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Abstract Let !(i) be period of rotation of the i-th planet around the Sun
(or !j(i) be period of rotation of j-th satellite around the i-th planet). From
empirical observations it is known that within margins of experimental errorsP

i ni!(i) = 0 (or
P

j nj!j(i) = 0) for some integers ni (or nj ), di¤erent for
di¤erent satellite systems. These conditions, known as resonance conditions,
make uses of theories such as KAM di¢ cult to implement. The resonances in
Solar System are similar to those encountered in old quantum mechanics where
applications of methods of celestial mechanics to atomic and molecular physics
were highly successful. With such a successes, the birth of new quantum me-
chanics is di¢ cult to understand. In short, the rationale for its birth lies in
simplicity with which the same type of calculations can be done using meth-
ods of quantum mechanics capable of taking care of resonances. The solution
of quantization puzzle was found by Heisenberg. In this paper new uses of
Heisenberg�s ideas are found. When superimposed with the equivalence princi-
ple of general relativity, they lead to quantum mechanical treatment of observed
resonances in the Solar System. To test correctness of theoretical predictions
the number of allowed stable orbits for planets and for equatorial stable orbits
of satellites of heavy planets is calculated resulting in good agreement with ob-
servational data. In addition, the paper brie�y discusses quantum mechanical
nature of rings of heavy planets and potential usefulness of the obtained results
for cosmology.

Key words Heisenberg honeycombs � Quantum and celestial mechanics �
Group theory � Exactly solvable classical and quantum dynamical problems �
Equivalence principle � Cosmological constant �(anti) de Sitter spaces

1 Introduction

1.1 General comments

The role of celestial mechanics in development of modern quantum mechanics
is well described in the lecture notes by Born (1924). The usefulness of the
atomic mechanics to problems of celestial mechanics has been recognized only
very recently (Porter and Cvitanoviµc 2005; Marsden and Ross 2006). Closely
related to these papers is the paper by Convay at al (2007) where methods of
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optimal control and genetic algorithms were used for mission planning problems.
In this work we extend the emerging reverse trend. For this purpose we critically
reanalyze the logical steps leading from old to new quantum mechanics in the
light of available astronomical observational data. For the sake of uninterrupted
reading, some not widely known facts from the history of quantum mechanics are
presented in nontraditional way based on the latest results from mathematics
and atomic physics. Thus, prior to formulation of the problems to be solved in
this paper, we provide some needed historical background information.

1.2 Resonances in old atomic mechanics

In 1923-24 academic year in Göttingen Max Born replaced planned two- semester
lecture course in celestial mechanics by the course in atomic mechanics. Con-
trary to the standard super�cial descriptions of "old" quantum mechanics which
can be found at the beginning of any textbook on quantum mechanics, the
achievements of "old" quantum mechanics go far beyond calculation of spec-
tra of the Hydrogen atom. In fact, the optical and X-ray spectra of almost all
known at that time elements were found accounting even for the �ne structure
relativistic e¤ects. The theory of quantum angular momenta was developed and
used in the theory of polyatomic molecules. The e¤ects of Zeemann and Stark
were considered as well, etc. If one would make an itemized list of problems
considered in "old" quantum theory and would compare it with that of "new"
quantum theory, surprisingly, one would not be able to �nd an item which was
not treated within the "old" formalism. With such an impressive list of achieve-
ments it is hard to understand why this formalism was suddenly abandoned in
favour of "new" quantum mechanics in 1925.
To explain this, we would like to bring some excerpts from the paper by Pauli

and Born (1922). Being thoroughly familiar with works by Poincare0 on celestial
mechanics, they were trying to apply these methods to multielectron atoms.
For this purpose they were using methods of theory of perturbations to account
for electron-electron interactions. By doing so they obtained the same types of
divergencies as were known already from calculations of planetary dynamics. By
realizing the asymptotic nature of the obtained expressions, they decided that to
keep just few terms in these expansions is the best way to proceed. By doing so a
reasonably good agreement with experimentally known location of spectral lines
was expected to be obtained. Such a state of a¤airs had caused frustration for
Bohr who conceded that only those dynamical systems which admit a complete
separation of variables are quantizable2 . If such a separation is absent, according
to the Bohr�s current opinion, the system should not possess a discrete spectrum
so that visible lines in spectra of elements other than Hydrogen should be much
wider. On the theoretical side such an assumption calls for development of
methods enabling to determine the widths of spectral lines and of distribution of
the intensity within these widths. Such an intensity is expected to be connected
with the underlying mechanical motion inside the atomic system.

2E.g. read (Pauli and Born 1922).
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The spectroscopic data for almost entire periodic system were readily avail-
able at the turn of the 20th century (Baly 1905). Bohr was well aware of these
data and used them for his search for correct atomic model (along with Ruther-
ford�s results of 1912 on scattering from the Hydrogen atom). In particular,
he looked at the data for Helium in 1913 and published his �ndings in Nature
(Bohr 1913). For the sake of arguments which will follow, we found it helpful
to reproduce some of the data from his Table 1 below.

Table 1

Spectral series � � 108 %error �( 1
n21
� 1

n22
) � 1010 (n1;n2)

P1 4685.98 0.01 22779.1 (3;4)
P2 3203.30 0.05 22779.0 (3;5)
P2 2306.20 0.10 22777.3 (3;9)
P1 2252.88 0.10 22779.1 (3;10)
S 5410.5 1.0 22774 (4;7)
S 4541.3 0.25 22777 (4:9)
S 4200.3 0.5 22781 (4;11)

These data were compared with those for the Hydrogen for which he used the
analogous table (Table 2)3 . For some reason, the data in his Table 2 did not
contain the error column. Since the wavelength � in both cases was measurable,
it was possible to evaluate the ratio KH=KHe; where K= �( 1

n21
� 1
n22
)�1010; which

was found to be 4.0016. At the same time, Bohr�s own calculations gave for K
the following value: K= c(M+m)h3

2�2Z2e2Mm ; with h being the Planck�s constant, Z and
M being the charge and the mass of the nucleus, c being the speed of light, e
andm being the charge and the mass of the electron. By assumingMHe = 4MH

and ZHe = 2ZH , one readily obtains for KH=KHe the result: 4.00163. It is in
good agreement with that obtained experimentally. In doing such calculations
Bohr assumed that each electron in Helium can be treated as if it is a Hydrogen-
like. This surely implies that the width of spectral lines for Helium should be
practically the same as those for the Hydrogen atom. Nowadays we know (Ingle
and Crouch 1988) that all atomic spectra have some �nite linewidth. This
linewidth is determined by factors such as: a) the collisional broadening, b) the
Doppler broadening and c) the natural broadening. Each of these is having some
further rami�cations. Hence, from the standpoint of modern knowledge one can
interpret Bohr�s conclusions made in 1922 as acknowledgement of the fact that
spectra of elements other than Hydrogen are broader because of natural reasons
(so that one should take into consideration the data from the error column in
Table 1) without invalidation of Bohr�s major quantization assumptions. It
should be noted though that such a conclusion leads to the question: why the
very same factors are a¤ecting the Hydrogen atoms much less?
Unhappy with his conclusions, Bohr asked Born and Heisenberg to make

more rigorous calculations for Helium using perturbational methods analogous

3Which we do not reproduce.
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to those developed in the paper by Pauli and Born in 1922: Their �ndings were
published in 1923 and resulted in practically total failure in accurate determi-
nation of energies of the ground and excited states for Helium atom. This fact
is documented in Born�s lecture notes (Born 1924).
Since the Helium atom calculations were made by Heisenberg (under Born�s

supervision) it may be not too surprising that, after all, it was Heisenberg who
found the way out of the existing di¢ culties. The logic of his reasonings is
discussed from the modern mathematical point of view in Section 2. In this
introductory section we would like only to put his work in some historical
perspective. For this, we need to make few comments on his joint work with
Born. For the sake of space, we refer our readers to the cited literature for
details.

1.2.1 3-body problem and the He atom (old quantum mechanics
results)

The unperturbed Hamiltonian for He was chosen as H =-A(J�21 +J�22 ) with
the constant A = 2�2e4mZ2 while the perturbation was chosen as H1 = e2=R
with J1 and J2 being the Bohr-Sommerfeld (B-S) adiabatic action integrals for
electron 1 and 2 and R being the Euclidean distance between them. After H,
He is the �rst nontrivial 3-body mechanical system whose behavior is amended
in accordance with the rules of old quantum mechanics by requiring both of
these integrals (i.e. J1 and J2 ) to have their lowest value, i.e. h; so that the
unperturbed energy for He is twice that for H. Since the energyW for H is known
to beW = � A

J2 ; the frequency ! of rotation of the electron at its stationary orbit
in the action-angle formulation of classical mechanics is obtained as ! = @W

@J �
n�3 4 . In obtaining this result it was assumed that J is continuous variable and,
only after the di¤erentiation is made, J is assumed to be discrete: J= nh. It
is important to realize at this point that exactly the same logic was used in
Heisenberg�s paper on quantum mechanics to be discussed in Section 25 . Hence,
for the Helium atom within the approximations made the rotation frequencies
of both electrons are the same. This fact is known in mechanics literature as
accidental degeneration. In view of its crucial importance for this paper, we
would like to pause now in order to provide more accurate de�nitions.
In terms of the action -angle (I,') variables the Hamilton�s equations of

motion for a completely integrable system can be written as:

dI

dt
= 0;

d'

dt
=
@H

@I
� !(I); (1)

where the boldface indicates that the dynamical system with Hamiltonian H is
multicomponent (in general case). Solutions of the system (1) are: Ii =ci; 'i =
!i(I)t+Ci , i = 1�N . It is assumed that ci and Ci are some known constants.
In view of this result, any mechanical observable F(p;q) made of generalized

4E.g. see page 140 of (Born 1924).
5E.g.see Eq.(19) below.
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momenta p and generalized coordinate q can be Fourier decomposed as

F =
1P

n=�1
An exp(in �'); (2)

where n = fn1; :::; nNg: Accordingly, n � ' =
PN

i=1 ni'i. Such a Fourier de-
composition is expected to exist even for those perturbed systems for which the
empirically observed orbits are closed (as seen in the case of planets in our Solar
System). Dynamical system is considered to be accidentally degenerate if the
relation PN

i=1 ni!i(I) = 0 (3)

holds for some �xed set of integers n and is degenerate if Eq.(3) holds for any
set of n�s. In this work this condition will be alternatively called as resonance
condition in accord with modern terminology.

1.2.2 3-body problem and the He atom (modern perspective)

Failure of methods of celestial mechanics (modi�ed by the B-S quantization rule)
to accurately compute the ground and excited states for He has led Heisenberg to
discovery of his matrix quantum mechanics in 1925. The problem appeared to be
completely solved until 1960 when some di¢ culties emerged when the standard
Hartree-Fock type variational calculations become inadequate for description of
doubly excited electron states (Tanner et al 2000). The same authors notice that
by 1990 the improvements which were made in 60ies failed again, especially for
the extreme excitation regime which cannot be described using single electron
quantum numbers. The way out of the existing di¢ culties was associated with
accurately designed semiclassical methods. The backbone of these semiclassi-
cal descriptions "are the periodic orbits of the full classical two-electron system
without any approximations". Tanner at all notice (e.g. read page 523) that
"The classical two-electron atom is neither integrable nor fully chaotic. The
apparently regular spectrum as well as the breakdown of approximate quantum
numbers for highly doubly excited states and the enormous variation in the de-
cay widths for resonances can be understood by studyng classical mechanics in
detail. Qualitative results can be obtained by exploiting semiclassical periodic
orbit theory." In other words, use of classical mechanics is quite su¢ cient for
determination of both the ground and excited states of He and only for extreme
case of highly doubly excited He the description becomes qualitative. Classical
dynamics of He used for calculations of spectra is essentially the dynamics of the
restricted 3-body problem6 and, as such, exhibits chaotic and regular regimes.
Since the experimental information which can be deduced from the low lying
spectral excitations of He does not allow to disentangle regular and chaotic parts
of the dynamics, it has become possible to simplify things further by recalculat-
ing spectra of He, Li, Be, and diatomic molecules made out of these and other
atoms, and also of H2, by revisiting Bohr�s 1913 calculations (Svidzinsky et al

6Modi�ed by the fact that in the atomic case electrons repel each other and have the same
mass.
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2005a,b; Muravski and Svidzinsky 2006). These calculations involve a simple
minded minimization of classical functionals of the type considered by Bohr in
1913. Mathematical justi�cation of such a procedure was found by Chen et al
(2006). The accuracy of the results obtained with help of such classical cal-
culations (employing however the B-S quantization rule !) compares well with
incomparably more elaborate traditional quantum mechanical calculations. It
should be noted though that in his Nobel prize winning address Bohr (1923)
was talking about his great success in calculating spectra of almost all elements
of the periodic table using the B-S quantization rule and simple minimization
procedure. It took another 80 years or so to bring these calculations to the level
comparable with the best known quantum mechanical calculations!

1.3 Resonances in celestial mechanics

On page 265 of his lecture notes Born writes: "Accidental degeneration is a rare
and remarkable exception in astronomy; the odds against (Eq.(3)) being exactly
ful�lled are in�nite. A close approach to it is found in the case of perturbations
of some minor planets (Achilles, Patroclus, Hector, Nestor) which have very
nearly the same period of revolution as Jupiter. In atomic theory, on the other
hand, where Jk�s can have only discrete values, accidental degeneration is very
common." As result of such an accidental degeneracy Heisenberg�s attempt at
perturbative calculations for He failed miserably. Such a failure caused him
to reconsider the whole computational scheme resulting in an ultimate break-
through in 1925 leading to new quantum mechanics.
Before discussing his contributions from the modern perspective, we would

like to make few remarks regarding the accuracy of astronomical data in Born�s
lectures. In 1968 Molchanov (1968), while analyzing the astronomical data,
came to conclusion that the accidental degeneracy for Solar (and, very recently,
Solar-like (Ferraz-Mello et al 2005; Ferraz-Mello et al 2006)) System(s) is as com-
mon as in atomic systems. In Table 2 (below) taken from his work (Molchanov�s
Table 1) we reproduce some data taken from this reference.

Table 2

Planet !Oi !Ti �!=! n1 n2 n3 n4 n5 n6 n7 n8 n9
1 Mercury 49.22 49.20 0.0004 1 -1 -2 -1 0 0 0 0 0
2 Venus 19.29 19.26 0.0015 0 1 0 -3 0 -1 0 0 0
3 Earth 11.862 11.828 0.0031 0 0 1 -2 1 -1 1 0 0
4 Mars 6.306 6.287 0.0031 0 0 0 1 -6 0 -2 0 0
5 Jupiter 1.000 1.000 0.000 0 0 0 0 0 2 -5 0 0
6 Saturn 0.4027 0.400 0.0068 0 0 0 0 1 0 -7 0 0
7 Uranus 0.14119 0.14286 -0.0118 0 0 0 0 0 0 1 -2 0
8 Neptune 0.07197 0.07143 0.0075 0 0 0 0 0 0 1 0 -3
9 Pluto 0.04750 0.04762 -0.0025 0 0 0 0 0 1 0 -5 1

For satellite systems of Jupiter, Saturn and Uranus Molchanov�s paper also
contains tables similar to our Table 2. According to the book by Beletsky
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(2001), in view of the resonance nature of our Solar System, uses of KAM
theory (Arnol�d et al 2006) for explanation of planetary stability typically fail.
To understand the data in Table 2 several comments are in order. First, the

displayed frequencies are measured in the system of units in which the Jupiter�s
frequency was chosen as the unit of measurement. Second, in view of Eq.(3), the
�rst row of data from Table 2 should be actually read as !1�!2�2!3�!4 = 0.
All other rows should be treated accordingly. The theoretical frequencies !Ti
are those which satisfy the resonance conditions exactly while !Oi denote the
observed frequencies. The data for Pluto should not to be considered in terms
of resonances for the following reason.
Consider a scalar product n � ' � � in Eq.(2). This can be looked upon

as representation of the vector � in the coordinate basis {'g: The coordinate
basis can be changed with help of some matrix A so that � = n �A � ~'. It can
be argued (Born 1924; Molchanov 1968) that detA = 1; so that the matrix
A must be a unimodular square matrix. Only for the sake of this requirement
the data for Pluto in Table 2 were assigned in a way given in the Table 2. Next,
�!=! should be understood as (!Oi � !Ti )=!

O
i . After this, the obtained error

margins can be compared against those for He in Table 1. Such a comparison
indicates that the accuracy in both cases is essentially the same. It is such that
Bohr was able to obtain using his old quantum mechanical theory a reasonably
accurate ratio KH=KHe in agreement with experiment. It makes physical sense
to blame the intrinsic inaccuracy of the collected data (e.g. that in Table 1)
for observed frequency discrepancies. Hence, along with Bohr, it is reasonable
to claim that, with exception of H, other atomic systems are not quantizable
because of these discrepancies 7 . The same reasoning should then be applied
to the planetary systems, especially in view of critique of Molchanov�s work by
Henon (1969) and Backus (1969). These authors argued that the error margins
in Molchanov�s tables are too large for the resonances to be considered seri-
ously. The comparison between the Tables 1 and 2 indicates that even though
the arguments by Henon and Backus may be mathematically correct, they do
not have sound physical support due to intrinsic inaccuracies in measurements
which cannot be substantially improved8 . Thus, Molchanov�s data and their
interpretation remain correct even without additional explanations made by
Molchanov (1969a,b) in defence of his results. Furthermore, subsequently ob-
tained results by Brin (1973) and Patterson (1987) strongly suggest that, at
least pairwise, planets are in resonance with each other. This is true in particu-
lar for the heavy planets in our Solar System as demonstrated by Ferraz-Mello
et al (2005). Evidently, the linear combination of such pairwise resonances leads
back to the Molchanov-type results.

7Subsequent developments of quantum mechanics have demonstrated that Bohr was ap-
parently wrong. We say "apparently" in view of the results of Section 2 where correct
quantization prescription is discussed based on improvement of Heisenberg�s ideas. In view of
results of Section 2, it is reasonable to say that Bohr�s intuition was nevertheless correct but
the situation can be improved rigorously using methods which were not available in Bohr�s
time.

8E.g.read Sections 3 and 4 where these measurements are discussed for objects such as
Solar System, etc.
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It should be noted though that quantization prescriptions discovered by
Heisenberg remain correct even in the case when there are no resonances: They
rely only on the existence of the closed stable orbits. The existence of reso-
nances, in fact, simpli�es matters considerably since it makes the task of estab-
lishing the quantum-classical correspondence much easier as explained in the
rest of this paper.
Prior to Molchanov�s 1968 work an e¤ort to explain the ubiquity of res-

onances in Solar System using methods of classical mechanics was made by
Goldreich (1965) who demonstrated that "special cases of commensurate mean
motions are not disrupted by tidal forces". Moreover, he proposed that it is the
tidal forces which drive otherwise incommensurate system to commensurability.
Thus, the problem of stability of our Solar System is very much the same

as that for the multielectron atoms. In both cases the accidental degeneracies
(resonances) preclude the systematic use of standard perturbational methods.
Unlike more traditional classical mechanics treatments (Murray and Dermott
1999), we apply Heisenberg-style arguments ultimately aimed at explanation of
Solar System stability. For the sake of space, we are not discussing in this work
the spin-orbit- type resonances also ubiquitous in the Solar System (Murray and
Dermot 1999).
Finally, we would like to mention that development of our quantum me-

chanical formalism proceeds in historical accord with that for atomic systems
for which the static (spectral) problems were considered �rst. The dynami-
cal problems of atoms/molecules formation as well as their stability towards
disintegration were considered only afterwards. Hence, only the spectral-type
problems will be discussed in this work.

1.4 Organization of the rest of this paper

Existence of stable closed orbits, of resonances, as well as the lack of dissi-
pation (in spite of presence of tidal e¤ects) in Solar (and Solar-like) System(s)
are indicative of the quantum nature of the orbital motions in the Solar Sys-
tem. Nevertheless, the formalism of quantum mechanics in the traditional form
present in textbooks cannot be used. To apply methods of quantum mechanics
to celestial mechanics is possible with use of Heisenberg�s original ideas up-
dated with help of the latest mathematical results. Sections 2 and 3 as well as
Appendices A and B provide a self-contained overview of quantum mechanics
based on Heisenberg�s ideas. They provide needed background for the actual
quantum calculations in celestial mechanics which are performed in Section 4
(supplemented with Appendix C). The main results of this section (and the
whole paper) are summarized in Table 4. In this table the number of stable
orbits for planets of Solar System as well as the number of stable orbits for
satellites of heavy planets (Jupiter, Saturn, Uranus and Neptune) is calculated
and compared against the observed numbers. Unusually good agreement be-
tween the calculated and observed numbers for Solar System, and the satellite
systems of Jupiter and Saturn is obtained resulting in further suggestions for
observational astronomy of the Solar System. In Table 3 a comparative sum-
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mary of main theoretical assumptions of both quantum atomic and quantum
celestial mechanics is given. Using it, the motion of rings around heavy planets
is brie�y studied resulting in the same conclusions about the quantum nature
of such type of motion. Some auxiliary mathematical results needed for these
calculations are presented in Appendix D. In study of all cases, including dy-
namics of planetary rings, it follows that the equivalence principle of general
relativity plays the decisive role in development of quantum celestial mechanics.
This fact caused us to write Section 5 in which the e¤ects of general relativity
on quantum mechanics of Solar System are studied further. In it we discuss how
the obtained results (for which the importance of the Lorentz group SO(2,1) is
emphasized) should be amended if we are interested in knowing to what extent
the (larger scale) symmetries of space-time typically considered in cosmological
models of general relativity may a¤ect the quantum dynamics of Solar System.
Such an information can be used in reverse for probing symmetries of space-time
at scales comparable or larger than that for our Solar System. Finally, Section
6 is devoted to some concluding remarks.

2 Heisenberg�s honeycombs and resonances

2.1 General comments

In this section we discuss Heisenberg�s ground breaking paper (Heisenberg 1925)
on quantum mechanics from perspective of modern mathematics. We begin with
observation that the Schrödinger equation cannot be reduced to something else
which is related to our macroscopic experience. It has to be postulated.9 On
the contrary, Heisenberg�s basic equation from which all quantum mechanics
can be recovered is directly connected with experimental data and looks almost
trivial. Indeed, following Bohr, Heisenberg looked at the famous equations for
energy levels di¤erence

!(n; n� �) = 1

~
(E(n)� E(n� �)); (4)

where both n and n�� are some integers. He noticed that this de�nition leads
to the following fundamental composition law:

!(n� �; n� �� �) + !(n; n� �) = !(n; n� �� �): (5a)

Since by design !(k; n) = �!(n; k); the above equation can be rewritten in a
symmetric form as

!(n;m) + !(m; k) + !(k; n) = 0: (5b)

9Usually used appeal to the DeBroigle wave-particle duality is of no help since the wave
function in the Schrödinger�s equation plays an auxiliary role while the De Broigle waves are
assumed to exist in real space-time.
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In such a form it is known as the honeycomb equation (condition) in current
mathematics literature (Knutson and Tao 2001) where it was rediscovered to-
tally independently of Heisenberg�s key quantum mechanical paper and, ap-
parently, with di¤erent purposes. Connections between mathematical results of
Knutson and Tao and those of Heisenberg were discovered in the recent paper
by Kholodenko (2006a). In this work some results of this paper will be used.
In particular, we begin by noticing that Eq.(5b) due to its purely combina-

torial origin does not contain the Plank�s constant ~. Such fact is of central
importance for this work. In particular, the simplest resonance condition en-
countered in celestial mechanics

n1!1 + n2!2 + n3!3 = 0 (6)

can be equivalently rewritten in the form of (5b), where !(n;m) = !n�!m. It
would be quite unnatural to think of the Planck�s constant for this case. Even
though, the resonance condition is equivalent to the Heisenberg�s quantization
condition, Eq.(5b), the reverse may not be true since frequencies in Eq.(5b) may
be irrational. It should be noted though that such irrationality would be very
di¢ cult to detect experimentally in view of natural causes leading to the line
broadening mentioned in the Introduction. Thus, from the experimental stand-
point Eq.s (5b) and (6) are equivalent10 . Furthermore, by assuming irrationality
we would run into di¢ culty with obtaining the semiclassical limit in which (it
is believed) the old quantum mechanics based on the Bohr-Sommerfeld method
of quantization should be applicable.These arguments imply that, at least semi-
classically, dynamics of all quantum mechanical systems is resonant.
Equation (5b) is the basic building block of the honeycomb structure en-

coding all information about the spectra of quantum system. Details leading
to construction of this combinatorial structure are summarized in the paper
by Knutson and Tao (2001). They were used in Kholodenko�s (2006a) paper in
which some physical applications absent in Knutson�s-Tao paper are discussed.
To describe such honeycomb structure in the nutshell, let us choose the

basic Y- shaped tripod whose edges are labeled by frequencies !(n;m)0s is such
a way that the total sum of these labels is equal to zero, as in Eq.(5b). The
honeycomb is made of collection of such tripods placed on a 2- dimensional plane
and joined with each other in such a way that the frequencies at the edges match.
Several additional rules were set up by Knutson and Tao and are given in their
original papers (Knutson and Tao 1999; Knutson, Tao and Woodward 2004).
Our readers encouraged at this point to consult the interactive web site designed
by Tao (2001) in order to get a feeling of honeycombs as combinatorial objects.
For physical applications, other than those discussed in this paper, our readers
are referred to the paper by Kholodenko (2006a). Provided references allow us

10Although to make the frequencies independent (and, hence, irrational) is easy mathemat-
ically, it is unrealistic to detect such fact experimentally. In other words, even though the
critique of Molchanov�s (1968) paper by Henon (1969) and Backus (1969) could be mathe-
matically justi�ed in spite of Molchanov�s counter arguments (Molchanov 1969a,b), it is of
academic value only.
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to squeeze to the absolute minimum the amount of mathematical information
in this paper.
With account of these remarks, we proceed with development of Heisen-

berg�s arguments. In his paper of October 7th of 1925, Dirac (1926), aware of
Heisenberg�s key paper, streamlined Heisenberg�s results and introduced no-
tations which are in use up to this day. He noticed that the combinatorial law,
Eq.(5a), for frequencies, when used in the Fourier expansions for composition
of observables, leads to the multiplication rule a(nm)b(mk) = ab(nk) for the
Fourier amplitudes for these observables. In general, in accord with Heisenberg,
one expects that ab(nk) 6= ba(nk): Such multiplication rule is typical for ma-
trices. In the modern quantum mechanical language such matrix elements are
written as < n j Ô j m > exp(i!(n;m)t) so that Eq.(5b) is equivalent to the
matrix statementP

m < n j Ô1 j m >< m j Ô2 j k > exp(i!(n;m)t) exp(i!(m; k)t)
= < n j Ô1Ô2 j k > exp(i!(n; k)t) (7)

for some operator (observables) Ô1 and Ô2 evolving according to the rule:
Ôk(t) = UÔkU

�1; k = 1; 2; provided that U�1 = exp(�i Ĥ~ t): From here it
follows that U�1 j m >= exp(�Em

~ t) j m > if one identi�es Ĥ with the Hamil-
tonian operator. Clearly, upon such an identi�cation the Schrödinger equation
can be obtained at once as is well known (Dirac 1958): We shall avoid such a
pathway (at least at this stage), however. Moreover, we also shall avoid use of
Heisenberg�s equations of motion

i~
@

@t
Ô = [Ô; Ĥ]: (8)

Our readers may ask at this point: why it is necessary to do so? And, if
this is the case, what else is left from the traditional formulations of quantum
mechanics which still can be used? The answers can be found in Kholodenko
(2006 a,b). For the sake of uninterrupted reading they are summarized below as
well. Following Heisenberg�s philosophy, we shall assume that there is a set of
classical observables fOi(t)g which is assumed to be complete in the sense that
the composition of any two of these observables is given by the classical fusion
rule:

fOi; Ojg =
P

k C
k
ijOk; (9)

where Ckij are some known constants and f; g represents the Poisson brackets
of classical mechanics. Accordingly, quantum mechanically, instead of Eq.(8),
we need to consider the decomposition

[Ô; Ĥ] =
P

k
~CkijÔk (10)

valid for any t ! Under such circumstances (quantum) dynamics formally disap-
pears! This is, of course, an exaggeration since not all systems possess needed
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symmetry so that the fusion rule, Eq.(9), may not exist11 . When it does exist,
such an observation can be strengthened due to the following chain of argu-
ments. In mathematics, expressions like Ôi(t) = Û ÔiÛ

�1 � AdÛ Ôi de�ne an
orbit for the operator Ôi in the Lie algebra (made of operators fÔig) so that
the motion is caused by the action of elements Û from the Lie group associated
with such an algebra. Following the existing rules and notations in mathemat-
ics of Lie groups and Lie algebras (Kirillov 1976), we write adĤÔ for [Ô; Ĥ]:
This requires us to use the r.h.s. of Eq.(10) instead of the formal symbol i~ @@t Ô
used in Heisenberg�s mechanics. Evidently, we can obtain the same (or even
greater) information by working with Ad operators instead of ad: In particular,
it is useful to consider the trace, i.e. trfAdÛ Ôig = �(Ôi);which is just the
character of Ôi: It is time-independent by design. If there is no time evolution
then, super�cially, nothing happens. This is not true, however, as was recog-
nized long time ago by Dirac (Dirac 1958). In Chapter 9 of his book he writes
: " The Hamiltonian is symmetrical function of the dynamic variables and thus
commutes with every permutation. It follows that each permutation is a con-
stant of motion. This happens even if the Hamiltonian is not constant12 ." At
this point it is important to recall the famous theorem by Caley (Kargapolov
and Merzlyakov 1979) which states that "every �nite group is isomorphic to
some permutation group". It should be noted that in mathematics literature
the "permutation" group has the same meaning as "symmetric" group Sn13 .
In physics and, especially, in quantum mechanics, the symmetric group can be
in�nite dimensional. The theory of such groups was unknown to Dirac since it
was developed only quite recently (Vershik 2003). This fact explains why it have
not been in use in the traditionally written textbooks on quantum mechanics.
Fortunately, for the purposes of this work, it is su¢ cient to use only a tiny
fraction from the theory of symmetric groups.

2.2 Some useful facts about Sn

In view of the fact that the character �(Ôi) = trfAdÛ Ôig is manifestly time-
independent, the orbit AdÛ Ôi is caused by permutations

14 . These can be an-
alyzed using methods of algebraic geometry (Fulton 1997) and theory of linear
algebraic groups (Borel 1991). A brief and self-contained introduction to these
topics can be found in Kholodenko (2006b). The key concept in this �eld is
the notion of the torus action T . It is directly connected with the notion of the
Weyl-Coxeter re�ection group W = N=T in which the numerator N refers to

11Since all observables are made of p and q variables, such a rule does exist if we decom-
pose these observables into power series in p and q. In those cases when such a series is
in�nite, normally, one should expect loss of integrability and, hence, loss of quantization. For
one dimensional many body systems the situation might be repairable for suitably chosen
interaction potentials. We shall elaborate on this remark further below, in Section 2.5.
12 I.e. time-dependent.
13Here n denotes the number of elements in the group.
14Since, according to Dirac, the permutation operator commutes with the Hamiltonian.
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some permutation group and the denominator T refers to those group elements
(�xed points) which remain una¤ected by permutations. Representations of Lie
algebras (including the a¢ ne Lie algebras) associated with these Weyl-Coxeter
re�ection groups produce all Lie algebras known in quantum mechanics and in
conformal �eld theories (Di Francesco, Mathieu and Senechal 1997). To simplify
matters, we choose another pathway in this work to arrive at the same results.
It is better adapted for connecting the experimental data with theoretical con-
structions.
We begin with observation that the representation theory for Sn can be

built using representation theory for general linear group GL(N,C) acting in
the complex space made of n copies of CN ; i:e: CN 
CN 
 � � �
CN . This fact
is known as the Schur-Weyl duality (Vershik and Okounkov 2005). The Schur
functions (to be de�ned below) are characters of GL(N,C). They play the key
role in developing the representation theory of Sn in which both N and n can
become in�nite.
Next, we recall that a partition � (�nite or in�nite) is a sequence

� = f�1; �2; �3; :::g (11)

made of integers15 such that �1 � �2 � �3 � ��� � 0. The weight of � is denoted
by j�j =

P
i �i. If �

0s are integers, and if j�j = n we say that � is a partition of n.
Let � be a partition. It is useful to associate with it a monomial x� � x�11 x

�2
2 ��� .

Next, we introduce a symmetric function m� as a sum of all distinct monomials
that can be obtained from x� by permuting of all arguments. Using these
results it is possible to prove (Macdonald 1998) that the Schur function s� can
be represented with help of m� as follows

s� = m� +
P
�<�

K��m�: (12)

To explain the meaning of the Kostka number K�� in (12) we should mention
the one-to -one correspondence between the partitions and the Young tableaux
(Fulton 1997). In terms of such a correspondence the Kostka number K�� is
just the number of semistandard tableaux with shape � and weight �: Hence, for
not too large tableaux such a number can be straightforwardly computed. The
Schur functions possess a remarkable orthogonality property. For partitions �
and � and properly de�ned scalar product <;> one can write

< s�; s� >= ��;� (13)

in accord with general theory of characters and, in particular, of characters of
Sn (Macdonald 1998). With such de�ned orthogonality property of s0�s one can
proceed with the composition (fusion) law for Schur functions. It is given by

s� � s� =
P
�
C���s� ; (14)

15 Since these numbers normally are identi�ed with the eigenvalues of some matrix (�nite
or in�nite) (Knutson and Tao 2001; Kholodenko 2006a), one can relax the condition that �0is
are integers and make them rational or even irrational numbers but the nonnegativity and the
ordering are essential.
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where j�j + j�j = j�j and, in view of (13), the Littlewood-Richardson (L-R)
coe¢ cient C��� can be formally de�ned as C

�
�� = < s� � s�; s� > :These coef-

�cients play an important role in representation theory of Sn analogous to the
role the Clebsch-Gordan coe¢ cients play in the representation theory for spin
and angular momenta. The L-R coe¢ cients can be obtained very easily with
help of the honeycomb construction as discussed by Knutson and Tao (2001)
and by Kholodenko (2006a). For completeness, we provide a brief sketch of
how this can be done.
We begin with the 1-honeycomb. It is just the Y-shaped tripod as discussed

already. When constructing the 2-honeycomb in the plane we shall follow the
rule that the labels for the edges of this new honeycomb should be geometrically
and combinatorially arranged in the same way as those for the 1-honeycomb.
This requires us to use yet another two tripods which can be joined together
and with the third tripod only in one way in view of the imposed rules16 . Thus,
instead of just one boundary label, e.g. �1; in the North-West direction, now we
shall have two, say, �1 and �2: The same applies for the South and the North-
East directions. Thus, all larger honeycombs will have only the boundaries
in the directions just mentioned which are labeled by the partitions �; � and
�. Unlike the 2- honeycomb for which the boundary labels determine such a
honeycomb uniquely, for larger honeycombs this is no longer true. For the �xed
set of boundary labels, normally, there will be more than one honeycomb with
these labels. On page 1053 of Knutson and Tao (1999) the following theorem
is proven: Let �; � and � be three pre assigned (boundary) partitions for the
k-honeycomb. Then the number of di¤erent honeycombs with such pre assigned
boundary conditions is given by the L-R coe¢ cient C���:
Summarizing, we have de�ned a set (�nite or not) of mutually orthogonal

Schur polynomials which by design forms the Hilbert space. The partitions
and the energy levels can be put into one-to-one correspondence by using the
honeycomb condition, Eq.(5). Such Hilbert space is designed using experimental
data. We can look at di¤erent portions (segments) of the spectra and study their
overlaps thanks to the composition rule, Eq.(14)17 . Unlike more traditional
formulations of quantum mechanics requiring objects of classical mechanics as
an input, no reference to the objects of classical mechanics was made thus
far. In the next (sub)sections we shall discuss the extent to which such a
way of developing quantum mechanics is advantageous as compared with more
traditional formulations.

2.3 From combinatorics to physics

In this subsection we follow the logic of Heisenberg�s paper once again. In this
paper Heisenberg was concerned also with the proper interrelation between the

16E.g. see Fig.2 in (Kholodenko 2006a) paper.
17Very much like it is done in the case of determination of the entire DNA structure from

its fragments.
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objects of classical and quantum mechanics. Naturally, he focused his attention
at the Bohr-Sommerfeld (B-S) quantization ruleH

pdq = nh; n = 0; 1; 2; :::; (15)

since this rule was the only one available link between the new and old mechan-
ics. He argued that such a rule is not exact! It is determined with accuracy
up to a constant (unknown at the time of writing of his paper). He argued
that if such a constant would be known, the B-S rule would become exact, that
is valid for any n�s. From the point of view of our present understanding of
quantum mechanics Heisenberg�s intuition was correct: the old fashioned B-S
rule is valid rigorously only in the limit of large n�s while the calculation of the
constant can be done, for instance, with help of either the WKB or consider-
ably more sophisticated theory of Maslov indices (Dittrich and Reuter 1992).
As much as these arguments are plausible, they are nevertheless super�cial as
can be found from reading the page 246 of the book by Arnol�d (1974). Using
this reference it follows that already at the classical level the adiabatic invari-
ant

H
pdq is determined only up to some constant. This observation makes

Heisenberg�s arguments less convincing. Nevertheless, following Heisenberg, we
assume that if the B-S quantization rule is corrected, it would make sense fully
quantum mechanically. Presumably, under such circumstances one can get an
additional information out of it. For this purpose, Heisenberg introduces the
Fourier decomposition of the generalized coordinate q as

q(n; t) =
1P

�=�1
a�(n) exp(i!(n; �)t); (16)

where in anticipation of its quantum mechanical use it is written with respect
to some pre assigned energy level n. Using Eq.(16) the velocity can be readily
obtained as follows

_q(n; t) =
1P

�=�1
ia�(n)!(n; �) exp(i!(n; �)t): (17a)

The calculation of the velocity square over the total period is given therefore byH
dt[ _q(n; t)]2 = 2�

1P
�=�1

ja�(n)j2 !(n; �)2: (17b)

In view of this result, the B-S adiabatic invariant can be rewritten asH
pdq =

H
m _qdq =

H
m _q2dt = 2�m

1P
�=�1

ja�(n)j2 !(n; �)2 = nh+ const: (18)

Next, Heisenberg proceeds as follows. Since the const is unknown, it is of interest
to obtain results which are constant-independent. At the same time, since the
result, Eq.(18), is assumed to be exact, we have to use instead of scalars ja�(n)j2
the matrices in accord with Eq.(7). This causes us to use matrices of the type

15



ja(n; n+ �)j2 and ja(n; n� �)j2 depending on the actual sign of �: In addition,
he had silently assumed that the n -dependence for amplitudes is much weaker
than that for the frequencies !(n; n + �) and !(n; n � �) so that it can be
neglected completely. Under such conditions he treats n as continuous variable
and di¤erentiates both sides of Eq.(18) with respect to n thus obtaining the
following result:

h = 4�m
1P
�=0

fja(n; n+ �)j2 !(n; n+ �)� ja(n; n� �)j2 !(n; n� �)g: (19)

Obtained result takes into account that !(mn) = �!(nm): The validity of this
result depends upon additional assumption about the ground state energy. If
n0 represents such a state, then one must require that a(n0; n0 � �) = 0 for all
� > 0:When (19) is used in combination with the results from Appendix A, the
famous commutation rule

[x̂; p̂] = i~ (20)

is obtained. From the above derivation and results of Appendix A several con-
clusions can be drawn.
First, the number of x-p commutators by construction is in one-to one corre-

spondence with the number of the B-S adiabatic invariants. This means that the
system which is completely integrable classically can be completely quantized.
However, if classically system is nonintegrable, one cannot write the classical
Hamiltonian and to replace x�s and p�s in it by the corresponding operators
obeying commutation relations, Eq.(20), for each generalized degree of freedom.
Although this prescription is used routinely in the existing textbooks on quan-
tum mechanics, rigorously speaking, one cannot write down the Schrödinger�s
equation in such a case so that formally Bohr�s intuition was correct.
Second, Eq.(19) assumes that the underlying mechanical system, when it

is written in terms of the action-angle variables, is essentially the set of inde-
pendent harmonic oscillators. Heisenberg�s derivation explicitly assumes that
quantummechanically there is a ground state-typical for the harmonic oscillator-
but otherwise the spectrum is boundless. If the system is nonintegrable, again,
the commutation rule, Eq.(20), is not justi�ed. Hence, once again, one can-
not write the Schrödinger�s equation. To by pass this di¢ culty Heisenberg
developed perturbation theory (for one dimensional case only!) which uses the
classical perturbation theory as an input modi�ed by the imposed (quantum)
requirements on amplitudes and frequencies. Although he did not discuss the
resonances, he did checked that the obtained perturbative expressions for en-
ergies are in agreement with the basic equations (4) and (5) assuring correct
quantization. No attempts to study the multidimensional case was made.
Third, as results of Appendix A demonstrate, the experimental justi�cation

of the commutator rule, Eq.(20), is based on the validity of results of the �rst
order perturbational calculations. Mathematically, such a procedure is ques-
tionable or, better, may be totally unacceptable.
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Furthermore, the B-S quantization cannot be used for spin quantization
(since formally there is no classical analog of spin, i.e. the B-S rule does not
account for half integers). The spin has no place in the Schrödinger formalism,
and, apparently, there is no room for spin in the Heisenberg�s formalism as well.
Fortunately, this happens only apparently as we would like to discuss now. This
is possible only because the facts just listed do not a¤ect the main Heisenberg�s
quantization postulate, Eq.(5), which, as recognized already by Heisenberg, is
more fundamental than the x-p commutator identity.

2.4 From physics back to combinatorics

To �nd a way out of the di¢ culties just described let us return back to the
expression < n j Ô j k > exp(i!(n; k)t). Suppose that the algebra of observ-
ables contains an identity element (operator). Then, by replacing Ô by this
operator we obtain, < n j k >=< n(t) j k(t) > :This makes sense only if
we require < n j k >= const�nk. Clearly, we can always adsorb the constant
into the de�nition of the scalar product. In this work, following (Kholodenko
2006a) we suggest to replace the basic commutators, Eq.(20), by the require-
ment of orthogonality. This requirement is compatible with the requirement
that the operators describing observables are Hermitian whose eigenfunctions
are mutually orthogonal. Instead of operators whose explicit form is di¢ cult
to obtain we shall focus our attention on the properties of orthogonal functions
and, more generally, on the properties of orthogonal polynomials (e.g. s�; etc.).
Development of theory of orthogonal polynomials of several variables in connec-
tion with quantum exactly solvable model systems is an active area of current
research (Vershik 2003; Kuznetsov 2006; Baik et al 2007). Such an approach
makes sense since it is known (Orlik and Terrao 2001) that all one- variable or-
thogonal functions of exactly solvable problems in quantum mechanics (Flugge
1971) are obtainable as various limiting cases of the Gauss-type hypergeometric
functions18 . Following ideas by Aomoto, Orlik and Terrao demonstrate that the
hypergeometric functions of multiple arguments (of which the Gauss-type is just
a special case) are expressible in the form of period integrals19 . By the prin-
ciple of complementarity all many-body exactly solvable quantum mechanical
problems should have hypergeometric functions of multiple arguments as eigen-
functions. The most important fact for our developments lies in the observation
that when these functions become eigenfunctions (as it is known in one compo-
nent case), this produces orthogonal polynomials-di¤erent for di¤erent many-
body quantum mechanical problems. This fact can be formulated as a problem
: for a given set of orthogonal polynomials �nd the corresponding many-body
operator for which such a set of orthogonal polynomials forms a complete set of
eigenfunctions.

18This fact will be discussed in detail in Section 3.
19Periods can be associated with the homology basis -di¤erent for di¤erent (algebraic) man-

ifolds. Interested readers may consult either (Orlik and Terrao 2001) or (Vassiliev 2002) for
more details.
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After these general remarks, we are ready to provide more concrete evi-
dence that this is indeed the case. The symmetric group Sn has the following
presentation in terms of generators si and Coxeter relations:

s2i = 1;

sisj = sjsi for ji� jj � 2;
sisi+1si = si+1sisi+1: (21)

If there is a set of n elements of whatever kind the generator si interchanges an
element i with i+ 1 so that s1; :::;sn�1 generate Sn:There are n! permutations
in the set of n elements. If we assign the initial ordered state, then any other
state can be reached by successful application of permutational generators to
this state. The word w =sa1sa2 � ��sal (where the indices a1; :::; al represent a
subset of the set of n � 1 elements) can be identi�ed with such a state. Since
one can reach this state in many ways, it makes sense to introduce the reduced
word w whose length l(w) is minimal. We would like the generators of Sn to
act on monomials xa = xa11 x

a2
2 � � � xann . For this purpose, following Lascoux and

Schützenberger (1983) (L-S) we introduce an operator @i via rule:

@i :=
1� si

xi � xi+1
: (22)

It acts on monomials such as xa in such a way that the generator si acting on
the combination xaii x

ai+1
i+1 converts it into x

ai+1
i xaii+1: By construction, the action

of this operator on monomial is zero if ai = ai+1; otherwise it diminishes the
degree of the monomial by 1. In addition, the same authors introduce operators

��i =
(1� si)
xi � xi+1

xi+1 (23)

and �i = 1+��i: Finally, being armed with such de�nitions, we can introduce an
operator Di(p; q; r) = p@i+ q��i+ rsi

20 ; where p; q and r are some numbers. L-S
demonstrate that such de�ned operator, while acting on monomials, obeys the
braid-type relations (the 2nd and the 3-rd lines in Eq.(21)) while the relation
s2i = 1 is replaced by

D2
i = qDi + r(q + r): (24a)

With constants p; q and r properly chosen, such a relationship de�nes the Hecke
algebra Hn of the symmetric group Sn: Usually, it is written as

D2
i = (1�Q)Di +Q (24b)

with Q being some number (e¤ectively playing the same role as p; q; r). Hn

should be considered as a deformation of Sn.The rationale for its introduction
lies in its direct connections with the knot and link theory so that quantum

20By doing so, the operators @i; ��i and si become equivalent in the sense which we shall
explain shortly.
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mechanics can be considered as some branch of this theory (Kholodenko 2006a).
This fact will have its impact on quantization. To demonstrate this, following
Kirillov Jr.(1997), by relabeling earlier de�ned operator @i as bij we reserve the
notation @i = @

@xi
for the usual operator of di¤erentiation. With its help we

introduce the so called Dunkl operator Di via

Di = @i + k
P
j 6=i

bij (25)

with k being some (known) constant. Such de�ned operator acts on monomials
(polynomials). It possesses the property wDiw�1=Dw(i) 8i 2 Sn: Consider now
the commutator [Di,Dj ]. Kirillov demonstrated that such a commutator is zero
if bij satisfy the classical Yang-Baxter equation (CYBE)

[b12; b13] + [b12; b23] + [b13; b23] = 0: (26)

Alternatively, Eq.(26) can be taken as the de�nition for bij . This is facilitated by
designing of the degenerate a¢ ne Hecke algebra (Cherednik 2005). The purpose
of this algebra from the physical point of view is to introduce the Heisenberg
commutation rule Eq.(20) without reference to the B-S quanization prescription
or to the (optical) sum rule described in Appendix A. Such an algebra is made
up as a semidirect product of Sn with the commutator algebra

xi+1si � sixi = h; xisj = sjxi 8i 6= j; j + 1; xixj = xjxi; (27a)

where the constant h is playing essentially the same role as the Plank�s constant
~: From the above de�nitions it follows that Eq.(27a) is the discrete analog of
the Heisenberg�s commutation rule, Eq.(20). Furthermore, in view of the remark
made after introduction of Di(p; q; r); it is possible to rewrite the commutator
in Eq.(27a) in the equivalent form. This indeed was accomplished in the paper
by Adin et al (2000). Hence, we can rewrite Eq.(27a) equivalently as

xi@i�@ixi+1 = h; @ixi - xi+1@i = h ; xi@j = @jxi 8i 6= j; j+1; xixj = xjxi;
(27b)

where @i should be understood in the sense of Eq.(22). At this point it is useful
to introduce yet another operator ŝi = si + hbi;i+1: It is designed in such a way
that it obeys the braid relations:

ŝ1ŝ2ŝ1 = ŝ2ŝ1ŝ2: (28)

Furthermore, if now we de�ne the operators R12 = s1ŝ1; R23 = s2ŝ2; R13 =
s1R23s1 = s2R12s2; then the Eq.(28) becomes equivalent to the standard Yang-
Baxter (Y-B) equation for Rij = 1 + hbij (or Rij ' exp(hbij) for h ! 0):
Explicitly, we obtain: R12R13R23 = R23R13R12:
All this discussion looks a bit formal at this point. Indeed, why to intro-

duce the operator Di? Why to be concerned about the commutator [Di; Dj ]?
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What the Yang-Baxter equations have to do with the results of this paper? We
would like to provide the answers to these questions now and in the following
subsection.
First, consider an equation Dif = 0: It can be written alternatively as

�
@

@zi
f(z) =

P
j 6=i


ij
zi � zj

f(z) (29)

which is just the celebrated Knizhnik-Zamolodchikov (K-Z) equation21 . This
means that: a) the operator Di is e¤ectively a covariant derivative (the Gauss-
Manin connection in the formalism of �ber bundles) and, b) that the vanishing
of commutator [Di;Dj ] is just the zero curvature condition (Kassel 1995) essen-
tial for all known exactly integrable systems. The question still remains: how

ij in Eq.(29) is related to bij in Eq.(25)? The answer was found by Belavin
and Drinfel�d (1982). In the simplest (rational) case we have bij(z) =


ij
z ; as

expected. More complicated trigonometric and elliptic cases found by Belavin
and Drinfel�d are summarized in the book by Etingof with collaborators (Etingof
et al 1998). From the references just provided, it should be clear that since solu-
tions of the K-Z equations are expressible in terms of hypergeometric functions
of single and multiple arguments, all examples of exactly solvable quantum me-
chanical problems (including those involving the Dirac equation, and, hence,
the spin) found in the textbooks on quantum mechanics are covered by the
formalism we have just described. In the next subsection we would like to il-
lustrate these results by concrete physical examples taken from current physical
literature.

2.5 Latest developments in atomic physics illustrating gen-
eral principles

In the review paper by Tanner et al (2000) as well as in the book by Cvitanovic0(1998)
it is explained in detail that in order to calculate the He spectrum it is su¢ cient
either: a) to consider the classical dynamics of two electrons and the nucleus on
the line and to use this information in the semiclassical trace formula producing
very accurate results for the spectrum or, b) to restrict quantum mechanical cal-
culations to the spherical approximation (the so called s- wave approximation)
in order to arrive at the exactly solvable radial Schrodinger-type equation for
two electrons and massive nucleus (Draeger et al 1994, Howard and March 2005)
producing very reasonable results for the He spectrum. To these achievements
we would like to add those by Svidzinsky et al (2005 a,b) and Muravski and
Swidzinsky (2006) where the same type or even better accuracy for He and other
atoms and diatomic molecules is obtained using the so called d-scaling. In this
method the multielectron Schrödinger equation is analyzed in various dimen-
sions. Upon proper rescaling, the limiting case: d!1; is reduced again to the
21 In fact, in general case (Orlik and Terrao 2001) the scalar function f(z) is replaced by

the vector function f(z):This fact should be kept in mind in actual calculations.
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exactly solvable radial-type multielectron equation which in the present case
becomes classical equation considered already by Bohr in 1913. Thus again, the
zeroth order exactly solvable problem is one dimensional. Corrections in pow-
ers of 1/d are easily calculable producing results which compare extremely well
with much more cumbersome (and time consuming) Hartree-Fock type calcula-
tions. To this list of examples it is appropriate to add the work by Ostrovsky
and Prudov (1995) which uses essentially the same averaging and perturbation
methods as developed in celestial mechanics (Ferraz-Mello 2007) superimposed
with the Bohr-Sommerfeld quantization prescription. All examples discussed in
this subsection were done without theoretical guidance (other than the proof of
the existence of minimizers for Bohr-type functionals (Chen et al 2006)). The
theoretical framework developed in this section naturally explains why these
results are actually working so well. This framework is essential for developing
applications in celestial mechanics to be discussed in the rest of this paper.

3 Space, time and space-time in classical and
quantum mechanics

3.1 General comments

If one contemplates quantization of dynamics of celestial objects using tradi-
tional textbook prescriptions, one will run into myriad of small and large prob-
lems immediately. Unlike the atomic systems in which all electrons repel each
other, have the same masses and are indistinguishable, in the case of, say, Solar
System all planets (and satellites) attract each other, have di¤erent masses and
visibly distinguishable. Besides, in the case of atomic systems the Planck con-
stant ~ plays the prominent role while no such a role can be given to the Planck
constant in the sky. The only thing which remains in common between both
atomic and celestial dynamic systems is the existence of stable closed orbits. In
the previous section we demonstrated that this fact is absolutely essential for
quantization. Nevertheless, the formalism developed thus far resembles more
the existence theorem in mathematics rather then the actual manual describing
the computational protocol. The task now lies in developing necessary construc-
tive steps leading to actual implementation of general principles. This task is
accomplished below and in the following section

3.2 Space and time in classical and quantum mechanics

Although celestial mechanics based on the Newton�s law of gravity is considered
to be classical (i.e.nonquantum), with such an assumption one easily runs into
serious problem. Indeed, such an assumption implies that the speed with which
the interaction propagates is in�nite and that the time is the same everywhere.
Wether this is true or false can be decided only experimentally. Since at scales
of our Solar System one has to use radio signals to check the correctness of
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Newton�s celestial mechanics one is faced immediately with all kind of wave
mechanics e¤ects such as retardation, the Doppler e¤ect, etc. Because of this,
the measurements are necessarily having some error margins. The error margins
naturally will be larger for more distant objects. Accordingly, even at the level
of classical mechanics applied to the motion of celestial bodies we have to deal
with certain inaccuracies similar in nature to those in atomic mechanics. To
make formalisms of both atomic and celestial mechanics look the same one has
to think about the space, time and space-time transformations already at the
level of classical mechanics.
We begin with observation that in the traditional precursor of quantum

mechanics-the Hamiltonian mechanics-the Hamiltonian equations by design re-
main invariant with respect to the canonical transformations (Pars 1966). That
is if sets fqig and {pig represent the "old" canonical coordinates and momenta
while Qi = Qi(fqig; fpig) and Pi = Pi(fqig; fpig), i = 1 � N , represent the
"new" set of canonical coordinates and momenta, the Hamiltonian equations in
the old variables given by

_qi =
@H

@pi
and _pi = �

@H

@qi
(30)

and those rewritten in "new" variables will have the same form. Here we used
the commonly accepted notations, e.g. _qi = d

dtqi , etc. Quantum mechanics uses
this form-invariance essentially since the Poisson brackets introduced in Eq.(9)
by design will also have the same form in terms of both "old" and "new"
canonical variables.
We would like to complicate matters by investigating the possibility of the

"canonical " time changes in classical mechanics. Fortunately, such a possibility
was explored to a some extent already. This is described in the monograph by
Pars (1966) thus making our task considerably simpler. For the sake of space,
we refer our readers to pages 535-540 of this monograph. Furthermore, following
Dirac (1950) ; we notice that a good quantization procedure should always begin
with the Lagrangian formulation of mechanics since it is not always possible to
make a transition from the Lagrangian to Hamiltonian form of mechanics (and,
thus, to quantum mechanics) due to the presence of some essential constraints
( typical for mechanics of gauge �elds, etc.). Hence, we also begin with the
Lagrangian functional L = L(fqig; f _qig). The Lagrangian equations of motion
can be written in the form of Newton�s equations given by _pi = Fi; where the
generalized momenta pi are given by pi = �L=� _qi and the generalized forces Fi
are given by Fi = ��L=�qi: In the case if the total energy E is conserved, it is
possible instead of "real" time t to introduce the �ctitious time � via relation
dt = u(fqig)d� where the function u(fqig) is assumed to be nonnegative and is
su¢ ciently di¤erentiable with respect to its arguments. At this point we can
enquire if Newton�s equations can be written in terms of new time variable so
that they remain form- invariant. To do so, following Pars, we must: a) to re-
place L by uL; b) to replace _qi by q0i =u; where q

0
i=

d
d� qi, c) to rewrite the new

Lagrangian in terms of such de�ned new time variables and, �nally, d) to obtain
Newton�s equations according to the described rules, provided that now we have
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to use p0i instead of _pi. In the case if the total energy of the system is conserved,
we shall obtain back the same form of Newton�s equations rewritten in terms of
new variables. This means that by going from the Lagrangian to Hamiltonian
formalism of classical mechanics we can write the Hamilton�s Eq.(30) in which
the dotted variables are replaced by primed. These arguments demonstrate
connections between space and time already at the level of classical mechanics.
Situation here is similar to that encountered in thermodynamics where instead
of absolute temperature one can use any nonegative function of absolute tem-
perature as new temperature (Fermi 1937). Using these arguments we notice
that since the temperature is conjugate to energy in thermodynamics, the time
is conjugate to energy in mechanics and, accordingly, in quantum mechanics.
This means that for the nondissipative (i.e. energy conserving) Hamiltonian
system22 the Hamiltonian equations of motion, Eq.(30), will remain form- in-
variant if we replace the Hamiltonian H by some nonnegative function f(H)
while changing time t to time � according to the rule d�=dt = df(H)=dH jH=E .
Such a change will a¤ect the quantum mechanics where now the Schrödinger�s
equation

i~
@

@t
	 = Ĥ	 (31a)

is to be replaced by

i~
@

@�
	 = f(Ĥ)	: (31b)

With such an information at our hands, we would like to discuss the extent to
which symmetries of our (empty) space-time a¤ect dynamics of particles "living"
in it.

3.3 Space-time in quantum mechanics

3.3.1 General comments

Use of group-theoretic methods in quantum mechanics had began almost imme-
diately after its birth. It was initiated by Pauli in1926. He obtained a complete
quantum mechanical solution for the Hydrogen atom employing symmetry ar-
guments. His e¤orts were not left without appreciation. Our readers can �nd
many historically important references in two comprehensive review papers by
Bander and Itzykson (1966). In this subsection we pose and solve the follow-
ing problem: Provided that the symmetry of the (classical or quantum) system
is known, will this information be su¢ cient for determination of this system
uniquely? Below, we shall provide simple and concrete examples illustrating

22 It should be kept in mind that the concept of nondissipativity is actually of quantum
origin (e.g. recall superconductors or super�uids). In classical mechanics such a concept is
just a convenient idealization similar to the notion of a material point in Newton�s mechanics
or the notion of thermodynamics when it is applied to the real heat engines, etc. The truly
nondissipative mechanical systems thus should behave quantum mechanically. This observa-
tion provides the hint that some stable motions in our Solar System are of quantum nature.
In view of Eq.(6) this option makes sense.
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meaning of the word "determination". In the case of quantum mechanics this
problem is known as the problem about hearing of the "shape of the drum". It
was formulated by Mark Kac (Kac 1966). The problem can be formulated as
follows. Suppose that the spectrum of the drum is known, will such an informa-
tion determine the shape of the drum uniquely? The answer is "No" (Dhar et
al 2003). Our readers may argue at this point that nonuniqueness could come
as result of our incomplete knowledge of symmetry or, may be, as result of the
actual lack of true symmetry (e.g. the Jahn-Teller e¤ect in molecules, etc. in
the case of quantum mechanics). These factors do play some role but they
cannot be considered as decisive as the basic example below demonstrates.

3.3.2 Di¢ culties with the correspondence principle for Hydrogen
atom

In this subsection we even do not use arguments by Kac. Since our arguments
are straightforward they are more intuitively appealing: we choose the most
studied case of the Hydrogen atom as an example.
As it is well known, the classical mechanical problem about motion of the

particle in centrally symmetric �eld is planar and is exactly solvable for both
the scattering and bound states (Pars 1966, Landau and Lifshitz 1960). The
result of such a solution depends on two parameters: the energy and the an-
gular momentum. The correspondence principle formulated by Bohr (1923) is
expected to provide the bridge between the classical and quantum realities by
requiring that in the limit of large quantum numbers the results of quantum
and classical calculations for observables should coincide. Appendix A provides
a good example of such kind of thinking. However, this requirement may or
may not be possible to implement. It is violated already for the Hydrogen atom.
Indeed, according to the naive canonical quantization prescriptions, one should
begin with the classical Hamiltonian in which one has to replace the momenta
and coordinates by their operator analogs. Next, one uses such constructed
"quantum" Hamiltonian in the Schrödinger�s equation, etc. Such a procedure
breaks down at once for the Hamiltonian of the Hydrogen atom since the intrin-
sic planarity of the classical Kepler�s problem is entirely ignored thus leaving
the projection of the angular momentum without its classical analog. Accord-
ingly, the scattering states of Hydrogen atom and the classical mechanically
obtained Rutherford�s formula obtained for planar con�gurations are repro-
duced quantum mechanically (within the 1st Born approximation) using the
3-d Schrödinger�s equation ! Thus, even for the Hydrogen atom the classical
and the quantum (or, better, pre quantum) Hamiltonians do not match thus
formally violating the correspondence principle. Evidently, semiclassically we
can only think of energy and the angular momentum thus leaving the angular
momentum projection unobserved. Such a "sacri�ce" is justi�ed by the agree-
ment between the observed and predicted Hydrogen atom spectra and by use of
Hydrogen-like atomic orbitals for multielectron atoms. Although, to our knowl-
edge, such a mismatch is not mentioned in any of the existing textbooks on
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quantum mechanics, its existence is essential if we are interested in applications
of quantum mechanical ideas to Solar System dynamics. In view of such an
interest, we would like to reconsider traditional treatments of Hydrogen atom,
this time being guided only by symmetry considerations. This is accomplished
in the next subsection.

3.3.3 Emergence of the SO(2,1) symmetry group

In April of 1940 Jauch and Hill (1940) published a paper in which they studied
the planar Kepler problem quantum mechanically. Their work was stimulated
by earlier works by Fock of 1935 and by Bargmann of 1936 in which it was shown
that the spectrum of bound states for the Hydrogen atom can be obtained by
using representation theory of SO(4) group of rigid rotations of 4-dimensional
Euclidean space while the spectrum of scattering states can be obtained by using
the Lorentzian group SO(3,1). By adopting results of Fock and Bargmann to
the planar con�guration Jauch and Hill obtained the anticipated result. In
the planar case one should use SO(3) group for the bound states and SO(2,1)
group for the scattering states. Although this result will be reconsidered almost
entirely, we mention about it now having several purposes in mind.
First, we would like to reverse arguments leading to the �nal results of Jauch

and Hill in order to return to the problem posed at the beginning of this section.
That is, the fact that the Kepler problem is planar (due to central symmetry
of the force �eld) and the fact that the motion is restricted to the plane and
takes place in (locally) Lorentzian space-time are the most general symmetry
constraints imaginable. Thus, the fact that the Lorentz SO(2,1) group is related
to the spectrum of Kepler problem should be anticipated. Nevertheless, the
question remains: is Kepler�s problem the only one exactly solvable classical
and quantum mechanical problem associated with the SO(2,1) group? Below
we demonstrate that, unfortunately, this is not the case. In anticipation of such
negative result, we would like to develop our intuition by using some known
results from quantum mechanics.

3.3.4 Classical-quantum correspondence allowed by SO(2,1) symme-

try: a gentle introduction

For the sake of space, we consider here only the most generic (for this work)
example in some detail: the radial Schrödinger equation for the planar Kepler
problem with the Coulombic potential. It is given by23

� ~
2

2�
(
d2

d�2
+
1

�

d

d�
� m2

�2
)	(�)� Ze2

�
= E	(�): (32)

Here jmj = 0; 1; 2; :: is the angular momentum quantum number as required. For
E < 0 it is convenient to introduce the dimensionless variable x via � = ax and

23The rationale for discussing the Coulombic potential instead of gravitational will be fully
explained in the next section.
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to introduce the new wave function:  (�) =
p
�	(�). Next, by the appropriate

choice of constant a and by rede�ning  (�) as  (�) = x
1
2+jmj exp(�y)'(y);

where y = x; -2 = 2�E
~2 a

2; a = ~2
�ZE ; the following hypergeometric equation

can be eventually obtained:�
y
d2

dy2
+ 2[jmj+ 1

2
� y] d

dy
+ 2[

1


� jmj � 1

2
]

�
'(y) = 0: (33)

Formal solution of such an equation can be written as '(y) = F(�A(m); B(m); y);
where F is the con�uent hypergeometric function. Physical requirements im-
posed on this function reduce it to a polynomial leading to the spectrum of the
planar Kepler problem. Furthermore, by looking into standard textbooks on
quantum mechanics, one can easily �nd that exactly the same type of hypergeo-
metric equation is obtained for problems such as one-dimensional Schrödinger�s
equation with the Morse-type potential,24 three dimensional radial Schrödinger
equation for the harmonic oscillator25 and even three dimensional radial equa-
tion for the Hydrogen atom26 . Since the two-dimensional Kepler problem is
solvable with help of the representations of SO(2,1) Lorentz group, the same
should be true for all quantum problems just listed. That this is the case is
demonstrated, for example, in the book by Wybourne (1974). A sketch of the
proof is provided in Appendix B. This proof indicates that, actually, the discrete
spectrum of all problems just listed is obtainable with help of SO(2,1) group.
The question remains: if the method outlined in Appendix B provides the spec-
tra of several quantum mechanical problems listed above, can we be sure that
these are the only exactly solvable quantum mechanical problems associated
with the SO(2,1) Lorentz group? Unfortunately, the answer is "No". More
details are given below.

3.3.5 Common properties of quantum mechanical problems related

to SO(2,1) Lorentz group

In Appendix B we provide a sketch of the so called spectrum-generating algebras
(SGA) method producing the exactly solvable one-variable quantum mechani-
cal problems. In this subsection we would like to put these results in a broader
perspective. In particular, in Section 2 we demonstrated that all exactly solv-
able quantum mechanical problem should involve hypergeometric functions of
single or multiple arguments. We argued that the di¤erence between di¤erent
problems can be understood topologically in view of the discussed relationship
with braid groups. On another hand, obtained results, even though rigorous,
are not well adapted for immediate practical use. In this regard more useful

24That is, V (x) = A(exp(�2�x)� 2exp(��x)):
25That is, V (r) =

A

r2
+Br2:

26That is, V (r) =
A

r2
� B

r
:
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would be to solve the following problem: For a given set of orthogonal poly-
nomials �nd the corresponding many-body operator for which such a set of
orthogonal polynomials forms a complete set of eigenfunctions. At the level of
orthogonal polynomials of one variable relevant to all exactly solvable two-body
problems of quantum mechanics, one can think about related problem of �nding
all potentials in the one-dimensional radial Schrödinger equation, e.g. Eq.(B.1),
leading to the hypergeometric-type solutions. Such a task was accomplished
by Natanzon (1979). Subsequently, his results were reinvestigated by many au-
thors with help of di¤erent methods, including SGA. To our knowledge, the
most complete recent summary of the results, including potentials and spectra
can be found in the paper by Levai (1994). Even this (very comprehensive) pa-
per does not cover all aspects of the problem. For instance, it does not mention
the fact that these results had been extended to relativistic equations such as
Dirac and Klein-Gordon for which similar analysis was made by Cordero with
collaborators (1971). In all cited cases (relativistic and non relativistic) the un-
derlying symmetry group was SO(2,1). The results of Appendix B as well as all
other listed references can be traced back to the classically written papers by
Bargmann (1947) and Barut and Fronsdal (1965) on representations of SO(2,1)
Lorentz group. Furthermore, the discovered connection of this problematic
with supersymmetric quantum mechanics (Cooper et al 1987, Junker and Roy
1998) can be traced back to the 19th century works by Gaston Darboux (Levai
1994).
Summarizing, the established in Section 2 rigorous connections between

exactly solvable two-body quantum mechanical problems and hypergeometric
functions and, by complementarity principle, between the exactly solvable
many body problems and hypergeometric functions of many arguments are con-
sequences of the locally Lorentzian group structure of our space-time. Such a
structure allows many but not in�nitely many exactly solvable problems to exist.
The fact that the planar SO(2,1) is su¢ cient to cover all known exactly solvable
two-body cases (instead of the full SO(3,1) Lorentz group) is quite remarkable.
It is su¢ cient for the purposes of this work but leaves open the question : Will
use of the full Lorentz group lead to the exactly solvable quantum mechanical
problems not accounted by SO(2,1) group symmetry? This topic will be dis-
cussed in Section 5. In the meantime, we would like to address the problem of
quantization of Solar System dynamics using results of Sections 2 and 3. This
is done in the next section

4 Quantum celestial mechanics of Solar System

4.1 General remarks

We begin this section by returning back to Eq.(6) once again. Based on previous
discussions, this equation provides us with the opportunity to think seriously
about the quantum nature of our Solar System dynamics. Nevertheless, such an
equation reveals only one aspect of quantization problem and, as such, provides
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only a su¢ cient condition for quantization. The necessary condition in atomic
and celestial mechanics lies in the nondissipativity of the dynamical systems
in both cases27 . Recall that Bohr introduced his quantization prescription to
avoid dissipation caused by the emission of radiation by electrons in orbits in
general position. As we demonstrated previously, new quantum mechanics have
not explained absence of dissipation for stationary Bohr�s orbits28 . In fact, as
our analysis of Heisenberg�s work(s) indicates, new quantum mechanics have
not added a single new element to the old atomic mechanics in terms of the
new issues to be considered. In the nutshell, new quantum mechanics provided
a convenient computational tool for dealing with otherwise purely mechanical
problems involving accidental degeneracy (that is resonances). By doing so, it
made no attempt at explaining (using known results from mechanics and elec-
trodynamics) the nondissipativity. Nevertheless, the phenomenon of nondissi-
pativity was explained quite convincingly in the case of superconductivity and
super�uidity later on. Thanks to these intrinsically quantum phenomena, we
can be sure that quantum mechanics did capture some truth. Regrettably,
only some since, as we discussed in Section 3.2.2, even for the most studied
case of Hydrogen atom the task of establishing the correspondence between the
classical and quantum models of Hydrogen atom is nontrivial. The symmetry
(and supersymmetry) arguments of Section 3 based on the locally Lorentzian
space-time structure as well as the combinatorial arguments of Section 2 simpli-
�ed the task of establishing the quantum-classical correspondence considerably.
This happened because of �rmly established �nite number of exactly solvable
quantum mechanical problems allowed by the Lorentzian-type symmetry whose
spectra are known and documented. These facts allow us to think seriously
about quantization of Solar System dynamics.

4.2 From Laplace to Poincare0 and Einstein

Before discussing this issue in some detail, we still need to make several remarks.
First, although super�cially the classical Hamiltonians for Coulombic and New-
tonian potentials look almost the same, the naive textbook-style quantization
will immediately run into major problems. For one thing, all electron masses
are the same while all planetary/satellite masses are di¤erent. For other thing,
�lling of atoms by electrons is controlled by the electric charge of the nucleus
so that stable atoms/molecules are electrically neutral. Apparently, no such re-
striction exists for the system of gravitating bodies. Next, apparent violation of
planarity of Hydrogen atom treated at the level of classical mechanics is justi�ed
by the fact that the angular momentum projection does play an important role
in chemistry. As far as we can see, nothing of that sort exists in the sky.
To deal with the mass di¤erences for planetary systems we have to recall

some facts from general relativity. We shall restrict ourself only by some illus-
trative examples meant to provide some feeling of problems we would like to

27E.g. see the paper by Goldreich (1965) mentioned in Section 1.2.
28At the level of old Bohr theory absence of dissipation at the stationary Bohr orbit was

explained by Boyer (1975). Subsequently his result was re�ned by Putho¤ (1987).
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discuss. To this purpose we would like to make some comments on the classical
mechanical treatment of Kepler problem in representative physics textbooks,
e.g. read (Landau and Lifshitz 1960, Goldstein et al 2002). Such treatments
tend to ignore the equivalence principle essential for the gravitational Kepler
problem and nonexistent for the Coulomb-type problems. This causes some
signi�cant inaccuracies to emerge. Speci�cally, according to Vol.2 of famous
Landau-Lifshitz course in theoretical physics (Landau and Lifshitz 1975) if we

take L=mv
2

2
�m' as the Lagrangian for a particle in gravitational �eld (repre-

sented by a local potential ');the Lagrangian (Newtonian) equations of motion
can be written as

_v = �r' (34)

so that the mass drops out of this equation making it possible to think about
such an equation as equation for a geodesic in pseudo-Riemannian space. This
observation had lead Einstein to full development of general relativity theory.
By noticing that Newton�s equation makes sense only for material points ( that
is for idealized formally nonexisting objects) the same must be true for Eq.(34).
Hence, as such it is valid only for the well localized point-like objects. Using
such idealized model, we need to discuss brie�y the 2-body Kepler problem for
particles with masses m1 and m2 interacting gravitationally. The Lagrangian
for this problem is given by

L = m1

2
_r21 +

m2

2
_r22 + 

m1m2

jr1 � r2j
: (35a)

Introducing the center of mass and relative coordinates via m1r1 +m2r2 = 0
and r = r1 � r2; the above Lagrangian can be rewritten as

L =�
2
_r2 + 

m1m2

jrj � m1m2

m1 +m2
(
_r2

2
+ 

(m1 +m2)

jrj ); (35b)

where, as usual, we set � = m1m2

m1+m2
:The constant m1m2

m1+m2
can be dropped and,

after that, instead of the geodesic (34) we obtain the equation for a �ctitious
point-like object of unit mass moving in the �eld of gravity produced by the
point-like body of mass m1 + m2. Clearly, in general, one cannot talk about
geodesics in this case. Nevertheless, as it is usually done, if, say, m1 � m2

(as for the electron in Hydrogen atom or for the Mercury rotating around Sun)
one can with a very good accuracy discard mass m2 thus obtaining an equation
for a geodesic. Such an approximation was indeed made by Einstein in his
major work on general relativity (Einstein 1916) in which he ignored the mass
of Mercury entirely when making his calculations of the perihelium shift for
this planet. More recent results (Misner, Thorne and Wheeler 1973) show that
such an approximation is expected to be quite satisfactory for other planets
of our Solar System29 . With the exception of Pluto-Charon system, where �2
= m2=(m1 +m2) is of order 10�1; and the Earth-Moon system, where �2 is of

29E.g. read Box 40.3 of this reference as well as pages 1126-1129.
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order 10�2 , all other planet-satellite and Sun- planet pairs have �2 of order
10�3 and less (Murray and Dermott 1999) so that use of geodesics is justi�able
physically. Mathematically, however, this is not quite the case since, even in
the case of Mercury considered by Einstein it is necessary to prove that the
in�uence of the rest of planets of Solar System on its motion can be ignored (as
well as �nite size of the Sun, etc.).
The task of proving that motion of planets can be well approximated by

geodesics can be traced back to works by Laplace on celestial mechanics. Lecture
notes by Moser and Zehnder (2005) contain accessible discussion of Laplace�s
works30 to which we refer our readers for details. In short, Laplace was interested
in dynamics of the planar 4-body problem using Jupiter and its 3 satellites:
Io, Europe and Ganymede, as an example. He noticed that the motion of these
satellites obeys the resonance condition and he was able to reproduce this motion
analytically by ignoring satellite masses (just like in Eq.(35b), but beginning
with the full 4-body problem initially). Under these conditions, gravitational
interactions between satellites can be neglected so that the motions become
completely decupled but subject to the resonance condition. Furthermore, to
study stability of such resonance motions Laplace (and Lagrange) assumed that
the actual (Lagrangian) motions31 of satellites oscillate about the respective
stable orbits of these satellites. Thus, e¤ectively, Laplace and Lagrange were
considering the e¤ects of general relativity and quantum mechanics long before
these disciplines have been o¢ cially inaugurated. In their lectures, Moser and
Zehnder also provide references to works by Poincare0 and de Sitter on further
re�nements of Laplace�s results. Although according to Arnol�d et al (2006)
extension of the work by Laplace to the full n+1 body planar problem was
given in the monograph by Charlier (1927), the rigorous mathematical proofs
have been obtained only quite recently by Fejoz (2004) and Biasco et al (2006).
To realize the di¢ culties in providing such a proof it is su¢ cient, following
Poincare0(1892 � 1898);to demonstrate that the results of the massless limit
considered by Laplace will remain practically unchanged if the satellites would
have some small but �nite masses (so that they interact with each other). Such
a philosophy lies at the heart of KAM theory used and improved in the works
by Fejoz (2004) and Biasco et al (2006).
Even with these proofs being available one should take into account that, in

view of experimental limitations, Newton�s law of gravity should be amended
by taking into account �nite speed of propagation of gravitational interaction
as well as the fact that all observations are made with some kind of light/radio
sources causing retardation, Doppler and other e¤ects. Thus, taking into ac-
count the experimental conditions, the classical mechanics description of celes-
tial motions becomes very similar to that encountered in quantum mechanics
where one has to use probabilities to account for incompleteness of information.
Furthermore, these proofs do not account for dissipation e¤ects playing major
stabilizing role in both atomic and quantum celestial mechanics.

30E.g. read pages 102-120.
31E.g. see Arnol�d et al (2006) page 261.
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If we assume that the motion of bodies indeed takes place on geodesics
then, formally, there are no interactions and the local time becomes proper
time. In the case of, say, binary stars of comparable masses one cannot use
the geodesics for description of their relative motion32 so that one is confronted
with the problem of matching the Einsteinian gravity with its Newtonian limit
as discussed in the paper by Einstein, Infeld and Ho¤mann (1938)33 . In all
other theories of gravity, including the Brans-Dicke-Jordan�s theory, there are
substantial departures from the geodesic motion. Details can be found on pages
1127-1129 of the book by Misner et al (1973).
Clearly, the di¢ culties of explaining motions using classical mechanics of the

n+1 body problem are such that the assumption about truly geodesic motion
looks suspicious. But these Newtonian mechanics theories do not account for
dissipation and retardation e¤ects. These facts also complicate the choices be-
tween di¤erent (alternative) theories of gravity. Hence, it is clear that at the
present state of our knowledge the ultimate choice between competing theo-
ries can be made only based on additional information. Such an information
is supplied, in part, in this work where uses of historical analogies between the
quantum (atomic) and celestial mechanics provide some helpful guidance. For
this purpose we compiled our Table 3 prior to actual computations.

Table 3
nType of mechanics
Properties

Quantum atomic
mechanics

Quantum
celestial mechanics

Dissipation (type of)n
(yesnno)non stable orbits

electromagnetic
frictionnnon
Bohr orbits

tidal friction
nnonEinstein�s geodesics

Accidental degeneracyn
(yesnno)norigin yesnBohr-Sommerfeld condition yesnclosure of the Lagrangian orbits

Charge neutrality yes no(but see below)

Masses
electrons having
the same masses

(up to validity of the
equivalence principle)
masses are the same

Minimal symmetry group SO(2,1) SO(2,1)
Correspondence
principle

occasionally violated occasionally violated

Discrete spectrum:
�nite or in�nitenreasonn
Pauli principle(yesnno)

�nite and in�niten
charge neutralityn
yes

�niten
no charge neutralityn
yes

32This case was discussed in papers by Einstein, Infeld and Ho¤mann (1938) and Robertson
(1938) with the outcome that it is possible to describe gravitational �eld outside such a binary
system in terms of geodesics. This leaves open the question of dynamical stability of such
binaries since their motion is controlled by the Newton�s equations of motion. In view of the
e¤ects of tidal friction, which should be quite appreciable in this case, the dynamics of such
binaries should be most likely unstable. For such systems one can safely neglect friction caused
by the emission of gravitational waves since these are e¤ects of �fth order in c�1(Landau and
Lifshitz 1975, paragraph 106).
33See also Section 6

31



Details related to this table are discussed further below.

4.3 Celestial spectroscopy, the Titius-Bode law of plane-
tary distances and quantum celestial mechanics

The atomic spectroscopy was inaugurated by Newton, in the second half of
17th century. As discussed in Introduction, the results of atomic and molecular
spectroscopy were used by Bohr in essential way resulting in the birth of new
quantum mechanics. The celestial spectroscopy was inaugurated by Titius in
the second half of 18th century and become famous after it was advertised
by Johann Bode, the Editor of the "Berlin Astronomical Year-book" in the late
18th century. The book by Nieto (1972) provides extensive bibliography related
to uses and interpretations of the Titius-Bode (T-B) law up to a second half of
20th century. Unlike the atomic spectroscopy, where the observed atomic and
molecular spectra were expressed using simple empirical formulas which were
(to our knowledge) never elevated to the status of "law", in celestial mechanics
the empirical T-B formula

rn = 0:4 + 03: � 2n, n = �1; 0; 1; 2; 3; ::: (36)

for the orbital radii (semimajor axes) of planets acquired the status of a law in
the following sense. In the case of atomic spectroscopy the empirical formulas
used for description of the atomic/molecular spectra have not been used (to
our knowledge) for making predictions. Their purpose was just to describe in
mathematical terms what had been observed. Since the T-B empirical formula
for planetary distances was used as the law, it was used in search for planets
not yet discovered. In such a way Ceres, Uranus, Neptune and Pluto were
found (Celletti 2007). However, the discrepancies for Neptune and Pluto were
much larger than the error margins allowed by the T-B law34 .This fact divided
the astronomical community into "believers" and "atheists" regarding to the
meaning and uses of this law. Without going into historical details, we would like
to jump to the very end of the Titius-Bode story in order to use its latest version
which we found in the paper by Neslu�an (2004) who, in turn, was motivated by
work of Lynch (2003). Instead of Eq.(36) these authors use another empirical
power law dependence

rn = r0B
n; n = 1; 2; 3; ::; 9: (37)

For planets (except Pluto and including the asteroid belt) Neslu�an obtained35

r0(au) = 0:203 and B = 1:773 with the rms deviation accuracy of 0.053436 .

34Chapter 10 of the book by Celletti (2007) provides very lively account of the present
knowledge about various objects "living" in the Solar System.
35 In astronomical units (to be de�ned below).
36This result gives for the Earth in astronomical (au) units the result r3 ' 1:13: Much

better result is obtained in case if we choose B = 1:7: In this case we obtain: r3 ' :997339:
Lynch (2003) provides B = 1:706 and r0 = 0:2139:
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Analogous power law dependencies were obtained previously in the work by
Dermott (1968) for both planets and satellites of heavy planets such as Jupiter,
Saturn and Uranus.
It should be noted that because of noticed discrepancies the attempts were

made to prove or disprove the Titius-Bode law by using statistical analysis, e.g.
see papers by Lynch (2003) and Hayes and Tremaine (1998), with purpose of
�nding out to which extent the observed dependencies can be considered as
non accidental. In view of the Heisenberg quantization (honeycomb) condition,
Eq.(5.a), it should be obvious by now that whatever distribution of frequencies
can be measured, it can, in principle, lead to quantization. In principle, be-
cause to implement this in practice requires to identify possible models and the
Hamiltonians for these models as discussed extensively in the previous sections.
Hence, in the present case we are confronted with exactly the same task. To
move forward some historical analogies are helpful at this time.
When Bohr was analyzing the data for He atom (Table 1) he had in mind

a model of He made of two independent electrons rotating around the same
nucleus. As results of Section 1 indicate, such an approximation produced
quite reasonable results. Clearly, when dealing with dynamics of Solar System,
one would like to follow the same philosophy. That is to assume �rst that
the planets are noninteracting and move along the geodesics independently. In
the case of atomic mechanics it was clear from the beginning that such an
approximation should sooner or later fail even though it works well in some
cases. For exactly the same reasons it is rather naive to expect that the T-B
law makes always sense. Rather, it makes sense to assume that it works for as
long as the assumption of noninteracting planets moving on geodesics can be
checked quantum mechanically. Furthermore, the nonexisting electroneutrality
in the sky provides strong hint that the T-B law must be of very limited use
since the number of discrete levels for gravitating systems should be always
�nite. Otherwise we would observe the countable in�nity of satellites around
Sun or heavy planets which is both observationally and physically wrong.
To facilitate matters, we still have to make several additional observations.

First, we have to �nd the analog of Planck constant. Second, we have to have
some mechanical model in mind to make our search for correct answer meaning-
ful. To accomplish the �rst task, we have to take into account the 3-rd Kepler�s

law. In accord with Eq.(35b), it can be written as r3n=T
2
n =

4�2

(M +m)
. In

view of arguments presented in previous subsection, we can safely approximate
this result by 4�2=M , where M is the mass of Sun. For the purposes of this
work, it is convenient to restate this law as 3lnrn�2 lnTn = ln 4�2=M = const
Below, we choose the astronomical system of units in which 4�2=M = 137 .
Consider now the Bohr result, Eq.(4), and take into account that E = ~! �

h

2�

2�

T
:Therefore, the Bohr�s result can be conveniently restated as !(n;m) =

!(n)� !(m):Taking into account Eq.s(4),(31b),(37) and the third Kepler�s law
37Since, by de�nition, in this system we have for Earth r3 = T3 = 1
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we obtain:
!(n;m) =

1

c ln ~A
(nc ln ~A�mc ln ~A); (38)

where the role of Planck�s constant is being played now by c ln ~A where ~A = B
3
2

and c is some constant which will be determined selfconsistently below38 :
At �rst, one may think that what we obtained is just a simple harmonic

oscillator spectrum. After all, this should come as not too big a surprise since in
terms of the action -angle variables all exactly integrable systems are reducible
to the sets of harmonic oscillators. This result is also compatible with the
results of Appendix B. The harmonic oscillator option is physically undesirable
in the present case since for gravitating systems the charge neutrality constraint
cannot be imposed, e.g. see Table 3. Evidently, allowing such a spectrum is
equivalent to the correctness of the T-B law. But we know that this law is
not working for larger numbers. In fact it would be very strange should it be
working in this regime since the total mass of all harmonically bound planets
could potentially become in�nite.
To make a progress, we have to use the 3rd Kepler�s law once again, i.e. we

have to take into account that in chosen astronomical system of units 3lnrn =
2 lnTn: In view of the arguments just discussed, a quick look at Eq.s B(13),(14)
suggests that the underlying mechanical system is likely to be associated with
that for the Morse potential. The low lying states of such a system cannot be
distinguished from those for the harmonic oscillator. However, this system does
have only a �nite number of energy levels which makes sense physically. The
task remains to connect this system with the planar Kepler�s problem. Although
in view of the results of Appendix B such a connection does indeed exist, we
would like to demonstrate it explicitly at the level of classical mechanics.
Following Pars (1996), the motion of point of unit mass in the �eld of gravity

is described by the following equation

_r2 = (2Er2 + 2Mr � �2)=r2; (39)

where � is the angular momentum integral (e.g. see Eq.(5.2.55) of Pars book).
We would like now to replace r(t) by r(�) in such a way that dt = u(r(�))d�
. Let therefore r(�) = r0 exp(x(�)); -1 < x < 1: Unless otherwise speci�ed,
we shall write r0 = 1. In such (astronomical) system of units) we obtain,

_r = x0
d�

dt
exp(x(�)): This result can be further simpli�ed by choosing

d�

dt
=

exp(�x(�)): With this choice Eq.(39) acquires the following form:

(x0)2 = 2E + 2M exp(�x)� �2 exp(�2x): (40)

Consider points of equilibria for the potential U(r) = �2Mr�1 + �2r�2:

From here we obtain: r� =
�2

M
: According to Goldstein et al (2002) such

de�ned r� coincides with the major elliptic semiaxis. It can be also shown,

38Not to be confused with the speed of light !
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e.g. Pars, Eq.(5.4.14), that for the Kepler problem the following relation holds:

E = �M
2r�

. Accordingly, r� = �M
2E

; and, furthermore, using condition dU
dr = 0

we obtain,
�2

M
= �M

2E
or, �2 = � (M)

2

2E
: Since in the chosen system of

units r(�) = exp(x(�)); we obtain,
�2

M
= exp(x�(�)): It is convenient to choose

x�(�) = 0: This requirement makes the point x�(�) = 0 as the origin and implies
that with respect to such chosen origin �2 = M 39 : Using this fact Eq.(40) can
then be conveniently rewritten as

1

2
(x0)2 � M(exp(�x)� 1

2
exp(�2x)) = E (41a)

or, equivalently, as

p2

2
+A(exp(�2x)� 2 exp(�x)) = E; (41b)

where A =
M

2
: Since this result is exact classical analog of the quantum

Morse potential problem, transition to quantum mechanics can be done straight-
forwardly at this stage. By doing so we have to replace the Planck�s constant ~
by c ln ~A. After that, we can write the answer for the spectrum at once (Landau
and Lifshitz 1962):

� ~En =
M

2
[1� c ln ~Ap

M
(n+

1

2
)]2: (42)

This result contains an unknown parameter c which we would like to determine
now. To do so it is su¢ cient to expand the potential in Eq.(41b) and to keep
terms up to quadratic. Such a procedure produces the anticipated harmonic
oscillator result

p2

2
+Ax2 = ~E (43)

with the spectrum given by ~En = (n+ 1
2 )c
p
2A ln ~A: In the astronomical system

of units the spectrum reads: ~En = (n+ 1
2 )c2� ln

~A . This result is in agreement
with Eq.(38). To proceed, we notice that in Eq.(38) the actual sign of the
Planck-type constant is undetermined. Speci�cally, in our case (up to a con-

stant) the energy ~En is determined by ln
�
1
Tn

�
= � ln ~A so that it makes sense

to write � ~En � n ln ~A: To relate the classical energy de�ned by the Kepler-type

39 In doing so some caution should be exercised since upon quantization equation r� =
�2

M

becomes r�n =
�2n
M

: Selecting the astronomical scale r�3 = 1 as the unit of length implies then

that we can write the angular momentum �2n as {
r�n
r�3

and to de�ne { as �23 � �2:
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equation E = �M
2r�

to the energy we just have have obtained, we have to re-

place this Kepler-type equation by � ~En � � ln jEj = �2 ln
p
2� + ln rn This is

done in view of the 3rd Kepler�s law and the fact that the new coordinate x is
related to the old coordinate r via r = ex. Using Eq.(37) (for n = 1) in previ-
ous equation and comparing it with the already obtained spectrum of harmonic
oscillator we obtain:

�2 ln
p
2� + ln r0B = �c2� ln ~A; (44)

where in arriving at this result we had subtracted the nonphysical ground state
energy. Thus, we obtain,

c =
1

2� ln ~A
ln
2�2

r0B
: (45)

Substitution of this result back into Eq.(42) produces

� ~En = 2�2[1�
(n+ 1

2 )

4�2
ln

�
2�2

r0B

�
]2 ' 2�2[1� 1

9:87
(n+

1

2
)]2

' 2�2 � 4(n+ 1
2
) + 0:2(n+

1

2
)2: (46)

To determine the number of bound states, we follow the same procedure as de-
veloped in chemistry for the Morse potential. For this purpose40 we introduce
the energy di¤erence � ~En = ~En+1 � ~En = 4� 0:4(n+1) �rst. Next, the maxi-
mum number of bound states is determined by requiring � ~En = 0: In our case,
we obtain: nmax = 9. This number is in perfect accord with observable data
for planets of Solar System (with Pluto being excluded and the asteroid belt
included). In spite of such a good accord, some caution must be exercised while
analyzing the obtained result. Should we not insist on physical grounds that
the discrete spectrum must contain only �nite number of levels, the obtained
spectrum for harmonic oscillator would be su¢ cient (that is to say, that the va-
lidity of the T-B law would be con�rmed). Formally, it solves the quantization
problem completely in accord with the numerical data (Neslu�an 2004). The
problem lies however in the fact that these data were �tted to the power law,
Eq.(37), in accord with the original T-B empirical guess. Heisenberg�s honey-
comb rule, Eq.(5), does not require the speci�c n�dependence. In fact, we
have to consider the observed (the Titius-Bode-type) n�dependence only as a
hint. With theoretical guidance emerging from this work, it is hoped, that the
attempts will be made to �t the observational data to the Morse-like spectra
in a way it is done routinely in chemical physics for the Morse-type potentials.
In this work we intentionally avoid use of any adjustable parameters since the
developed procedure when supplied with correctly interpreted numerical data
should be su¢ cient for obtaining results without any adjustable parameters41 .

40Recall that in chemistry the Morse potential is being routinely used for description of the
vibrational spectra of diatomic molecules.
41Provided, of course, that the approximation of planetary motions by geodesics is valid.
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In support of our conjectures we performed similar calculations for satellite
systems of Jupiter, Saturn, Uranus and Neptune. To do such calculations the
astronomical system of units is not immediately useful since in the case of heavy
planets one cannot use the relation 4�2=M� = 1: This is so because we have
to replace the mass of the Sun M� by the mass of the respective heavy planet.
To do so, we write 4�2 = M�, multiply both sides by Mj (where j stands
for the j-th heavy planet) and divide both sides by M�. Thus, we obtain:

4�2qj = Mj , where qj =
Mj

M�
. Since the number qj is of order 10�3 �10�5,

it is inconvenient in actual calculations. To by pass this di¢ culty, we need to
readjust Eq.(40) by rescaling x coordinate as x = ��x and, by choosing �2 = qj .
After transition to quantum mechanics such a rescaling results in replacing
Eq.(42) for the spectrum by the following result:

� ~En =
M

2
[1� c� ln ~Ap

M
(n+

1

2
)]2: (47)

Since the constant c is undetermined initially, we can replace it by ~c = c� so
that we reobtain back equation almost identical to Eq.(46). That is

� ~En = 2�2[1�
(n+ 1

2 )

4�2
ln

�
Mj

(rj)1

�
]2 (48)

In this equation Mj = 4�
2qj and (rj)1 is the semimajor axis of the satellite

lying in the equatorial plane and closest to the j-th planet. Our calculations are
summarized in the Table 4 below. Appendix C contains the input data used in
our calculations of n�theory:

Table 4

Satellite systemnnmax n�theory n�obs
Solar system 9 9
Jupiter system 11-12 8
Saturn system 20 20
Uranus system 40 18
Neptune system 33 6

Since the discrepancies for Uranus and Neptune systems may be genuine or not
we come up with the following general pattern described below.

4.4 Further analogies with atomic mechanics

From atomic mechanics we know that the approximation of independent elec-
trons used by Bohr fails rather quickly with increased number of electrons. For
this reason to expect that the T-B law is going to hold for satellites of all heavy
planets is rather naive as we have explained already. At the same time, for
planets rotating around the Sun such an approximation is seemingly good. The
SO(2,1) symmetry explains why the motion of all planets should be planar but
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it does not explain why the motion of all planets is taking place in the plane
almost coinciding with the equatorial plane of the Sun. The same is true for
the regular satellites of all heavy planets as discussed by Dermott (1968). If we
adopt the quantum mechanical point of view advocated in this work, then we
should accept that such an arrangement of planets is the result of some kind of
spin-orbital interaction whose exact quantum mechanical nature remains to be
elucidated. Other rotational resonances ubiquitous in the Solar system could
then be explained quantum mechanically as well. The equatorial plane in which
planets (satellites) move can be considered as some kind of an orbital (in the
atomic physics terminology). It is being �lled in accordance with the equivalent
of the Pauli principle: each orbit can be occupied by no more than one planet42 .
Once the orbital is �lled, other orbitals associated with other planes will begin
to be �lled out. Some of orbitals can be empty. This is indeed being observed
(Dermott 1968). It should be said though that it appears (according to the
available data, e.g. see Celletti (2007)) that not all of observed satellites are
moving on stable orbits. It appears also as if the "inner shell", when completely
�lled, acts as some kind of an s-type spherical orbital since orbits of other satel-
lites lie strictly outside the sphere whose diameter is greater or equal to that
corresponding to the last allowed energy level in the �rst shell. The location
of the secondary planes appears to be quite arbitrary as well as the �lling of
their stable orbits. Furthermore, without account of spin-orbital interactions,
quantum mechanics says nothing about the direction of the orbital rotation.
Although for all planets it does coincide with the direction of rotation of the
Sun�s axis, in the case of Phoebe- the irregular satellite of Saturn-rotation takes
place in the opposite direction to that of the axis of Saturn. If the spin-orbital
interaction does exists, most likely, Phoebe�s orbit is not a stable one.
It is tempting to extend the picture just sketched beyond the scope of our

Solar System. If for a moment we would ignore relativistic e¤ects (they will be
discussed in the next section), we can then �nd out that our Sun is moving along
almost circular orbit around our galaxy center with the period T = 185 � 106
years (Chebotarev 1967). Our galaxy is also �at as our Solar System and the
major mass is concentrated in the galaxy center. Hence, again, if we believe
that the stable stellar motion is taking place along the geodesics in accordance
with laws of Einstein�s general relativity, then we have to accept that our galaxy
is a quantum object. It would be very interesting to estimate the number of
allowed energy levels for our galaxy and to check if the Pauli-like principle works
for the galaxy as well.

4.5 Latest developments supporting our point of view

We begin with the following observation. The motion of a planet of mass m0

in the �eld of two static centers of attraction with masses m1 and m2 was dis-
cussed by Legendre and Jacobi in 19th century (Pars 1966) in connection with

42The meteorite belt can be looked upon as some kind of a ring. We shall brie�y discuss
the rings below.
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their study of elliptic functions. Such an idealized problem is a precursor of
the restricted 3-body problem to be discussed in the next subsection in connec-
tion with dynamics of planetary rings. As simple as it is, the full study of this
problem is extremely complex. It involves classi�cation of all points and lines
of equilibria and motions in the domains restricted by these lines. In addition
to the eight major types of bounded orbits there are many more coming from
collision of equilibrium point/lines etc. Characterization of the unbound motion
is also interesting but is less complex. In quantum mechanics the motion of an
electron in the presence of two �xed positive ions is also a benchmark problem
(in addition to study of He discussed in section 1). Normally, the charges of
ions are assumed to be the same (e.g. for H+2 ) which makes such a problem
somewhat di¤erent (since they repel each other) from the problem studied by
Legendre and Jacobi. All classi�cation of molecular spectra can be traced back
to this problem (Landau and Lifshitz 1962). As in the case of H atom, the corre-
spondence principle is not well established in this case since (to our knowledge)
nobody studied the agreement between the quantum -mechanical calculations
in the semiclassical limit and the results of Legendre-Jacobi theory modi�ed
due to the chemical requirements. Interestingly enough such a comparison was
made to a larger extent between the classical restricted 3-body problem and its
quantum analog. The quantum analog of the restricted 3-body problem exists
in the form of the H atom placed in a strong crossed constant electric and mag-
netic �elds (Milczewski et al 1997). Since semiclassical and classical analysis of
such a system is su¢ ciently well understood, this fact allows such a system to
be studied both theoretically and experimentally. These studies are well sum-
marized in two recent reviews (Porter and Cvitanovich 2005; Marsden and Ross
2006) to which we refer our readers for details. For immediate purposes of this
work the following quotation from Porter and Cvitanoviµc is helpful: " almost
perfect parallel between the governing equations of atomic physics and celes-
tial mechanics implies that the transport mechanism for these two situations is
virtually identical: on the celestial scale, transport takes a spacecraft from one
Lagrange point to another until it reaches its desired destination43 . On atomic
scale, the same type of trajectory transports an electron initially trapped near
the atom across the escape threshold (in chemical parlance, across a "transition
state"), never to return. The orbits used to design space missions thus also de-
termine the ionization rates of atoms and chemical reaction rates of molecules".
This statement is nicely illustrated in the paper by Ja¤e et al (2002) in which it
is obtained that the transition state theory developed initially in chemistry (to
describe the rates of chemical reactions) is working actually better in celestial
mechanics where the discrepancy between the chemical theory and numerical
simulations (done for celestial mechanics transport problems) is less than 1%.
It should be noted though that the calculations were done at the classical level
only (that is for a very large quantum numbers). The current status of transi-
tion state theory at the quantum and classical levels in chemistry can be found
in the recent book by Micha and Burghardt (2007).

43E.g. see also paper by Convay at al (2007).
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4.6 The restricted 3-body problem and planetary rings

Although the literature on the restricted 3-body problem is huge, we would
like to discuss this problem from the point of view of its connection with general
relativity and quantization of planetary orbits as developed in this paper. We
begin with several remarks.
First, the existence of ring systems for all heavy planets is well known (Cel-

letti 2007). Second, these ring systems are interspersed with satellites of heavy
planets. Third, both rings and satellites lie in the respective equatorial planes
so that the satellites move on stable orbits. From these observations it follows
that:
a) While each of heavy planets is moving along the geodesics around the
Sun, the respective satellites are moving along the geodesics around
respective planets;
b) The motion of these satellites is almost circular.
The restricted 3-body problem can be formulated now as follows. Given that

the rings are made of some kind of small objects whose masses can be neglected
(Hill�s problem (Arnol�s et al (2006)) as compared to masses of both the satel-
lite(s) and the particular heavy planet. Following previously discussed ideas by
Laplace, we can ignore mutual gravitational interaction between these objects.
Under such conditions we end up with the restricted three-body problem of
motion of a given piece of a ring (of zero mass) in the presence of two bodies
of masses m1 and m2 respectively. To simplify matters, one usually assumes
that the motion of these two masses takes place on a circular orbit with respect
to their center of mass. Complications associated with the eccentricity of such
a motion are discussed in the book by Szebehely (1967) and can be taken into
account if needed. They will be ignored nevertheless in our discussion since we
shall assume that the satellites of heavy planets move on geodesics so that the
center of mass coincides with the position of a heavy planet anyway thus making
our computational scheme compatible with Einsteinian relativity. By assuming
that ring pieces are massless we also are making their motion compatible with
requirements of general relativity since whatever orbits they may have-these
are geodesics.
Thus far only the motion of satellites in the equatorial planes (of respective

planets) was considered as stable (and, hence, quantizable). The motion of ring
pieces was not accounted thus far by these stable orbits. The task now lies in
showing that the satellites lying inside the respective rings of heavy planets are
essential for stability of these rings motion and hence, are making it quantizable.
For the sake of space, we would like only to provide a sketch of arguments

leading to such a conclusion. Full details are left for subsequent publications.
Our task is greatly simpli�ed by the fact that very similar situation exist for the
3-body system such as Moon, Earth and Sun. Dynamics of such a system was
studied very thoroughly by Hill whose work played profound role in Poincare0

0

studies of celestial mechanics (Poincare01892-1898). Recently, Avron and Si-
mon (1981) have adopted Hill�s ideas in order to develop a formal quantum
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mechanical treatment of the Saturn rings. In this work we follow the origi-
nal Hill�s ideas concerning dynamics of the Earth-Moon-Sun system. We claim
that, when these ideas are looked upon from the point of view of modern math-
ematics of exactly integrable systems, they enable us to describe not only the
Earth-Moon-Sun system but also the dynamics of rings of heavy planets. These
modern mathematical methods enable us to �nd a place for the Hill�s theory
within general quantization scheme discussed in previous sections.

4.6.1 Basics of the Hill�s equation

To avoid repetitions, we refer our readers to the books of Pars (1966), Cheb-
otarev (1967) and Brouwer and Clemence (1961) for detailed and clear account
of the restricted 3-body problem and Hill�s contributions to Lunar theory. Here
we only summarize the ideas behind Hill�s ground breaking work.
In a nutshell his method of studying Lunar problem can be considered as

extremely sophisticated improvement of previously discussed Laplace and La-
grange method. Unlike Laplace, Hill realized that both Sun and Earth are
surrounded by the rings of in�uence44 . The same goes for all heavy planets:
each of these planets and each satellite of such a planet will have its own do-
main of in�uence whose actual width is controlled by the Jacobi integral of
motion. For the sake of argument, consider the Saturn as an example. It has
Pan as its the innermost satellite. Both the Saturn and Pan have their respec-
tive domains of in�uence. Naturally, we have to look at the domain of in�uence
for the Saturn. Within such a domain let us consider a hypothetical closed
Kepler-like trajectory. Stability of such a Lagrangian trajectory is described
by the Hill equation45 . Since such an equation describes a wavy-type oscilla-
tions around the presumably stable trajectory, the parameters describing such a
trajectory are used as an input (perhaps, with subsequent adjustment) in Hill�s
equation given by

d2x

dt2
+ (q0 + 2q1 cos 2t+ 2q2 cos 4t+ � � �)x = 0: (49)

If we would ignore all terms except q0 �rst, we would naively obtain: x0(t) =
A0cos(t

p
q0 + "): This result describes oscillations around the equilibrium posi-

tion along the trajectory with the constant q0 carrying information about this
trajectory and the amplitude A is expected to be larger or equal to the average
distance between the pieces of the ring. This naive picture gets very complicated
at once should we use the obtained result as an input into Eq.(49). In this case
the following equation is obtained

d2x

dt2
+ q0x+A0q1fcos[t(

p
q0 + 2) + "] + cos[t(

p
q0 � 2)� "]g = 0 (50)

44Related to the so called Roche limit (Celletti 2007).
45 In fact, there will be the system of Hill�s equations in general (Chebotarev 1967). This is

so since the disturbance of trajectory is normally decomposed into that which is perpendicular
and that which is parallel to the Kepler�s trajectory at given point. We shall avoid these
complications in our work.
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whose solution will enable us to determine q1and A1 using the appropriate
boundary conditions. Unfortunately, since such a procedure should be repeated
in�nitely many times it is obviously impractical. Hill was able to design much
better method. Before discussing Hill�s equation from the perspective of modern
mathematics, it is useful to recall the very basic classical facts about this
equation summarized in the book by Ince (1926). For this purpose, we shall
assume that the solution of Eq.(49) can be presented in the form

x(t) = e�t
1P

r=�1
bre

irt: (51)

Substitution of this result into Eq.(49) leads to the following in�nite system of
linear equations

(�+ 2ri)2br +
1P

k=�1
qkbr�k = 0; r 2 Z: (52)

As in �nite case, obtaining of nontrivial solution requires the in�nite determinant
�(�) to be equal to zero. This problem can be looked upon from two directions:
either all constants qk are assigned and one is interested in bounded solution of
Eq.(51) for t ! 1; or one is interested in the relationship between constants
such that � = 0: In the last case it is important to know wether there is one
or more than one of such solutions available. Although answers can be found
in the book by Magnus and Winkler (1966), we follow McKean and Moerbeke
(1975), Trubowitz (1977) and Moser (1980).
For this purpose we need to bring our notations in accord with those used in

these references. Thus, the Hill operator is de�ned now as Q(q) = � d2

dt2 + q(t)
with periodic potential q(t) = q(t+ 1): Eq.(49) can now be rewritten as

Q(q)x = �x: (53)

This presentation makes sense since q0 in Eq.(49) plays the role of � in Eq:(53):
Since this is the second order di¤erential equation, it has formally 2 solutions.
These solutions depend upon boundary conditions. For instance, for periodic
solutions such that x(t) = x(t+ 2) the "spectrum" of Eq.(53) is discrete and is
given by

�1 < �0 < �1 � �2 < �3 � �4 < � � � " +1:
We put the word spectrum in quotation marks because of the following. Eq.(53)
does have a normalizable solution only if � belongs to the (pre assigned) intervals
(�0; �1); (�2; �3); :::; (�2i; �2i+1); ::: In such a case the eigenfunctions xi are
normalizable in the usual sense of quantum mechanics and form an orthogonal
set. The periodic solutions make sense for the vertical displacement from the
reference trajectory. For the horizontal displacement the boundary condition
should be chosen as x(0) = x(1) = 0: For such chosen boundary condition
the discrete spectrum also exists but it lies exactly in the gaps between the
intervals just described, i.e. �1 � �1 � �2 < �3 � �2 � �4 < � � �: For such
a spectrum there is also set of normalized mutually orthogonal eigenfunctions.
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Thus in both cases quantum mechanical description is assured. One can do much
more however. In particular, Trubowitz (1977) designed an explicit procedure of
recovering the potential q(t) from the ��spectrum supplemented by information
about normalization constants.

The Hill�s equation can be interpreted in terms of the auxiliary dynamical
(Neumann) problem. Such an interpretation is very helpful for us since it allows
us to include the quantum mechanics of Hill�s equation into general formalism
developed in Sections 2 and 3.

4.6.2 Connection with the dynamical Neumann problem and the
Korteweg -de Vries equation

Before doing so, we would like to add few details to results of previous subsection.
First, the number of the pre assigned intervals is always �nite. This means that,
beginning with some pre assigned {̂, we would be left with �2i = �2i+18i >
{̂:These double eigenvalues do not have independent physical signi�cance since
they can be determined by the set of single eigenvalues (for which �2i 6= �2i+1)
as demonstrated by Hochstadt (1963). Because of this, the potentials q(t) in
the Hill�s equation are called �nite gap potentials46 . Hence, physically, it is
su¢ cient to discuss only such potentials which possess �nite single spectrum.
The auxiliary ��spectrum is then determined by the gaps of the single spectrum
as explained above. With this information in our hands, we are ready to discuss
the exactly solvable Neumann dynamical problem. It is the problem about
dynamics of a particle moving on the n�dimensional sphere < �; � >� �21
+� � � + �2n = 1 under the in�uence of a quadratic potential �(�) =< �;A� > :
Equations of motion describing the motion on n� sphere are given by

�� = �A� + u(�)� with u(�) = �(�)� < _�; _� > : (54)

Without loss of generality, we assume that the matrix A is already in the diag-
onal form: A := diag(�1; :::; �n):With such an assumption we can equivalently
rewrite (54) in the following suggestive form�

� d2

dt2
+ u(�(t))

�
�k = �k�k ; k = 1; :::; n: (55)

Thus, in the case if we can prove that u(�(t)) in (55) is the same as q(t) in (53),
the connection between the Hill and Neumann�s problems will be established.
The proof is presented in Appendix D. It is di¤erent from that given in the
lectures by Moser (1980) since it is more direct and much shorter.
This proof brought us the unexpected connection with hydrodynamics through

the static version of the Korteweg-de Vries equation. Attempts to describe the
Saturnian rings using equations of hydrodynamic are described in the recent
monograph by Esposito (2006). This time, however, we can accomplish more
using obtained information. This is the subject of the next subsection.

46Since there is only �nite number of gaps [�1; �2];[�3; �4]; :::where the spectrum is forbid-
den.
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4.6.3 Connections with SO(2,1) group and the K-Z equations

Following Kirillov (1982), we introduce the commutator for the �elds (opera-
tors) � and � as follows: [�; �] = �@� � �@�: Using the KdV, Eq.(D.10), let us
consider 3 of its independent solutions: �0; ��1 and �1: All these can be ob-
tained from general result: �k = tk+1 + O(t2); valid near zero. Consider now
a commutator [�0; �1]: Straightforwardly, we obtain, [�0; �1] = �1. Analogously,
we obtain, [�0; ��1] = ���1 and, �nally, [�1; ��1] = �2�0: According to Kir-
illov, such a Lie algebra is isomorphic to that for the group SL(2; R). Vilenkin
(1991) have demonstrated that the group SL(2; R) is isomorphic to SU(1; 1).

Indeed, by means of transformation: w=
z � i
z + i

; it is possible to transform the

upper half plane (on which SL(2; R) acts) into the interior of unit circle on
which SU(1; 1) acts. Since, according to Appendix B, the group SU(1; 1) is
the connected component of SO(2; 1), the anticipated connection with SO(2; 1)
group is established.
In Appendix D we noticed connections between the Picard-Fuchs, Hill and

Neumann-type equations. In a recent paper by Veselov et al (2001) such a
connection was developed much further resulting in the K-Z type equations47

for Neumann-type dynamical systems. We refer our readers to the original
literature, especially to the well written lecture notes by Moser(1980). These
notes as well and his notes in collaboration with Zehnder (2005) provide an
excellent background for the whole circle of ideas relating Hill�s equation to
integrable models.

5 Solar System at larger scales: de Sitter, anti
-de Sitter and conformal symmetries compat-
ible with orbital quantization

The obtained results demonstrate a remarkable interplay between the New-
tonian and Einsteinian mechanics already at the scale of our Solar System.
Since quantization of stable orbits described in this paper is possible only with
use of the basic experimental facts assuring correctness of results of general
relativity, it is only natural to reverse this statement and to say that the correct-
ness of general relativity is assured by the observed pattern of stable (quantum)
orbits.
Since quantum mechanics can be developed group-theoretically, the same

should be true for relativity. Quoting Einstein, Infeld and Ho¤mann (1938):
"Actually, the only equations of gravitation which follow without ambiguity
from the fundamental assumptions of the general theory of relativity are the
equations for empty space48 , and it is important to know whether they alone are

47E.g. see Eq.(29) of Section 2.
48See also Section 6.
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capable of determining the motion of bodies". In this work we have argued that
this is certainly correct locally when the Lorentzian-type symmetry holds true.
Now we would like to discuss how such locally Lorentzian space-time embeds
into space-times of general relativity possessing larger symmetry groups49 . Since
this topic is extremely large, we shall discuss only the most basic facts from the
point of view of results obtained in this paper.
To our knowledge, Dirac (1935) was the �rst who recognized the role of space-

time symmetry in quantum mechanics. In his paper he wrote: "The equations
of atomic physics are usually formulated in terms of space-time of special rel-
ativity. They then have to form a scheme which remains invariant under all
transformations which carry the space-time over into itself. These transforma-
tions consist of the Lorentz rotations about a point combined with arbitrary
translations, and form a group.... Nearly all of more general spaces have only
trivial groups50of operations which carry the spaces into themselves....There
is one exception, however, namely the de Sitter space (with no local gravita-
tional �elds). This space is associated with a very interesting group, and so the
study of the equations of atomic physics in this space is of special interest, from
mathematical point of view." Subsequent studies indicate that the symmetry
of space-time could be important even at the atomic scale (Bros et al 2006,
Aldrovandi et al 2004). Another reason to look at larger symmetry groups is
associated with the cosmological constant problem (Peebles and Ratra 2002)
and, associated with it the problem of existence of cold dark energy (CDE)
(Copeland at al 2006), cold dark matter (CDM) (Kay et al 2002) and the modi-
�ed Newtonian dynamics (MOND) (de Blok et al 2001). Clearly, we are unable
to discuss these issues within the scope of this paper since they are more rel-
evant to processes at the galactic scales. Nevertheless, we would like to notice
that, for instance, the MOND presupposes use of Newtonian and the modi�ed
Newtonian mechanics at the galactic scales which, as discussed in Section 4,
strictly speaking, is not permissible even at the scales of our Solar System. The
rationale for the dark energy and dark matter is explained in our recent papers
(Kholodenko and Ballard 2007) and (Kholodenko 2007a) based on mathemat-
ical arguments consistent with that used by Grigory Perelman in his proof of
the Poincare0 conjecture.
Hence, we proceed with description of the de Sitter and anti -de Sitter spaces

based on results of our recent works. We begin with the following Hilbert-
Einstein functional

Sc(g) =
R
M ddxR

p
g + �

R
M ddx

p
g (56)

49At the level of quantum �eld theory Utiyama (1956) demonstrated that the requirement
of the local gauge invariance implemented for the non Abelian Lorentz group produces Ein-
stein�s equations for the gravitational �eld. This result implies that any "improvements" of
Einsteinian relativity should involve changes in the local Lorentzian structure of space-time
which is very unlikely. Independent arguments supporting this point of view are presented in
Section 6.
50This statement of Dirac is not correct. However, it is correct at the time of writing of his

paper.
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de�ned for some (pseudo) Riemannian manifoldM of total space-time dimen-
sion d. The (cosmological) constant � is determined as follows.
Using Rij , the Ricci curvature tensor, the Einstein space is de�ned as solu-

tion of the following vacuum Einstein equation

Rij = �gij (57)

with � being a constant. From this de�nition it follows that

R = d�: (58)

At the same time, variation of the action Sc(g) produces

Gij +
1

2
�gij = 0; (59)

where the Einstein tensor Gij is de�ned as Gij = Rij � 1
2gijR with R being

the scalar curvature determined by the metric tensor gij51 : Combined use of
Eq.s(58) and (59) produces: � = �(d� 2): Substitution of this result back into
Eq.(59) produces:

Gij = (
1

d
� 1
2
)�ijR: (60)

Since by design Gij;h = 0; we obtain our major result:

(
1

d
� 1
2
)R;j = 0; (61)

implying that scalar curvature R is constant.
For isotropic homogenous spaces the Riemann curvature tensor can be pre-

sented in the following known form (Landau and Lifshitz 1975)

Rijkl = k(x)(gikgjl � gilgjk): (62)

Accordingly, the Ricci tensor is obtained as: Rij = k(x)gij(d� 1): The Schur�s
theorem (Willmore 1993) guarantees that for d � 3 we must have k(x) = k =
const for the entire space. Therefore, we obtain: � = (d�1)k and, furthermore,
R = d(d � 1)k: The spatial coordinates can always be rescaled so that R = k
or, alternatively, the constant k can be normalized to unity. For k > 0; k =
0 and k < 0 we obtain respectively de Sitter, �at and anti-de Sitter spaces.
Thus, we just have demonstrated that homogeneity and isotropy of space-time
is synonymous with spaces being de Sitter, �at and anti-de Sitter very much
like in ordinary Riemannian geometry there are spaces of positive, negative and
zero curvature. This fact can be used to give the alternative description of just
obtained results.
We begin with simple observation that the surface of constant positive

curvature is conformally equivalent to a sphere embedded in the Euclidean space
51Eq.(59) illustrates the meaning of the term "dark matter". The constant � enters into

the stress-energy tensor (in the present case given by � 1
2
�gij) typically associated with the

matter, Einstein (1916).
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(Kholodenko 2007a). In particular, let us consider a 3-sphere embedded into 4d
Euclidean space. It is described by the equation

S3 = fx 2 E4; x21 + x22 + x23 + x24 = R2g: (63)

S3 is homogenous isotropic space with positive scalar curvature whose value
is 6=R2: The group of motions associated with this homogenous space is the
rotation group SO(4). The space of constant negative curvature H3 is obtained
analogously. For this purpose it is su¢ cient, following Dirac (1935), to make
x1 purely imaginary and to replace R2 by �R2 in Eq.(63). Such replacements
produce:

H3 = fx 2M4; x
2
1 � x22 � x23 � x24 = R2g: (64)

In writing this result we have replaced the Euclidean space E4 by the Minkowski
spaceM4 so that the rotation group SO(4) is now replaced by the Lorentz group
SO(3; 1). The de Sitter space can now be obtained according to Dirac (1935)
as follows. In Eq.(63) we replace E4 by E5 and make x1 purely imaginary thus
converting E5 into M5. The obtained space is the de Sitter space whose group
of symmetry is SO(4; 1)

dS4 = fx 2M5; x
2
1 � x22 � x23 � x24 � x25 = R2g: (65)

It has a constant positive scalar curvature whose value is 12=R2: Very nice
description of such a space is contained in the book by Hawking and Ellis (1973).
The connection between the parameter R and the cosmological constant � is

given by R =

r
3

�
. The anti-de Sitter space is determined analogously as also

discussed by Hawking and Ellis and by Dirac. Speci�cally, it is given by

adS4 = fx 2 E3;2; x21 � x22 � x23 � x24 + x25 = R2g; (66)

where the �ve dimensional space E3;2 is constructed by adding the time-like
direction to M4: Hence, the symmetry group of adS4 is SO(3,2). All these
groups can be described simultaneously if, following Dirac (1935), we introduce
the quadratic form

5P
�=1

x�x� = R2 (67)

in which some of the arguments are allowed to be purely imaginary. Trans-
formations preserving such a quadratic form are appropriate respectively for
groups SO(5), SO(4,1) and SO(3,2). We still can embed all these groups into
a larger (conformal) group SO(4,2) by increasing summation from 5 to 6 in
Eq.(67). In such a case all groups discussed in this work, starting from SO(2,1),
can be embedded into this conformal group as subgroups as discussed in great
detail by Wybourne (1974)52 . Comprehensive group-theoretic description of the

52 Incidentally, the work by Graner and Dubrulle (1994), when translated into group-
theoretic language, becomes just a corollary of conformal invariance implied by the conformal
group .
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Einstein spaces, e.g. see Eq.(57), including those which are invariant with re-
spect to the conformal group, can be found in the monograph by Petrov (1969).
The signi�cance and use of conformal symmetry in both gravity and conformal
�eld theories has been recently extended in Kholodenko (2007a). All existing
cosmological models in the limit R!1 approach one of the Einstein�s spaces
whose group of symmetry belongs to the types just described. The de Sitter
and anti-de Sitter spaces are the simplest examples of such spaces (Weinberg
1972)53 .
The task still remains to �nd out if representations of these larger groups,

e.g. see Vilenkin (1991) and Wybourne (1974) for mathematical details, can
produce the exact solutions of radial Schrödinger equations not listed in the
Natanzon-style classi�cation, e.g. see Levai (1994), for SO(2,1). If such solutions
do exist, one might be able to �nd those of them which are of relevance to
celestial quantum mechanics and, hence, to cosmology.

6 Conclusions

It is a remarkable historical fact (discussed in Section 4.2.) that Laplace was the
�rst who studied resonance dynamics of known satellites of Jupiter (e¤ectively)
using geodesics while Lagrange analyzing the motion of these satellites along
these stable geodesics had ( also e¤ectively) arrived at the Bohr-Sommerfeld
quantization conditions. The validity of the geodesic-type approximation is
based on the equivalence principle of general relativity correct in the limit of
vanishingly small masses as compared to the mass of the central body. Using this
principle Einstein (1916) was able to calculate the perihelium shift for Mercury.
Within approximations he made all interactions of Mercury with the rest of
planets were ignored. Because of this, the same type of calculations in the spirit
of Laplace can be made for all planets as discussed by Misner et al (1973). The
fundamental problem then lies in proving that such stable motions will survive
in the case if masses of planets are small but nonzero. In the case of satellites
of Jupiter such a task was completed by Poincare0 and de Sitter as mentioned
in Section 4. The latest advancements are also discussed in the same section.
In this (concluding) section we argue that it is possible to arrive at the same

�eld equations of general relativity by entirely by passing the equivalence prin-
ciple. This can be achieved by studying the limiting case of dynamics of 2+1
gravity as discussed in Kholodenko (2000a,b) and Kholodenko (2001). In such
a limit one studies surface dynamics of the �ctitious 2 dimensional gravitating
bodies54 . Simple topological arguments applied to this case indicate that the
Einsteinian �eld equations survive such a reduction while Newtionian (actually,
the Poissonian-type) equations do not survive this reduction. As result, the

53The most recent mathematically rigorous description of both de Sitter and anti-de Sitter
spaces can be found in the paper by Andersson and collaborators (2007).
54Which can be actually visualized by the crossections (lying on the surface) of in�nitely

long and thin massive 3 dimensional rods. According to the imposed rules we are allowed to
watch only the motion of crossections.
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dynamics of 2+1 gravity is strictly Einsteinian. In mathematics this type of
dynamics ( the dynamics of measured foliations) was discovered totally inde-
pendently of gravity-related considerations by Thurston (1982) in his study of
3-manifolds. Physically, such type of dynamics is realized in dynamics of some
2 dimensional liquid crystals. All this is explained in Kholodenko (2000a,b) and
Kholodenko (2001) whose works, in turn, were inspired by earlier work by Deser,
Jackiw and t�Hooft (1984). The theory of foliations (for surfaces) is thoroughly
discussed in monograph by Nikolaev (2001). The book by Hehl and Obukhov
(2003) uses foliations for description of classical electrodynamics in 3+1 space.
Some basics of foliation theory from the point of view of Lie groups and Lie
algebras are discussed in the very readable book by Moerijk and Mrµcun (2003).
By reversing reduction arguments it is possible to arrive at dynamics of full 3+1
gravity in the presence of matter beginning from the dynamics of measured fo-
liations for 2+1 gravity. The topological properties of dynamics of 2+1 gravity
are described in terms of polynomials of knots and links as explained in detail
in Kholodenko (2001). Accordingly, dynamics of full 3+1 gravity should be
associated with time dynamics of 3-manifolds foliating 3+1 space (Kholodenko
2007a). These remarks provide needed physical justi�cation to works by Witten
(2007) and Kholodenko (2007b) connecting statics and dynamics of 3 (or 2+1)
gravity with conformal and string theories.
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Appendix A. Details of Heisenberg�s derivation of the commutator
identity [x̂; p̂] = i~

In this appendix we would like to provide some details of Heisenberg�s rea-
soning leading to the discovery of [x̂; p̂] = i~. This would be unnecessary should
his original paper (Heisenberg 1925) contain all details.
At the classical level consider a gas of noninteracting atoms, better just one

atom containing N electrons which are assumed to scatter light independently.
The interaction between the incoming light and individual electron is described
with help of the combination d= �E where d is the dipole moment of the
electron in the atom, E is the strength of the external electric �eld which is
assumed to be time-dependent, and � is the polarization tensor (in the simplest
case it is assumed to be a scalar). In the medium the strength of the electric
�eld changes as compared to the vacuum. By denoting it as D it is known that
D=E +4�P where P=Nd. Since, at the same time, by de�nition, d=er we
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have to have an equation for r. It is given by

�r+ !20r+  _r =
e

m
E(t) (A.1)

where e is electron�s charge and m is its mass. In writing this equation it is
assumed that our electron is bound harmonically (with the basic frequency !20)
and that the friction is of known (electromagnetic) nature and is assumed to
be small. Using Fourier decomposition of r(t) we obtain,

r(!) =
e

m

E

!20 � !2 + i!
: (A.2)

This equation allows us to obtain P and, hence, D as follows :

D = E+ 4�P = (1 + 4�N
e2

m

1

!20 � !2 + i!
)E � "(!)E: (A.3)

This equation de�nes a complex frequency-dependent dielectric constant "(!):
From electrodynamics it can be equivalently rewritten as "(!) = (n(!)�i{(!))2
where n(!) is the refractive index while {(!) is the coe¢ cient of absorption.
Using these facts we can write approximately

n(!) = 1 + 2�N
e2

m

1

!20 � !2 + i!
: (A.4)

By ignoring friction in the high frequency limit we obtain,

n(!) = 1� 2�N e2

m!2
: (A.5.)

To account for quantum mechanical e¤ects, Thomas, Reich and Kuhn in 1925
(just before the quantum mechanics was born !) have suggested to replace
Eq.(A.4) by

n(!) = 1 + 2�N
e2

m

X
i

fi
!2i0 � !2

(A.6)

where, following these authors, we ignored friction and introduced the oscillator
strength fi:To reconcile Eq.(A.6) with (A.5) we have to require

P
i

fi = 1: This

requirement is known as the sum rule. These facts were known to Kramers and
Heisenberg55 where our readers can �nd additional details. To make our point
and to save space, we would like to reobtain the result, Eq.(A.6), quantum
mechanically using modern formalism. We refer our reader to the book by
Davydov (1965) for additional details. Basically, we need to calculate quantum
mechanically the dipole moment d, that is

dm =

Z
 �mer md

3r: (A.7.)

55E.g. see the reference in Heisenberg�s paper.
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In this expression the wave function  m is calculated with help of the stationary
perturbation theory with accuracy up to the �rst order in perturbation (which
is er�E). A short calculation produces the following result for the oscillator
strength,

fkm =
2m!km
~

jhk j x̂ j mij2 : (A.8)

This result can be equivalently rewritten as

fkm =
m!km
~

fhk j x̂ j mi� hk j x̂ j mi+ hk j x̂ j mi� hk j x̂ j mig: (A.9)

Since, however,
im!km hk j x̂ j mi = hk j p̂x j mi (A.10)

we can rewrite Eq.(A.9) as

fkm =
1

i~
fhm j x̂ j ki hk j p̂x j mi � hm j p̂x j ki hk j x̂ j mig (A.11)

since !km = �!mk. Finally, we have to require
P
k

fkm = 1: This is possible

only if
1

i~
hm j x̂p̂x � pxx̂ j mi = 1; (A.12)

QED.

Appendix B. Some quantum mechanical problems associated with
the Lie algebra of SO(2,1) group

Following Wybourne (1974) consider the second order di¤erential equation
of the type

d2Y

dx2
+ V (x)Y (x) = 0 (B.1)

where V (x) = a=x2+bx2+c: Consider as well the Lie algebra of the noncompact
group SO(2,1) or, better, its connected component SU(1,1). It is given by the
following commutation relations

[X1; X2] = �iX3; [X2; X3] = iX1; [X3; X1] = iX2 (B.2)

We shall seek the realization of this Lie algebra in terms of the following gener-
ators

X1 :=
d2

dx2
+ a1(x); X2 := i[k(x)

d

dx
+ a2(x)]; X3 :=

d2

dx2
+ a3(x): (B.3)

The unknown functions a1(x); a2(x); a3(x) and k(x) are determined upon sub-
stitution of Eq.s(B.3) into Eq.s(B.2). After some calculations, the following
result is obtained

X1 :=
d2

dx2
+

a

x2
+
x2

16
; X2 :=

�i
2
[x
d

dx
+
1

2
]; X3 :=

d2

dx2
+

a

x2
� x2

16
: (B.4)
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In view of this, Eq.(B.1) can be rewritten as follows

[(
1

2
+ 8b)X1 + (

1

2
� 8b)X3 + c]Y (x) = 0 (B.5)

This expression can be further simpli�ed by the unitary transformationUX1U
�1 =

X1 cosh � +X3 sinh �; UX3U
�1 = X1 sinh � +X3 cosh � with U = exp(�i�X2):

By choosing tanh � = �(1=2 + 8b)=(1=2� 8b) Eq.(B.5) is reduced to

X3
~Y (x) =

c

4
p
�b
~Y (x) (B.6)

where the eigenfunction ~Y (x) = UY (x) is an eigenfunction of both X3 and the
Casimir operator X2 = X2

3 �X2
2 �X2

1 so that by analogy with the Lie algebra
of the angular momentum we obtain,

X2 ~Yjn(x) = J(J + 1)~YJn(x) and (B.7a)

X3
~YJn(x) =

c

4
p
�b
~YJn(x) � (�J + n) ~YJn(x); n = 0; 1; 2; :::. (B7b)

It can be shown that J(J + 1) = �a=4 � 3=16. From here we obtain : J =

� 1
2 (1�

q
1
4 � a);

1
4 � a � 0: In the case of discrete spectrum one should choose

the plus sign in the expression for J . Using this result in Eq.(B.7) we obtain
the following result of major importance

4n+ 2 +
p
1� 4a = cp

�b
: (B.8)

Consider now the planar Kepler problem. In this case, in view of Eq.(32), the
radial Schrödinger equation can be written in the following symbolic form�

d2

dr2
+
1

r

d

dr
+
�

r
+
u

r2
+ g

�
R(r) = 0 (B.9)

By writing r = x2 and R(r) = x�
1
2R(x) This equation is reduced to the canon-

ical form given by Eq(B.1), e.g. to

(
d2

dx2
+
4u+ 1=4

x2
+ 4gx2 + 4�)R(x) = 0 (B.10)

so that the rest of arguments go through. Analogously, in the case of Morse-type
potential we have the following Schrodinger-type equation initially:�

d2

dz2
+ pe2�z + qe�z + k

�
R(z) = 0 (B.12)

By choosing z = lnx2 and R(z) = x�
1
2R(x) Eq.(B12) is reduced to the canonical

form

(
d2

dx2
+
16k + �2

4�2x2
+
4p

�2
x2 +

4q

�2
)R(x) = 0 (B.13)
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By analogous manipulations one can reduce to the canonical form the radial
equations for Hydrogen atom and for the 3-dimensional harmonic oscillator.

Appendix C. Numerical data used for claculations of n�theory
(Table 4).

1 au=149.598�106km
Masses (in kg): Sun 1.988�1030; Jupiter 1.8986�1027, Saturn 5.6846�1026;
Uranus 8.6832�1025; Neptune 10.243�1025:
qj : Jupiter 0.955�10�3; Saturn 2.86�10�4;Uranus 4.37�10�5, Neptune 5.15�10�5:
(rj)1 (km) : Jupiter 127.69�103; Saturn 133.58�103; Uranus 49.77�103;
Neptune 48.23�103:
ln
�
M

2r1

�
: Earth 4.0062, Jupiter 3.095, Saturn 1.844, Uranus 0.9513,

Neptune 1.15.

Appendix D. Connections between the Hill and Neumann�s
dynamical problems.

We follow our paper (Kholodenko 2002) where some mathematical of the
results of the paper by Lazutkin and Pankratova (1975) were used for solution
of concrete physical problems. In particular, following our paper, let us consider
the Fuchsian-type equation given by

y
00
+
1

2
�y = 0; (D.1)

where the potential � is determined by the equation � = [f ] with f = y1=y2
and y1; y2 being two independent solutions of Eq.(D.1) normalized by the re-
quirement y

0

1y2 -y
0
2 y1 = 1:The symbol [f ] denotes the Schwarzian derivative of

f . Such a derivative is de�ned as follows

[f ] =
f 0f 000 � 3

2 (f
00)
2

(f 0)
2 : (D.2)

Consider Eq.(D.1) on the circle S1 and consider some map of the circle given by
F (t+1) = F (t)+1: Let t = F (�) so that y(t) = Y (�)

p
F 0(�) leaves Eq.(D.1) form

-invariant, i.e. in the form Y 00+ 1
2�Y = 0 with potential � being de�ned now as

�(�) = �(F (�))[F 0(�)]2+[F (�)]: Consider next the in�nitesimal transformation
F (�) = � + �'(�) with � being some small parameter and '(�) being some
function to be determined. Then, �(� + �'(�)) = �(�) + �(T̂')(�) + O(�2):
Here (T̂')(�) = �(�)'0(�) + 1

2'
000(�) + 2�0(�)'(�): Next, we assume that the

parameter � plays the same role as time. Then, we obtain

lim
t!0

�� �
t

=
@�

@t
=
1

2
'000(�) + �(�)'0(�) + 2�0(�)'(�) (D.3)
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Since thus far the perturbing function '(�) was left undetermined, we can choose
it now as '(�) = �(�): Then, we obtain the Korteweg -de Vriez (KdV) equation

@�

@t
=
1

2
�000(�) + 3�(�)�0(�) (D.4)

determining the potential �(�): For reasons which will be explained in the text,
it is su¢ cient to consider only the static case of KdV, i.e.

�000(�) + 6�(�)�0(�) = 0: (D.5)

We shall use this result as a reference for our main task of connecting the Hill
and the Neumann�s problems. Using Eq.(54) we write

u(�) = �(�)� < _�; _� > : (D.6)

Consider an auxiliary functional '(�) =< �;A�1� > : Suppose that '(�) = u(�):
Then,

du

dt
= 2 < _�; A� > �2 < ��; _� > : (D.7)

But < ��; _� >= 0 because of the normalization constraint < �; � >= 1: Hence,
du

dt
= 2 < _�;A� > : Consider as well

d'

dt
: By using Eq.s (54) it is straightforward

to show that
d'

dt
= 2 < _�; A�1� > : Because by assumption '(�) = u(�) we have

to demand that < _�;A�1� >=< _�;A� > as well. If this is the case, consider
furthermore

d2u

dt2
= 2 < ��;A�1� > +2 < _�; A�1 _� > (D.8)

Using Eq.s(54) once again we obtain

d2u

dt2
= �2 + 2u'+ 2 < _�; A�1 _� > : (D.9)

Finally, consider as well
d3u

dt3
: Using Eq.(D.9) as well as Eq.(54) and (D.7) we

obtain,
d3u

dt3
= 2

du

dt
'+ 4u

du

dt
= 6u

du

dt
(D.10)

By noticing that in Eq.(D.5) we can always make a rescaling �(�) ! ��(�)
we always can choose � = �1:Therefore Eq.s (D.5) and (D.10) coincide. This
establishes the correspondence between the Neumann and Hill-type problems.
QED
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