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We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an
upper R and lower length λ scales (infrared/ultraviolet cutoff ). The invariance sym-
metry leads naturally to the real Clifford algebra Cl(2, 6, R) and complexified Clifford
ClC(4) algebra related to Twistors. A unified theory of all Noncommutative branes in
Clifford-spaces is developed based on the Moyal-Yang star product deformation quan-
tization whose deformation parameter involves the lower/upper scale (h̄λ/R). Pre-
vious work led us to show from first principles why the observed value of the vac-
uum energy density (cosmological constant ) is given by a geometric mean relationship
ρ ∼ L−2

PlanckR
−2 = L−4

P (LPlanck/R)2 ∼ 10−122M4
Planck, and can be obtained when the in-

frared scale R is set to be of the order of the present value of the Hubble radius. We
proceed with an extensive review of Smith’s 8D model based on the Clifford algebra
Cl(1, 7) that reproduces at low energies the physics of the Standard Model and Grav-
ity, including the derivation of all the coupling constants, particle masses, mixing angles,
....with high precision. Geometric actions are presented like the Clifford-Space extension
of Maxwell’s Electrodynamics, and Brandt’s action related to the 8D spacetime tangent-
bundle involving coordinates and velocities ( Finsler geometries ). Finally we outline
the reasons why a Clifford-Space Geometric Unification of all forces is a very reasonable
avenue to consider and propose an Einstein-Hilbert type action in Clifford-Phase spaces
(associated with the 8D Phase space) as a Unified Field theory action candidate that
should reproduce the physics of the Standard Model plus Gravity in the low energy limit.

KEYWORDS : Clifford algebras, Extended relativity, Moyal-Yang algebra, branes,
strings, unification.
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1 INTRODUCTION

In recent years we have argued that the underlying fundamental physical principle behind
string theory, not unlike the principle of equivalence and general covariance in Einstein’s
general relativity, might well be related to the existence of an invariant minimal length
scale (Planck scale) attainable in nature. A scale relativistic theory involving spacetime
resolutions was developed long ago by Nottale where the Planck scale was postulated
as the minimum observer independent invariant resolution in Nature [10]. Since “points”
cannot be observed physically with an ultimate resolution, they are fuzzy and smeared
out into fuzzy balls of Planck radius of arbitrary dimension. For this reason one must
construct a theory that includes all dimensions (and signatures) on the equal footing.
Because the notion of dimension is a topological invariant, and the concept of a fixed
dimension is lost due to the fuzzy nature of points, dimensions are resolution-dependent,
one must also include a theory with all topologies as well. It turned out that Clifford
algebras contained the appropriate algebro-geometric features to implement this principle
of polydimensional transformations that reshuffle a five-brane history for a membrane
history, for example. For an extensive review of this Extended Relativity Theory in
Clifford Spaces that encompasses the unified dynamics of all p-branes, for different values
of the dimensions of the extended objects, and numerous physical consequences, see [1] ,
[2], [4], [3].

A Clifford-space dynamical derivation of the stringy-minimal length uncertainty rela-
tions was furnished in [47]. The dynamical consequences of the minimal-length in New-
tonian dynamics have been recently reviewed by [46]. The idea of minimal length ( the
Planck scale LP ) can be incorporated within the context of the maximal acceleration Rel-
ativity principle [28] amax = c2/LP in Finsler Geometries [20]. A different approach than
the one based on Finsler Geometries is the pseudo-complex Lorentz group description by
Schuller [21] related to the effects of maximal acceleration in Born-Infeld models that also
maintains Lorentz invariance, in contrast to the approaches of Double Special Relativity
(DSR) [30] where the Lorentz symmetry is deformed . Quantum group deformations of
the Poincare symmetry and of Gravity have been analyzed by [29] where the deformation
parameter q could be interpreted in terms of an upper and lower scale as q = eLP /R such
that the undeformed limit q = 1 can be attained when LP → 0 and/or when R → ∞
[28]. For a discussions on the open problems of Double Special Relativity theories based
on kappa-deformed Poincare symmetries [22] and motivated by the anomalous Lorentz-
violating dispersion relations in the ultra high energy cosmic rays [31, 33], we refer to
[30].

An upper limit on the maximal acceleration of particles was proposed long ago by
Cainello [16]. This idea is a direct consequence of a suggestion made years earlier by Max
Born on a Dual Relativity principle operating in Phase Spaces [15], [34] where there is an
upper bound on the four-force (maximal string tension or tidal forces in strings ) acting on
a particle as well as an upper bound in the particle’s velocity given by the speed of light.
For a recent status of the geometries behind maximal-acceleration see [33]; its relation
to the Double Special Relativity programs was studied by [19] and the possibility that
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Moyal deformations of Poincare algebras could be related to the kappa-deformed Poincare
algebras was raised in [28]. A thorough study of Finsler geometry and Clifford algebras has
been undertaken by Vacaru [35] where Clifford/spinor structures were defined with respect
to Nonlinear connections associated with certain nonholonomic modifications of Riemann–
Cartan gravity. The study of non-holonomic Clifford-Structures in the construction of a
Noncommutative Riemann-Finsler Geometry has recently been advanced by [35].

Other implications of the maximal acceleration principle in Nature, like neutrino oscil-
lations and other phenomena, have been studied by [18], [25], [26] Recently, the variations
of the fine structure constant α [23] with the cosmological accelerated expansion of the
Universe was recast as a renormalization group-like equation governing the cosmological
reshift (Universe scale) variations of α based on this maximal acceleration principle in
Nature [28]. The fine structure constant was smaller in the past. Pushing the cuttof scale
to the minimum Planck scale led to the intriguing result that the fine structure constant
could have been extremely small (zero) in the early Universe and that all matter in the
Universe could have emerged via the Unruh-Rindler-Hawking effect (creation of radia-
tion/matter) due to the acceleration w.r.t the vacuum frame of reference. For reviews on
the alledged variations of the fundamental constants in Nature see [24] .

The outline of this work goes as follows. In sections 2.1, 2.2 we review the Dual Phase
Space Relativity and show why the Planck areas are invariant under acceleration-boosts
transformations. In 2.3 we investigate the consequences of the Mach’s principle of inertia
within the context of the Dual Phase Space Relativity Principle which is compatible with
the Eddington-Dirac large numbers coincidence and may provide with a very plausible
physical reason behind the observed anomalous Pioneer acceleration [11] and a solution
to the riddle of the cosmological constant problem [10] . The cosmological implications
of Non-Archimedean Geometry [67] by assigning an upper impassible scale in Nature [10]
and the cosmological variations of the fundamental constants are also discussed.

In 3 we review the Extended Relativity Theory in Clifford Spaces and some im-
portant applications, like superluminal propagation and modified dispersion relations in
connection to the derivation of the minimal length stringy uncertainty relations.

In 4.1, 4.2, 4.3 we construct the Dual Extended Relativity Theory in Clifford-
Phase spaces with an upper and lower length scales simultaneously ( infrared/ultraviolet
cutoff ) ; study the symmetry transformations laws under velocity and acceleration (
force ) boosts ; explain the importance of the Clifford algebra Cl(2, 6); the complexified
Clifford algebras and Quaternions H and their association to ordinary twistors and their
Quaternionic extensions.

We proceed in section 4.4 by studying the modified Newtonian dynamics based on
Yang’s Noncommutative Spacetime algebra, involving a lower and upper scale [38] that
has been revisited recently by us [37] in the context of holography and area-quantization
in C-spaces ( Clifford spaces ) ; in the physics of D-branes and covariant Matrix mod-
els by [39] and within the context of Lie algebra stability by [50]. A different algebra
with two length scales has been studied by [45] in order to account for modifications of
Newtonian dynamics ( that also violates the equivalence principle). In 4.5 we construct
the generalization of Yang’s Noncommutative spacetime algebra to Clifford spaces . In
4.6 a unified theory of all Noncommutative branes in C-spaces is developed based on the
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Moyal-Yang star product deformation quantization in Clifford spaces whose deformation
parameter is h̄eff = h̄λ

R
in the double-scaling limit L2 = λR when λ → 0 and R → ∞

. Some final comments of the nature of the cosmological constant and its plausible re-
lation to the quantity L−4 are made. One of the most salient features of [9] was that a
geometric mean relationship was found among the cosmological constant ρvacuum , the
Planck area λ2 and the AdS4 throat size squared R2 given by (ρv)

−1 = (λ)2(R2). Notice
that by setting the infrared scale R equal to the Hubble radius horizon RH and λ equal
to the Planck scale one reproduces precisely the observed value of the vacuum energy
density ! [9] : ρ ∼ L−2

PlanckR
−2
H = L−4

P (LPlanck/RH)2 ∼ 10−122M4
Planck .

In 5 we review extensively Smith’s 8D model [40] based on the Clifford algebra Cl(1.7)
that reproduces the physics of the Standard Model and Gravity, including the derivation
of the coupling constants, particle masses, mixing angles, ....with high precision. Finally,
in 6.1. 6.2 we analyze different geometric actions, the Clifford-space extensions of
Maxwell’s EM, and Brandt’s action [20] related the 8D spacetime tangent-bundle involv-
ing coordinates and velocities ( Finsler geometries ). We conclude in 6.3 by outlining the
reasons why a Clifford-Space Geometric Unification of all forces is a reasonable avenue to
take and propose an Einstein-Hilbert type action in the Clifford-Phase space (associated
with the 8D Phase space), as the Unified Field theory action that should reduce to the
Standard Model plus Gravity in the low energy limit. The contents of sections 2.3, 4.1,
4.2, 4.3, 4.4, 4.5, 4.6 and 6.3 are new.

2 DUAL PHASE-SPACE RELATIVITY

2.1 The U(1, 3) Group of Symmetry Transformations

In this section we will review in detail the Born’s Dual Phase Space Relativity and the
principle of Maximal-acceleration Relativity [28] from the perspective of 8D Phase Spaces
and the U(1, 3) Group. The U(1, 3) = SU(1, 3)⊗U(1) Group transformations which leave
invariant the phase-space intervals under rotations, velocity and acceleration boosts, were
found by Low [34] and can be simplified drastically when the velocity/acceleration boosts
are taken to lie in the z-direction, leaving the transverse directions x, y, px, py intact ;
i.e., the U(1, 1) = SU(1, 1) ⊗ U(1) subgroup transformations that leave invariant the
phase-space interval are given by (in units of h̄ = c = 1)

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2[1 +
(dE/dτ)2 − (dP/dτ)2

b2
] = (dτ)2[1− m2g2(τ)

m2
P A2

max

]. (2− 1)

where we have factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in eq-(2-1)
and the maximal proper-force is set to be b ≡ mP Amax. mP is the Planck mass 1/LP so
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that b = (1/LP )2, may also be interpreted as the maximal string tension when LP is the
Planck scale.

The quantity g(τ) is the proper four-acceleration of a particle of mass m in the z-
direction which we take to be defined by the X coordinate. The interval (dω)2 described by
Low [34] is U(1, 3)-invariant for the most general transformations in the 8D phase-space.
These transformations are rather elaborate, so we refer to the references [34] for details.
The appearance of the U(1, 3) group in 8D Phase Space is not too surprising since it could
be seen as the ” complex doubling ” version of the Lorentz group SO(1, 3). Low discussed
the irreducible unitary representations of such U(1, 3) group and the relevance for the
strong interactions of quarks and hadrons since U(1, 3), with 16 generators, contains the
SU(3) group.

The analog of the Lorentz relativistic factor in eq-(2-1) involves the ratios of two proper
forces. One variable force is given by mg(τ) and the maximal proper force sustained by
an elementary particle of mass mP (a Planckton) is assumed to be Fmax = mPlanckc

2/LP .
When m = mP , the ratio-squared of the forces appearing in the relativistic factor of eq-
(2-1 ) becomes then g2/A2

max, and the phase space interval coincides with the geometric
interval discussed by [21], [18], [25] , [26] .

The transformations laws of the coordinates in that leave invariant the interval (2-1)
were given by [34]:

T ′ = Tcoshξ + (
ξvX

c2
+

ξaP

b2
)
sinhξ

ξ
. (2− 2a)

E ′ = Ecoshξ + (−ξaX + ξvP )
sinhξ

ξ
. (2− 2b)

X ′ = Xcoshξ + (ξvT −
ξaE

b2
)
sinhξ

ξ
. (2− 2c)

P ′ = Pcoshξ + (
ξvE

c2
+ ξaT )

sinhξ

ξ
. (2− 2d)

The ξv is velocity-boost rapidity parameter and the ξa is the force/acceleration-boost
rapidity parameter of the primed-reference frame. They are defined respectively :

tanh(
ξv

c
) =

v

c
. tanh(

ξa

b
) =

ma

mP Amax

. (2− 3)

The effective boost parameter ξ of the U(1, 1) subgroup transformations appearing
in eqs-(2-2a, 2-2d) is defined in terms of the velocity and acceleration boosts parameters
ξv, ξa respectively as:

ξ ≡
√

ξ2
v

c2
+

ξ2
a

b2
. (2− 4)

Our definition of the rapidity parameters are different than those in [34].
Straightforward algebra allows us to verify that these transformations leave the interval

of eq- (2-1) in classical phase space invariant. They are are fully consistent with Born’s
duality Relativity symmetry principle [15] (Q,P ) → (P,−Q). By inspection we can see
that under Born duality, the transformations in eqs-(2-2a, 2-2d) are rotated into each
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other, up to numerical b factors in order to match units. When on sets ξa = 0 in (2-
2a, 2-2d) one recovers automatically the standard Lorentz transformations for the X, T
and E, P variables separately, leaving invariant the intervals dT 2 − dX2 = (dτ)2 and
(dE2 − dP 2)/b2 separately.

When one sets ξv = 0 we obtain the transformations rules of the events in Phase
space, from one reference-frame into another uniformly-accelerated frame of reference,
a = constant, whose acceleration-rapidity parameter is in this particular case:

ξ ≡ ξa

b
. tanh(ξ) =

ma

mP Amax

. (2− 5)

The transformations for pure acceleration-boosts in Phase Space are:

T ′ = Tcoshξ +
P

b
sinhξ. 2− 6a

E ′ = Ecoshξ − bXsinhξ. (2− 6b)

X ′ = Xcoshξ − E

b
sinhξ. (2− 6c)

P ′ = Pcoshξ + bTsinhξ. (2− 6d)

It is straightforwad to verify that the transformations (2-6a, 2-6c) leave invariant
the fully phase space interval (2-1) but does not leave invariant the proper time interval
(dτ)2 = dT 2 − dX2. Only the combination:

(dω)2 = (dτ)2(1− m2g2

m2
P A2

max

) (2− 7a)

is truly left invariant under pure acceleration-boosts in Phase Space. Once again, can
verify as well that these transformations satisfy Born’s duality symmetry principle:

(T, X) → (E, P ). (E, P ) → (−T,−X). (2− 7b)

and b → 1
b
. The latter Born duality transformation is nothing but a manifestation of

the large/small tension duality principle reminiscent of the T -duality symmetry in string
theory; i.e. namely, a small/large radius duality, a winding modes/ Kaluza-Klein modes
duality symmetry in string compactifications and the Ultraviolet/Infrared entanglement
in Noncommutative Field Theories. Hence, Born’s duality principle in exchanging coor-
dinates for momenta could be the underlying physical reason behind T -duality in string
theory.

The composition of two succesive pure acceleration-boosts is another pure acceleration-
boost with acceleration rapidity given by ξ′′ = ξ + ξ′. The addition of proper forces (
accelerations ) follows the usual relativistic composition rule:

tanhξ′′ = tanh(ξ + ξ′) =
tanhξ + tanh ξ′

1 + tanhξtanhξ′
⇒ ma′′

mP A
=

ma
mP A

+ ma′

mP A

1 + m2aa′

m2
P A2

. (2− 8)
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and in this fashion the upper limiting proper acceleration is never surpassed like it happens
with the ordinary Special Relativistic addition of velocities.

The group properties of the full combination of velocity and acceleration boosts eqs-
(2-2a, 2-2d) in Phase Space requires much more algebra [28]. A careful study reveals that
the composition rule of two succesive full transformations is given by ξ′′ = ξ + ξ′ and the
transformation laws are preserved if, and only if, the ξ; ξ′; ξ′′...... parameters obeyed the
suitable relations:

ξa

ξ
=

ξ′a
ξ′

=
ξ′′a
ξ′′

=
ξ′′a

ξ + ξ′
. (2− 9a)

ξv

ξ
=

ξ′v
ξ′

=
ξ′′v
ξ′′

=
ξ′′v

ξ + ξ′
. (2− 9b)

Finally we arrive at the compostion law for the effective, velocity and acceleration
boosts parameters ξ′′; ξ′′v ; ξ′′a respectively:

ξ′′v = ξv + ξ′v. (2− 10a)

ξ′′a = ξa + ξ′a. (2− 10b)

ξ′′ = ξ + ξ′. (2− 10c)

The above relations among the parameters are required in order to prove the U(1, 1) group
composition law of the transformations in order to have a truly Maximal-Acceleration
Phase Space Relativity theory resulting from a Phase-Space change of coordinates in the
cotangent bundle of spacetime.

2.2 Planck-Scale Areas are Invariant under Acceleration Boosts

Having displayed explicity the Group transformations rules of the coordinates in Phase
space we will show why infinite acceleration-boosts (which is not the same as infinite
proper acceleration) preserve Planck-Scale Areas [28] as a result of the fact that b =
(1/L2

P ) equals the maximal invariant force, or string tension, if the units of h̄ = c = 1
are used.

At Planck-scale LP intervals/increments in one reference frame we have by definition
(in units of h̄ = c = 1): ∆X = ∆T = LP and ∆E = ∆P = 1

LP
where b ≡ 1

L2
P

is the

maximal tension. From eqs-(2-6a, 2-6d) we get for the transformation rules of the finite
intervals ∆X, ∆T, ∆E, ∆P , from one reference frame into another frame, in the infinite
acceleration-boost limit ξ →∞,

∆T ′ = LP (coshξ + sinhξ) →∞2− 11a)
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∆E ′ =
1

LP

(coshξ − sinhξ) → 0 (2− 11b)

by a simple use of L’Hopital’s rule or by noticing that both coshξ; sinhξ functions ap-
proach infinity at the same rate.

∆X ′ = LP (coshξ − sinhξ) → 0. (2− 11c)

∆P ′ =
1

LP

(coshξ + sinhξ) →∞ (2− 11d)

where the discrete displacements of two events in Phase Space are defined: ∆X = X2 −
X1 = LP , ∆E = E2 − E1 = 1

LP
, ∆T = T2 − T1 = LP and ∆P = P2 − P1 = 1

LP
.

Due to the identity:

(coshξ + sinhξ)(coshξ − sinhξ) = cosh2ξ − sinh2ξ = 1 (2− 12)

one can see from eqs-(2-11a, 2-11d) that the Planck-scale Areas are truly invariant under
infinite acceleration-boosts ξ = ∞:

∆X ′∆P ′ = 0×∞ = ∆X∆P (cosh2ξ − sinh2ξ) = ∆X∆P =
LP

LP

= 1. (2− 13a)

∆T ′∆E ′ = ∞× 0 = ∆T∆E(cosh2ξ − sinh2ξ) = ∆T∆E =
LP

LP

= 1. (2− 13b)

∆X ′∆T ′ = 0×∞ = ∆X∆T (cosh2ξ − sinh2ξ) = ∆X∆T = (LP )2. (2− 13c)

∆P ′∆E ′ = ∞× 0 = ∆P∆E(cosh2ξ − sinh2ξ) = ∆P∆E =
1

L2
P

. (2− 13d)

It is important to emphasize that the invariance property of the minimal Planck-scale
Areas (maximal Tension) is not an exclusive property of infinite acceleration boosts
ξ = ∞, but, as a result of the identity cosh2ξ−sinh2ξ = 1, for all values of ξ, the minimal
Planck-scale Areas are always invariant under any acceleration-boosts transformations.
Meaning physically, in units of h̄ = c = 1, that the Maximal Tension (or maximal Force)
b = 1

L2
P

is a true physical invariant universal quantity. Also we notice that the Phase-

space areas, or cells, in units of h̄, are also invariant ! The pure-acceleration boosts
transformations are ” symplectic ”. It can be shown also that areas greater ( smaller
) than the Planck-area remain greater ( smaller ) than the invariant Planck-area under
acceleration-boosts transformations.

The infinite acceleration-boosts are closely related to the infinite red-shift effects when
light signals barely escape Black hole Horizons reaching an asymptotic observer with an
infinite redshift factor. The important fact is that the Planck-scale Areas are truly main-
tained invariant under acceleration-boosts. This could reveal very important information
about Black-holes Entropy and Holography.
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2.3 The Machian Principle and Eddington-Dirac Large Num-
bers Coincidence

A natural action associated with the invariant interval in Phase-Space given by eq-(2-1)
is :

S = m
∫

dτ

√
1 +

m2

m2
P a2

(d2xµ/dτ 2)(d2xµ/dτ 2). (2− 14)

The proper-acceleration is orthogonal to the proper-velocity and this can be easily
verified by differentiating the timelike proper-velocity squared:

V 2 =
dxµ

dτ

dxµ

dτ
= V µVµ = 1 > 0 ⇒ dV µ

dτ
Vµ =

d2xµ

dτ 2
Vµ = 0. (2− 15)

which implies that the proper-acceleration is spacelike:

−g2(τ) =
d2xµ

dτ 2

d2xµ

dτ 2
< 0 ⇒ S = m

∫
dτ

√
1− m2g2

m2
P a2

= m
∫

dω. (2− 16)

where the analog of the Lorentz time-dilation factor in Phase-space is now given by

dω = dτ

√√√√1− m2g2(τ)

m2
P a2

. (2− 17a)

namely,

(dω)2 = Ω2dτ 2 = [1− m2g2(τ)

m2
P a2

]gµνdxµdxν . (2− 18b)

The invariant proper interval is no longer the standard proper-time τ but is given by
the quantity ω(τ) . The deep connection between the physics of maximal acceleration
and Finsler geometry has been analyzed by [20]. The action is real-valued if, and only if,
m2g2 < m2

P a2 in the same fashion that the action in Minkowski spacetime is real-valued
if, and only if, v2 < c2. This is the physical reason why there is an upper bound in the
proper-four force acting on a fundamental particle given by (mg)bound = mP (c2/LP ) = m2

P

in natural units of h̄ = c = 1.
The Eddington-Dirac large numbers coincidence ( and an ultraviolet/infrared entan-

glement ) can be easily implemented if one equates the upper bound on the proper-four
force sustained by a fundamental particle , (mg)bound = mP (c2/LP ), with the proper-four
force associated with the mass of the (observed ) universe MU , and whose minimal ac-
celeration c2/R is given in terms of an infrared-cutoff R ( the Hubble horizon radius ).
Equating these proper-four forces gives

mP c2

LP

=
MUc2

R
⇒ MU

mP

=
R

LP

∼ 1061. (2− 19)
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from this equality of proper-four forces associated with a maximal/minimal acceleration
one infers MU ∼ 1061mPlanck ∼ 10611019mproton = 1080mproton which agrees with observa-
tions and with the Eddington-Dirac number 1080 :

N = 1080 = (1040)2 ∼ (
Fe

FG

)2 ∼ (
R

re

)2. (2− 20)

where Fe = e2/r2 is the electrostatic force between an electron and a proton ; FG =
Gmemproton/r

2 is the corresponding gravitational force and re = e2/me ∼ 10−13cm is the
classical electron radius ( in units h̄ = c = 1 ).

One may notice that the above equation (3-5) is also consistent with the Machian
postulate that the rest mass of a particle is determined via the gravitational potential
energy due to the other masses in the universe. In particular, by equating :

mic
2 = Gmi

∑
j

mj

|ri − rj|
=

GmiMU

R
⇒ c2

G
=

MU

R
. (2− 21)

Due to the negative binding energy, the composite mass m12 of a system of two objects
of mass m1, m2 is not equal to the sum m1 + m2 > m12. We can now arrive at the
conclusion that the minimal acceleration c2/R is also the same acceleration induced on
a test particle of mass m by a spherical mass distribution MU inside a radius R . The
acceleration felt by a test particle of mass m sitting at the edge of the observable Universe
( at the Hubble horizon radius R ) is :

GMU

R2
= a. (2− 22)

From the last two equations one gets the same expression for the minimal acceleration :

a = aminimal =
c2

R
. (2− 23)

which is of the same order of magnitude as the anomalous acceleration of the Pioneer and
Galileo spacecrafts a ∼ 10−8cm/s2 . Nottale has invoked the Machian principle of intertia
[11] adopting a local and global inertial coordinate system at the scale of the solar system
in order to explain the origins of this Pioneer-Galileo anomalous constant acceleration.

Let us examine closer the equality between the proper-four forces

mP c2

LP

=
MUc2

R
⇒ mP

LP

=
MU

R
=

c2

G
. (2− 24)

The last term in eq-(2-24) is directly obtained after implementing the Machian principle.
Thus, one concludes from eq-( 2-24 ) that as the universe evolves in time one must
have the conserved ratio of the quantities MU/R = c2/G = mP /LP . This interesting
possibility, advocated by Dirac long ago, for the fundamental constants h̄, c, G, ..... to vary
over cosmological time is a plausible idea with the provision that the above ratios satisfy
the relations in eq-(2-10) at any given moment of cosmological time. If the fundamental
constants do not vary over time then the ratio MU/R = c2/G must refer then to the
asymptotic values of the Hubble horizon radius R = Rasymptotic. A related approach to the
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idea of an impassible upper asymptotic length R has been advocated by Scale Relativity
[10] and in [67] where a Cosmology based on non-Archimedean geometry was proposed
by recurring to p-adic numbers. For example, a Non-Archimedean number addition law
of two masses m1, m2 does not follow the naive addition rule m1 + m2 but instead :

m1 •m2 =
m1 + m2

1 + (m1m2/M2
U)

. (2− 25)

which is similar to the composition law of velocities in ordinary Relativity in terms of the
speed of light. When the masses m1, m2 are much smaller than the universe mass MU one
recovers the ordinary addition law. Similar considerations follow in the Non-Archimedean
compostion law of lengths such that the upper length Rasym is never surpassed. For further
references on p-adic numbers and Physics were refer to [42]. A Mersenne prime , Mp =
2p−1 = prime, for p = prime, p-adic hierarchy of scales in Particle physics and Cosmology
has been discussed by Pitkannen and Noyes where many of the the fundamental energy
scales, masses and couplings in Physics has been obtained [43], [44]. For example, the
Mersenne prime M127 = 2127 − 1 ∼ 1038 ∼ (mPlanck/mproton)2 . The derivation of the
Standard Model parameters from first principle has obtained by Smith [40] and Beck [41].

In [28] we proposed a plausible explanation of the variable fine structure constant
phenomenon based on the maximal-acceleration relativity principle in phase-space by
modifying the Robertson-Friedmann-Walker metric by a similar ( acceleration-dependent
) conformal factor . It led us to the conclusion that the universe could have emerged
from the vacuum as a quantum bubble ( or ” brane-world” ) of Planck mass and Planck
radius that expanded ( w.r.t to the vacuum ) at the speed of light with a maximal
acceleration a = c2/Lp. Afterwards the acceleration began to slow down as matter was
being created from the vacuum , via an Unruh-Rindler-Hawking effect, from this initial
maximal value c2/Lp to the value of c2/R ∼ 10−8cm/s2 (of the same order of magnitude
as the Pioneer anomalous acceleration) . Namely, as the universe expanded, matter was
being created from the vacuum via the Unruh-Rindler-Hawking effect ( which must not
to be confused with Hoyle’s Steady State Cosmolgy ) such that the observable mass of
the universe enclosed within the observed Hubble horizon radius obeys (at any time) the
relation MU ∼ R. Such latter relationship is very similar ( up to a factor of 2 ) ) to the
Schwarzschild black-hole horizon-radius relation rs = 2M ( in units of h̄ = c = G = 1
). As matter is being created out of the vacuum , the Hubble horizon radius grows
accordingly such that MU/R = c2/G. ( Note that the Hubble horizon radius is one-half
the Schwarzchild horizon radius (1/2)(2GMU/c2) = (1/2)RS ) .

This idea of the Universe as a ”primordial” bubble ( like a brane-world ) of Planck size
has been also analyzed by [32] from a very different perspective than Born’s Dual Phase
Space Relativity. These authors have argued that one can have a compatible picture of
the expansion of the Universe with the Eddington-Dirac large number coincidences if one
invokes a variation of the fundamental constants with the cosmological evolution time as
Dirac adovocated long ago. Nottale’s proposal [10] for the resolution to the cosmological
constant problem is based on taking the Hubble scale R as an upper impassible scale
and implementing the Scale Relativity principle so that in order to compare the vacuum
energies of the Universe at the Planck scale ρ(LP ) with the vacuum energy measured

11



at the Hubble scale ρ(R) one needs to include the Scale Relativistic correction factors
which account for such apparent huge discrepancy : ρ(LP )/ρ(R) = (R/LP )2 ∼ 10122 .
In contrast, the results of this work are based on Born’s Dual Phase-Space Relativity
principle. In the next sections we will review the dynamical consequences of the Yang’s
Noncommutative spacetime algebra comprised of two scales, the minimal Planck scale Lp

( related to a minimum distance ) and an upper infrared scale R related to a minimum
momentum p = h̄/R.

One of the most salient features of [9] was that a geometric mean relationship was
found among the cosmological constant ρvacuum , the Planck area λ2 and the AdS4 throat
size squared R2 given by (ρv)

−1 = (λ)2(R2). Notice that by setting the infrared scale R
equal to the Hubble radius horizon RH and λ equal to the Planck scale one reproduces
precisely the observed value of the vacuum energy density ! [9] : ρ ∼ L−2

PlanckR
−2
H =

L−4
P (LPlanck/RH)2 ∼ 10−122M4

Planck .
We finalize this subsection by pointing out that the maximal/minimal angular velocity

correspond to c/LP and c/R respectively. A maximum angular velocity has important
consequences in future Thomas-precession experiments whereas a minimal angular veloc-
ity has important consequences in galactic rotation measurements. Maximal acceleration
modifications of Schwarszchild geometry have been studied by Lambiase, Pappini, Scar-
peta et al [18] over the years. In section 4.4 we wil study the modifications of Newtonian
dynamics due to the minimal and maximal length scales using Yang’s Noncommutative
Spacetime algebra.

3 THE EXTENDED RELATIVITY IN CLIFFORD

SPACES

3.1 Extending Relativity from Minkowski spacetime to C-space

We embark into the extended relativity theory in C-spaces by a natural generalization of
the notion of a space- time interval in Minkwoski space to C-space:

dX2 = dΩ2 + dxµdxµ + dxµνdxµν + ... (3− 1)

The Clifford valued poly-vector:

X = XMEM = Ω 1 + xµγµ + xµνγµ ∧ γν + ...xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD
. (3− 2a)

denotes the position of a polyparticle in a manifold, called Clifford space or C-space.
The series of terms in (2) terminates at a finite value depending on the dimension D.
A Clifford algebra Cl(r, q) with r + q = D has 2D basis elements. For simplicity, the
gammas γµ correspond to a Clifford algebra associated with a flat spacetime :
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1/2{γµ, γν} = ηµν . (3− 2b)

but in general one could extend this formulation to curved spacetimes with metric gµν .
The connection to strings and p-branes can be seen as follows. In the case of a closed

string (a 1-loop) embedded in a target flat spacetime background of D-dimensions, one
represents the projections of the closed string (1-loop) onto the embedding spacetime
coordinate-planes by the variables xµν . These variables represent the respective areas
enclosed by the projections of the closed string (1-loop) onto the corresponding embedding
spacetime planes. Similary, one can embed a closed membrane (a 2-loop) onto a D-dim
flat spacetime, where the projections given by the antisymmetric variables xµνρ represent
the corresponding volumes enclosed by the projections of the 2-loop along the hyperplanes
of the flat target spacetimr background.

This procedure can be carried to all closed p-branes ( p-loops ) where the values of p
are p = 0, 1, 2, 3, ....D − 2. The p = 0 value represents the center of mass and the coordi-
nates xµν , xµνρ.... have been coined in the string-brane literature as the holographic areas,
volumes, ...projections of the p-loops ( closed p-branes ) onto the embedding spacetime
coordinate planes/hyperplanes.

Since the D-dimensional Planck scale is given explicitly in terms of the Newton con-
stant : ΛD = (GN)1/(D−2), in natural units of h̄ = c = 1, one can see that when D = ∞
the value of ΛD is then Λ∞ = G0 = 1 ( assuming a finite value of G ). Hence in D = ∞
the Planck scale has the natural value of unity ! . This is important if one wishes to
study the convergence property of the series of terms appearing in eq-( 3.3 ) below in the
extreme case D = ∞. For the time being, we shall focus solely on a finite value of D to
avoid any serious algebraic convergence problems.

The classification of Clifford algebras Cl(r, q) in D = r + q dimensions ( modulo 8 )
for different values of the spacetime signature r, q is discussed, for example, in the book of
Porteous [27]. All Clifford algebras can be understood in terms of CL(8) and the CL(k)
for k less than 8 due to the modulo 8 Periodicity theorem

CL(n) = CL(8)× Cl(n− 8)

. Cl(r, q) is a matrix algebra for even n = r + q or the sum of two matrix algebras for
odd n = r + q. Depending on the signature, the matrix algebras may be real, complex,
or quaternionic.

If we take the differential dX and compute the scalar product among two polyvectors <
dX†dX >scalar we obtain the C-space extension of the particles proper time in Minkwoski
space. The symbol X+ denotes the reversion operation and involves reversing the order
of all the basis γµ elements in the expansion of X . It is the analog of the transpose (
Hermitian ) conjugation. The C-space proper time associated with a polyparticle motion
is then :

dΣ2 = (dΩ)2 + Λ2D−2dxµdxµ + Λ2D−4dxµνdxµν + .. (3− 3)

Here we have explicitly introduced the Planck scale Λ since a length parameter is
needed in order to tie objects of different dimensionality together: 0-loops, 1-loops,...,
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p-loops. Einstein introduced the speed of light as a universal absolute invariant in order
to “unite” space with time (to match units) in the Minkwoski space interval:

ds2 = c2dt2 − dxidxi. (3− 4)

A similar unification is needed here to “unite” objects of different dimensions, such as xµ,
xµν , etc... The Planck scale then emerges as another universal invariant in constructing
an extended scale relativity theory in C-spaces.

To continue along the same path, we consider the analog of Lorentz transformations
in C-spaces which transform a poly-vector X into another poly-vector X ′ given by X ′ =
RXR−1 with

R = eθAEA = exp [(θ1 + θµγµ + θµ1µ2γµ1 ∧ γµ2 .....)]. (3− 5)

and

R−1 = e−θAEA = exp [−(θ1 + θνγν + θν1ν2γν1 ∧ γν2 .....)]. (3− 6)

where the theta parameters in (3.5, 3.6) are the components of the Clifford-value param-
eter Θ = θAEA :

θ; θµ; θµν ; .... (3− 7)

they are the C-space version of the Lorentz rotations/boosts parameters.
Since a Clifford algebra admits a matrix representation, one can write the norm of a

poly-vectors in terms of the trace operation as: ||X||2 = Trace X2 Hence under C-space
Lorentz transformation the norms of poly-vectors behave like follows:

Trace X ′2 = Trace [RX2R−1] = Trace [RR−1X2] = Trace X2. (3− 8a)

These norms are invariant under C-space Lorentz transformations due to the cyclic prop-
erty of the trace operation and RR−1 = 1. There is one word of caution. The condition
R−1 = R̃ that ensures that the inner product < X̃X > is invariant under poly-rotations
after using the tilde operation ( the reversal of the gamma basis generators present in the
EM polyvectors ) restricts the types of elements allowed in the definition of R .

To understand why, one can see that another way of rewriting the inner product of
poly-vectors is by means of the reversal operation that reverses the order of the Clifford
basis generators : (γµ∧γν)† = γν ∧γµ, etc... Hence the inner product can be rewritten as
the scalar part of the geometric product < X†X >s . The analog of an orthogonal matrix
in Clifford spaces is R† = R−1 such that

< X ′†X ′ >s=< (R−1)†X†R†RXR−1 >s=< RX†XR−1 >s=< X†X >s= invariant.
(3− 8b)

This condition R† = R−1 , of course, will restrict the type of terms allowed inside the
exponential defining the rotor R because the reversal of a p-vector obeys

(γµ1 ∧γµ2 .....∧γµp)
† = γµp ∧γµp−1 .....∧γµ2 ∧γµ1 = (−1)p(p−1)/2γµ1 ∧γµ2 .....∧γµp (3− 8c)
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Hence only those terms that change sign ( under the reversal operation ) are permitted
in the exponential defining R = exp[θAEA].

Another possibility is to complexify the C-space polyvector valued coordinates =
Z = ZAEA = XAEA+iY AEA and the boosts/rotation parameters θ allowing the unitarity
condition Ū † = U−1 to hold in the generalized Clifford unitary transformations Z ′ =
UZU † associated with the complexified polyvector Z = ZAEA such that the interval

< dZ̄† dZ >s = dΩ̄dΩ + dz̄µdzµ + dz̄µνdzµν + dz̄µνρdzµνρ + ..... (3− 8d)

remains invariant ( upon setting the Planck scale Λ = 1 ).
The unitary condition Ū † = U−1 under the combined reversal and complex-conjugate

operation will constrain the form of the complexified boosts/rotation parameters θA ap-
pearing in the rotor : U = exp[ θAEA ]. The theta parameters θA are either purely real or
purely imaginary depending if the reversal EA

† = ±EA, to ensure that an overall change
of sign occurs in the terms θAEA inside the exponential defining U so that Ū † = U−1 holds
and the norm < Z̄†Z >s remains invariant under the analog of unitary transformations
in complexified C-spaces. These techniques are not very different from Penrose Twistor
spaces. As far as we know a Clifford-Twistor space construction of C-spaces has not been
performed so far.

Another alternative is to define the polyrotations by R = exp (ΘAB[EA, EB]) where
the commutator [EA, EB] = FABCEC is the C-space analog of the i[γµ, γν ] commutator
which is the generator of the Lorentz algebra, and the theta parameters ΘAB are the
C-space analogs of the rotation/boots parameters θµν . The diverse parameters ΘAB are
purely real or purely imaginary depending whether the reversal [EA, EB]† = ±[EA, EB]
to ensure that R† = R−1 so that the scalar part < X†X >s remains invariant under the
transformations X ′ = RXR−1 . This last alternative seems to be more physical because
a poly-rotation should map the EA direction into the EB direction in C-spaces, hence
the meaning of the generator [EA, EB] which extends the notion of the [γµ, γν ] Lorentz
generator. We refer to the review [1] for further details about the Extended Relativity
Theory in Clifford spaces.

3.2 On the Minimal Planck scale, Superluminal Propagation
and C-space Relativity

Long time ago Nottale proposed to view the Planck scale as the absolute minimum in-
variant (observer independent) scale in Nature in his formulation of scale relativity [10]
We can apply this idea to C-spaces by studying the analog of the Minkowski space-time
signature (+,−,−,−) by choosing a C-space metric GMN whose signatures relative to
the scalar component Ω of the polyvectors coordinates are :

||dX||2 = dΣ2 = (dΩ)2[1− Λ2D−2 (dxµ)2

(dΩ)2
− Λ2D−4 (dxµν)

2

(dΩ)2
− Λ2D−6 (dxµνρ)

2

(dΩ)2
− ..]

15



||dX||2 = dΣ2 = (dΩ)2[1− (
Λ

λ1

)2D−2 − (
Λ

λ2

)2D−4 − (
Λ

λ3

)2D−6 − ...]. (3− 9)

where the sequence of variable scales ( parameters ) λ1, λ2, λ3, .... just reflect the magni-
tudes of the generalized holographic velocities as follows:

(dxµ)2

(dΩ)2
≡ (V1)

2 = (
1

λ1

)2D−2.

(dxµν)
2

(dΩ)2
≡ (V2)

2 = (
1

λ2

)2D−4.

(dxµνρ)
2

(dΩ)2
≡ (V3)

2 = (
1

λ3

)2D−6. (3− 10)

etc.... By a simple use of the chain-rule one can relate the velocities defined w.r.t the scalar
Ω variable with those velocities defined with respect to the coordinate-clock variable
t = xo. For example, V M = dXM/dΩ = (dXM/dt)/(dΩ/dt). It is clear now that if
||dX||2 ≥ 0 in ( 3.9) then the sequence of variable lengths λn in ( 3.10) cannot be smaller
than the Planck scale Λ. This is analogous to a situation with the Minkoswki interval:

ds2 = c2dt2[1− v2

c2
]. (3− 11)

ds2 ≥ 0 if, and only if, the velocity v does not exceed the speed of light. If any of the λn

were smaller than the Planck scale the C-space interval ( 3.9 ) will become tachyonic-like
dΣ2 < 0. Photons in C-space are tensionless branes/loops.

This upper holographic-velocity bound does not necessarily translate into a lower
bound on the actual values of lengths, areas, volumes....without the introduction of quan-
tum mechanical considerations [1] . One possibility is that the upper limiting speed of
light and the upper bound of the momentum mpc of a Planck-mass elementary parti-
cle (the so-called Planckton in the literature) generalizes now to an upper-bound in the
p-loop holographic velocities and the p-loop holographic momenta associated with ele-
mentary closed p-branes whose tensions are given by powers of the Planck mass. And
the latter upper bounds on the holographic p-loop momenta implies a lower-bound on the
holographic areas, volumes,..., resulting from the string/brane uncertainty relations that
we shall derive in the next section.

Thus, Quantum Mechanics is required to implement the postulated principle of
minimal lengths, areas, volumes...and which cannot be derived from the classical ge-
ometry alone. The emergence of the minimal Planck areas occurs also in the Loop
Quantum Gravity program where the expecation values of the Area operator are given
by multiples of Planck area. This area-quantization in Planck units can be derived
based on the isomorphism of Yang’s Noncommutative space-time algebra [37] and the
holographic area coordinates algebra in C-space.

To finalize we will discuss briefly the possibility of superluminal propagation [1]. It
is known that tachyons can induce a breakdown of causality. The simplest way to see
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why causality is violated when tachyons are used to exchange signals is by writing the
temporal displacements δt = tB − tA between two events (in Minkowski space-time) in
two different frames of reference:

(δt)′ = (δt)cosh(ξ) +
δx

c
sinh(ξ) = (δt)[cosh(ξ) + (

1

c

δx

δt
)sinh(ξ)] =

(δt)[cosh(ξ) + (βtachyon)sinh(ξ)]. (3− 12)

the boost parameter ξ is defined in terms of the velocity as βframe = vframe/c = tanh(ξ),
where vframe is is the relative velocity ( in the x-direction ) of the two reference frames
and can be written in terms of the Lorentz-boost rapidity parameter ξ by using hyperbolic
functions. The Lorentz dilation factor is cosh(ξ) = (1 − β2

frame)
−1/2 ; whereas βtachyon =

vtachyon/c is the beta parameter associated with the tachyon velocity δx/δt . By emitting
a tachyon along the negative x -direction one has βtachyon < 0 and such that its velocity
exceeds the speed of light |βtachyon| > 1 A reversal in the sign of (δt)′ < 0 in the above
boost transformations occurs when the tachyon velocity |βtachyon| > 1 and the relative
velocity of the reference frames |βframe| < 1 obey the inequality condition :

(δt)′ = (δt)[cosh(ξ)− |βtachyon|sinh(ξ)] < 0 ⇒ 1 <
1

tanh(ξ)
=

1

βframe

< |βtachyon|.

(3− 13)
thereby resulting in a causality violation in the primed reference frame since the effect (
event B ) occurs before the cause ( event A ) in the primed reference frame.

In the theory considered here, there are no tachyons in C-space, because physical sig-
nals in C-space are constrained to live inside the C-space-light cone [1] . However, certain
worldlines in C-space, when projected onto the Minkowski subspace M4, can appear as
worldlines of ordinary tachyons outside the lightcone in M4. In C-space the dynamics
refers to a larger space. Minkowski space is just a subspace of C-space. ”Wordlines” now
live in C-space that can be projected onto the Minkwoski subspace M4 . Furthermore,
one is enlarging the ordinary Lorentz group to a larger group of C-space Lorentz trans-
formations which involve poly-rotations and generalizations of boosts transformations. In
particular, the C-space generalization of the ordinary boost transformations associated
with the boost rapidity parameter ξ such that tanh(ξ) = βframe will involve now the fam-
ily of C-space boost rapidity parameters θt1, θt12, θt123, ....θt123..., ... since boosts are just (
poly ) rotations along directions involving the time coordinate. Thus, one is replacing
the ordinary boost transformations in Minkowski spacetime for the more general C-space
boost transformations as we go from one frame of reference to another frame of reference.

Due to the linkage among the C-space coordinates (poly-dimensional covariance) when
we envision an ordinary boost along the x1- direction, we must not forget that it is also
interconnected to the area-boosts in the x12-direction as well, and, which in turn, is also
linked to the x2 direction. Because the latter direction is transverse to the original
tachyonic x1-motion, the latter x2-boosts won’t affect things and we may concentrate on
the area-boosts along the x12 direction involving the θt12 parameter that will appear in
the C-space boosts and which contribute to a crucial extra term in the transformations
such that no sign-change in δt′ will occur.
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More precisely, let us set all the values of the theta parameters to zero except the
parameters θt1 and θt12 related to the ordinary boosts in the x1 direction and area-boosts
in the x12 directions of C-space. This requires, for example, that one has at least one
spatial-area component, and one temporal coordinate, which implies that the dimensions
must be at least D = 2 + 1 = 3 . Thus, we have in this case :

X ′ = RXR−1 = eθt1γt∧γ1+θt12γt∧γ1∧γ2XMEMe−θt1γt∧γ1−θt12γt∧γ1∧γ2 ⇒ X ′N = LN
MXM .

(3− 14)
where LN

M is given by the scalar part of the Clifford geometric product LN
M =<

ENREMR−1 >0 When one concentrates on the transformations of the time coordinate,
we have now that the C-space boosts do not coincide with ordinary boosts in the x1

direction :

t′ = Lt
MXM =< EtREMR−1 >0 XM 6= (Lt

t)t + (Lt
1)x

1. (3− 15)

because of the extra non-vanishing θ parameter θt12 .
This is because the rotor R includes the extra generator θt12γt∧γ1∧γ2 which will bring

extra terms into the transformations ; i.e. it will rotate the E[12] bivector- basis , that
couples to the holographic coordinates x12, into the Et direction which is being contracted
with the Et element in the definition of Lt

M . There are extra terms in the C-space boosts
because the poly-particle dynamics is taking place in C-space and all coordinates XM

which contain the t, x1, x12 directions will contribute to the C-space boosts in D = 3,
since one is projecting down the dynamics from C-space onto the (t, x1) plane when one
studies the motion of the tachyon in M4 .

Concluding, in the case when one sets all the theta parameters to zero, except the θt1

and θt12, the X ′ = RXMEMR−1 transformations will be :

(δt)′ = Lt
M(θt1; θt12)(δXM) 6= Lt

t(δt) + Lt
1(δx

1). (3− 16)

due to the presence of the extra term Lt
12(δX

12) in the transformations. In the more
general case, when there are more non-vanishing theta parameters , the indices M of the
XM coordinates must be restricted to those directions in in C-space which involve the
t, x1, x12, x123..... directions as required by the C-space poly-particle dynamics. The gen-
eralized C-space boosts involve now the ordinary tachyon velocity component of the poly-
particle as well as the generalized holographic areas, volumes, hyper-volumes...velocities
V M = (δXM/δt) associated with the poly-vector components of the Clifford-valued C-
space velocity.

Hence, at the expense of enlarging the ordinary Lorentz boosts to the C-space Lorentz
boosts, and the degrees of freedom of a point particle into an extended poly-particle
by including the holographic coordinates, in C-space one can still have ordinary point-
particle tachyons without changing the sign of δt, and without violating causality, due to
the presence of the extra terms in the C-space boosts transformations which ensure us
that the sign of δt > 0 is maintained as we go from one frame of reference to another one.
Naturally, if one were to freeze all the θ parameters to zero except one θt1 one would end

18



up with the standard Lorentz boosts along the x1 -direction and a violation of causality
would occur for tachyons as a result of the sign-change in δt′ .

What seems remarkable in this scheme of things is the nature of the signatures and
the emergence of two times. One of the latter is the local mode, a clock, represented
by t and the other mode is a “global” one represented by the volume of the space-time
filling brane . For more details related to this Fock-Stuckelberg-type parameter see [4].
We must emphasize that one must not confuse these global and local time modes with
the two modes of time in other branches of science.

Another immediate application of thistheory is that one may consider “strings” and
“branes” in C-spaces as a unifying description of all branes of different dimensionality.
In fact, a unified action of all p-branes was written in [1] . As we have already indicated,
since spinors are left/right ideals elements of a Clifford algebra, a supersymmetry is then
naturally incorporated into this approach as well. In particular, one can have world
volume and target space supersymmetry simultaneously [44]. We hope that the C-space
“strings” and “branes” may lead us towards discovering the physical foundations of string
and M-theory.

3.3 The Generalized String/Brane Uncertainty Relations

Below we will review how the minimal length string uncertainty relations can be obtained
fromthe polyparticle dynamics C-spaces [2]. The truly C-space invariant norm of a mo-
mentum polyvector is defined (after introducing suitable powers of the Planck scale in
the sum in order to match units ) :

||P ||2 = π2 + pµp
µ + pµνp

µν + pµνρp
µνρ + .... = M2 (3− 17a)

A detailed discussion of the physical properties of all the components of the polymo-
mentum P in four dimensions and the emergence of the physical mass m in Minkowski
spacetime has been provided in the book by Pavsic [4]. The polymomentum in D = 4
can be written as :

P = µ + pµγµ + Sµνγµ ∧ γν + πµγ5γµ + mγ5. (3− 17b)

where the pseudo-scalar component mγ5 is the one which contains the physical mass in
Minkwoski spacetime. This justifies using the notation m for mass.

The most salient feature of the polyparticle dynamics in C-spaces is that one can
start with a constrained action in C-space and arrive, nevertheless, at an unconstrained
Stuckelberg action in Minkowski space (a subspace of C-space). It follows that pµ is a
constant of motion pµp

µ = m2 but m is no longer a fixed constant entering the action
but it is now an arbitrary constant of motion. The true constraint in C-space is :

PAPA = µ2 + pµp
µ + πµπ

µ −m2 − 2SµνSµν = M2. (3− 17c)
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This is basically the distinction between the variable m and the fixed constant M . The
variable m is the conjugate to the Stuckelberg evolution parameter s that allowed Pavsic
to propose a natural solution of the problem of time in Quantum Cosmology [4] :

Nottale has given convincing arguments why the notion of dimension is resolution
dependent, and at the Planck scale, the minimum attainable distance, the dimension
becomes singular, that is blows-up. Setting aside at this moment the potential algebraic
convergence problems when D = ∞, if we take the dimension at the Planck scale to
be infinity, then the norm P 2 will involve an infinite number of terms. It is precisely
this infinite series expansion which will reproduce all the different forms of the Casimir
invariant masses appearing in kappa-deformed Poincare algebras

It was discussed recently why there is an infinity of possible values of the Casimirs
invariant M2 due to an infinite choice of possible bases. The parameter κ is taken to
be equal to the inverse of the Planck scale. The classical Poincare algebra is retrieved
when Λ = 0. The kappa-deformed Poincare algebra does not act in classical Minkwoski
spacetime. It acts in a quantum-deformed spacetime. We conjecture that the natural
deformation of Minkowski spacetime is given by C-space.

The way to generate all the different forms of the Casimirs M2 is by “projecting
down” from the 2D-dim Clifford algebra to D-dim. One simply “slices” the 2D-dim mass-
shell hyper-surface in C-space by a D-dimensional one. This is achieved by imposing the
following constraints on the holographic components of the polyvector-momentum. In
doing so one is explicitly breaking the poly-dimensional covariance and for this reason
one can obtain an infinity of possible choices for the Casimirs M2.

To demonstrate this, we impose the following constraints :

pµνp
µν = a2(pµp

µ)2 = a2p
4. pµνρp

µνρ = a3(pµp
µ)3 = a3p

6. ...... (3− 18)

What Eqs-(3-18) represent geometrically is the slicing of the 2D-dimensional mass-
shell hypersurface in C-space into D-dimensional regions (subspaces) parametrized solely
in terms of the ordinary momentum coordinates pµ. This is the reason why decided to
choose such constraint ( 3-18). There are many different ways to perform the slicing
procedure in C-space depending on the choices of the coefficients an . Upon doing so the
norm of the poly-momentum becomes:

P 2 =
∑
n

anp
2n = M2(1, a2, a3, ..., an, ...) (3− 19)

Therefore, by a judicious choice of the coefficients an, and by reinserting the suitable
powers of the Planck scale, which have to be there in order to combine objects of different
dimensions, one can reproduce all the possible Casimirs in the form:

M2 = m2[f(Λm/h̄)]2. m2 ≡ pµp
µ = p2. (3− 20)

To illustrate the relevance of polyvectors, we will summarize our derivation of the
minimal length string uncertainty relations Because of the existence of the extra holo-
graphic variables xµν , ... one cannot naively impose [x, p] = ih̄ due to the effects of the
other components. The units of [xµν , p

µν ] are of h̄2 and of higher powers of h̄ for the other
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commutators. To achieve covariance in C-space which reshuffles objects of different di-
mensionality, the effective Planck constant in C-space should be given by a sum of powers
of h̄.

This is not surprising. Classical C-space contains the Planck scale, which itself depends
on h̄. This implies that already at the classical level, C-space contains the seeds of the
quantum space. At the next level of quantization, we have an effective h̄ that comprises
all the powers of h̄ induced by the commutators involving all the holographic variables.
In general one must write down the commutation relations in terms of polyvector- valued
quantities. In particular, the Planck constant will now be a Clifford number, a polyvector
with multiple components [37].

The simplest way to infer the effects of the holographic coordinates of C-space on the
commutation relations is by working with the effective h̄ that appears in the nonlinear
de Broglie dispersion relation. The mass-shell condition in C-space, after imposing the
constraints among the holographic components, yields an effective mass M = mf(Λm/h̄).
The generalized De Broglie relations are no longer linear:

|Peffective| = |p|f(Λm/h̄) = h̄effective|k|. h̄effective = h̄f(Λm/h̄) =

h̄
n=N∑
n=0

an(Λm/h̄)2n. m2 = p2 = pµp
µ = (h̄k)2. (3− 21)

where the upper limit in the sum N = D .
Using the effective h̄eff , the well known relation based on the Schwartz inequality and

the fact that |z| ≥ |Imz| we obtain:

∆xi∆pj ≥ 1

2
|| < [xi, pj] > ||. [xi, pj] = ih̄effδ

ij. (3− 22)

In Euclidean space-time one has that the norms:

h̄2k2 = ||pµp
µ|| = m2 = ||(p0)

2 + ~p2|| ≥ ||~p2||. m2 ≥ ||~p2||. (3− 23)

Choosing a positive sign of the numerical coefficients an > 0 in Eq-(3-21) one has :

anm
2n ≥ an||~p2||n = an[(p1)

2 + (p2)
2 + ....(pD−1)

2]n ⇒

anm
2n ≥ an(p1)

2n. anm
2n ≥ an(p2)

2n. anm
2n ≥ an(p3)

2n....... (3− 24)

Therefore, from Eq-( 3-24 ) in conjunction with the inequalities:

< p2 > ≥ (∆p)2. < p4 > ≥ (∆p)4...... (3− 25)

and upon using the series expansion of the effective h̄eff that appears in the r.h.s of (
3-21), we get for each component (we omit indices for simplicity) :

∆x∆p ≥ 1

2
h̄ +

a1Λ
2

2h̄
(∆p)2 + ............ (3− 26)

This yields the minimal length string uncertainty relations with corrections :
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∆x ≥ h̄

2∆p
+

a1Λ
2

2h̄
∆p + ..... (3− 27)

By replacing lengths by times and momenta by energy one reproduces the minimal Planck
time uncertainty relations.

The Physical interpretation of these uncertainty relations follow from the extended
relativity principle. As we boost the string to higher trans-Planckian energies, part of
the energy will always be invested into the strings potential energy, increasing its length
intobits of Planck scale sizes, so that the original string will decompose into two, three,
four....strings of Planck sizes carrying units of Planck momentum; i.e. the notion of a
single particle/string loses its meaning beyond that point.

This reminds one of ordinary relativity, where boosting a massive particle to higher
energy increasesthe speed whilepart of the energy is also invested into increasing its mass.
In this process the speed of light remains the maximum attainable speed (it takes an
infinite energyto reach it) and in our scheme the Planck scale is never surpassed. The
effects of a minimal length can be clearly seen in Finsler geometries [20] having both a
maximum four acceleration c2/Λ (maximum tidal forces) and a maximum speed . The
Riemannian limit is reached when the maximum four acceleration goes to infinity; i.e.
The Finsler geometry “collapses” to a Riemannian one.

4 THE EXTENDED RELATIVITY IN BORN-

CLIFFORD PHASE SPACES

4.1 The Clifford-Phase Space with a Lower and Upper Length
Scales

Our task now is to construct a Relativity theory that implements simultaneously the
minimal and maximal scale Relativity principle. One should expect a relationship with
Yang’s Noncommutative Spacetime algebra, with an upper and a lower scale associated
with the embedding of AdS5 into a 6D pseudo-Euclidean space. The upper scale R is
related to the throat-size of AdS5, an infrared regulator. The minimal scale is set equal
to the Planck length LP .

The interval in Clifford-Phase-Spaces is defined :

dΣ2 = < dX†dX > +
1

F2
< dP †dP >=

(
dΩ

LD−1
P

)2 + dxµdxµ +
dxµνdxµν

L2
P

+
dxµνρdxµνρ

L4
P

+ ....

1

F2
[

(dΩ̃)2

(h̄/R)2D−2
+ dpµdpµ +

dpµνdpµν

(h̄/R)2
+

dpµνρdpµνρ

(h̄/R)4
+ ...... ] (4− 1)
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where the maximal force :

F =
mP c2

LP

=
MUc2

R
=

c4

G
(4− 2)

The infrared scale R → ∞ limit is set in conjunction with the vanishing limit of the
holographic momenta variables (to avoid singularities)

pµν → 0, pµνρ → 0, ...

constraining the interval in the Born-Clifford Phase Space :

dΣ2 ⇒ (dΩ)2

L2D−2
P

+ dxµ1dxµ1 +
dxµ1µ2dxµ1µ2

L2
P

+
dxµ1µ2µ3dxµ1µ2µ3

L4
P

+ ....

dxµ1µ2µ3....µD−1
dxµ1µ2µ3....µD−1

L2D−2
P

+
1

F2
dpµdpµ. (4− 3)

.
In the classical limit h̄ → 0 the Planck scale LP =

√
(h̄G/c3) → 0 . Thus, the

ultraviolet limit LP → 0 is accompanied with the vanishing limit of the holographic
coordinate variables

xµν → 0, xµνρ → 0, ...

and the interval reduces further to Born Phase Space interval :

dΣ2 ⇒ dxµdxµ +
1

F2
dpµdpµ =

.

dτ 2[1 +
(dpµ/dτ)(dpµ/dτ)

F2
] =

dτ 2[1 +
1

F2
m2d2xµ

dτ 2

d2xµ

dτ 2
] = dτ 2[1− m2g2(τ)

F2
]. (4− 4)

When F → ∞ the Phase Space interval reduces further to the Minkowski spacetime
interval.

As stated above, when h̄ → 0 one has that the Planck scale LP → 0 and also one
should notice that :

mP =
h̄

cLP

=
h̄

c
√

(h̄G/c3)
→ 0. amax =

c2

LP

=
√

(c7/h̄G) →∞. mP amax =
c4

G
= F .

(4− 5)
Despite that the maximal acceleration is infinite this does not necessarily imply that the
maximal force is also divergent due to the fact that the mP → 0.

Hence there are two regimes that interpolate from the Born-Clifford Phase Space in-
terval to the standard point-particle Born Phase Space interval (related to the existence of
a maximal force). In the infinite distance ( infrared ) limit R →∞ the minimum momen-
tum collapses to zero and in order to avoid singularities we must set all the holographic
momenta to zero that leads to the decoupling of the holographic momenta variables. In
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the classical limit h̄ → 0 the Planck scale collapses to zero and in order to avoid singulari-
ties we must set all the holographic coordinate variables to zero so one ends up solely with
the Born’s Dual Phase Space Relativity interval associated with a point particle subjected
to an upper bound on the force F = c4/G and with an upper bound on the speed given
by c .

4.2 A Clifford realization of Velocity and Acceleration Boosts
in Phase Spaces

Introducing complex coordinates :

zµ = xµ + i
pµ

F
. zµν =

xµν

LP

+ i
pµν

F(h̄/R)
.... (4− 6)

along with their complex conjugates will be very useful as we shall see next. Upon
defining the maximal force F = b the effective boost parameter ξ can be written in terms
of the the velocity boosts ξv ( tanh(ξv/c) = v/c ) and acceleration boosts parameter ξa (
tanh(ξa/b) = ma/mP amax ) as :

ξ =
ξv

c
+ i

ξa

F
. ||ξ|| =

√
ξξ̄ =

√
(ξv/c)2 + (ξa/F)2. (4− 7)

From the transformations of the (X, T, E, P ) variables given in eqs-( ) one finds:

z′1 = z1 cosh(||ξ||) + z0 (ξv/c + iξa/b)
sinh(||ξ||)
||ξ||

(4− 8)

z′0 = z0 cosh(||ξ||) + z1 (ξv/c− iξa/b)
sinh(||ξ||)
||ξ||

. (4− 9)

z̄′1 = z̄1 cosh(||ξ||) + z̄0 (ξv/c− iξa/b)
sinh(||ξ||)
||ξ||

(4− 10)

z̄′0 = z̄0 cosh(||ξ||) + z̄1 (ξv/c + iξa/b)
sinh(||ξ||)
||ξ||

. (4− 11)

These transformations leave invariant the Phase Space interval rewritten in complex co-
ordinates :

z0z̄0 − z1z̄1 = z′0z̄
′
0 − z′1z̄

′
1 = invariant. (4− 12)

(dΣ)2 = dωdω̄ + dzµdz̄µ + dzµνdz̄µν + ... (4− 13)

The natural symmetry group action in the Clifford-Phase Space associated with 8D
is the Clifford group Cl(8) with 28 = 256 elements. This Cl(8) group contains naturally
the Spin(8) group with 28 elements associated with the bivectors basis generators of
the Clifford algebra. Namely with ordinary rotations and boosts in 8D . The Spin(8)
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breaks up into an U(4) piece associated with the MacDowell-Mansouri-Chamseddine-
West formulation of gravity and the SU(3)⊗SU(2)⊗U(1) associated with the Standard
Model . Since U(1, 3) is the symmetry group studied by Low comprised of velocity and
acceleration boosts, rotations,... in the 8D Phase Space which leave invariant the ordinary
point-particle Phase Space interval, it is fairly clear that the Clifford group Cl(8) ( which
contains the Spin(8) group ) contains the required U(4) piece and is going to be large
enough to implement the generalized velocity and acceleration boosts of the holographic
Clifford-valued coordinates and momenta in the Clifford-Phase-Space interval .

The signature of the 8D Phase space x0, p0, x1, p1, x2, p2, .... is chosen to be
(+, +,−,−,−,−...−); i.e. there are two timelike and six spacelike directions. We choose
to split the 8D Clifford algebra generators into pairs of γ’s and β’s as follows :

Γ0 = γ0. Γ1 = γ1, Γ2 = γ2. Γ3 = γ3. Γ4 = β0, Γ5 = β1, Γ6 = β2, Γ7 = β3 (4− 14)

obeying the relations :

{γµ, γν} = 2ηµν . {βµ, βν} = 2ηµν . {γµ, βν} = 0. {βµ, γν} = 0 (4− 15)

Thus the squares of the gamma basis are :

γ2
0 = β2

0 = 1. γ2
1 = β2

1 = −1. γ2
2 = β2

2 = −1. γ2
3 = β2

3 = −1. .... (4− 16)

we also have the important relations

(γ0β0)(γ0β0) = −γ2
0β

2
0 = −1. (γ1β1)(γ1β1) = −γ2

1β
2
1 = −1...

γ5 = γ0γ1γ2γ3. γ2
5 = −1. (4− 17)

β5 = β0β1β2β3. β2
5 = −1. (4− 18)

Notice that due to the (2, 6) signature one has (γ5β5)
2 = 1. The Clifford algebras

Cl(2, 6, R), Cl(6, 2, R) can be realized in terms of the matrix algebra M(8,H) given
by 8× 8 Quaternionic entries.

To illustrate the usefulness of Clifford algebras it is convenient to derive the ordinary
velocity boosts transformations along the x1 direction using Clifford algebras. Since the
directions x2 and x3 are unaffected one may concentrate solely on the real 2D Clifford
algebra Cl(1, 1; R) that can be realized in terms of the matrix algebra M(2, R) comprised
of 2× 2 real matrices.

A Clifford algebra in 2D has four generators 1, γ0, γ1 and the bivector γ0γ1 . Because
γ2

0 = 1 and γ2
1 = −1, the γ0 element can be realized as a 2× 2 traceless diagonal matrix

with entries 1,−1 along the diagonal. γ0 is Hermitian γ†0 = γ0 whereas the anti-Hermitian
traceless γ1 can be realized as i times an off-diagonal 2× 2 matrix whose entries are 1, 1
and such as γ2

1 = −1. The bivector γ0γ1 is Hermitian (γ0γ1)
† = γ†1γ

†
0 = −γ1γ0 = γ0γ1

since the γ’s anti-commute. Thus the traceless Hermitian 2× 2 matrix γ0γ1 is given by i
times an anti-symmetric ( off diagonal ) matrix whose entries are 1,−1 respectively.
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The rotor corresponding to an ordinary velocity boosts transformations in coordinate
space along the x1 directions :

X′ = x′0γ
0 + x′1γ

1 = R(x0γ
0 + x1γ

1)R−1 (4− 19)

is defined as :

R = exp [
1

2

ξv

c
γ0γ1 ] = cosh(

1

2
||ξ||) + γ0γ1 sinh(

1

2
||ξ||). (4− 20)

where ||ξ|| = ξv

c
when ξa = 0.

R−1 = exp [ − 1

2

ξv

c
γ0γ1 ] = cosh(

1

2
||ξ||) − γ0γ1 sinh(

1

2
||ξ||). (4− 21)

After performing a Taylor series expansion of the exponential we arrive at the expres-
sions for R and R−1 explicitly in terms of hyperbolic functions due to the non-compact
nature of the Lorentz group. The Taylor series expansion is based on the following con-
ditions :

{γ0, γ1} = 0 ⇒ (γ0γ1)
2 = γ0γ1γ0γ1 = −γ2

0γ
2
1 = −(1)(−1) = +1 (4− 22)

so that the square :

1

4
(
ξv

c
γ0γ1)

2 =
1

4
(
ξ2
v

c2
)2 = ||ξ/2||2. (γ0γ1)

2 = 1. (4− 24)

The cube becomes after multiplying and dividing by 1
2
||ξ|| :

||ξ/2||3 1

(||ξ||/2)

1

2
[
ξv

c
γ0γ1]. (4− 25)

In this way the even powers will combine to give the cosh(1
2
||ξ||) term and the odd

powers will combine to give the term :

1

||ξ||
sinh(

1

2
||ξ||) [

ξv

c
γ0γ1 ]. (4− 26)

The identities :

cosh(||ξ||) = cosh2(
1

2
||ξ||) + sinh2(

1

2
||ξ||). sinh(||ξ||) = 2sinh(

1

2
||ξ||) cosh(

1

2
||ξ||).
(4− 28)

allow us to evaluate:

X′ = x′0γ
0 + x′1γ

1 = RXR−1 =

[ cosh(
1

2
||ξ||) + γ0γ1sinh(

1

2
||ξ||) ] [x0γ

0 + x1γ
1 ] [ cosh(

1

2
||ξ||)− γ0γ1sinh(

1

2
||ξ||) ] =

[x0cosh(||ξ||)− x1sinh(||ξ||)]γ0 + [x1cosh(||ξ||)− x0sinh(||ξ||)γ1 =
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x′0γ
0 + x′1γ

1 (4− 29)

from which we can immediately read-off the transformations

x′0 = x0 cosh(||ξ||)− x1 sinh(||ξ||). x′1 = x1 cosh(||ξ||)− x0 sinh(||ξ||). (4− 30)

that leave invariant the indefinite quadratic form x2
0 − x2

1 defined as :

< X′X′ >scalar= (x′0)
2 − (x′1)

2 =< XX >scalar= (x0)
2 − (x1)

2 (4− 31)

since the reversal of the vector X is itself and γ2
0 = 1, γ2

1 = −1 and {γ0, γ1} = 0. which
explains why there are no mixed terms x0x1 in the indefinite quadratic form.

The indefinite quadratic form can also be recast as a minus the determinant of the
2× 2 matrix:

−det(X′) = (x′0)
2 − (x′1)

2 = −det(R) det(X) det(R−1) = (x0)
2 − (x1)

2 (4− 32)

. since det(R−1)det(R) = 1 .

4.3 The Clifford Cl (2, 6, R) Symmetry Group

The Phase-Space transformations require much more work due to the mixing of coordi-
nates and momenta in order to implements Born’s Dual Relativity Principle in Phase-
Spaces that we postulated as the underlying origins of T duality symmetry in string/M
theory. Since we will be studying velocity and acceleration boosts ( force boosts ) along
the x1 and p1 directions, it is convenient to write only the relevant variables affected by
these transformations. Thus, we shall forget about the x2, p2, x3, p3 coordinates for con-
venience purposes and focus at the moment on the 4D phase Space associated with the
x0, p0, x1, p1 variables .

Defining the 4D Phase space vector :

Z = x0γ0 + p0β0 + x1γ1 + p1β1. Z′ = RZR−1 (4− 33)

where for convenience purposes we have written p instead of p/F . The rotor is now given
by :

R = exp[
1

2
(
ξv

c
Υv +

ξa

b
Υa) ] (4− 34)

where Υv and Υa are the sought-after velocity and acceleration boosts in the 4D Phase-
Space. These generators are suitable linear combinations of the bi-vectors basis elements
associated with the Clifford algebra Cl(2, 2) which is isomorphic to a matrix algebra
M(4,R) comprised of 4× 4 real matrices. In this subsection we shall follow all the steps
necessary to determine the form of Υv and Υa that reproduce the U(1, 1) transformations
in complex coordinates form. It is a non trivial exercise.
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Firstly , in order to perform the Taylor series expansion of the exponentials , one
requires the following 3 orthonormality conditions to begin with :

{Υv , Υa} = 0. Υ2
v = 1. Υ2

a = 1. (4− 35)

so that the square :

(
ξv

c
Υv +

ξa

b
Υa)

2 =
ξ2
v

c2
+

ξ2
a

b2
= ||ξ||2 (4− 36)

Hence the mixed terms cancel out due to the ”orthogonality” condition {Υv, Υa} = 0 .
Thus, the square of the exponents in the definition of R becomes :

[
1

2
(
ξv

c
Υv +

ξa

b
Υa) ]2 =

1

4
(
ξ2
v

c2
+

ξ2
a

b2
) = ||ξ

2
||2. (4− 37)

The cube becomes after multiplying and dividing by ||ξ/2|| :

||ξ
2
||3 1

(||ξ||/2)

1

2
[
ξv

c
Υv +

ξa

b
Υa ]. (4− 38)

In this way the even powers will combine to give the cosh(1
2
||ξ||) term and the odd

powers will combine to give the term :

1

||ξ||
sinh(

1

2
||ξ||) [

ξv

c
Υv +

ξa

b
Υa ]. (4− 39)

the rotor becomes :

R = cosh(
1

2
||ξ||) + [

ξv

c
Υv +

ξa

b
Υa ]

sinh(1
2
||ξ||)

||ξ||
. (4− 40)

The inverse is :

R−1 = R† = cosh(
1

2
||ξ||) − [

ξv

c
Υv +

ξa

b
Υa ]

sinh(1
2
||ξ||)

||ξ||
. (4− 41)

The following 4 relations

[
ξv

c
Υv +

ξa

b
Υa ] γ0 [

ξv

c
Υv +

ξa

b
Υa ] = −γ0||ξ||2. (4− 42a)

[
ξv

c
Υv +

ξa

b
Υa ] γ1 [

ξv

c
Υv +

ξa

b
Υa ] = −γ1||ξ||2. (4− 42b)

[
ξv

c
Υv +

ξa

b
Υa ] β0 [

ξv

c
Υv +

ξa

b
Υa ] = −β0||ξ||2. (4− 42c)

[
ξv

c
Υv +

ξa

b
Υa ] β1 [

ξv

c
Υv +

ξa

b
Υa ] = −β1||ξ||2. (4− 42d)
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are direct consequences of the 8 flip conditions below that need to be satisfied bringing
the total number of independent conditions to 3 + 8 = 11 comprised of 3 orthonormality
and 8 flip conditions.

3 + 8 = 11 = mebrane
Therefore, we must find 11 independent coefficients in the defining relations for the

generators Υv and Υa.
The 8 flip conditions are :

[
ξv

c
Υv +

ξa

b
Υa ] γ0 = [

ξv

c
+ i

ξa

b
]γ1 (4− 43a)

[
ξv

c
Υv +

ξa

b
Υa ] γ1 = [

ξv

c
− i

ξa

b
]γ0 (4− 43b)

[
ξv

c
Υv +

ξa

b
Υa ] β0 = [

ξv

c
+ i

ξa

b
]β1 (4− 43c)

[
ξv

c
Υv +

ξa

b
Υa ] β1 = [

ξv

c
− i

ξa

b
]β0 (4− 43d)

and

γ0[
ξv

c
Υv +

ξa

b
Υa ] = −[

ξv

c
+ i

ξa

b
]γ1 (4− 44a)

γ1[
ξv

c
Υv +

ξa

b
Υa ] = −[

ξv

c
− i

ξa

b
]γ0 (4− 44b)

β0[
ξv

c
Υv +

ξa

b
Υa ] = −[

ξv

c
+ i

ξa

b
]β1 (4− 44c)

β1[
ξv

c
Υv +

ξa

b
Υa ] = −[

ξv

c
− i

ξa

b
]β0 (4− 44d)

The identities :

cosh(||ξ||) = cosh2(
1

2
||ξ||) + sinh2(

1

2
||ξ||). sinh(||ξ||) = 2sinh(

1

2
||ξ||) cosh(

1

2
||ξ||).
(4− 45)

must be used always in order to reproduce the cosh(||ξ||), sinh(||ξ||) from their half-
values.

In order to determine the precise form of of the generators Υv, Υa associated with
velocity and acceleration-boosts we must recur to the physical interpretation of those
transformations. The U(1, 1) subalgebra of the full U(1, 3) algebra has always a U(1)
phase piece. Thus we may focus on the SU(1, 1) subalgebra of SU(1, 3). Notice that
SU(1, 1) is also a sub-algebra of the four-dim conformal algebra SU(2, 2) which is not
the same as the SU(1, 3). However the SU(1, 1) shares similarities with the conformal
algebra. In particular the latter four-dim conformal algebra has four conformal boosts
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transformations Kµ, four translations generators Pµ as well as six Lorentz rotations and
a dilation.

It has been known for some time that the the four-dim conformal algebra SU(2, 2)
admits a Clifford-algebraic realization. In particular, Pµ and Kµ can be recast as γµ(1±γ5),
the Lorentz generators as γµγν and the dilations as γ5 giving a total of 15 generators.

The velocity boosts in the 4D Phase space must be a linear superposition of the
following bi-vectors :

Υv = a1γ0γ1 + a2β0β1 + a3γ0β1 + a4γ1β0 (4− 46)

where the first two bivectors correspond to rotations in the x0 − x1 and p0 − p1 planes
respectively and the last two terms are rotations mixing coordinates with momenta.

Inspired by the Clifford-realizations of the Pµ ( translation ) and Kµ (conformal boosts)
generators we must have the following 8 bi-vectors in the definition of acceleration boosts
in 4D Phase-Space :

Υa = b1
±γ1(1± γ5) + b2

±β1(1± β5) + b3
±β1(1± γ5) + b4

±γ1(1± β5) (4− 47)

The first four terms are linear combinations of the Pµ, Kµ generators in the coordinates
x-space and their dual generators P̃µ, K̃µ in the momentum p-space. The last four terms
represent the mixing of coordinates with momenta.

Despite having a total of 4 + 8 = 12 coefficients in the definitions of Υv, Υa we have a
net number of 11 independent coefficient- ratios :

a2/a1, a3/a1. a4/a1. b1
+/a1, b1

−/b1
+, b2

±/b1
+, b3

±/b1
+, b4

±/b1
+. (4− 48)

The ratio b1
+/a1 must be included since it represents the relative sign and magnitude

among the Υv and Υa generators. One can scale off the coefficients a1, b1 out of the
expressions and re-absorb them in the definitions of ξv/c, ξa/b respectively, but there is a
remaining relative ± sign between the coefficients determining the Υv and Υa generators.
Concluding, we have 11 independent ratios which match the number of 11 = 3 + 8
condtions satisfied by the generators Υv, Υa associated with velocity and acceleration-
boosts .

Z = x0γ0 + p0β0 + p1β1 + x1γ1. Z′ = RZR−1 ⇒

< Z′Z′ >scalar= (x′0)
2 + (p′0)

2 − (x′1)
2 − (p′1)

2 = z′0z̄
′
0 − z1z̄

′
1 =

< R Z R−1 R Z R−1 >scalar=< R ZZ R−1 >scalar=

< ZZ >scalar= (x0)
2 + (p0)

2 − (x1)
2 − (p1)

2 = z0z̄0 − z1z̄1 = invariant. (4− 49)

In the full fledged Clifford-Born-Phase-Spaces one requires taking the reversal op-
eration Z̃ by reversing the orderings of the γ, β basis elements in the expansion of a
polyvector in order to evaluate the inner product of two polyvectors : < Z̃Z > . When
Z is a vector there is no distinction between the reversal of Z and itself. Invariance
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holds provided R−1 = R̃ which restricts the form of the terms inside the exponential
R = exp [θMEM ] when EM span the full graded structure of the Clifford algebra. For
bivectors we have that the reversal of (γµγν) is given by γνγµ = −γµγν . Thus there is a
sign reversal as expected in the terms inside the exponential in order to ensure us that
R̃ = R−1 .

Similar considerations follow for tri-vectors but not for 4-vectors and 5-vectors basis
elements. In the latter case the reversal operation does not change the sign. In order
to remedy this situation one could construct a rotor of the form R = eiH where H is a
Hermitian operator comprised of the θMEM terms but now the θM are complex valued in
general and the generators EM span the complexified Clifford algebra Cl(p, q)⊕j Cl(p, q)
. The inner products are defined now in terms of the Hermitian adjoint operation †
< Z†Z > where Z† = Z̃∗. In our case discussed above there is no problem with the
reversal operation because the Υv, Υa generators are defined in terms of bivectors which
do change signs appropriately under the reversal operation and consequently R̃ = R−1 .

To sum up, the velocity and acceleration/force boosts transformations acting on the
4D Phase Space as :

[ cosh(
1

2
||ξ||) + (

ξv

c
Υv +

ξa

b
Υa )

sinh(1
2
||ξ||)

||ξ||
] [x0γ0 + p0β0 + x1γ1 + p1β1]×

[ cosh(
1

2
||ξ||) − (

ξv

c
Υv +

ξa

b
Υa)

sinh(1
2
||ξ||)

||ξ||
]. (4− 50)

Upon performing some straightforward algebra; introducing the F = b factors in the
momenta terms ; recurring to the 11 conditions ( 3 orthonormality and 8 flip conditions
which fix the 11 coefficient ratios ) and by defining z0 = x0 + ip0/b; z1 = x1 + ip1/b, it
leads to :

z′1 = z1 cosh(||ξ||) + z0 (ξv/c + iξa/b)
sinh(||ξ||)
||ξ||

(4− 5ob)

z′0 = z0 cosh(||ξ||) + z1 (ξv/c− iξa/b)
sinh(||ξ||)
||ξ||

. (4− 50c)

and their complex conjugates , which are precisely the same transformations provided
earlier for the z0, z1, z̄0, z̄1 variables. The laborious calculation is to solve for the values of
the 11 coefficient ratios from the 11 conditions.

The ordinary 8D Phase Space coordinates xµ, pµ can be be written in terms of 4
complex coordinates z0, z1, z2, z3 , by the standard procedure zµ = xµ + ipµ and extended
to Clifford-Phase-Space by :

zµ = xµ ± ipµ, zµν = xµν ± ipµν , zµνρ = xµνρ ± ipµνρ, ...... (4− 50d)

after absorbing the LP , R,F factors in the definitions of the Clifford-Phase-Space co-
ordinates. Notice, however, that the corresponding Clifford algebra associated with 4
complex dimensions ( 8 real dimensions of ordinary Phase space ) is the complexified
Clifford algebra in four dimensions ClC(4) that can be realized in terms of the matrix
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algebra M(4, C) of 4 × 4 complex entries, but the latter matrix algebra M(4, C) with
2 × 4 × 4 = 32 degrees of freedom is much smaller than the Quaternionc matrix algebra
M(8,H) with 4×8×8 = 256 degrees of freedom associated with the real Cl(2, 6), Cl(6, 2)
algebras. The latter Quaternionic matrix algebra is 8 times ”bigger” than the former com-
plex matrix algebra. There are two possibilities one can choose to study the symmetries
of the Clifford-Phase-Space associated with an ordinary 8D Phase space :

i. Work with the complex matrix algebra M(4, C) corresponding to the complexified
Clifford ClC(4) algebra that is associated with 4 complex dimensions. Since complexified
4D Minkowski spacetime is the arena for Twistors [63], this is a very appealing case to
study.

ii. Work with the Quaternionic matrix M(8,H) algebra associated with the Real
Clifford algebras Cl(2, 6), Cl(6, 2) . This case should be related to a Quaternionic and
Octonionic ( if possible ) extensions of Twistor Theory .

To sum up, one can combine, simultaneously, the generalized velocity and accelera-
tion/force boosts, and the additional symmetries acting in the full Cliffod-Phase-Space, by
recurring to the matrix algebra M(8,H) realization of the Cl(2, 6) algebra in order to im-
plement the generalized poly-rotations of all the Clifford-valued holographic coordinates
and momenta:

xµ,ν , xµνρ, ..., pµν , pµνρ, .... (4− 51)

among each other. This geometrical picture is instrumental to be able to generalize these
velocity and acceleration/force boosts transformations in Clifford-Phase-Spaces ( CP-
spaces ) that will reshuffle the holographic coordinates and holographic momenta among
each other.

The full action of the Clifford group Cl(2, 6) on the Clifford-Phase-Space variables is
of the form :

Z′ = R Z R−1 = eθAEA ZMEM e−θAEA (4− 51)

EA runs over the full Cl(2, 6) group :

γµ1 ; γµ1 ∧ γµ2 ; ...... βν1 ; βν1 ∧ βν2 ; ... γµ1 ∧ βν1 , γµ1 ∧ γµ2 ∧ βν1 , .... (4− 52)

The condition < Z̃Z >= invariant is true if R−1 = R̃ which restricts the type of
EM basis elements allowed in the definition of R . A Unitary operator U = eiH for H
Hermitian requires the complexification of the Cl(2, 6) algebra. In this case an invariant
inner product < Z†Z > can be constructed such Z′ = UZU† .

4.4 On the Noncommutative Yang’s Spacetime Algebra, Holog-
raphy and Area Quantization in Clifford Spaces

We continue this section with some relevants remarks about the impact of Yang’s Non-
commutative spacetime algebra on modified Newtonian dynamics. Such algebra involves
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two length scales, the minimal Planck scale LP = λ and an upper infrared cutoff scale R .
Recently in [37] an isomorphism between Yang’s Noncommutative space-time algebra (in-
volving two length scales) [38] and the holographic area coordinates algebra of C-spaces
(Clifford spaces) was constructed via an AdS5 space-time (embedded in 6D ) which is
instrumental in explaining the origins of an extra (infrared) scale R in conjunction to the
(ultraviolet) Planck scale λ characteristic of C-spaces. Yang’s Noncommutative space-
time algebra allowed Tanaka [39] to explain the origins behind the discrete nature of
the spectrum for the spatial coordinates and spatial momenta which yields a minimum
length-scale λ (ultraviolet cutoff) and a minimum momentum p = h̄/R ( maximal length
R, infrared cutoff ) .

Related to the issue of area-quantization, the norm-squared A2 of the holographic Area
operator XABXAB in Clifford-spaces has a correspondence with the quadratic Casimir
operator λ4ΣABΣAB of the conformal algebra SO(4, 2) ( SO(5, 1) in the Euclideanized
AdS5 case ). This holographic area-Casimir relationship does not differ much from the
area-spin relation in Loop Quantum Gravity A2 ∼ λ4 ∑

ji(ji + 1) in terms of the SU(2)
Casimir J2 with eigenvalues j(j + 1), where the sum is taken over the spin network sites
[36] and the minimal Planck scale emerges from a regularization procedure.

The Yang’s algebra can be written in terms of the 6D angular momentum operators
and a 6D pseudo-Euclidean metric ηMN :

M̂µν = h̄Σµν . M̂56 = h̄Σ56. (4− 53)

λΣµ5 = x̂µ.
h̄

R
Σµ6 = p̂µ. (4− 52)

N =
λ

R
Σ56. (4− 54)

as follows :

[p̂µ,N ] = −iη66 h̄

R2
x̂µ. (4− 55)

[x̂µ,N ] = iη55L2
P

h̄
p̂µ. (4− 56)

[x̂µ, x̂ν ] = −iη55L2
P Σµν . (4− 57)

[p̂µ, p̂ν ] = −iη66 h̄2

R2
Σµν . (4− 58)

[x̂µ, p̂µ] = ih̄ηµν N . (4− 59)

[x̂µ, Σνρ] = ηµρxν − ηµνxρ. (4− 60)
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[p̂µ, Σνρ] = ηµρpν − ηµνpρ. (4− 61)

The dynamical consequences of the Yang’s Noncommutative spacetime algebra can be
derived from the quantum/classical correspondence :

1

ih̄
[Â, B̂] ↔ {A, B}PB. (4− 62)

i.e. commutators correspond to Poisson brackets. More precisely, to Moyal brackets. in
Phase Space. In the classical limit h̄ → 0 Moyal brackets reduce to Poisson brackets. Since
the coordinates and momenta are no longer commuting variables the classical Newtonian
dynamics is going to be modified since the symplectic two-form ωµν in Phase Space will
have additional non-vanishing elements stemming from these non-commuting coordinates
and momenta.

In particular, the modified brackets read now :

{{A(x, p), B(x, p)}} = ∂µAωµν∂νB = {A(x, p), B(x, p)}PB{xµ, pν}+
∂A

∂xµ

∂B

∂xν
{xµ, xν}+

∂A

∂pµ

∂B

∂pν
{pµ, pν}. (4− 63)

If the coordinates and momenta were commuting variables the modified bracket will reduce
to the first term only :

{{A(x, p), B(x, p)}} = {A(x, p), B(x, p)}PB{xµ, pν} = [
∂A

∂xµ

∂B

∂pν
− ∂A

∂pµ

∂B

∂xν
]ηµνN .

(4− 64)
The ordinary Heisenberg ( canonical ) algebra is recovered when N → 1 in eq-(4-13).

In the nonrelativistic limit, the modfied dynamical equations are :

dxi

dt
= {{xi, H}} =

∂H

∂pj
{xi, pj}+

∂H

∂xj
{xi, xj}. (4− 65)

dpi

dt
= {{pi, H}} = −∂H

∂xj
{xi, pj}+

∂H

∂pj
{pi, pj}. (4− 66)

The non-relativistic Hamiltonian for a central potential V (r) is :

H =
pip

i

2m
+ V (r). r = [

∑
i

xix
i]1/2 (4− 67)

Defining the magnitude of the central force by F = −∂V
∂r

and using ∂r
∂xi = xi

r
one has the

modified dynamical equations of motion :

dxi

dt
= {{xi, H}} =

pj

m
δij − F

xj

r
L2

P Σij. (4− 68)

dpi

dt
= {{pi, H}} = F

xj

r
δij +

pj

m

Σij

R2
. (4− 69)
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The angular momentum two-vector Σij can be written as the dual of a vector ~J as follows
Σij = εijkJk so that :

dxi

dt
= {{xi, H}} =

pi

m
− L2

P F
xj

r
εijkJk. (4− 70a)

dpi

dt
= {{pi, H}} = F

xi

r
+

pj

m

εijkJk

R2
. (4− 70b)

For planar motion ( central forces ) the cross-product of ~J with ~p and ~x is not zero

since ~J points in the perpendicular direction to the plane. Thus, one will have nontrivial
corrections to the ordinary Newtonian equations of motion induced from Yang’s Non-
commutative spacetime algebra in the non-relativistic limit. When ~J = 0, pure radial
motion, there are no corrections. This is not the case when we studied the modified New-
tonian dynamics in the previous section of the modified Schwarzschild field due to the
maximal-acceleration relativistic effects. Therefore, the two routes to obtain modifications
of Newtonian dynamics are very different.

Concluding, eqs-(4-68, 4-69, 4-70a , 4-70b ) determine the modified Newtonian dy-
namics of a test particle under the influence of a central potential explicitly in terms of
the two LP , R minimal/maximal scales. When LP → 0 and R → ∞ one recovers the
ordinary Newtonian dynamics vi = (pi/m) and F (xi/r) = m(dvi/dt). The unit vector in
the radial direction has for components r̂ = (~r/r) = (x1/r, x2/r, x3/r).

It is warranted to study the full relativistic dynamics as well, in particular the
modified relativistic dynamics of the de-Sitter rigid top [49] due to the effects of Yang’s
Noncommutative spacetime algebra . The de Sitter rigid Top can be generalized further to
Clifford spaces since a Clifford-polyparticle has more degrees of freedom than a relativistic
top in ordinary spacetimes [48] . And, naturally, to study the modified Nambu-Poisson
dynamics of p-branes [51] as well.

4.5 The Generalized Noncommutative Yang’s Algebra In Clif-
ford Spaces

In order to generalize Yang’s Noncommutative spacetime algebra to the full Clifford space
associated with the 4-dim real Clifford algebra Cl(4, R) one needs to enlarge the number
of dimensions from D = 4 to D = 12 as follows. Since in the previous section we have
established the isomorphism xµ ↔ λΣµ5, pµ ↔ h̄

R
Σµ6, and (λ/R)Σ56 = N , the generalized

nonzero [x, p] commutator must be of the form :

[ xµ1,µ2....µn , pν1ν2...νn ] = [ λnΣµ1µ2...µn i1i2....in , (
h̄

R
)nΣν1ν2.....νn j1j2...jn ] =

ih̄nηµ1ν1µ2ν2.....µnνn(
λ

R
)nΣ [i1i2....in] [j1j2.....jn] = ih̄nηµ1ν1µ2ν2.....µnνnN [i1i2....in] [j1j2.....jn].

(4− 71)
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where the indices i, j span the extra dimensions as follows : the index i spans over the
values i = 5, 7, 9, 11 only, and the index j spans over the values j = 6, 8, 10, 12 only . The
i indices are linked to the poly-vector-valued coordinates xµ1µ2....µn and the j indices are
linked to the poly-momentum variables pν1ν2...νn . Further possibilities occur when both
indices i, j span over all the internal directions 5, 6, 7, ...12. In that case the commutator
(4.71 ) will contain additional terms of the form : ηi1j1....injnΣµ1µ2....µnν1ν2....νn . For the
time being we shall restrict the indices so that i = 5, 7, 9, 11 and j = 6, 8, 10, 12 only.
The index n spans 1, 2, 3, 4 since n = 4 is the maximal grade of the Clifford polyvector
associated with the Clifford algebra in D = 4 .

ηµ1ν1µ2ν2.....µnνn is given by the determinant of the N × N matrix Gmn whose entries
are ηµmνn :

ηµ1ν1µ2ν2.....µnνn = det Gmn =
1

N !
εi1i2....inεj1j2....jnηµi1

νj1ηµi2
νj2 .......ηµinνjn . (4− 72)

For example :
ηµ1ν1µ2ν2 = ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1 etc.... (4− 73)

Similar results apply to the definition of ηi1j1....injn .
The generator Σi1i2... which generalizes the λ

R
Σ56 = N Yang’s generator is

antisymmetric under the collective exchange of indices :

Σ [i1i2....in] [j1j2.....jn] = −Σ [j1j2....jn] [i1i2.....in]. (4− 74)

and is also antisymmetric in the [i1, i2, ....in] and [j1, j2, ....jn] indices, respectively.
Hence, the generalized (nonzero) commutators [x,N ], [p,N ] read:

[ Xµ1µ2...µn k1k2......kn , Σ [i1i2....in] [j1j2.....jn] ] = iηi1k1i2k2....inknXµ1µ2...µn j1j2......jn

−iηj1k1j2k2....jnknXµ1µ2...µn i1i2......in . (4− 75)

If the i, k indices span over the 5, 7, 9, 11 directions only, the second term in the r.h.s will
vanish. If the j, k indices span over the 6, 8, 10, 12 only, the first term in the r.h.s will
vanish. If all the indices i, j, k span over all the 5, 6, 7, ...12 directions then both terms in
the r.h.s will be nonvanishing. Hence upon using the correspondence

xµ1µ2...µn ↔ λnΣµ1µ2....µn i1i2...in . pµ1µ2...µn ↔ (
h̄

R
)nΣµ1µ2....µn j1j2...jn .

(
λ

R
)nΣ [i1i2....in] [j1j2.....jn] ≡ N [i1i2....in] [j1j2.....jn] (4− 76)

where i = 5, 7, 9, 11 and j = 6, 8, 10, 12, the commutators which exchange coordinates for
momenta are :

[ xµ1µ2...µn , N [i1i2....in] [j1j2.....jn] ] = iηi1k1i2k2....inknλn(
1

(h̄/λ)
)npµ1µ2...µn (4− 77)
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and

[ pµ1µ2...µn , N [i1i2....in] [j1j2.....jn] ] = −iηj1k1j2k2....jnkn(
h̄

R
)n xµ1µ2...µn

Rn
. (4− 78)

The generalized (nonzero) commutator of two polyvector-valued coordinate operators
is :

[ xµ1µ2...µn , xν1ν2.....νn ] = iλ2nΣ [µ1µ2......µn] [ν1ν2.......νn]. (4− 79)

where

Σ [µ1µ2......µn] [ν1ν2.......νn] = −Σ [ν1ν2......νn] [µ1µ2.......µn]. (4− 80)

and is antisymmetric in the µ1, µ2...µn and ν1ν2.....νn indices respectively.
The generalized (nonzero) commutator of two polyvector-valued momentum operators

is

[ pµ1µ2...µn , pν1ν2.....νn ] = i(
h̄

R
)2nΣ [µ1µ2.......µn] [ν1ν2.......νn]. (4− 81)

The remaining (nonzero) commutators are:

[ xµ1µ2...µn , Σ [ν1ν2....νn] [ρ1ρ2....ρn] ] = iηµ1ν1µ2ν2......µnνnxρ1ρ2.....ρn − iηµ1ρ1µ2ρ2......µnρnxν1ν2.....νn .
(4− 82)

[ pµ1µ2...µn , Σ [ν1ν2....νn] [ρ1ρ2....ρn] ] = iηµ1ν1µ2ν2......µnνnpρ1ρ2.....ρn − iηµ1ρ1µ2ρ2......µnρnpν1ν2.....νn .
(4− 83)

which are just poly-rotations of poly-vectors and finally the generalized Lorentz algebra
in C-space reads:

[ Σ [µ1µ2...µn] [ν1ν2....νn], Σ [ρ1ρ2....ρn] [τ1τ2....τn] ] = iηµ1ρ1µ2ρ2......µnρnΣ [ν1ν2.....νn] [τ1τ2.....τn]

−iηµ1τ1µ2τ2......µnτnΣ [ν1ν2.....νn] [ρ1ρ2.....ρn] − iην1ρ1ν2ρ2......νnρnΣ [µ1µ2.....µn] [τ1τ2.....τn] +

iην1τ1ν2τ2......νnτnΣ [µ1µ2.....µn] [ρ1ρ2.....ρn]. (4− 84)

These commutators are the natural generalization of the Yang’s Noncommutative
spacetime algebra in Clifford spaces and obey the Jacobi identities. Since the poly-vector
valued coordinates and momenta don’t commute we expect to have uncertainty relations
of the form :

∆xµ1µ2...µn∆pµ1µ2...µn ≥ h̄n. ∆xµ1µ2...µn∆xν1ν2...νn ≥ λ2n. (4− 85)

These generalized uncertainty relations and the n-volume quantization in units of the
Planck scale will be the subject of future investigation.
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4.6 Moyal-Yang Star Products and Noncommutative Branes in
C-spaces

We end this section by constructing Moyal-Yang Star Products with an ultraviolet and
infrared cuttofs and the corresponding Noncommutative Branes in C-spaces. Noncommu-
tative Classical Mechanics has a correspondence to Noncommutative Quantum Mechanics.
Denoting the Clifford polyvector-valued indices of different grades by the indices A, B, C....
spanning over all the multi-graded components of a Clifford polyvector , the inverse of the
poly-symplectic form in C-phase-spaces ΩAB is a 2d+1 × 2d+1 matrix comprised of blocks
of 2d×2d antisymmetric matrices consisting of the entries given by {qA, qB} and {pA, pB}
along the main block-diagonal, and blocks of 2d×2d matrices given by the entries {pA, qB}
and {qB, pA} off the main block-diagonal such that the Noncommutative Poisson Brackets
(NCPB ) are defined as

{ F (qa, pa) , G (qA, pA) }Ω = (∂ΥAF) ΩAB (∂ΥBG) =

(∂qAF) {qA, qB} (∂qBG) + (∂pAF) {pA, pB} (∂pBG) +

(∂qAF) {qA, pB} (∂pBG) + (∂pAF) {pA, qB} (∂qBG). (4− 86)

where the entries {qA, qB}, {pA, pB}, {pA, qB}, {pA, qB} can be read from the generalized
Noncommutative Yang’s algebra in C-spaces described in the previous section. In ordinary
Classical Mechanics (corresponding to ordinary Quantum Mechanics) the {qA, qB} and
{pA, pB} brackets are zero. This is not the case in Noncommutative Classical Mechanics
( corresponding to Noncommutative Quantum Mechanics ) in C-spaces. For example, the
classical-quantum mechanical correspondence among the ordinary phase space variables
is

{xµ, xν} ↔ 1

ih̄eff

[X̂µ, X̂ν ]. {pµ, pν} ↔ 1

ih̄eff

[P̂ µ, P̂ ν ]. {xµ, pν} ↔ 1

ih̄eff

[X̂µ, P̂ ν ].

(4.87)
where the effective Planck constant is now comprised of the 3 fundamental parameters,
h̄, λ, R. Hence the deformation parameter in the Moyal star products induced from the
Generalized Yang’s Noncommutative algebra in C-spaces is h̄eff ≡ (h̄λ/R) .

In order to recover the Poisson brackets from the generalized Noncommutative Yang
algebra commutators in C-spaces provided in section 4.5 , when taking the ”classical”
limit h̄eff → 0, one needs firstly to divide by factors of i(h̄eff )

n where n is the grade of
the Clifford-valued coordinate and momentum operators. Hence, after factoring out the
i factors in the numerator and denominators, the Poisson brackets corresponding to the
Noncommutative Classical Mechanics in C-spaces are

{ xµ1µ2...µn , xν1ν2.....νn } = lim h̄eff→0
λ2n

(h̄λ/R)n
Σ [µ1µ2......µn] [ν1ν2.......νn]. (4− 88a)
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{ pµ1µ2...µn , pν1ν2.....νn } = lim h̄eff→0
(h̄/R)2n

(h̄λ/R)n
Σ [µ1µ2.......µn] [ν1ν2.......νn]. (4− 88b)

{ xµ1,µ2....µn , pν1ν2...νn } = ηµ1ν1µ2ν2.....µnνnΣ [i1i2....in] [j1j2.....jn]. (4− 88c)

In section 4.4 we explained how the double− scaling limit behaves :

lim λ → 0. lim R →∞. λR → L2. (4− 89)

We will take the double-scaling limit h̄eff = (h̄λ/R) = (h̄λ2/L2) → 0 keeping h̄ = c = 1
in natural units fixed. Upon doing so one will have a nice cancellation in the r.h.s of eqs-
(4-88) without singularities leading to the Noncommutative Poisson Brackets ( NCPB)
associated with a Noncommutative Classical Mechanics. ( h̄ = c = 1 units ) induced from
the generalized Yang’s algebra in C-spaces described in section 4.5

{ xµ1µ2...µn , xν1ν2.....νn }NCPB = L2n Σ [µ1µ2......µn] [ν1ν2.......νn]. (4− 90a)

{ pµ1µ2...µn , pν1ν2.....νn }NCPB =
1

L2n
Σ [µ1µ2.......µn] [ν1ν2.......νn]. (4− 90b)

{ xµ1,µ2....µn , pν1ν2...νn }NCPB = ηµ1ν1µ2ν2.....µnνnΣ [i1i2....in] [j1j2.....jn]. (4− 90c)

where L2 = λR in the double-scaling limit.
Notice that the entries of ΩAB have different units ( dimensions ) depending on the

different grades among the components of the polyvectors in C-phase-space. Therefore, it
is convenient to re-scale all the quantities by judicious powers of h̄ such that all the terms
appearing in the evaluation of the brackets {F ,G} have the same units. Units that we will
choose to be h̄−d assuming F ,G are dimensionless. Without this re-scaling the brackets
contain terms of different units given by powers of h̄ and whose exponents depend on the
different grades of a polyvector as indicated by the r.h.s of eqs-(4-88). To conclude : Upon
using the natural units of h̄ = c = 1 it automatically solves the adjustment problem of
units for all the terms appearing in the evaluation of the brackets {F ,G} in eq-(4-86).

Since the deformation parameter is now h̄eff = h̄λ
R

the Moyal-Yang star product based
on the generalized Yang’s algebra in Clifford spaces is defined

( F ∗ G )(Υ) ≡ exp [ (ih̄eff/2) ΩAB ∂
(Υ1)
A ∂

(Υ2)
B ] F(Υ1) G(Υ2)|Υ1=Υ2=Υ. (4− 91a)

where the derivatives ∂
(Υ1)
A act only on the F(Υ1) term and ∂

(Υ2)
B act only on the G(Υ2)

term.
The Noncommutative Moyal-Yang Bracket is defined :

{F , G}MY B ≡ F ∗ G − G ∗ F . (4− 91b)
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Following our discussion we will see that the C-space world-volume coordinates ΣA

associated with C-space-branes will be identified with the C-phase-space variables as
follows Υ = Σ = (qA, pA)

qA = q, qa, qa1a2 , qa1a2a3 , ........, qa1a2......ad . (4− 92a)

pA = p, pa, pa1a2 , pa1a2a3 , ........, pa1a2......ad . (4− 92b)

the total number of variables (qA, pA) is 2 × 2d = 2d+1, which matches the degrees of
freedom corresponding to a Clifford space in d+1-dim since the dimR Cl(d+1, R) = 2d+1.

The 2d+1 C-phase-space real variables associated with the C-space world-volume of
the C-space branes can be recast in terms of 2d complex variables :

ZA = qA + ipA = q+ ip, qa + ipa, qa1a2 + ipa1a2 , ............qa1a2...ad + ipa1a2...ad . (4− 93)

Plus their complex conjugates Z̄A = qA − ipA . In order to match units it is required
to re-scale the variables by suitable powers of λ and (h̄/R) if one wishes to work with
dimensionless variables ZA, Z̄A . For the time being we should be working with (qA, pA)
instead of (ZA, Z̄A) variables .

One of the most important physical consequences of this section is the following :
since the world-volume polyvector-valued coordinates Σ = (qA, pA) associated with the
C-space Branes are noncommuting, because they obey the Generalized Noncommuta-
tive Yang’s algebra described in section 4.5, the C-space target background coordi-
nates XM = XM(qA, pA) onto which one embeds the C-space world-volumes of the
C-space branes, will require the use of Noncommutative Poisson brackets themselves
{XM(qA, pA) , XN(qA, pA)}NCPB 6= 0 as we shall see next. We must emphasize that
extreme care must be taken not to confuse the variables (qA, pA) with XM , PM !

The extension of the Generalized-Yang-Mills (GYM) theories [8] to C-spaces can be
obtained as follows. Define the gauge connection of the Clifford-Tangent-Bundle as

AM = AAB
M ΣAB = AAB

M [EA, EB]. F[MN ] = ∂[NAAB
M ] ΣAB + [ AAB

M ΣAB , ACD
N ΣCD ].

(4− 94)
where the EA, EB basis elements admit a representation in terms of 2d/2 × 2d/2 matrices.
A Moyal-Yang star product deformation quantization procedure along similar lines to the
ones described in [58] in the quenched − reduced approximation leads to the correspon-
dence among Hilbert space operators and functions in phase-space

F[MN ] ↔ F∗[MN ] (qA, pA) = { AM(qA, pA) ,AN(qA, pA) }∗MY B. (4− 95)

since here is no X dependence in the r.h.s of (7.10) in the quenched − reduced approx-
imation of Generalized Yang-Mills theories [58]. The trace operation corresponds to an
integration w.r.t the C-space-brane variables. Thus, the gauge-field/ coordinate corre-
spondence AM(qA, pA) ↔ XM(qA, pA) = XM(Σ) of [58] yields

F∗[M1M2M3........M
2d+1 ] (q

A, pA) = F∗[M1M2] ∗ F∗[M3M4] ∗ .......∗ F∗[M
2dM

2d+1 ] + permutations ↔
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{XM1 , XM2 }∗MY B ∗ {XM2 , XM3 }∗MY B ∗ .............. ∗ {XM
2d

, XM
2d+1

}∗MY B +permutations =

{ XM1 , XM2 , XM3 , .............., XM
2d+1

}MY NPB. (4− 96)

where the phase-space coordinates are identified with the world-volume C-space brane
coordinates Υ = Σ = (qA, pA) and this allows us to evaluate the Moyal-Yang star product
deformations of the Clifford-Nambu-Poisson-Brackets in terms of the Moyal-Yang Brack-
ets {XM(qA, pA) , XN(qA, pA)}MY B . The Moyal-Yang quantization of GYM theories in
C-spaces leads to

F∗M1M2......M
2d+1

↔ { XM1 , XM2 , ....., XM
2d+1

}MY NPB. (4− 97)

trace [ F∗M1M2......M
2d+1

∗ F
M1M2......M

2d+1
∗ ] ↔∫

[DΣ] { XM1 , XM2 , ....., XM
2d+1

}MY NPB ∗ { XM1 , XM2 , ....., XM
2d+1

}MY NPB (4− 98)

which is the Clifford-space brane analog of the Eguchi-Schild action for strings that is
invariant under area-preserving diffs.

In order to implement the full C-space covariance under world-volume reparametriza-
tions of C-space branes, instead of the restricted invariance under volume-preserving diffs
, we can recur to the reparametrization invariant new p-brane actions studied in [6] via
the introduction of the auxiliary scalars in order to define a new integration measure [7]
.Noncommutative Clifford-space extensions of such new p-branes actions will be given
below.

The Moyal-Yang star deformations of Dolan-Tchrakian types of actions [8] will require
to enlarge the integration domain of dimension 2d+1 to one of twice the dimension 2d+2

and the Moyal-Yang brackets must be taken w.r.t an enlarged number of variables as well
( twice the number ). In the meantime, we proceed to evaluate the Moyal-Yang-Nambu-
Poisson Brackets (MYNPB) in terms of the Moyal-Yang Brackets (MYB)

{ Xµ1µ2....µn(Υ) , Xν1ν2....νn(Υ) }MY B = Xµ1µ2....µn ∗ Xν1ν2....νn − Xν1ν2....νn ∗ Xµ1µ2....µn .
(4− 99)

given in terms of the Moyal-Yang star products and that correspond to the Noncommu-
tative Poisson Brackets ( NCPB ) in the ”classical ” h̄eff → 0 limit

{ Xµ1µ2....µn(Υ) , Xν1ν2....νn(Υ) }NCPB = (∂ΥAXµ1µ2....µn) ΩAB (∂ΥBXν1ν2....νn). (4− 100)

A Moyal-Yang star-product deformation of the above Nambu-Poisson Brackets yields
the Moyal-Yang-Nambu-Poisson Brackets ( MYNPB )

F∗ [M1M2......M
2d+1 ] ↔ { XM1 , XM2 , ....., XM

2d+1
}MY NPB =

{ XM1 , XM2 }∗MY B ∗ { XM3 , XM4 }∗MY B ∗ .....∗ { XM
2d

, XM
2d+1

}∗MY B + permutations.
(4− 101)
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where the Moyal-Yang star-product deformations of the Nambu-Poisson-Brackets (
MYNPB ) can be decomposed as suitable antisymmetrized sums of Moyal-Yang star
products of the Moyal-Yang brackets (MYB) among pairs of variables. And the latter
MYB are those induced from the generalized Noncommutative Yang’s spacetime alge-
bra in Clifford spaces whose deformation parameter is h̄eff = h̄λ/R = h̄λ2/L2 in the
double-scaling limit. This is the generalization of the Quantum Nambu Brackets ( QNB
) described in [5] , [6]

Concluding, the Moyal-Yang star product deformation of the Noncommutative C-space
Brane Action Sbranes

∗MY is

T
∫

[DΣ]

√
1

(2d+1)! (ih̄eff )2d+1 [ { XM1 , XM2 , ....., XM
2d+1

}MY NPB ]2∗. (4− 102)

where the square of the MYNPB is [{}MY NPB]2∗ = {}∗∗{}∗ and the C-space brane tension
T has the unit of (mass)2d+1

. The terms inside the square root in the integrand is just
the Moyal-Yang star deformation of the determinant of the induced metric GAB resulting
from the embedding of the C-space Brane into the C-space target background resulting
from the identity

|det (GAB)| = |det [ GMN ∂AXM ∂BXN ]| =
1

(2d+1)!
| { XM1 , XM2 , ....., XM

2d+1
}NPB { XM1 , XM2 , ....., XM

2d+1}NPB |. (4− 103a)

The C-space brane action was given by us in [1]

S = T
∫

[DΣ]
√

det [ GMN ∂AXM ∂BXN ]. (4− 103b)

In the limit h̄eff = hλ/R → 0, keeping h̄ = c = 1 in the double − scaling limit
λR → L2 , the MYB coalesce to the Noncommutative Poisson Brackets ( NCPB ) as
follows :

{F , G}NCPB = lim h̄eff→0
1

ih̄eff

{F , G}MY B = lim h̄eff→0
1

ih̄eff

(F ∗ G − G ∗ F).

(4− 104)
these NCPB are associated with the Noncommutative Classical Mechanics . Hence, the
Noncommutative C-space Brane Action induced from the generalized Yang spacetime
algebra in Clifford spaces constructed in section 4.5 can be written in terms of the
Noncommutative Nambu Poisson Brackets ( NCNPB ) as

Sbranes
NC = T

∫
[DΣ]

√
1

(2d+1)!
[ { XM1 , XM2 , ....., XM

2d+1
}NCNPB ]2 . (4− 105)

And the Noncommutative C-space Brane version of the new p-brane actions given in [6]
is
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SNC = −1

2

∫
[DΣ] J [ϕ] [ − T 2

(2d+1)!
J −2[ϕ] { XM1 , XM2 , ....., XM

2d+1
}2

NCPB + 1 ].

(4− 106)
where the integration measure is given in terms of the 2d+1 auxiliary scalar fields [7]

J = {ϕ1, ϕ2, ...., ϕ2d+1}NCPB. (4− 107)

A Moyal-Yang star product deformations of the action (4-106) is more subtle since it
requires to write the deformation of the product J −2{........}2 as (1/2)J −2

∗ ∗ {........}2
∗ +

(1/2){.........}2
∗ ∗J −2

∗ where the inverse J −2
∗ is defined in terms of the star-product Taylor

series expansion of the inverse function.
To sum up : the Moyal-Yang C-space Brane actions (4-102) induced from the Moyal-

Yang star product deformation quantization of Generalized-Yang-Mills theories in C-
spaces, upon taking the h̄eff → 0 limit, lead naturally to Noncommutative C-space
Brane actions (4-105) associated to the Noncommutative Classical Mechanics described
by the brackets in eqs-(4-86, 4-87, 4-88). The latter Noncommutative Classical Mechanics
has a natural correspondence to the Noncommutative Quantum Mechanics in C-spaces (
when h̄eff 6= 0 ) described by the generalized Noncommutative Yang’s algebra in Clifford-
spaces given in section4.5. The importance of recurring to an Extended Relativity Theory
in Clifford-spaces is that it allows us to work with many branes of different dimensions
simultaneously.

A Noncommutative QFT in Clifford spaces involving both an upper R (infrared )
and lower ( ultraviolet ) scale λ remains to be developed. In particular, the full fledged
Quantization of C-space Branes and the plausible role of L2 to the cosmological constant
ρ ∼ L−4 where L2 = λR . The reasoning behind this argument was advanced in [9]
which is reinforced further within the context of the Extended Relativity in Born-Clifford
spaces because such theory involves 3 fundamental parameters h̄, c and L2 = λR. One
of the most salient features of [9] was that a geometric mean relationship was found
among the cosmological constant ρvacuum , the Planck area λ2 and the AdS4 throat size
squared R2 given by (ρv)

−1 = (λ)2(R2). Notice that by setting the infrared scale R
equal to the Hubble radius horizon RH and λ equal to the Planck scale one reproduces
precisely the observed value of the vacuum energy density ! [9] : ρ ∼ L−2

PlanckR
−2
H =

L−4
P (LPlanck/RH)2 ∼ 10−122M4

Planck if one takes RH ∼ 1061LP . The value of RH ∼ 1060LP

leads to ρ ∼ 10−120M4
Planck .

5 GRAVITY AND THE STANDARD MODEL

FROM A CL(1,7) GROUP STRUCTURE

We will follow very closely the main results of Smith [40] to get a representation of all
the known particles and fields in Physics based on the real Clifford group Cl(1, 7) ( one
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timelike and 7 spacelike directions ) . The Cl(1, 7) is 28 = 256 = 16× 16 dimensional and
has a graded structure :

1 8 28 56 35 + 35 56 28 8 1 (5− 1)

into a scalar, vector, bivector, 3-vector, ...... pseudoscalar. The middle 70 is written as
35 + 35 because it is self-dual under Hodge duality. By Hodge duality, the 1 8 28 56
35 is dual to the 35 56 28 8 1. Marks 1 has shown that the 1 8 28 56 35 correspond
to physical fields in the coordinate representation while the 35 56 28 8 1 correspond to
physical fields in the momentum representation and complementarity between space-time
and momentum-energy is achieved by bit inversion, which interconverts between position
representation and momentum representation. The model [40] does use all the graded
parts of Cl(8), and also the spinor structure of Cl(8), but the 56 and 35 parts are not
physically effective at low energies after dimensional reduction, and consequently they are
not written down explicitly in the 8D Lagrangian below which is used to calculate force
strengths, particle masses, etc in the low energy region where we do experiments today.

5.1 Spinors as Left/Right Ideal Elements of Clifford Algebras

Spinors are related to the graded structure of 256-dim Cl(8), 2 Lounesto discusses [12]
that in order to fix a minimal left ideal V of Cl(p,q) we can choose a primitive idempotent
f of Cl(p,q) so that V = Cl(p, q)f . By means of an orthonormal basis {e1, e2, ..., en} for
the grade-1 vector part of Cl(p, q) represented as Cl1(p, q) we can construct a primitive
idempotent f as follows: Recall that the 2n elements

eA = ea1ea2 ...eak
, 1 < a1 < a2 < ... < sk < n. (5− 2)

constitute a basis for Cl(p, q) with dimRV = 2X , where X = h or X = h + 1 according
as p−q = 0, 1, 2 mod 8 or p−q = 3, 4, 5, 6, 7 mod 8 and h = [n/2] . Select n−X elements
eA, e2

A = 1 , so they are pairwise commuting and generate a group of order 2n−X . then
the idempotent

f = (1/2)(1 + eA1)(1/2)(1 + eA2)...(1/2)(1 + eA(n−X)). (5− 3)

is primitive . In particular, Cl(1, 7) has a primitive idempotent comprised of 1+7+7+1 =
16 elements :

f = (1/2)(1 + e1248)(1/2)(1 + e2358)(1/2)(1 + e3468)(1/2)(1 + e4578) =

(1/16)(1 + e1248 + e2358 + e3468 + e4578 + e5618 + e6728 + e7138−

e3567 − e4671 − e5712 − e6123 − e7234 − e1345 − e2456 + eJ). (5− 4)

1http://www.innerx.net/personal/tsmith/clfpq2.html clifstructure
2http://www.innerx.net/personal/tsmith/8idempotents.html
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with four factors , where J = 12345678 so e2
J = −1.

Hence, the spinor has a mixed graded structure comprised of a scalar, a pseudoscalar,
7 4-vectors and their 7 dual 4-vectors. These 16 elements (terms) necessary to extract (to
read-off) a spinor from the full Clifford multi-graded structure match precisely the number
of components of a spinor in D = 8 given by 28/2 = 16. Since primitive idempotents
produces spinors, the Higgs and spinors are connected, which gives a Cl(8) structure
interpretation for the Yukawa couplings, something that is not clearly motivated in the
usual Standard Model. In short, the spinors in the model [40] stem from a primitive
idempotent living in the scalar, the 35+35 4-vector and pseudoscalar parts of the Cl(8)
graded structure.

A way to look at superspace in terms of Clifford algebras is described by Doran,
Lasenby and Gull [68] where given a set of n Grassmann generators one can map these
into a Clifford geometric algebra by introducing a set of n independent vectors and re-
placing the product of Grassmann variables by the exterior product. In this way any
combination of Grassmann variables can be replaced by a multivector ( polyvector ) and
the Berezin calculus can be handled entirely within the algebra by introducing the recip-
rocal frame. Integration is defined to be equivalent to right differentiation. Thus we see
that Grassmann calculus amounts to no more than Clifford contraction and the results
of ”Grassmann analysis” can all be expressed as simple algebraic identities for multivec-
tors (polyvectors) . Furthermore these results are now given a firm geometric significance
through the identification of Clifford elements with directed line, plane segments etc.

A subtle ”supersymmetry” exists in the 8-dim structure of Smith’s model [40] ,
whereby the 28 gauge bosons are the 8∧8 = 28 bivectors and there are 8+ spinor fermion
particles and 8− spinor fermion antiparticles. Due to triality, the vector 8v ∼ 8+ ∼ 8−
so that one can relate the 28 bosons with the ∧ product of the 8 fermions with the 8
antifermions. In other words, the subtle ”supersymmetry” of the model [40] displays the
nice features of 11 supergravity but does not have its unrealistic particle content , at
low energies, of 128 bosonic degrees of freedom ( gµν , Aµνρ ) and 128 fermionic degrees of
freedom associated with the spin 3/2 gravitino Ψµ .

5.2 The Standard Model and Gravity from 8D Clifford Struc-
tures

We will review in detail the derivation of all the Standard model parameters ( including
neutrino masses ) from first principles by Smith [40]. Beck [41] has a derivation of all the
Standard Model parameters including neutrino masses based on the Chaotic Quantization
(Parisi-Wu) method associated with a Kaneko coupled-map two-dim lattice and iterated
Ulam-Tschebysheff maps (symbolic dynamics) . The Standard Model parameters appear
as numerical minima ( and zeros ) of certain potentials. In Smith’s model [40] they
appear in terms of closed analytical geometrical expressions given by ratios of volumes in
homogenous complex domains with Shilov boundaries, for example.

The features of Smith’s model [40] are :
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• The 1-dim scalar representation is associated with the Higgs scalar.

• The emergence of right/left handed chirality spinors and 3 generations.

As we have discussed, spinors correspond to left and right ideal elements of a Clifford
algebra and can be visualized as columns or rows of a 16 × 16 matrix. In the model
[40] there are two mirror-image spinors of opposite chirality, each of the form of a real
(1, 7) column vector, that correspond to the first generation of fermion particles plus
their anti-particles, with octonionic structure. The 8 fermions correspond to a neutrino,
an electron, a red, blue, green up quark, and a red, blue, green down quark. The 8
mirror image fermions correspond to an anti-neutrino, a positron, a red, blue, green up
anti-quark, and a red, blue, green down anti-quark.

Second and third generation of spinors emerge from the dimensional reduction of
the 8D spacetime so that the first generation is associated with octonions; the second
generation with pairs of octonions and the third generations with triples of octonions
which explains the different values of the constituent quark masses.

Cl(8) has exceptional, unusual symmetries ( the bi-vector Spin ( 8 ) exhibits a triality
automorphism between spacetime vectors and spinors ) and structure, and is also a funda-
mental building block of all real Clifford algebras, due to real 8-periodicity. For instance,
if one were to look at Cl(16) = Cl(2x8) = Cl(8) (x) Cl(8) one would see a 2-level tensor-
nesting of the 16x16 structure, and the Cl(16) diagonal would be made up of 16 terms,
each of which looked like an entire Cl(8) 16x16, with its 16-element diagonal, so that
Cl(16) spinors would look like 16x16 = 256 elements, with 128 chiral spinors and 128
spinors of opposite chirality , which is indeed the case.

• The correct 4D spacetime signature (1, 3) .

The model is also consistent with the quaternionic structure of conformal Cl(2,4) =
4x4 quaternionic matrices and with the quaternionic structure of Cl(1,3) = 2x2 quater-
nionic matrices, so the 4-dim physical spacetime has the correct signature (1,3) and not
the signature (3,1) of Cl(3,1) = 4x4 real matrices. Hence, the (1, 7)-dimensional vector
representation corresponds to an 8-dim high-energy spacetime with octonionic structure
that reduces at lower energies to quaternionc structures that correspond to the (1, 3)-dim
physical spacetime and a (0, 4)-internal symmetry space.

• Emergence of Gravity and SU(3)⊗ SU(2)⊗ U(1) .
There is a 28-dim bivector representation ( 28 = 16 + 12 ) that corresponds to the

gauge symmetry Lie algebra of Spin(1, 7) that reduces at lower energies to ( i ) a
16-dim U(2, 2) = U(1) ⊗ SU(2, 2) = U(1) ⊗ Spin(2, 4) whose conformal Lie algebra
structure leads to gravity (with a cosmological constant ) via the MacDowell-Mansouri-
Chamseddine-West mechanism, and ( ii ) a 12-dim SU(3) ⊗ SU(2) ⊗ U(1) Standard
Model symmetry group involving 12 Gauge Bosons ( 8 gluons, 3 weak bosons W±, Z0 ,
and the photon) that can be represented on an internal 4-dim symmetry space by the
coset structure SU(3)/U(2) = SU(3)/SU(2) ⊗ U(1) associated with a CP 2 projective
space.
• Cosmological implications.

The model also gives two significant sets of calculations which are : (i) - WMAP ratio

46



calculation 3 and (ii) - neutrino mass and mixing angle calculations 4

• Unified Lagrangian in 8D .
The above structures fit together into an 8D ( 4D spacetime with a 4D internal

symmetry space ) Lagrangian :

L =
∫

V8

F ∧ ∗F + +Ψ̄dΨ + (dΦ + [A, Φ]) ∧ ∗(dΦ + [A, Φ]). (5− 5)

Ψ̄ = Ψ†Γ0 and d = ΓM∂M . that reduces to the Lagrangian of Gravity plus the Standard
Model upon dimensional reduction as shown in [40]
• Hermitian Symmetric Spaces.

The geometry of these representation spaces is associated with complex homogeneous
domains with Shilov boundaries. In conjunction with the combinatorial structure of the
second and third generation fermions (based on paths along the internal dimensions)
allows the explicit calculation and derivation of the relative force strength of all coupling
constants and particle masses, The coupling constants are defined as the probability of a
”charged” particle to emit a gauge boson. The mass m is defined as the probablity for a
particle to change direction. Based on these physical definitions Smith [40] was able to
derive the following :
• The Wyler formula for the EM fine structure constant 1/137.03608 at the character-

istic energy of the Bohr radius scale. A recent derivation of the four coupling constants
based on Geometric Probability theory has been provided by us [71], in particular the
Wyler formula [70].

• A Fermi coupling of 0, 235 at a characteristic energy of 100 Gev; gweakm
2
proton is

about 1.02× 10−5 .
A scalar Higgs particle of mass mH = 146 Gev and a vev of 252.5 Gev.
W± masses mW = 80.326 Gev and the Z0 mass mZ = 91.862 Gev. The Weinberg

angle sin2θW = 1− (mW /mZ) = 0.235.

• The running color force strength couplings : 0.6286, 0.167, 0.121, 0.106 at
0.245 Gev, 5.3 Gev, 34 Gev, 91 Gev respectively.

• the gravitational coupling GN such GNm2
proton = 5.9× 10−39.

• electron mass me = 0.511 Mev . Up and Down constituent quark mass mu = md =
312.8 Mev.

• Muon mas mµ = 104.8 Mev . Strange and Charm constituent quarks of mass
ms = 625 Mev and mc = 2.09 Gev.

• Tau mass mτ = 1.88 Gev . Bottom quark constituent mass mb = 5.63 Gev and a top
(truth) quark ) of mass 130 Gev consistent with the analysis of the Fermilab data by Dalitz
and Goldstein [57]. The 170 Gev consensus value for the top ( truth ) quark is associated
with a 3-jet interpretation of the 170 Gev peaks, whereas the 2-jet interpretation supports
a 130− 140 Gev mass analysis for the top ( truth ) quark. Dileptonic events, being more
directly measured with fewer jets , give a relatively accurate top ( truth ) quark mass.

3http://www.innerx.net/personal/tsmith/coscongraviton.html
4http://www.innerx.net/personal/tsmith/snucalc.html asno
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Although there are more semileptonic events, they involve background models that use
complicated calculations of electroweak and QCD processes that may not yet be fully
understood.

• Proton mass mp = 938.25 Mev and proton to electron mass ratio : mp/me = 1836 ∼
6π5.
• Neutrino masses, mixing angle calculations, Yukawa couplings and Cabibbo-

Kobayashi-Maskawa quark mixing parameters 5

6 A CLIFFORD GEOMETRIC UNIFIED ACTION

OF ALL FORCES

Having outlined in detail Smith’s model [40] and the important applications of Clifford
algebras in the last section that yields numerical results which agree with experimental
observations at low energies with high precision, the goal now is to embed Smith’s model
into the full-fledged geometrical structure consistent with the Extended Relativity The-
ory in Clifford-Phase spaces described in section 4 . At smaller scales of the order of the
Planck length (at very high energies) the whole picture changes dramatically because the
holographic coordinates and holographic momenta degrees of freedom in Clifford-Phase
spaces are no longer suppressed and, instead, the full Clifford-Phase-Space Extended Rel-
ativistic dynamics sets in with a minimal Planck LP and upper length scales R (minimum
momentum). An ultraviolet and infrared cutoffs are built into the theory. Namely, we
will no longer be dealing with point particles and fields, but with extended-objects (p-
loops, closed p-branes) and their corresponding p-loop ( p-branes ) fields with much larger
symmetries and degrees of freedom.

6.1 Maxwell-Yang-Mills Actions in Clifford Spaces

In this sub-section we will review briefly the extension of Maxwell’s theory of Electrody-
namics associated with ordinary point-charges to a Generalized Maxwell theory in Clifford
spaces involving extended charges and p-forms of arbitrary rank [62]

The purpose of studying Clifford-space extensions of Maxwell-Yang-Mills types of
actions

S =
∫

FµνF
µν . Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (6− 1)

is because Smith’s 8D action based on all the multi-graded field components associated
with the Cl(1, 7) algebra : scalars, vectors, bivectors, trivectors, 4-vectors, ..... discussed

5http://www.innerx.net/personal/tsmith/snucalc.html asno
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in detail in the previous section, could be embedded into more general actions of the type
FF in Clifford-spaces.

The Clifford-valued gauge field A(X) = AM(X)EM is now a function of the Clifford-
polyvector-valued coordinates X = XMEM . For example in 8D one has 28 = 256 degrees
of freedom belonging to the polyvector coordinates :

X = Ω 1 + xµΓµ + xµνΓµ ∧ Γν + xµνρΓµ ∧ Γν ∧ Γρ + ...... (6− 2)

where we omitted suitable powers of the Planck scale LP in order to match dimensions.
Secondly, the differential operator in C-spaces is now a generalized Dirac operator:

d = EM∂M = 1∂Ω + Γµ∂xµ + Γµ ∧ Γν∂xµν + ... (6− 3)

the indices M, N.... run over all the polyvector basis elements and range from 1, 2.....2D

since a Clifford algebra in D-dim has 2D basis elements. It is convenient to order the
polyvector collective indices indices M, N... as :

µ1 < µ2 < µ3 < ....... < µM . ν1 < ν2 < ν3 < ....... < νM .

Thirdly, the generalized Maxwell field strength in C-space is :

F = dA = EM∂M(ENAN) = EMEN∂MAN =
1

2
{EM , EN}∂MAN+

1

2
[EM , EN ]∂MAN =

1

4
F(MN){EM , EN}+

1

4
F[MN ][E

M , EN ]. (6− 4)

where one has decomposed the Field strength components into a symmetric plus antisym-
metric piece by simply writing the Clifford geometric product of two polyvectors EMEN

as the sum of an anticommutator plus a commutator piece respectively .

F(MN) =
1

2
(∂MAN + ∂NAM). (11)

F[MN ] =
1

2
(∂MAN − ∂NAM). (6− 5)

A measure of integration in C-space can be written as:

[DX] = (dΩ)(dx0dx1...dxD)(dx01dx02..)(dx012...).......(dx0123...D). (6− 6)

The standard C-space Maxwell action is up to a numerical factor given by :

S(A) =
∫

[DX] F[MN ]F
[MN ]. (6− 7)

and is automatically gauge invariant under the transformations δAM = ∂MΛ since
δF[MN ] = 0 due to the antisymmetry condition [∂M , ∂N ]Λ = 0 .

The action [62] , [1]∫
[DX] < F †F >scalar=

∫
[DX] (aF(MN)F

(MN) + bF[MN ]F
[MN ]). (6− 8)
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where a, b are dimension-dependent coefficients, is invariant ( up to total derivatives) under
infinitesimal gauge transformations provided the symmetric part of F is divergence-free
∂MF (MN) = 0

It was later noticed in [1] that this divergence-free condition has the same effects as if
one were fixing a gauge leaving a residual symmetry of restricted gauge transformations
such that the gauge symmetry parameter obeys the Laplace-like equation ∂M∂MΛ =
0. Such residual ( restricted ) symmetries are precisely those that leave invariant the
divergence-free condition on the symmetric part of F . Residual, restricted symmetries
occur, for example, in the light-cone gauge of p-brane actions leaving a residual symmetry
of volume-preserving diffs and in string theory, in the conformal gauge, leaving a residual
symmetry under conformal reparametrizations; i.e. the Virasoro algebras whose symmetry
transformations are given by holomorphic and anti-holomorphic reparametrizations of the
string world-sheet.

This Laplace-like condition on the gauge parameter is also the one required such that
the action (6-8) is invariant under finite (restricted) gauge transformations since under
such (restricted) finite transformations the Lagrangian changes by second-order terms of
the form (∂M∂NΛ)2, which are total derivatives if, and only if, the gauge parameter is
restricted to obey the analog of Laplace equation ∂M∂MΛ = 0 Concluding, the effects
of adding the symmetric pieces of F to the action leads to a restricted gauge symmetry
which has the same effects as if one were fixing a gauge ∂MF (MN) = 0

The matter-field minimal coupling is :∫
AMdXM =

∫
[DX]AMJM . (6− 9)

where one has re-absorbed the coupling constant, the C-space analog of the electric charge,
within the expression for the A field itself and the current J polyvector is proportional
to the polymomentum, like in ordinary EM the current four-vector Jµ is proportional to
the four-velocity with a delta function proportionality factor:

δ(x0 − x0(τ)) δ(x1 − x1(τ)) δ(x2 − x2(τ)) δ(x3 − x3(τ)). (6− 10)

which implies that the current has support along the worldline of the particle xµ = xµ(τ).
This matter-field coupling term (6-9) has the same form as the coupling of p-branes

(whose world volume is p + 1-dimensional) to antisymmetric tensor fields of rank p + 1.
The gauge-invariant equations of motion for the antisymmetric part of F are the usual
ones ∂MF [MN ] = JN . For further details about equations of motion, the construction of
Noether currents, continuity equation, etc... see [62] , [1].

It remains to be seen if this construction of C-space generalized Maxwell Electrody-
namics of p-forms can be generalized to the Nonabelian case when we replace ordinary
derivatives by gauge-covariant ones :

F = dA → F = DA = (dA + A • A). (6− 11)

For example, one could define the graded-symmetric product EM • EN based on the
graded commutator of Superalgebras:
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[A, B] = AB − (−1)sAsBBA. (6− 12)

sA, sB is the grade of A and B respectively. For bosons the grade is even and for fermions
is odd. In this fashion the graded commutator captures both the anti-commutator of two
fermions and the commutator of two bosons in one stroke. Using ( 2-31 ) one may extend
this definition to :

EM • EN = EMEN − (−1)sMsN ENEM . (6− 13)

sM , sN is the grade of EM and EN respectively. Even or odd depending on the grade of
the basis elements.

The task then is to decompose the C-space Maxwell action (6-8) which has a very rich
structure into suitable field components, including the extraction of the spinorial pieces,
and recover Smith’s action after a truncation of a large number of terms.

One may generalize Maxwells theory to that of Born-Infeld nonlinear Electrodynamics
in C-spaces based on our construction presented in this letter. Finally, the extension from
a flat C-space to a curved C-space also warrants further investigation in order to couple
C-space Yang-Mills theory to C-space gravity ( a higher derivative gravity with torsion
[1] ) . This will be left for a future publication.

6.2 Geometric Actions in Clifford-Phase Spaces

6.2.1 Curved Clifford-spaces and Higher Derivative Gravity with Torsion

Let us now consider the C-space ( Clifford spaces ) curvature defined in [1] associated
with a C-space interval dΣ2 = GAB(X)dXAdXB . The indices A,B, can be of vector,
bivector, etc., type. There are a series of special conditions that allows a simplification
of the geometrical expressions for the C-space curvature components. It is instructive to
consider a particular example associated with the polyvector indices : A = [µν], B = [αβ],
C = γ, D = δ

[
∂

∂xµ1µ2

,
∂

∂xν1ν2

]γρ • γτ = R[µ1µ2] [ν1ν2] ρ τ . (6− 14)

We can proceed in analogous way to calculate the other components of RABCD such
as

[
∂

∂xµ1µ2....µn

,
∂

∂xν1ν2....νn

]γρ1ρ2....ρl
• γτ1τ2.....τk

= R[µ1µ2.....µm] [ν1ν2.....νn] [ρ1ρ2....ρl] [τ1τ2.....τk].

(6− 15)
These contain higher powers of the curvature in an ordinary space. After performing the
contractions and the corresponding higher order relations we obtain the expansion of the
form

R = R + α1R
2 + α2RµνR

µν + .... + TORSION (6− 16)
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where one must include the adequate powers of the Planck scale LP in the expansion to
accomodate for the different dimensions of the quantities in the expansion. There are
non-trivial Torsion terms as well since C-space Geometry has non-trivial Torsion.

So we have shown [1] that the C-space scalar curvature can be expressed as the sum of
the products of the ordinary spacetime curvature. This bears a resemblance to the string
effective action in curved spacetimes given by sums of powers of the curvature tensors
based on the quantization of non-linear sigma models . For a nice review of strings in
curved backgrounds and p-branes ( extended objects or extendons ) see [61].

If one sets aside the algebraic convergence problems when working with Clifford alge-
bras in infinite dimensions, one can consider the possibility of studying Quantum Gravity
in a very large number of dimensions which has been revisited recently [66] in connection
to a perturbative renormalizable quantum theory of gravity in infinite dimensions. As
we said earlier, Smith [40] has argued that infinite-dim Clifford algebras can be seen as
tensor products of an infinite number of Cl(8) pieces that are roughly speaking, related
to von Neumann II1 factors. Another interesting possibility is that an infinite series ex-
pansion of the powers of the scalar curvature could yield the recently proposed modified
Lagrangians R + 1/R of gravity to accomodate the cosmological accelerated expansion of
the Universe [65], after a judicious choice of the algebraic coefficients is taken.

One may notice also that having a vanishing cosmological constant in C-space, R =
Λ = 0 does not necessarily imply that one has a vanishing cosmological constant in
ordinary spacetime. For example, in the very special case of homogeneous symmetric
spacetimes, like spheres and hyperboloids ( de Sitter, anti de Sitter ) , where all the
curvature tensors are proportional to suitable combinations of the metric tensor times the
scalar curvature, it is possible to envision that the net combination of the sum of all the
powers of the curvature tensors may cancel-out giving an overall zero value R = 0 despite
the fact that the individual ordinary spacetime curvatures terms in the expansion may
not be necessarily zero.

Thus a zero cosmological constant in C-space may not necessarily imply a zero cos-
mological constant in ordinary spacetime. This possibility deserves further investigation
in relation to the cosmological constant problem. Of course, we must not forget the
arguments exposed earlier about a lower and upper scale in Nature consistent with the
Extended Relativity Theory in Clifford-Phase Spaces within the context of Nottale’s Scale
Relativity Theory. Nottale’s proposal for the resolution of the cosmological constant prob-
lem is that it does not make sense to compare the vacuum energy at the Planck scale with
the vaccum energy measured at Hubble scale , without taking into account the necessary
Scale-Relativistic corrections : ρ(Planck)/ρ(Hubble) = (RH/LP )2 ∼ 10122 that account
for such huge discrepancy in many orders of magnitude.

6.2.2 Curvature Scalar of the Tangent/Cotangent Bundle of Spacetime

A natural Geometric action is provided by the scalar curvature R of the 8D cotangent
bundle. Brandt [20] has studied for some time the spacetime tangent bundle geometries
from several perspectives, in particular within the framework of Finsler geometries. Given
a tangent bundle metric
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ds2 = GMNdxMdxN = gµνdxµdxν+ρ2gµν(dvµ+Γµ
αβvαdxβ) (dvν+Γν

γδv
γdxδ) ≥ 0. (6− 17)

in terms of the coordinates xµ of the base manifold and the velocity vµ variables of the
tangent space manifold. ρ is related to the maximal proper acceleration a = c2/ρ. The
scalar curvature of the 8D tangent bundle manifold is [20]

R(8) = R(4) + R(v) − 1

4
FαβγFαβγ −

1

4
T (αβγ)T(αβγ) + ...

−1

4
Π(αβγ)Π(αβγ) + .... (6− 18)

where R(4) is the 4D spacetime scalar curvature . R(v) is the scalar curvature of the
4D fiber manifold defined on the four-velocity space and in terms of Πµ

αβ, the Christoffel
symbols defined on the four-velocity tangent space. The gauge potential is defined Aµ

ν =
ρvλΓµ

λν , the gauge curvature field

Fα
µν = (

∂

∂µ

− 1

ρ
Aβ

µ

∂

∂vβ
)Aα

ν − (
∂

∂ν

− 1

ρ
Aβ

ν

∂

∂vβ
)Aα

µ. (6− 19)

The field T β
µν is defined in terms of the spacetime Christoffel symbol {β

µν} as :

T β
µν = {β

µν} −
1

ρ

∂

∂vν
Aβ

µ. (6− 20)

A vanishing gauge curvature field amounts to vanishing torsion and is also the condi-
tion for the Finsler spacetime tangent bundle to be compatible with Cartan’s theory of
Finsler spaces , to be complex and Kahler . For further details we refer to [20] .

An Einstein-Hilbert type of actions in the 8D spacetime tangent bundle can be written
as : ∫

V8

D4xD4v
√

G R(8). (6− 21)

in terms of an appropriate tangent bundle measure. A variation of the action yields the
analog of Einstein’s vacuum field equations. The important feature is that in the infinite
acceleration limit, and for the case of a Riemannian spacetime, the vacuum field equations
reduce to the ordinary ones since the action then collapses to the ordinary Einstein-Hilbert
action times a measure volume factor.

These sort of actions based on the 8D spacetime tangent bundle geometry (Finsler like
) can be generalized to the spacetime cotangent-bundle in terms of the Phase-Space vari-
ables xµ, pµ and furthermore to Clifford-Phase spaces with Clifford-valued X,P polyvec-
tor coordinates . The latter action featuring the Clifford algebraic symmetries will be the
higher derivatives version of the spacetime tangent bundle actions obtained in ( 6-18 )
. Notice thart these Clifford-Phase Space actions, after a spacetime/fiber decomposition,
generate the desired gauge curvature field terms FF studied by Smith [40]. Vacaru over
many years [35] has studied Finsler geometries and introduced the concept of a nonlinear
connection which induces non-holonomic and anisotropic structures that are related to far
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more general metrics ( geometries ) than the ones studied in the past. In particular, by in-
corporating Clifford structures, (Dirac operator) Vacaru has developed Noncommutative
Riemannian-Finsler geometries.

6.3 Towards a Clifford Geometric Unification of all Forces and
Concluding Remarks

To finalize we shall outline the most salient reasons why the Extended Relativity Theory
in Clifford-Phase Spaces with a lower and upper length scales is a very promising path
towards a Clifford Geometric Unification of all forces.
• We retain the 4D spacetime. Despite that the Phase Space is 8D one is dealing

with an underlying 4D spacetime with four coordinates xµ. The momenta coordinates pµ

can be seen as the dual variables implementing Born’s Dual Relativity principle among
coordinates and momenta which lead us to the construction of a Clifford-Phase Space
Relativity with an upper and lower length scales so automatically it avoids the problems
associated with ultraviolet ( short distance ) and infrared ( large distance ) divergences
in QFT.
• Clifford Algebras contain Spinors. There is no need to introduce Supersymmetry

and Supergravity since Clifford algebras already contain spinors as right/left ideal elemnts
of the Clifford Algebra. The Clifford Geometric calculus reproduces the Grassmannian
and Berezin calculus [68]
• No need for D = 11 Supergravity .... The Clifford algebra Cl(1, 7) is 28 = 256 =

128 + 128 dimensional which matches the 128 bosonic and 128 fermionic on-shell degrees
of freedom of the D = 11 Supergravity. The number of transverse and traceless degrees
of freedom of the metric gMN in D = 11 is (9× 10/2)− 1 = 44. The antisymmeric tensor
Aµνρ has 9 × 8 × 7/6 = 84, so 44 + 84 = 128 that match the degrees of freedom of the
spin 3/2 gravitino ( after imposing the vanishing of the gamma trace ) .
• Emergence of E8, E7, E6, F4, G2... We have explained earlier the arguments by Smith

[40] why the Exceptional Lie Algebra E8, .... are encoded in the tensor products of Cl(8)×
Cl(8) by exploiting the modulo 8 real periodicity.
• The Clifford Geometric Unified Action. The Clifford Geometric Unified Action

of all Forces is based on an Einstein-Hilbert action defined in the Clifford-Phase Space
associated with the underlying 8D Phase Space :

1

16πGN

∫
[DZ]

√
G R. (7− 1)

where DZ is the measure in the Clifford-Phase Space

DZ = dΩ dΩ̃ (d4x) (d4p) Π(dxµν) Π(dpµν) ....... (7− 2)

of dimR Cl(2, 8) = 28 = 256 = 16 × 16 effective dimensions. GN is the analog of the

Newtonian gravitational coupling that can be written as L
(256−2)
P = L254

P based on the
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four-dim Planck scale LP =
√

GN in natural units of h̄ = c = 1. The units of the scalar
curvature R are (length)−2 . G is the analog of the determinant of the Clifford-Phase
Space metric GMN(X). R is the scalar curvature in the Clifford-Phase-Space associated
with the 8D phase space. As explained in the previous section, this scalar curvature
admits a decomposition into a base manifold scalar curvature , a fiber manifold scalar
curvature, a gauge field FF curvature square term, plus additional terms. And all of
these terms, in turn, admit a higher derivative expansion in powers of the ordinary
spacetime, fiber manifold and gauge field curvatures. At low energies ( large distances )
there is a truncation (as we explained at the begining of section 4) where the holographic
coordinates and holographic momenta decouple leading to Smith’s 8D action [40] (plus
extra terms ) associated with point-particle degrees of freedom which reproduces the
Standard Model and the ordinary Einstein-Hilbert action.
• Large number of degrees of freedom For example, the C-space Maxwell field A =

AMEM (a Clifford polyvector in D = 8 ) has 28 = 256 components, and each single
one of those 256 components A = AM(X)EM depends on the polyvector coordinates
X = XMEM with 256 components. If we concentrate solely in the zero mode sector of
A(X) one has then 256× 256 = 28× 28 = 216 degrees of freedom that match precisely the
dimR Cl(16) = dimR [Cl(8)⊗Cl(8)] due to modulo 8 real periodicty. Once again, we have
made contact with the Cl(16) algebra that contains the exceptional E8.E7, E6, F4, G2...
algebras as explained by Smith [40]. Similar study can be made with the net number of
degrees of freedom of the zero mode sector of the scalar curvature in C-spaces.
• The large N limit and Branes as Moyal deformations of Yang-Mills theories. The

phase space coordinates can also be interpreted as the world manifold coordinates of
extended objects. In [58] we have shown why p-brane actions can be derived from Moyal
deformations of SU(N) Yang-Mills theories and the classical limit h̄ = 0 limit is related
to the large N limit. [59]
• Quantization. A discussion of a Noncommutative QM in C-spaces was given in [37].

The role of Clifford algebras in Hopf algebras and Quantum Groups has been studied
Majid [64] who has also emphasized the importance of Phase Space in defining a co-
gravity theory. Since the literature on Quantum Groups is so vast we refer to Majid’s
book for references.
• New Generalized Supersymmetries. Polyvector Super-Poincare and M, F theory

superalgebras, in D = 11, 12 dimensions, respectively, were recently studied within the
context of the novel Clifford-Superspace realizations of Generalized Supersymmetries. [69]
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