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Abstract

It is rigorously shown how the Extended Relativity Theory in Clifford
spaces (C-spaces) can explain the variable radial dependence ap(r) of the
Pioneer anomaly; its sign (pointing towards the sun); why planets don′t
experience the anomalous acceleration and why the present day value
of the Hubble scale RH appears. It is the curvature-spin coupling of
the planetary motions that hold the key. The difference in the rate at
which clocks tick in C-space translates into the C-space analog of Doppler
shifts which may explain the anomalous redshifts in Cosmology, where
objects which are not that far apart from each other exhibit very different
redshifts. We conclude by showing how the empirical formula for the
Flybys anomalies obtained by Anderson et al [10] can be derived within
the framework of Clifford geometry.

Keywords: Extended Relativity in Clifford Spaces, Clifford Algebras, Pioneer
and Flybys Anomaly.

1 Introduction : Weyl Geometry and Pioneer
Anomaly

One of the unsolved problems in physics is what causes the apparent residual
sunward acceleration of the Pioneer spacecraft [3] and why planets are not sub-
jected to it. Many proposals have been presented by several authors, see [3]
and references therein. Another unsolved problem which might be related to
the Pioneer anomaly is what causes the unexpected change in acceleration for
Earth flybys of spacecraft resulting in an unexpected energy increase [4]. The
purpose of this work is to show how the Extended Relativity Theories in Clifford
spaces C-spaces [12], [11] might solve satisfactory these problems.
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It was recently argued [1] how Weyl’s geometry and Mach’s principle fur-
nishes both the magnitude and sign (towards the sun) of the Pioneer anomalous
acceleration firstly observed by Anderson et al. Weyl’s Geometry can account
for both the origins and the value of the observed vacuum energy density (dark
energy). The source of dark energy was just the dilaton-like Jordan-Brans-Dicke
scalar field φ that is required to implement Weyl invariance of the most simple
of all possible actions. A nonvanishing value of the vacuum energy density
of the order of 10−123M4

Planck was found consistent with observations. Weyl’s
geometry accounts also for the phantom scalar field in modern Cosmology in a
very natural fashion.

The starting action was the Weyl-invariant Jordan-Brans-Dicke-like action
involving the scalar φ field and the scalar Weyl curvature RWeyl

S[gµν , Aµ, φ] = S[g′µν , A′
µ, φ′] ⇒

1
16π

∫
d4x

√
|g| [ φ2 RWeyl(gµν , Aµ) − 1

2
gµν (Dµφ)(Dνφ) − V (φ) ] =

1
16π

∫
d4x

√
|g′| [ (φ′)2 R′

Weyl(g
′
µν , A′

µ) − 1
2
g′µν (D′

µφ′)(D′
νφ′) − V (φ′) ]

(1.1)
where under Wey scalings one has

φ′ = e−Ω φ; g′µν = e2Ω gµν ; R′
Weyl = e−2Ω RWeyl; V (φ′) = e−4Ω V (φ)√

|g′| = e4Ω
√
|g|; D′

µφ′ = e−Ω Dµφ; A′
µ = Aµ − ∂µΩ. (1.2)

The effective Newtonian coupling G is defined as φ−2 = G(φ), it is spacetime
dependent in general and has a Weyl weight equal to 2. Despite that one has not
introduced any explicit dynamics to the Aµ field (there are no FµνFµν terms
in the action (1.1)) one still has the constraint equation obtained from the
variation of the action w.r.t to the Aµ field and which leads to the pure-gauge
configurations provided φ 6= 0

δS

δAµ
= 0 ⇒ 6 ( 2 Aµφ2 − ∂µ(φ2) ) +

1
2

( 2 Aµφ2 − ∂µ(φ)2 ) =

−(6 +
1
2
) Dµ φ2 = − 2 (6 +

1
2
) φ Dµ φ = 0 ⇒ Aµ = ∂µ log (φ). (1.3)

Hence, a variation of the action w.r.t the Aµ field leads to the pure gauge solu-
tions (1.3) which is tantamount to saying that the scalar φ is Weyl-covariantly
constant Dµ = 0 in any gauge Dµφ = 0 → e−ΩDµφ = D′

µφ′ = 0 (for non-
singular gauge functions Ω 6= ±∞). Therefore, the scalar φ does not have true
local dynamical degrees of freedom from the Weyl spacetime perspective. Since
the gauge field is a total derivative, under a local gauge transformation with
gauge function Ω = log φ, one can gauge away (locally) the gauge field and
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have A′
µ = 0 in the new gauge. Globally, however, this may not be the case

because there may be topological obstructions. Therefore, the last constraint
equation (10) in the gauge A′

µ = 0, forces ∂µφ′ = 0 ⇒ φ′ = φo = constant.
Consequently G′ = φ′−2 is also constrained to a constant GN and one may set
GN φ2

o = 1, where GN is the observed Newtonian constant today.
The pure-gauge configurations leads to the Weyl integrability condition Fµν =

∂µAν − ∂νAµ = 0 when Aµ = ∂µΩ, and means physically that if we parallel
transport a vector under a closed loop, as we come back to the starting point,
the norm of the vector has not changed; i.e, the rate at which a clock ticks
does not change after being transported along a closed loop back to the initial
point; and if we transport a clock from A to B along different paths, the clocks
will tick at the same rate upon arrival at the same point B. This will ensure,
for example, that the observed spectral lines of identical atoms will not change
when the atoms arrive at the laboratory after taking different paths ( histories )
from their coincident starting point. If Fµν 6= 0 the Weyl geometry is no longer
integrable.

With the Weyl-invariant action (1.1) at hand one found a realization of
dark energy (the observed cosmological constant) as it was shown in [1]. The
cosmological gauge Aµ in spherical coordinates is defined by

Ar = − 1
RHubble

; At = Aϕ = Aθ = 0. (1.4)

and is associated with the present day Hubble scale RHubble ∼ 1028 cm. The
other gauge is the Einstein gauge

A′
µ = 0 = Aµ − ∂µΩ ⇒ Ar = − 1

RH
= ∂rΩ ⇒ Ω = − r

RH
. (1.5)

From eq- (1.3) we learned that

Aµ = ∂µ log φ ⇒ Ar = − 1
RH

⇒ φ = e−r/RH φo. (1.6)

such that the Newtonian couplings in the two different gauges ”scale-frames of
reference” are related as follows

φ2

φ2
o

=
GN

G(φ)
⇒ G(φ) = GN e2r/RH . (1.7)

the effective Newtonian coupling in the cosmological gauge (cosmological ”scale-
frame of reference” ) increases with distance . In the Einstein gauge A′

µ = 0,
using the Weyl covariant constraint of eq-(1.3) stating that the scalar field φ is
Weyl-covariantly constant (without true dynamics) and for non-singular gauge
functions Ω 6= ±∞, one can deduce that

D′
µφ′ = ∂µφ′ −A′

µφ′ = ∂µφ′ = e−Ω Dµφ = 0 ⇒ φ′ = φo. (1.8)

Hence, the action (1.1) in the gauge A′
µ = 0 ⇔ φ′ = φo = constant becomes
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1
16π

∫
d4x

√
|g′| [ (φo)2 RRiemann(g′µν) − V (φo) ] (1.9)

which is just the ordinary Einstein-Hilbert action with a cosmological constant
Λ given by 2Λ ≡ GNV (φo) because φ2

o = 1/GN . The equations of motion
associated with the action (1.9) are

R′
µν − 1

2
g′µν R′ + Λ g′µν = 0. (1.10)

and which admit the static spherically symmetric solutions corresponding to
(Anti) de Sitter-Schwarzschild metrics

ds2 = − (1−2GNM

r
−Λ

3
r2) dt2 + (1− 2GNM

r
−Λ

3
r2)−1 dr2 + r2 (sin2θ dϕ2 + dθ2 ).

(1.11)
The metric solutions in the cosmological gauge Ar = − 1

RH
are simply obtained

by a conformal transformation

gµν = e−2Ω g′µν ⇒ gtt = e−2Ω g′tt = − e2r/RH (1− 2GNM

r
− Λ

3
r2), etc ....

(1.12)
After this discussion we turn finally to the Pioneer anomaly. Upon expanding

the exponential conformal factor of (1.12) in a power series yields

−gtt = ( 1 +
2 r

RH
+

1
2

(
2 r

RH
)2 + ....) (1 − 2GNM

r
− Λ

3
r2) =

1− 2GNM

r
− Λ

3
r2 +

2r

RH
− 4GNM

RH
− 2 Λ r3

3 RH
+ ........ (1.13)

For scales r << RH corresponding to the Pioneer-Sun’s distance one may ne-
glect the higher order corrections in the expansion. From the gtt component one
can read-off the corrections to the Newtonian potential in natural units c = 1
from the Newtonian limit of Einstein’s gravity : −gtt ∼ 1 + 2V leading to

Veffective(r) = − GNM

r
− Λ

6
r2 +

r

RH
− 2GNM

RH
− Λ r3

3 RH
+ ..... (1.14)

Therefore the acceleration (radial force per unit mass) acting on the Pioneer
spacecraft after reinserting the speed of light c in its proper units and by setting
Λ = 3/R2

H is given by

Fr

m
= a = − ∂Veff

∂r
= −GNM

r2
− c2

RH
( 1 − r

rH
− 3(

r

RH
)2 ) + .... (1.15)
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the leading correction to the Newtonian gravitational acceleration is −c2/RH ,
in this fashion one recovers the correct order of magnitude and sign (point-
ing towards the sun) of the Pioneer anomalous acceleration aP = −c2/RH =
−8.98 × 10−8cm/sec2 when r = 20 AU. The experimental value [2] of the
magnitude is |aP | = (8.74± 1.33)× 10−8cm/sec2.

If one wanted to reproduce the variable ap(r) acceleration with distance
one would have to choose a variable radial Weyl gauge field Ar(r) such that
c2Ar(r) = ap(r). In this case the scaling factor is

e
−

∫ r

ro
Ar(r)dr

= 1 −
∫ r

ro

Ar(r) dr +
1
2

[
∫ r

ro

Ar(r) dr ]2 + ......... (1.16)

where the lower limit of the integral is the mean equatorial radius ro of the sun.
The leading relevant term in the effective potential (energy per unit mass) is
now given by −c2

∫
Ar(r)dr, upon taking its (minus) derivative w.r.t r it gives

the variable anomalous acceleration

c2 ∂r

∫ r

o

Ar(r) dr = c2 Ar(r) = ap(r). (1.17)

the behavior of Ar(r) must be such that as r reaches 20 AU, c2Ar → −c2/RH

.
However there were a series of unanswered questions :

1- Why planets revolving around the sun in elliptical orbits don′t experience
such anomalous acceleration ?.

2- Since the Weyl gauge field was pure gauge it does not have true phys-
ical degrees of freedom because it can be gauged to zero everywhere barring
global topological obstructions. Hence, the anomaly would have been just
a gauge artifact.

3- Why does the Hubble scale RH appear ?
4- What is the source of the anomaly ?

It is the purpose of this work to solve these problems. In particular, we will
see that it is not necessary to invoke the expansion of the Universe in order to
explain why RH appears. Nor is required to invoke dark mater, dark energy;
Weyl-Brans-Dicke-Jordan theories of gravity [6], [1] ; scalar-tensor-vector mod-
ified theories of gravity [7], string theory, f(R) theories of gravity [25] , etc...
Satisfactory answers can be obtained directly from the Clifford space geometry
of spinning objects, like our planets. It is the curvature-spin coupling of the
planetary motions that hold the key. We conclude by showing how the empirical
formula for the Flybys anomalies [10] can be derived within the framework of
Clifford geometry.
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2 The Extended Relativity Theory in Clifford
Spaces

The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a natural
extension of the ordinary Relativity theory [12]. For a comprehensive review we
refer to [11] . A natural generalization of the notion of a space-time interval in
Minkowski space to C-space is

dX2 = dX0 dX0 + dxµ dxµ + dxµν dxµν + ...... (2.1)

The Clifford valued poly-vector is defined by

X = XM EM = X0 1 + xµ γµ + xµν γµ ∧ γν + ... xµ1µ2....µDγµ1 ∧ γµ2 .... ∧γµD
.

(2.2)
denotes the position of a polyparticle in a manifold, called Clifford space or C-
space. The series of terms in (2.2) terminates at a finite value depending on the
dimension D. A Clifford algebra Cl(r, q) with r + q = D has 2D basis elements.
For simplicity, the gammas γµ correspond to a Clifford algebra associated with
a flat spacetime

1
2
{γµ, γν} = ηµν 1. (2.3)

but in general one could extend this formulation to curved spacetimes with
metric gµν . The multi-graded basis elements EM of the Clifford-valued poly-
vectors are

EM ≡ 1, γµ, γµ1∧γµ2 , γµ1∧γµ2∧γµ3 , γµ1∧γµ2∧γµ3∧.....∧γµD . (2.4)

It is convenient to order the collective M indices as µ1 < µ2 < µ3 < ...... < µD.
The connection to strings and p-branes can be seen as follows. In the case of

a closed string (a 1-loop) embedded in a target flat spacetime background of D-
dimensions, one represents the projections of the closed string (1-loop) onto the
embedding spacetime coordinate-planes by the variables xµν . These variables
represent the respective areas enclosed by the projections of the closed string
(1-loop) onto the corresponding embedding spacetime planes. Similary, one can
embed a closed membrane (a 2-loop) onto a D-dim flat spacetime, where the
projections given by the antisymmetric variables xµνρ represent the correspond-
ing volumes enclosed by the projections of the 2-loop along the hyperplanes of
the flat target spacetimr background. This procedure can be carried to all
closed p-branes ( p-loops ) where the values of p are p = 0, 1, 2, 3, ....D − 2.
The p = 0 value represents the center of mass and the coordinates xµν , xµνρ....
have been coined in the string-brane literature [15] as the holographic areas,
volumes, ...projections of the nested family of p-loops ( closed p-branes ) onto
the embedding spacetime coordinate planes/hyperplanes.
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If we take the differential dX and compute the scalar product among two
polyvectors < dX†dX >scalar [13] , [14] , [16] we obtain the C-space extension
of the particles proper time in Minkowski space. The symbol X† denotes the
reversion operation and involves reversing the order of all the basis γµ ele-
ments in the expansion of X . It is the analog of the transpose ( Hermitian )
conjugation (γµ ∧ γν)† = γν ∧ γµ, etc... Therefore, the inner product can be
rewritten as the scalar part of the geometric product as < X†X >scalar . The
analog of an orthogonal matrix in Clifford spaces is R† = R−1 such that

< X ′† X ′ >scalar = < (R−1)† X† R† R X R−1 >scalar=

< R X† X R−1 >scalar = < X† X >scalar=

(X0)2 + Λ2D−2 (xµxµ) + Λ2D−4 (xµνxµν) + .... + (xµ1µ2.....µD
)(xµ1µ2.....µD )

(2.5)
we have explicitly introduced the Planck scale Λ since a length parameter is
needed in order to match units. The Planck scale can be set to unity for conve-
nience.

This condition R† = R−1 , of course, will restrict the type of terms allowed
inside the exponential defining the rotor R in eq-(2.5) because the reversal of
a p-vector obeys

(γµ1∧γµ2 .....∧γµp
)† = γµp

∧γµp−1 .....∧γµ2∧γµ1 = (−1)p(p−1)/2γµ1∧γµ2 .....∧γµp

(2.6)
Hence only those terms that change sign ( under the reversal operation ) are
permitted in the exponential defining R = exp[θAEA]. For example, in D = 4,
in order to satisfy the condition R† = R−1, one must have from the behavior
under the reversal operation expressed in eq-(2.6) that

R = exp [ θµ1µ2γµ1 ∧ γµ2 + θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ]. (2.7)

such that

R† = exp [ θµ1µ2(γµ1 ∧ γµ2)
† + θµ1µ2µ3(γµ1 ∧ γµ2 ∧ γµ3)

† ] =

exp [ − θµ1µ2γµ1 ∧ γµ2 − θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 ] = R−1. (2.8)

These transformations are the analog of Lorentz transformations in C-spaces
which transform a poly-vector X into another poly-vector X ′ given by X ′ =
RXR−1. The theta parameters θµ1µ2 , θµ1µ2µ3 are the C-space version of the
Lorentz rotations/boosts parameters. The ordinary Lorentz rotation/boosts
involves only the θµ1µ2γµ1 ∧ γµ2 terms, because the Lorentz algebra generator
can be represented as Mµν = [γµ, γν ]. The θµ1µ2µ3γµ1 ∧ γµ2 ∧ γµ3 are the
C-space corrections to the ordinary Lorentz transformations when D = 4.

The above transformations are active transformations since the transformed
Clifford number X ′ (polyvector) is different from the “original” Clifford number
X. Considering the transformations of components we have X ′ = X ′MEM =
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LM
N XNEM = RXR−1, from which we can deduce that the basis poly-vectors

transform as LM
NEM = RENR−1 so that

LM
N = 〈EM RENR−1〉scalar ≡ < EM E′

N >scalar . (2.9)

For example, in D = 4 an ordinary boost with parameter θt
x2 along the x2

direction is tantamount of a ”rotation” with an imaginary angle along the x1−
x2 plane where x1 denotes the time coordinate and x2, x3, x4 are the spatial
coordinates. In C-space one must have as well a ”rotation” along the x1 − x12

directions with generalized boost parameter θt
12 = θ1

12. Hence one has the
generalized C-space transformations

(t)′ = Lt
M (θt1; θt12)(XM ) = Lt

t t + Lt
x x + Lt

12 x12. (2.10a)

(x)′ = Lx
M (θt1; θt12)(XM ) = Lx

t t + Lx
x x + Lx

12 x12. (2.10b)

(x12)′ = Lx12

M (θt1; θt12)(XM ) = Lx12

t t + Lx12

x x + Lx12

12 x12. (2.10c)

notice the presence of the extra terms containing the area coordinates x12 in
the transformations for the t, x variables, which are not present in the standard
Lorentz transformations. Also, there is an extra dependence on the boost pa-
rameter θt

12 = θ1
12 in the generalized Lorentz matrices LM

N . In the more general
case, when there are more non-vanishing theta parameters , the indices M of
the XM coordinates must be restricted to those directions in C-space which
involve the t, x1, x12, x123..... directions as required by the C-space poly-particle
dynamics.

The C-space invariant proper time associated with a polyparticle motion is
then :

< dX†dX >scalar = dΣ2 = dX0 dX0 + Λ2D−2dxµdxµ + Λ2D−4dxµνdxµν+..
(2.11)

Here we have explicitly introduced the Planck scale Λ since a length pa-
rameter is needed in order to tie objects of different dimensionality together:
0-loops, 1-loops,..., p-loops. Einstein introduced the speed of light as a universal
absolute invariant in order to “unite” space with time (to match units) in the
Minkowski space interval:

ds2 = c2dt2 − dxidxi. (2.12)

A similar unification is needed here to “unite” objects of different dimensions,
such as xµ, xµν , etc... The Planck scale then emerges as another universal
invariant in constructing an extended scale relativity theory in C-spaces [12].

The author [13] has shown why the derivatives of the area-bivector coordi-
nates (dxµν/ds) with respect to the ordinary spacetime proper time parameter
s = cτ 6= ct (where s 6= Σ) can be identified with the spin Sµν (per unit mass)
and such that the poly-geodesic equation of a poly-particle leads to the terms
of the Papapetrou equation coupling the curvature Riemann tensor to the spin
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Rρ
µ1µ2µ3

Sµ1µ2 (dxµ3/ds). The introduction of generalized gravity in curved
C-spaces involves area, volume, hypervolume metrics and leads to a higher
derivative Gravity with Torsion. Area metrics were first introduced by Cartan
long ago. A thorough discussion of superluminal behavior in ordinary spacetime
while not being superluminal in C-space can be found in [11] and why there is
no Einstein-Podolski-Rosen paradox in Clifford spaces can be seen in [18]. The
analog of photons in C-space are tensionless branes. See [11] for further de-
tails about the Extended Relativity Theory in curved Clifford spaces and Grand
Unification [21], [22]. References about Clifford algebras can be found in [17].

3 The Pioneer Anomaly from dynamics in curved
C-spaces

Having reviewed very briefly the basic tenets of the Extended Relativity in C-
spaces, and after pointing out the following key remarks : (i) the Clifford scalar
component of the polyvector X0 6= xo = ct; (ii) the Clifford-scalar components
of the C-space metric g00 6= gtt; (iii) Σ = ξ is the C-space proper time variable
which is not equal to the proper time variable of ordinary Relativity : ξ 6= s = cτ ;
(iv) The area-bivector coordinates xµν are not a higher dimensional version of
Euler angles; one may begin by writing the poly-geodesic equation in (curved)
C-spaces

d2XM

dξ2
+ ΓM

LN

dXL

dξ

d2XN

dξ
= 0 ⇒

d2xr

dξ2
+ Γr

µν

dxµ

dξ

dxν

dξ
= − Γr

00

dX0

dξ

dX0

dξ
−

Γr
[µν] λ

dxµν

dξ

dxλ

dξ
− Γr

[µν] [λσ]

dxµν

dξ

dxλσ

dξ
− ........ (3.1)

In [11] we have shown that the leading contributions of the generalized con-
nection in C-space is Γr

[µν] λ(X) ∼ Rr
[µν] λ(xµ) such that

Γr
[µν] λ

dxµν

dξ

dxλ

dξ
= Rr

[µν] λ

dxµν

dξ

dxλ

dξ
. (3.2)

Γr
[µν] [λσ]

dxµν

dξ

dxλσ

dξ
= Rr

µντ T τ
λσ

dxµν

dξ

dxλσ

dξ
. (3.3)

where T τ
λσ are torsion terms. Once again we must emphasize that the C-

space proper time ξ is not the same as the ordinary spacetime proper time,
(dξ)2 6= c2(dτ)2 = dxµdxµ. The normalization condition of the polyvector
valued velocities in C-space is given by
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1 = g00 (
dX0

dξ
)2 + gµν

dxµ

dξ

dxν

dξ
+ gµ1µ2 gν1ν2

dxµ1ν1

dξ

dxµ2ν2

dξ
+ ....... (3.4)

In order to match units one must introduce in (3.4) powers of a length scale
parameter l . For example, if X0 and ξ are taken to be dimensionless , then the
powers of dxµ1ν1

dξ
dxµ2ν2

dξ must be accompanied by a factor of (1/l)4. Powers of
dxµ1ν1ρ1

dξ
dxµ2ν2ρ2

dξ require factors of (1/l)6, etc..... From eq-(3.4) one learns that

g00 (
dX0

dξ
)2 = 1 − gµν

dxµ

dξ

dxν

dξ
− gµ1µ2 gν1ν2

dxµ1ν1

dξ

dxµ2ν2

dξ
−

gµ1µ2 gν1ν2 gρ1ρ2

dxµ1ν1ρ1

dξ

dxµ2ν2ρ2

dξ
− gµ1µ2 gν1ν2 gρ1ρ2 gσ1σ2

dxµ1ν1ρ1σ1

dξ

dxµ2ν2ρ2σ2

dξ
(3.5)

A suitable anti-symmetrization of indices in the products gµ1µ2gν1ν2 and gµ1µ2gν1ν2gρ1ρ2 ,
..... must be made above. The values of g00 (dX0

dξ )2 in the left hand side of eq-
(3.5) for the planetary case differ, in general, from the values in the spacecraft
case.

The anomalous radial acceleration of Pioneer is

ap(r) = − c2 Γr
00(r) (

dX0

dξ
)2 − c2 Rr

[µν] λ

dxµν

dξ

dxλ

dξ
+ ........ (3.6)

where X0(ξ), xµν(ξ), .... are the Pioneer components of the polyvector X(ξ)
”worldline” through C-space. In the case of Pioneer, the curvature-area-bivector
velocities (curvature-spin) coupling contribution given by the terms in the r.h.s
of (3.6) are negligible, for this reason it experiences an overall anomalous ac-
celeration. Strictly speaking, the spacecraft is not truly point-like and can
naturally spin around an axis. However, the magnitude of its spin and the size
of the spacecraft (a few meters in size) are no match for the extremely small
curvature terms that are coupled to its spin. If the spinning angular velocity of
the spacecraft were to be extremely large, it could compensate for the extremely
small curvature factors, but this is not the case. Therefore, one may neglect
the curvature-spin terms and the higher order grade polyvector components of
Pioneer, so that eq-(3.6) becomes

ap(r) ' − c2 Γr
00(r) (

dX0

dξ
)2 = c2 Ar (r) g00(r) (

dX0

dξ
)2. (3.7)

where the connection (gauge field) Ar(r) (not to be confused with the Weyl field
! ) is the defined from the relations

Ar (r) g00 = − Γr
00 = − grr ∂r (g00) ⇒
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Ar = − grr ∂r log | g00(r) | = grr Ar(r) ⇒ Ar = − ∂r log | g00(r) | (3.8)

so the anomalous radial acceleration of Pioneer can be recast as

ap(r) ' c2 Ar(r) ( 1− z2
pioneer(r) ). (3.9a)

where
z2
ploneer(ξ) ≡

1
l2

(
dspioneer

dξ
)2. (3.9b)

resulting from the normalization condition of the generalized velocities in C-
space

1 = g00 (
dX0

pioneer

dξ
)2 + l−2 gµν

dxµ

dξ

dxν

dξ
+ l−4 gµ1µ2 gν1ν2

dxµ1ν1

dξ

dxµ2ν2

dξ
+......... =

g00 (
dX0

pioneer

dξ
)2 + l−2 (

ds

dξ
)2 + ...... ∼ g00 (

dX0
pioneer

dξ
)2 + z2

pioneer (9c)

after neglecting the bivector, trivector, .... contributions.
The planetary dynamics in C-spaces differ from the Pioneer case because

of their spinning degrees of freedom. Planets will not exhibit the anomalous
acceleration if there is a cancellation mechanism in the leading terms of the
form

− c2 Γr
00(r) (

dX0
planets

dξ
)2 − c2 Rr

[µν] λ

dxµν

dξ

dxλ

dξ
' 0. (3.10)

The r.h.s of (3.10) does not strictly need to be zero but it should be much
smaller than any of the values of the Pioneer’s anomalous acceleration ap(r) =
c2Ar(r) observed along its history; otherwise the anomalous effects on the Earth
and other planets would have been observed by now. It is understood in eq-
(3.10) that r = r(ξ) is the radial coordinate of the planets as a function of the
ξ proper time in C-space.

If X0 and ξ are taken to be dimensionless, the term −c2Γr
00(r) (dX0

dξ )2

has already the right dimensions of acceleration because Γr
00 has dimensions of

(length)−1. However, one must scale the other terms by a factor of (1/length)2

as follows

−c2 Rr
[µν] λ

dxµν

dξ

dxλ

dξ
× 1

l2
= − c2 Rr

[µν] λ

dxµν

ds

dxλ

ds
× 1

l2
(
ds

dξ
)2. (3.11)

in order to have the proper units of acceleration since the curvature has (length)−2.
The standard proper time s = cτ ∼ ct in the standard non-relativistic limit

For the Schwarzschild solution the relevant components of the curvature
tensor that couple to the spin tensor are

Rr
rφφ ∼ − 2GM

c2 r
, Rr

rtr ∼ − 2GM

c2 r3
, .... . (3.12)
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where we kept the leading order terms of the curvature tensor. Therefore
when one takes the C-space proper time parameter ξ to be dimensionless,
the curvature coupling to the area-bivector velocity (dxrφ/dξ) ≡ Srφ/m =
(ωspin ρearth/c), and after introducing a length scale parameter l to match
units, is given by

−Rr
[rφ]φ

dxrφ

dξ

dφ

dξ
× 1

l2
= −Rr

[rφ]φ

dxrφ

ds

dφ

ds
× 1

l2
(
ds

dξ
)2 =

2GM

c2 r
(
ωspin ρ

c
)

ωspin

c
=

2GM

c2 r

Srφ

mc

ωspin

c
× 1

l2
(
ds

dξ
)2. (3.13)

the value of the term

2GM

c2 r

dxrφ

ds

dφ

ds
=

2GM

c2 r
(
ωspin ρ

c
)

ωspin

c
=

2GM

c2 r
(
ωspin ρ

c
)2

1
ρ

corresponding to the numerical parameters of the Earth’s motion given by :
ωspin = (2π/24 × 3600) sec−1, the Schwarzschild radius of the sun 2GMsun

c2 ∼
3 Kms; the mean equatorial radius of the Earth ρearth ∼ 6.4 × 103 Kms;
the mean Earth-Sun distance ro = 1 AU ∼ 1.49 × 108 Kms, gives a very
interesting number indeed, the inverse of the Hubble scale (1/RH) and which
lends credence to our proposal to explain the anomaly in terms of the geometry
of Clifford spaces. Hence, by plugging the numerical values corresponding to
the Earth’s motion one gets

2GM

c2 r
(
ωspin ρ

c
)2

1
ρ

= 7.571×10−24 Km−1 =
1

1.32× 1028 cm
' 1

RH
(3.14)

The age of the universe is between 12 and 18 Gyr, therefore this value for the
Hubble scale RH in (3.14) falls exactly in the range

1.13× 1028 cm < 1.32× 1028 cm < 1.69× 1028 cm. (3.15)

therefore, one arrives at the very interesting numerical result in eq-(3.14) which
is very close to the value of 1/RH after substituting the numerical values corre-
sponding to the spinning motion of the Earth around its axis. After multiplying
eq-(3.14) by c2 leads to an acceleration very close to c2/RH (modulo the key
factor z2

earth(ξ) in the r.h.s of (3.13)). Acceleration which is due to the coupling
of the Earth’s spin to the Riemann curvature tensor Rr

rφφ = −(2GMsun/c2r), at
the location of the mean Earth-Sun distance ro = 1 AU. This is an interesting
numerical coincidence that warrants further investigation. Because the Hub-
ble scale today RH = c/H(today) is not the same as in the very distant past,
unless the Hubble parameter H(t) = constant and the speed of light remains
constant with time, if one is to maintain the same type of numerical relation
(3.14) among the spinning angular velocity of the Earth, its radius, its distance
from the sun, the Newtonian coupling, ..... one would have concluded that at
least one of those parameters, like G or c, would have to change accordingly

12



with the expansion of the Universe as Dirac-Eddington suggested long ago. An
increase in the Earth’s radius, with the expansion of the Universe, would have
lead to the exploding planetary hypothesis, [23] that we will not go into it.

There are two other numerical coincidences that deserve to be mentioned.
The numerical magnitude of the value ap(r) at the location r = 1 AU is ap-
proximately [2]

(
1.16
8.94

× 10−6 ) × ( 8.94 × 10−8 )
cm

sec2
= 1.298× 10−7 c2

RH
(3.16a)

It turns out that the number 1.298×10−7 in (3.16a) is very close to the number

(137.036× 20)−2 = 1.33× 10−7 ∼ 1.298× 10−7. (3.16b)

where 137.036 is the inverse fine structure constant (at the scale of the Bohr
radius) and 20 AU is approximately the location where the magnitude of ap(r)
attains its maximum and which is also very close to the mean Uranus-Sun
distance 19.22 AU. Another numerical coincidence has been pointed out to us
by Smith [20]. The acceleration produced by the Sun’s gravitational attraction
on a test body at a distance d = 137.036× 20 AU is also very close c2/RH

GMsun

d2
=

1
2

2GM

c2

c2

d2
=

8.94× 1020 × 1.5× 105

(137× 20× 1.49× 1013 )2
cm

sec2
∼ c2

RH
(3.17)

From eqs- (3.16, 3.17) one finds the interesting scaling relations

ap(r = 1AU) ∼ (137.036×20)−2 ap(r = 20AU) ∼ (137.036×20)−4 GMsun

(1 AU)2
.

(3.18)
Are these results in eqs-(3.14, 3.16, 3.17, 3.18) mere irrelevant numerical coincidences
or is it design ? In the Hydrogen atom, we know how the Rydberg scale, the
Bohr radius and the classical electron radius scale among themselves in powers
of (e2/h̄c)−1 = 137.036. The Conformal group SO(4, 2) in four dimensions is
the largest known symmetry group of the Hydrogen atom. Long ago, Wyler
[19], based on wave equations in bounded complex homogeneous domains, has
shown that the Conformal Group SO(4, 2) is one of the groups whose Greens’
functions (associated to the conformally invariant wave equations) yields the
numerical value for the fine structure constant (at the scale of the Bohr radius).
The fine structure appears as a numerical coefficient in the Greens’ function that
is given explicitly in terms of the ratios of geometrical measures in those com-
plex domains. Unfortunately, these results by Wyler were dismissed as senseless
numerology; nevertheless to this day no one, to my knowledge, has provided a
rigorous physical argument against the results by Wyler.
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After this brief detour, we proceed with the other components of the cur-
vature and spin. In the non-relativistic regime s = cτ ∼ ct, the temporal
coordinate is x4 = ct so xr4 = xrt of dimensions length)2. Therefore

−Rr
[rt]t

dxrt

ds

cdt

ds
× 1

l2
(
ds

dξ
)2 =

2GM

c2 r3
ρ × 1

l2
(
ds

dξ
)2. (3.19)

after substituting dxrt

ds = ρ and setting cdt/ds ' 1 in the standard non-
relativistic limit. The second term of (3.19) is

2GM

c2 r3
ρplanets ×

(ds/dξ)2planets

l2
=

2GM

c2 r3
ρplanets z2

planets(ξ). (3.20)

where the velocities expressing the rate of change of the proper time s = cτ
w.r.t the C-space proper time ξ is defined by

z2
planets(ξ) ≡

1
l2

(
dsplanets

dξ
)2. (3.21)

The cancellation condition(3.10) must be supplemented with the normaliza-
tion of the polyvector components of the velocities in C-space

1 = g00 (
dX0

planets

dξ
)2 + l−2 gµν

dxµ

dξ

dxν

dξ
+ l−4 gµ1µ2 gν1ν2

dxµ1ν1

dξ

dxµ2ν2

dξ
+......... =

g00 (
dX0

planets

dξ
)2 + l−2 (

ds

dξ
)2 + l−4 (

ds

dξ
)2

dxµν

ds

dxµν

ds
+ ....... =

g00 (
dX0

planets

dξ
)2 + z2

planets −
ρ2

l2
z2
planets + (

ωρ

c
)2 z2

planets + ......... (3.22a)

where the dominant contribution from the (dxµν/dξ)(dxµν/dξ) terms is

grr gtt
dxrt

dξ

dxrt

dξ
= grr gtt

dxrt

ds

dxrt

ds
(
ds

dξ
)2 = − l2 ρ2 z2

planets(r). (3.22b)

since grr gtt = −1 for the Schwarzschild solution and (dxrt/ds) (dxrt/ds) = ρ2,
where ρ is the radius of the planets. We shall neglect the contribution from the
higher grade polyvectors.

The velocities z2(ξ) are explicit functions of the C-space affine proper time
parameter ξ associated with each one of the planetary ”worldlines” in C-spaces.
If the dynamical system is integrable one can rewrite these velocities in terms
of the r-coordinates z2(ξ) as z2(ξ(r)) = z̃2(r) in the same way that one can
eliminate the coordinate time parameter in the ordinary falling motion of a test
particle towards the Earth from a height h yielding the velocity-height relation-
ship v2(h) = 2gh. The latter relation can be obtained from the conservation
of energy relation −mgh + 1

2mv2 = 0 and/or by eliminating t from the two
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equations v = gt and h = 1
2gt2. Therefore, in the same fashion, one can rewrite

eq-(3.22b) above in terms of the r-coordinates of the planets furnishing an ex-
pression which is a function of r.

Notice that one is not violating the equivalence principle in C-space, despite
that it is violated in ordinary spacetime. Planets do not experience the anoma-
lous acceleration, while the Pioneer spacecraft does, because of the spinning de-
grees of freedom of the extended planetary objects, compared to the pointlike
spacecraft. The spacecraft as a rigid body can spin about any axis but due to its
very small size compared to the size of the planets its curvature-spin coupling
is negligible compared to those of the planets, unless the spacecraft spins at
an incredible hight rate, which is not the case. Both the planets and Pioneer
follow poly-geodesics in C-space, which for the case of Pioneer do not appear as
geodesic motion in ordinary spacetime. Its acceleration in ordinary spacetime
is

apioneer(r) = c2Ar(r) ( 1 − z2
pioneer(r) ) = −c2 Γr

00(r) (
dX0

pioneer

dξ
)2(ξ(r)) ⇒

c2Ar(r) =
apioneer(r)

1 − z2
pioneer(r)

. (3.23)

The cancellation condition which yields a zero anomalous net acceleration of
the planets leads to the relationship

− c2 Γr
00(r) (

dX0
planets

dξ
)2 = [ c2 Ar(r) ] [g00(r) (

dX0
planets

dξ
)2] =

[
apioneer(r)

1− z2
pioneer(r)

] [
1− z2

planets( 1− ρ2

l2
+ (

ωρ

c
)2 )

]
=

−c2

[
(
2GMsun

c2 r3
) ρ + (

2GMsun

c2 r
) (

ωρ

c
)2

1
ρ

]
z2
planets(r). (3.24a)

From this last equation one finds the following relationship between the func-
tional forms of z2

planets(r) and z2
pioneer(r) = z2

p(r)

z2
planets(r) =[

1 − (
ρ

l
)2 + (

ωρ

c
)2 + (

2GMsun

c2 r
) (

z2
p(r)− 1
ap(r)

) [ (
ρ

r
) (

c2

r
) + (

ωρ

c
)2 (

c2

ρ
) ]

]−1

.

(3.24b)
ρ is the mean equatorial radius of the planet; ω is the spin angular velocity about
its axis; r is its distance to the Sun. The value of the fundamental length scale l
parameter in C-spaces appearing above (3.24) must be such that z2

planets(r) > 0.
A ”tachyonic” like behavior would occur when z2 < 0 which is the analog of
m2 < 0. A physical criteria how to choose the scale l in (3.24b) is based in
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setting the scale l as one which is larger than the radius of gyration of the
planets. By radius of gyration lplanets of each planet one means a scale lplanets

such that ωplanets lplanets = c. Therefore the value of l in eq-(3.24b) must be
such that lplanets ≤ l. When the saturation limit lplanets = l is attained, for
each one of the planets, the second and third terms in the r.h.s of (3.24) cancel
out and one is left with

z2
planets(r) =[

1 + (
2GMsun

c2 r
) (

z2
pioneer(r)− 1

ap(r)
) [ (

ρ

r
) (

c2

r
) + (

ωρ

c
)2 (

c2

ρ
) ]

]−1

. (3.24c)

therefore, eq-(3.24c) states that the rate at which proper time z = l−1(ds/dξ)
flows with respect to the C-space proper time ξ for the Pioneer spacecraft is not
the same as the rate of flow for the particular planet, despite that the Pioneer
spacecraft happens to be at the very same orbital location r as the planet is from
the Sun. This difference in the rate at which clocks tick in C-space translates
into the C-space analog of Doppler shifts. This fact should be explored further
in connection to the anomalous redshifts in Cosmology, where objects which are
not that far apart from each other exhibit very different redshifts [23]. This
phenomenon also has precursors in theories based on dilation and conformal
symmetry as analyzed long ago by [24].

An immediate question comes to mind when one looks at (3.24) establishing
a constraint relation among the velocities z2

planets(r) and z2
pioneer(r). Why the

C-space motion of Pioneer, determined by the values of z2
pioneer(r), is related

to the C-space motion of the planets determined by the values z2
planets(r) ?

The answer lies in Mach’s principle. Motion, the inertia of an object, only has
meaning when it is referred relative to other objects. The origins of the con-
straint relation (3.24) among z2

planets(r) and z2
pioneer(r) arises only when the

cancellation mechanism (3.10) occurs by which the planets don’t experience the
anomalous acceleration that Pioneer does. If one removes the cancellation mech-
anism (3.10), planets would experience an acceleration and the very particular
constraint relation (3.24) between the Pioneer and planetary C-space motion
would not have risen.

We proceed next to determine the functional form of g00(r) based on the
relations

Ar(r) = − grr ∂r log |g00(r)| < 0; apioneer < 0. (3.25)

g00(r) > 0; ∂r g00(r) < 0; grr = − (1− 2GMsun

c2r
) < 0, for r >

2GM

c2
.

(3.26)
and

1− z2
pioneer(r)

apioneer(r)
=

1
c2 Ar(r)

= − 1
c2 grr ∂r log |(g00(r))|

. (3.27)
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from the above equation one obtains

z2
pioneer(r) = 1 +

apioneer(r)
c2 grr ∂r log |g00(r)|

< 1 (3.28)

where z2
pioneer(r) < 1 due to the conditions in eqs-(3.5) when the bivector,

trivector, .... higher grade components are neglected, and which imply that the
second term in the r.h.s of eq- (3.28) is negative as it should because ap(r) < 0
: it points towards the Sun. Hence, the negative sign of apioneer(r) is con-
sistent with the condition z2

pioneer < 1 derived from the normalization of the
C-space poly-vector-valued velocities (3.5) and after neglecting the higher grade
contributions due to its negligible size compared to the planets.

Finally we are in a position to determine the functional form of g00(r) from
the results in eqs-(3.28) in terms of the variable values of z2

pioneer(r) < 1. It is
given by the exponential of the following integral

g00(r) ≡ Φ(r) = Φo exp

[ ∫ r

ro

− grr(r)
apioneer(r)

1− z2
pioneer(r)

dr

]
. (3.29)

since ap(r) < 0, 1 − z2
pioneer > 0 and − grr(r) = (1 − 2GM

c2 r )−1 > 0 for
r > (2GM/c2) ∼ 3 Kms , the Schwarzchild radius of the sun, the sign of
the exponential is negative. Thus g00(r) = Φ(r) is a decreasing function of
r from the value of Φo > 1 at r = ro > 3Kms to the asymptotic value of
g00(r = ∞) = Φ(r = ∞) = 1 and which means that when the upper limit of
the integral is set to r = ∞, its value is log(1/Φo). Therefore, the value Φo is
fixed in terms of the integral from ro to r = ∞ where ro is equal to the mean
equatorial radius of the Sun ro = rsun = 6.961× 105 Kms = 4.67× 10−3 AU.

The functional form of z2
pioneer = 1

l2 ( ds
dξ )2 for a hyperbolic trajectory can be

simplified considerably if one assumes a purely radial (poly) geodesic trajectory
defined by

z2
pioneer ≡ gtt

l2
(
cdt

dξ
)2 +

grr

l2
(
dr

dξ
)2; grr < 0, gtt > 0. (3.30)

and
c2

l2
d2r

dξ2
+

c2

l2
Γr

µν

dxµ

dξ

dxν

dξ
= apioneer(r(ξ)). (3.31a)

c2

l2
d2(ct)
dξ2

+
c2

l2
Γt

µν

dxµ

dξ

dxν

dξ
= 0. (3.31b)

The solutions to eqs-(3.31) determine the functional form of z2
pioneer in eq-(3.30)

which is to be used directly inside the integrand of eq-(3.29) and that yields the
sought-after expression for g00(r) = Φ(r), given in terms of the empirically
known function apioneer(r) and z2

pioneer.
Rigorously speaking, we must start firstly with the analog of the Einstein-

Hilbert action plus polyvector-valued matter ( scalars, vectors, antisymmetric
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tensors ...) in C-spaces and after solving the field equations, upon invoking
suitable boundary and initial conditions, one must verify whether or not the
expression we have found in eq-(3.29) for one of the components of the C-
space metric g00(r) = Φ(r), and whose functional form is fixed in terms of
the empirical graph of the anomalous Pioneer acceleration ap(r) found by [2],
corresponds indeed to a solution to the field equations in a curved C-space. This
is a much more ambitious task because the C-space scalar curvature R(GMN )
is given by sums of powers of the ordinary Riemannian curvature plus sums of
powers of Torsion terms [11]. It is a higher derivative gravity.

To sum up, the Extended Relativity Theory in (Clifford) C-spaces furnishes
an anomalous Pioneer acceleration ap(r) obeying eq-(3.29) which shares all
the features of the observed Pioneer anomaly : magnitude and sign, for all
values of r. It is important to emphasize that so far we have assumed that the
Schwarzschild solutions gtt, grr obeying gtt grr = −1 are the ones which are to
be used in all of the above equations. However, there is caveat due to the fact
that one expects the solutions to the extended gravitational field equations in C-
spaces to be given by deviations from the Schwarzschild solutions, g̃tt, g̃rr. For
this reason one expects the values of z2

pioneer defined by eq-(3.30), the solutions
to eqs-(3.31a, 3.31b) and the expression for g00(r) = Φ(r) of eq-(3.29) to change
accordingly.

Deviations from the Schwarzschild solutions to tackle the Pioneer anomaly
based on f(R) theories of gravity can be found in [25]. Moffat et al [7] have
found fits of the graph ap(r) based on solutions to scalar-vector-tensor modified
theories of gravity. However, they did not explain why planets don’t experience
the anomalous acceleration. The curve fit by [7] relied in writing the modified
Newtonian acceleration in terms of a scale-dependent gravitational coupling
as −(G(r)M/r2) where the coupling function G(r) was of the form G(r) =
Go + ∆G(r). The variation piece ∆G(r) had two terms : (i) a Yukawa-like
piece involving a modulated amplitude Go f(r) (1 + r

γ(r) ) times the decaying
exponential : − Go f(r) (1 + r

γ(r) ) exp(−r/µ(r)), and ( ii) : the amplitude
term Go f(r) itself. There were 3 input functions : f(r), µ(r), γ(r) in the data
fitting procedure by [7]. In our case, we have shown that only two functions
z2
pioneer and g00(r) = Φ(r) are required in eq-(3.29).

Another important point we wish to address here is that the C-space metric
component g00(r) = Φ(r) may provide a Clifford-algebraic interpretation of
the dilaton field; while the dual component to g00(r) is the (axial) pseudo-
scalar component of the C-space metric GMN where M,N are the highest grade
polyvector elements, the ones associated with the directions x[1234]γ

1234 in C-
space. Thus, the piece of the metric G[1234] [1234] could have an interpretation
in terms of the axion field. In this way one would have provided a nice Clifford-
geometric formulation of the axion and dilaton which are among the dark matter
candidates, along the gravitino, neutralino, and other supersymmetric particles,
etc...

Some important remarks are in order :

• Φ(r) is not the BDJ scalar of the introduction, Φ(r) = g00(r) is dimensionless,
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whereas the BDJ scalar field has mass dimensions. The connection Ar =
−grr∂r log |g00(r)| is not the Weyl connection.

• By coupling Φ to fermionic matter, like massive neutrinos in the sun,
of the form Φ(r) Lmatter in the most general Lagrangian, the solar neutrinos
become a source of the metric component in C-space g00(r) = Φ(r). Thus,
a flux of Solar massive neutrinos might be a natural source of g00(r) = Φ(r)
which is an intrinsic manifestation of the Pioneer anomaly ap(r) via eq-(3.29)
; i.e. the distribution of matter determines the C-space geometry, and in turn,
the C-space geometry indicates matter (Pioneer and planets) how to move in
C-space.

• It is warranted to find solutions to the field equations associated to the
most general Lagrangian in C-space involving the C-space curvature R(GMN ),
that contains sums of powers of the ordinary Riemannian curvature and torsion
terms, and the C-space polyvector-valued matter fields (scalars, vectors, anti-
symmetric tensors of rank two, rank three, ... ). Having found solutions it is
when one can verify whether or not the expression for g00(r) given by eq-(3.29)
is consistent with the solutions found for g00(r) via the field equations in C-
space. This project warrants further investigation and is very relevant because
it is desirable to derive the functional form of apioneer(r) from first principles.
Such theory in C-space is a generalization of the scalar-vector-tensor theories
of modified gravity [7], [5].

To sum up , the cancellation between the two terms of eq-(3.10) correspond-
ing to the motion of the spinning planets throughout C-space is the reason why
planets do not experience an anomaly. In the case of Pioneer, the curvature-spin
coupling contribution given by the second term in (3.10) is negligible, for this
reason it experiences an overall anomalous acceleration. Strictly speaking, the
spacecraft is not truly point-like and can naturally spin around an axis. How-
ever, the magnitude of its spin and the size of the spacecraft (a few meters in
size) are no match for the extremely small curvature terms that are coupled to
its spin. Of course, if the spinning angular velocity of the spacecraft were to be
extremely large, it could compensate for the extremely small curvature factors,
but this is not the case.

We conclude with a discussion about the Flybys anomalies. An explanation
why there is an an apparent increase in the speed of an object due to the
spinning degrees of freedom and based on the geometry in C-spaces goes as
follows. The momentum of the probe (spacecraft) pµ is just one component of
the polyvector-valued momentum

P = π 1 + pµ γµ + pµν γµ ∧ γν + ..... (3.32)

where as usual, a momentum scale parameter κ must be included in the expan-
sion (3.32) in order to match units. We take P and π to be dimensionless.
If one focus in just the translation and spinning pieces pµ, pµν , the effective
momentum of the probe is

P =
1
κ

pµ γµ +
1
κ2

pµν γµν . (3.33)

19



where γµν = γµ ∧ γ (we omit factors of 1/2 for simplicity. ) The magnitude-
squared of P is given by the scalar part of the Clifford geometric product

|P|2 =
1
κ2

pµ pµ +
1
κ4

pµν pµν . (3.34)

resulting from the scalar contractions γµγµ and γµνγµν , respectively. Since the
area-momentum is related to the spin [13] pµν ↔ m2c2 Sµν ; after factoring out
the pµ pµ = m2c2 term and taking the square root of (3.34) one has

|P| =
mc

κ

√
1 + (

mc

κ
)2 S2 ∼ mc

κ
( 1 +

1
2

(
mc

κ
)2 S2 + ....) (3.35)

Upon setting the dimensionless |P| quantity equal to (mVeff/mc) = m(v +
δv)/mc; where Veff = v + δv is the effective velocity resulting from the trans-
lational plus spinning degrees of freedom; choosing the κ parameter to obey
mc
κ = v

c ; straightforward algebra yields a positive (an increase in velocity)
fractional change of the velocity

(
δv

v
)probe ∼ 1

2
(
v2

c2
)probe S2

probe (3.36)

The problem now is to relate the values in the r.h.s of (3.36) to the translational
and spinning degrees of freedom of the Earth when the probe flybys past it. The
empirical formula proposed by [10] for the Flyby anomaly, in terms of the spin
angular velocity ω and radius of the Earth ρ, is

(
δv

v
)flyby = 2

ω ρ

c
δ cos φ = 2

ω ρ

c
( cos φin − cos φout) (3.37)

where φin, φout are the inbound and outbound equatorial angle of the spacecraft.
In order to study the empirical flyby equation (3.37) within the context of C-
space, one needs to study the full scattering problem of the Earth-probe system.
For instance, by writing the energy-momentum conservation laws (assuming
elastic scattering) in C-space involving both the poly-vectors Pprobe and Pearth;
the net poly-momentum Pprobe + Pearth = constant is conserved during the
flyby process. In this way one could argue that the gain of the probe’s poly-
momentum (δP )probe > 0 is correlated to a relative loss in the Earth’s value
(δP )earth < 0; i.e. the gain in the velocity by the spacecraft is due to an
exchange with the spin-motion of the earth, as eq-(3.37) indicates.

To show why this can work, one needs to take the Clifford geometric product
(Pprobe+Pearth)•(Pprobe+Pearth), upon doing so one is going to have couplings
of the form 2 κ−3 (pµ)probe (P νσ)earth γµνσ which bears similarities with (3.37)
in the components of (P rφ)earth = Mearth ω ρ. The presence of the cosine
factors (3.37) can be understood in D = 3 by noticing that γµνσ ∼ εµνσ 1
inducing an inner product structure as follows

2 κ−3 (pµ)probe (P νσ)earth εµνσ = 2 κ−1 (pµ)probe (Jµ)earth =
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2 κ−1 |p|probe |J |earth cos(α). (3.38).

where (Jµ)earth ≡ κ−2 (P νσ)earth εµνσ. If this above coupling (3.38) is the main
contribution to the flyby anomaly, one can attribute the change κ−1 δ|p|probe to
the latter coupling giving

δ |p|probe = 2 |p|probe |J |earth cos(α) ⇒ δ |p|probe

|p|probe
= 2 |J |earth cos(α) (3.39).

The magnitude |J | = dxrφ/ds ∼ ωρ/c. Comparing these latter values for the
ingoing and outgoing trajectories, before and after the scattering, one has

(
δ |p|probe

|p|probe
)in − (

δ |p|probe

|p|probe
)out = 2 [ |J |in cos(α)in − |J |out cos(α)out ]. (3.40)

Therefore, eq-(3.40) does have the same functional form as the empirical formula
(3.37), since |J |earth is a dimensionless quantity involving the spin of the earth,
(ωρ/c) and when one has small mass probes compared to the Earth’s mass, one
has |J |in ∼ |J |out. This approach to the flyby anomalies will be the subject of
further investigations.
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