$ vertices $V(G_2)$ corresponding to where the external directed edges $E(G_1)$ intersect with $S(G_2)$ should be uniformly distributed along $S(G_2)$.
- 2. The external directed edges $E(G_1)$ should be normal to $S(G_2)$ at their respective intersection vertices.

With regard to the first criterion (e.g., uniform distribution fitness), the vertices $V(G_2)$ will be compared to an equal number $n(G_3) = n(G_2)$ of vertices $V(G_3)$ that are known to be uniformly distributed along a third and final shell $S(G_3)$ of radius $r(G_3) = r(G_2)$.

The generation of $n(G_3)$ uniformly distributed vertices along a 1D shell (e.g., a circle) is algorithmically simple: divide the circle's 2π radians into $n(G_3)$ equal portions and then use the polar coordinate equations to generate the $n(G_3)$ corresponding vertex positions. The generation of $n(G_3)$ uniformly distributed vertices along a 2D shell (e.g., a thin spherical shell) is not algorithmically simple: an iterative vertex repulsion code [5] was used here to generate $n(G_3)$ roughly uniformly distributed vertices.

The uniform distribution fitness test used here compares the $n(G_2)$ pairs of vertices $V(G_2)_i$, $V(G_3)_i$ by analyzing the lengths of their corresponding internal non-directed edges $I(V(G_2)_i)_j$, $I(V(G_3)_i)_j$ (e.g., where $i = \{1, 2, ..., n(G_2)\}$, $j = \{1, 2, ..., n(G_2) - 1\}$). Some kind of order must be established so that a reasonable correlation exists between $I(V(G_2)_i)_j$, $I(V(G_3)_i)_j$, and so the lengths of the internal non-directed edges corresponding to each pair of vertices are placed into a pair of sorted bins before the comparison begins

$$L(I(V(G_2)_i)) = \text{sort}[\text{length}[I(V(G_2)_i)_1], \dots, \text{length}[I(V(G_2)_i)_{(n(G_2)-1)}]], (1)$$

$$L(I(V(G_3)_i)) = \operatorname{sort}[\operatorname{length}[I(V(G_3)_i)_1], \dots, \operatorname{length}[I(V(G_3)_i)_{(n(G_3)-1)}]].$$
 (2)

Ideally, since $V(G_3)$ are known to be uniformly distributed along $S(G_3)$, the $n(G_3)$ sorted bins $L(I(V(G_3)))$ should all contain identical length distributions (e.g., thus defining a single reference distribution $L(I(V(G_3)))_{ref}$). Likewise, if $V(G_2)$ are also uniformly distributed along $S(G_2)$, then the $n(G_2)$ sorted bins $L(I(V(G_2)))$ should also all contain length distributions that are identical to $L(I(V(G_3)))_{ref}$.

The uniform distribution fitness test used here is

$$F_D(G_1) = [0, 1] = \frac{\sum_{i=1}^{n(G_2)} \sum_{j=1}^{(n(G_2)-1)} \frac{\min[L(I(V(G_2)_i))_j, L(I(V(G_3)_i))_j]}{\max[L(I(V(G_2)_i))_j, L(I(V(G_3)_i))_j]}}{n(G_2)^2 - n(G_2)}.$$
 (3)

It is useful to note that each of a graph's internal non-directed edges are analyzed exactly twice throughout the entire test, which is why equation (3) is normalized using $n(G_2)^2 - n(G_2)$, not $(n(G_2)^2 - n(G_2))/2$.

With regard to the second criterion (e.g., normal fitness), each external directed edge $E(V(G_1)_i)_j$ corresponds to one intersection vertex $V(G_2)_k$ (e.g.,

where $i = \{1, 2, ..., n(G_1)\}$, $j = \{1, 2, ..., n(G_1) - 1\}$, $k = \{1, 2, ..., n(G_2)\}$. Where both $S(G_1)$ and $S(G_2)$ are centred at the coordinate system origin, the normal fitness test used here is

$$F_N(G_1) = [0, 1] = \frac{\sum_{i=1}^{n(G_1)} \sum_{j=1}^{(n(G_1)-1)} \widehat{E}(V(G_1)_i)_j \cdot \widehat{V}(G_2)_k}{n(G_2)}.$$
 (4)

3 Results

The 1D and 2D shell fitness test results for various $n(G_1)$, $r(G_1)$, and $r(G_2)$ are listed in the following tables

Uniform distribution fitness $F_D(G_1)$ for a 1D shell of radius $r(G_1) = n(G_1)$								
$r(G_2)$ $n(G_1)$	2	4	8	16	32	64	128	
10^{3}	1	0.829572	0.893257	0.946621	0.993124	0.997482	0.998891	
10^{10}	1	0.827916	0.886982	0.93004	0.95885	0.976516	0.986852	
10^{17}	1	0.827916	0.886982	0.93004	0.95885	0.976516	0.986852	

Normal fitness $F_N(G_1)$ for a 1D shell of radius $r(G_1) = n(G_1)$							
$r(G_2)$ $n(G_1)$	2	4	8	16	32	64	128
10^{3}	1	0.999997	0.999986	0.99994	0.999752	0.998991	0.995924
10^{10}	1	1	1	1	1	1	1
10^{17}	1	1	1	1	1	1	1

Uniform distribution fitness $F_D(G_1)$ for a 2D shell of radius $r(G_1) = n(G_1)$								
$r(G_2)$	$n(G_1)$	2	4	8	16	32	64	128
10^{3}		1	0.937087	0.931829	0.974859	0.97905	0.995469	0.998372
10^{10}		1	0.937088	0.930686	0.973607	0.974738	0.994824	0.997366
10^{17}		1	0.937088	0.930686	0.973607	0.974738	0.994824	0.997366

Normal fitness $F_N(G_1)$ for a 2D shell of radius $r(G_1) = n(G_1)$								
$r(G_2)$ $n(G_1)$	2	4	8	16	32	64	128	
10^{3}	1	0.999997	0.999986	0.99994	0.999752	0.998992	0.995925	
10^{10}	1	1	1	1	1	1	1	
10^{17}	1	1	1	1	1	1	1	

4 Discussion

As the fitness test results show, the external directed edges of a complete graph can very nearly form a radially symmetric field at long distance if the number of graph vertices is great enough.

On one hand, the external directed edges of a 2D shell in 3D space can very nearly reproduce the inverse-square law of Newtonian gravitation [6] (e.g., field strength proportional to 1/r).

On the other hand, if the external directed edges are instead considered to be bidirectional (e.g., two directly opposing rays per external directed edge), then a 2D shell in 3D space can very nearly reproduce a field strength proportional to 2/r (e.g., akin to the Schwarzschild solution [6]). In terms of rest energy E, the Planck energy E_p , and the Planck length ℓ_p , if the number of vertices per Schwarzschild black hole is considered to be

$$n = \frac{E}{E_p},\tag{5}$$

and n is great enough so that the number of external directed edges ε practically simplifies

$$\varepsilon = n^2 - n \approx n^2,\tag{6}$$

then the Hawking temperature T, Bekenstein-Hawking entropy S_{bh} , event horizon (e.g., 2D shell) radius R_s , and time-time metric component g_{00} would all simplify to their generally accepted values

$$T = \frac{E}{k8\pi\varepsilon} \approx \frac{E_p}{k8\pi n},\tag{7}$$

$$S_{bh} = 4\pi\varepsilon \approx 4\pi n^2,\tag{8}$$

$$R_s = 2\ell_p \sqrt{\varepsilon} \approx 2\ell_p n,\tag{9}$$

$$g_{00} = 1 - \frac{2\ell_p\sqrt{\varepsilon}}{r} \approx 1 - \frac{2\ell_p n}{r}.$$
 (10)

See [7] for the full code and expanded table data. In the full code, the iterative vertex repulsion code [5] has been modified to use the Mersenne Twister pseudorandom number generator [8] in conjunction with the sphere point picking algorithm discussed in [9]. The full code also uses a modified version of the rayshell intersection code given in [10].

References

- [1] Gibbs, PE. Event-Symmetric Physics. (1995) arXiv:hep-th/9505089v1
- [2] Gibbs, PE. The Small Scale Structure of Space-Time: A Bibliographical Review. (1995) arXiv:hep-th/9506171v2
- [3] Konopka T, Markopoulou F, Smolin L. Quantum Graphity. (2006) arxiv:hep-th/0611197
- [4] Konopka T, Markopoulou F, Severini S. Quantum Graphity: a model of emergent locality. (2008) arXiv:0801.0861v2 [hep-th]

- [5] Bulatov V. Vertex repulsion code. (1996) http://www.math.niu.edu/~rusin/known-math/96/repulsion
- [6] Misner CW, Thorne KS, Wheeler JA. Gravitation, chapters 12 and 31. (1973) ISBN: 978-0716703440
- [7] Halayka S. Fitness C++ code v3.0. (2010) http://completegraph-rays.googlecode.com/files/rays_3.0.zip
- [8] Saito M, Matsumoto M, Hiroshima University. SIMD-oriented Fast Mersenne Twister ("SFMT") v1.3.3. (2006) http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
- [9] Weisstein EW. Sphere Point Picking. From MathWorld-A Wolfram Web Resource. (2010) http://mathworld.wolfram.com/SpherePointPicking.html
- [10] Dunn F, Parberry I. 3D Math Primer for Graphics and Game Development, chapter 13.12. (2002) ISBN: 978-1556229114



Figure 1: A complete graph G_1 , where $n(G_1)=5$ vertices $V(G_1)$ (e.g., black disks) are uniformly distributed along a 1D shell $S(G_1)$ (e.g., a gray circle). There are $(n(G_1)^2-n(G_1))/2=10$ internal non-directed edges $I(G_1)$ (e.g., black line segments), and $(n(G_1)^2-n(G_1))=20$ external directed edges $E(G_1)$ (e.g., outward pointing black rays). Where $i=\{1,2,\ldots,n(G_1)\}$, $j=\{1,2,\ldots,n(G_1)-1\}$, each vertex $V(G_1)_i$ corresponds to $n(G_1)-1=4$ internal non-directed edges $I(V(G_1)_i)_j$ and $n(G_1)-1=4$ external directed edges $E(V(G_1)_i)_j$.