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Abstract

As we know probability of finding a system in one of its accessible
states is proportial to the Boltzmann factor. It is shown that contrary to
what is thought at present in this proportion the energy appearing in the
Boltzmann factor is not a variable but it is a constant and the variable is
the state accessible for the system having this constant energy. So, what
at present is accepted as Boltzmann factor is not real. Deduction of the
Maxwell velocity distribution as an instance of the consequences of the
real Boltzmann factor, and the first deduction of the relation E = hν
as an instance of the consequences of the wrong Boltzmann factor are
presented. A logical review of some of the fundamental elements of the
statistical mechanics, that also contains some new viewpoints, has been
necessary. A factor is introduced in a general expression for molar specific
heat which plays the role of partition (not equipartition) of energy and
giving suitable amounts to it all the practical cases including ones related
to ideal gases and crystalline solids are covered.

1 Introduction

The Boltzmann factor is a famous factor upon which several important
relations have been obtained in physics. Unfortunately, carelessness about
the essence of the parameters used in this factor has caused an untrue un-
derstanding of it. In other words the factor which at present is being used
under the name of Boltzmann factor, because of using of some quantities
other than what must be used in it, is a wrong factor.

In this paper the above material are proven in detail. In addition,
some samples of the valid results obtained from the correct form of the
Boltzmann factor and some samples of the current invalid results obtained
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from the wrong construing of this factor, including Planck’s deduction of
the famous relation E = hν, are shown.

2 Necessary elements of the statistical
mechanics

State of a system of some particles, which don’t have any influence on each
other (except probably collision), will be specified by knowing the position
and the momentum of each of these particles. We take into consideration
a six-dimensional space named as phase space in which each point has six
components x, y, z, px, py, and pz. We divide the phase space into small
cells volume of each being δxδyδzδpxδpyδpz. If we prescribe δxδpx = h′

and δyδpy = h′ and δzδpz = h′, then the volume of each of these cells
will be h′3. Each particle in its position and momentum is in fact placed
in a point in the phase space and in fact is set in a cell of volume h′3.
We suppose that while a particle is being set in each point inside a cell,
its energy change, ie its kinetic energy change, is negligible. Thus, in
fact to each cell an energy is connected which is related to a particle
inside this cell. It is obvious that f particles, forming an isolated system,
are occupying f cells (being not necessarily different) in the phase space
and their total energy will be conserved. It is certain that it is possible
that the positions of the particles in the phase space will be changed,
but this process will proceed in a definite path, namely in some path in
which the total energy of the particles will be conserved. Therefore, for a
definite total energy a definite path in the phase space will be distinguished
in which the system can proceed. Attention to this fact is important
that since a cell volume of the phase space doesn’t have a differential
magnitude, ie zero magnitude, although it is considered much small, it
is possible that for a definite total energy, E, the path will remain the
same and won’t be changed in a much small energy interval about this
energy, E. In fact since each cell volume in the phase space doesn’t have a
differential, ie in fact zero, magnitude, the path related to a definite energy
in the phase space is not a continuous path, but it is in fact in the form of
a successive series of various configurations of a definite set of points in the
phase space. For example if we suppose that the energies connected to the
cells of the phase space shown in the figure are proportional to the numbers
written in the cells, then the path related to the energy 6 of two particles
will be the same shown at subsequent figures. (Of course the displacement
of these configurations by each other is completely unimportant, just like
the unimportance of the displacement of the points of a curve by each
other which will not at all change the essence of the curve.)

In an isolated system, with a total energy E, we call each of these
configurations of the path related to E as an accessible state for the sys-
tem. We call the number of the total of these configurations as Ω(E).
On definition we say that an isolated system is in the equilibrium state
when the probability of finding the system in each of its accessible states
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is independent of time, ie when always a definite fraction of a numerous
number of these systems is related to an accessible state.

Now we express here two important statistical postulates:
a) If an isolated system is in equilibrium state, then all of its accessible
states will be equiprobable, and vice versa.
b) If an isolated system is not in equilibrium state, then it will transform
during the time till it will reach the equilibrium state.

Now suppose that our isolated system consists only of a particle with
the energy ε. We know that this particle has three degrees of freedom.
Let’s set at present this particle at freedom in only one of these degrees. It
is clear that in a specified time interval this particle can pass through some
paths the number of which is proportional to the speed of the particle.
Then, if the particle (kinetic) energy becomes n fold, total number of its
accessible states will become

√
n fold, because in fact the speed will have

become
√

n fold. Therefore, in this case that the particle has only one
degree of freedom, the total number of its accessible states is proportional
to ε1/2; but since in practice the particle has three degrees of freedom,
the total number of its accessible states is proportional to ε1/2ε1/2ε1/2, ie
Ω(ε) is proportional to ε3/2.

Now suppose that we have an f -particle isolated system with a total
energy E. Mean energy of each particle is ε = E/f . When Ω(E) is the
total number of accessible states of the system with energy E, we say that
ω(ε) is the total number of accessible states of one particle of this system
with energy ε. As we indicated we have ω(ε) being proportional to ε3/2.
For evaluating Ω(E) we know that on the average there are ω(ε) accessible
states for each particle and then in general there will be ω(ε)f accessible
states for f particles. Thus Ω(E) is proportional to ω(ε)f , and since ω(ε)
is proportional to ε3/2, we conclude that Ω(E) is proportional to ε3f/2.

Suppose that the two systems A and A′ are in energetic contact with
each other, but the set of these two systems is isolated. We name the
set of these two systems as A∗. Since A∗ is isolated, its total energy,
E∗, must remain constant. We suppose that Ω∗(E∗) is the total num-
ber of accessible states of the isolated system A∗, and Ω∗(E∗)E is the
total number of accessible states of A∗ in each of which the energy of
the system A is E. Probability of finding the energy of A equal to
E is P (E) = Ω∗(E∗)E/Ω∗(E∗) = cΩ∗(E∗)E in which c = 1/Ω∗(E∗)
is a constant coefficient independent of E. Ω(E) is the number of ac-
cessible states for the system A with the energy E, and Ω′(E∗ − E)
is the number of accessible states for the system A′ with the energy
E′ = E∗ − E, and Ω(E)Ω′(E∗ − E) is the number of accessible states
for the system A∗ in each of which the energy of the system A is E, ie
Ω∗(E∗)E = Ω(E)Ω′(E∗ − E), and therefore P (E) = cΩ(E)Ω′(E∗ − E).

Let’s see under which conditions the curve of P (E) in terms of E
will have its maximum. Since E ≥ 0 and then certainly P (E) > 0, for
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extremum we have:

dP (E)

dE
= 0 ⇔ (

d

dE
lnP (E) =

1

P (E)

dP (E)

dE
) = 0

and in the point of extremum, ie when we have dP (E)/dE = 0, we shall
also have:

> >
< <d2P (E)

dE2
= 0 ⇔ (

d2

dE2
lnP (E) =

1

P (E)

dP (E)

dE
) = 0.

Therefore, the conditions that cause maximization of the curve P (E) in
terms of E are the same conditions that cause maximization of the curve
lnP (E) in terms of E, and we shall investigate this recent case. We have:

P (E) = cΩ(E)Ω′(E′) ⇒ lnP (E) = lnc + lnΩ(E) + lnΩ′(E∗ − E)

⇒ dlnP (E)

dE
=

dlnΩ(E)

dE
+

dlnΩ′(E∗ − E)

dE
=

dlnΩ(E)

dE
− dlnΩ′(E∗ − E)

d(E∗ − E)

=
dlnΩ(E)

dE
− dlnΩ′(E′)

dE′ .

Therefore, it is seen that the condition under which P (E) is extremum is
that the expression dlnP (E)/dE = dlnΩ(E)/dE − dlnΩ′(E′)/dE′ to be
equal to zero, ie this condition is establishment of the equality dlnΩ(E)/dE
= dlnΩ′(E′)/dE′ or β(E) = β′(E′) where β(E) = dlnΩ(E)/dE and
β′(E′) = dlnΩ′(E′)/dE′. We shall now prove that this condition for
being extremum is the same condition for maximization. We have:

(E = fε & Ω(E) ∝ ε3f/2) ⇒ Ω(E) ∝ E3f/2 ⇒ lnΩ(E) = cte. +
3f

2
lnE

⇒ (β(E) =
dlnΩ(E)

dE
) =

3f

2
· 1
E
⇒ (

dβ(E)

dE
=

d2lnΩ(E)

dE2
) =

−3f

2
· 1

E2
< 0,

and similarly

(E′ = f ′ε′ & Ω′(E′) ∝ ε′3f ′/2) ⇒ Ω′(E′) ∝ E′3f ′/2

⇒ lnΩ′(E′) = cte′. +
3f ′

2
lnE′ ⇒ (β′(E′) =

dlnΩ′(E′)

dE′ ) =
3f ′

2
· 1

E′

⇒ (
dβ′(E′)

dE′ =
d2lnΩ′(E′)

dE′2 ) =
−3f ′

2
· 1

E′2 < 0

Therefore, P (E) will be maximum if and only if β(E) = β′(E′).

Temperature of a system of particles (solid, liquid or gas) is an ex-
pression proportional to the mean kinetic energy (excluding the potential
one) of each molecule (or particle) of the system. Proportion constant
should be selected properly one time for always. This act will be done
soon. It should be emphasized that what the thermometers show as the
temperature of a system is the mean kinetic energy of the molecules of
the system (regardless of the kind of the system as solid, liquid or gas)
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not also probably the (mean) potential energy of the molecules of the sys-
tem. The reason of this statement is, in a quite intuitive manner, that it
is only the motion of the molecules that can have practical effect on the
thermometer, not probably their potential static states.

The system we have discussed so far in this article is a system which, as
conditioned at first, its molecules don’t have any influence on each other
(except probably collision) (ie it is practically a set of the molecules of
a perfect gas), and then all the energies indicated by E or ε are kinetic
(not also potential which such an energy does not exist in such a system).
Therefore, the mean kinetic energy of this set is ε = E/f . We saw that
β(E) = 3f/(2E), and then ε = E/f = 3/(2β(E)). Therefore, temperature
is an expression proportional to the recent expression. We indicate the
temperature by T and the proportion constant (which we want to be
positive) by 2/(3k). In this manner we shall have:

T =
2

3k
ε =

2

3k
· 3

2β(E)
=

1

kβ(E)
.

We see that the temperature of a system, which is proportional to the
mean kinetic energy of its molecules, takes the form of T = 1/(kβ(E))
in the case of the system under discussion. (k is named as Boltzmann
constant.)

We saw that the condition of maximization of the curve P (E) in terms
of E was the establishment of the equality β(E) = β′(E′). This means,
according to the definition of temperature, that the condition of maximiza-
tion of P (E) is that T and T ′, which are in turn the temperatures of the
systems A and A′, to become equal to each other. It is obvious that if E is
such that T isn’t equal to T ′, then the systems A and A′ will be in states
of little probability, and then will interchange so much energy that at last
the result T = T ′ will be obtained. Since dT/dE = (−1/(kβ2))(dβ/dE)
and we saw dβ/dE < 0, we have dT/dE > 0. (In a similar manner we can
see that also dT ′/dE′ > 0.) This means that, as expected, the (kinetic)
energy will flow toward that system which its temperature is less. (It can
be seen from the relation T = 1/(kβ) = 1/(k(3f/(2E))) = 2E/(3kf) that
if E = 0, we shall have T = 0, and if E = ∞, we shall have T = ∞.)

Considering the relation which we now have between the temperature
and the mean kinetic energy of the molecules (T = 2ε/(3k)), let’s see what
more we can say about the molecules of a perfect gas.

As performed in most of the preliminary textbooks, we can consider
a molecule of the gas and calculate difference between its momentums
before and after its hitting against a wall of the container, and consider
the time of its travel between the walls and the number of the molecules
of the gas. (For example see Physics by Halliday and Resnick, John Wiley
& Sons, 1978.) In this manner we finally shall obtain p = ρv2/3 in which
p is the gas pressure, ρ is the (mass) density of the gas, and v2 is the mean
value of the squares of the speeds of the molecules. Indicating the total
mass of the gas molecules by M , the mass of each molecule by m, the
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volume occupied by the molecules by V , and the number of the molecules
by N , we have

p =
1

3
ρv2 =

1

3

M

V
v2 ⇒ pV =

2

3
M

v2

2
=

2

3
Nm

v2

2
=

2

3
N(

1

2
mv2) =

2

3
Nε

in which, as before, ε is the mean kinetic energy of each molecule ie is equal
to (1/2)mv2. We saw, beforehand, that T = 2ε/(3k) or ε = (3/2)kT , and
then pV = (2/3)N((3/2)kT ) = NkT = nN0kT in which n is the number
of moles of the molecules and N0 is Avogadro’s number. Since both N0

and k are constant, the factor N0k is shown by a single constant, R (named
as gas constant). Therefore, we have pV = nRT .

3 The real Boltzmann factor

Now we proceed to the more fundamental part of this paper. So far we
have been discussing about P (E), which was the probability of finding the
energy of the system A equal to E. Now we want to know the probability
of finding the system A with energy E in the quite special state r, ie we
want to find the probability of finding the system A in a special one of
its accessible states while the energy of A is the constant value E. This
probability is obviously equal to Pr = Ω∗(E∗)rE/Ω∗(E∗) = cΩ∗(E∗)rE in
which Ω∗(E∗)rE = 1×Ω′(E∗−E) and then Pr = cΩ′(E∗−E) = cΩ′(E′).
(See Statistical Physics, Berkeley physics course, by Reif, McGraw-Hill,
1975.) We suppose that E � E∗. Let’s expand lnΩ′(E′) in the form of a
Taylor series about the point E′ = E∗:

lnΩ′(E′) = lnΩ′(E′)|E′=E∗ +
dlnΩ′(E′)

dE′ |E′=E∗ · (−E)

+
1

2!

d2lnΩ′(E′)

dE′2 |E′=E∗ · (−E)2 +
1

3!

d3lnΩ′(E′)

dE′3 |E′=E∗ · (−E)3 + · · · .

We know that

lnΩ′(E′) = cte.′ +
3f ′

2
lnE′

because

(E′ = f ′ε′ & Ω′(E′) ∝ ε′3f ′/2) ⇒ Ω′(E′) ∝ E′3f ′/2.

Then
dnlnΩ′(E′)

dE′n =
3(−1)n+1(n− 1)!f ′

2E′n

in which n = 1, 2, 3, · · ·. Therefore, the general term of the above expan-
sion is −(3f ′/(2n))(E/E∗)n (of course for n = 0 we have the first term of
the expansion, ie lnΩ′(E′)|E′=E∗), and since (E/E∗) � 1, we can write
with a very good approximation

lnΩ′(E′) = lnΩ′(E′)|E′=E∗ − (3f ′/2)E/E∗.

Now we assert that we can write (−3f ′/2)E/E′ instead of (−3f ′/2)E/E∗

with a very good approximation if (E/E∗) � 1, because
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δ(E/E∗)/δE∗ = −E/E∗2 and since here δE∗ = E′ − E∗ = −E, we have
δ(E/E∗) = (E/E∗)2, and since (E/E∗) � 1, we conclude that δ(E/E∗) =
(E/E∗)2 ' 0 with a very good approximation. Namely with replacing E∗

by E′ in the second term of the above relation the produced change is
negligible because of excessive smallness. Therefore, we can write

lnΩ′(E′) = lnΩ′(E′)|E′=E∗− dlnΩ′(E′)

dE′ ·E = lnΩ′(E′)|E′=E∗−β′(E′) ·E

⇒ Ω′(E′) = cte.e−β′(E′).E

in which cte. is independent of E′. Therefore, Pr = cΩ′(E′) = c · cte.e−β′(E′)·E

or
Pr = c′e−β′(E′)E (1)

in which c′ = c · cte. is a constant independent of E and E′. It must
be emphasized again that the expression (1) is the probability of finding
the system A, with constant energy E, in the quite special accessible
state r, under the condition that A is in contact with the source A′ and
E � E + E′ = E∗ and E∗ will remain constant because of the isolation
of the set of A and A′.

Unfortunately, there is a wrong construing of this equation (ie (1))
in the current statistical physics books. This wrong construing is that
after replacing E in Eq. (1) by Er, this equation is interpreted as the
probability of this matter that the system A, which is in contact with the
much more energetic system A′, has an energy between the special energy
Er and the energy Er + δEr, while the set of A and A′ is isolated. It is
obvious that this interpretation is not at all real.

Indeed, Pr in Eq. (1) is not a function of E, but E in this relation plays
the role of a constant. Pr is a function of different states accessible for the
system A which has the constant energy E. In the wrong interpretation,
explained just now, Pr is taken as a function of Er; then one can integrate
it over some extent of energy. Such an integration will be done over (Er

in) the exponent of e in the equation (because wrongly E is replaced by
Er in this equation).

But truly the only integration which can be done on Eq. (1) is over the
different states accessible for the system with the constant energy (E), ie
in fact over the variable r which itself doesn’t appear as a mathematical
factor. In such an integration, E plays only the role of a constant.

But what is really the cause of this wrong construing of Eq. (1)? The
existence reason of this wrong construing is that for obtaining Eq. (1),
instead of the explicit method of this paper the implicit method of La-
grangian multipliers is used often, which eventually results in a relation
like

ni = gie
−αe−βui

in which ni is the number of molecules each having the energy ui, and
gi is the probability of that a molecule has the energy ui (gi = ni/n) ,
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and β and α are the Lagrangian multipliers which must be determined
(eg see Perspectives of Modern Physics by Beiser, McGraw-Hill, 1969). It
is obvious that by dividing of each side of the recent relation by n (the
number of all the molecules) we have ni/n = (gie

−α/n)e−βui the left side
of which gives the probability of that the molecule has the energy ui, and
we can say that this probability has linear proportion to e−βui only when
the coefficient gie

−α/n is constant (ie does not depend on the energy ui),
and it is quite obvious that this is not the case (because as in Eq. (1), β
depends on E′ and then on E, or in other words as in the recent relation β
depends on ui, α can also depend on ui). But, unfortunately, to this fact is
not paid attention, and it is assumed that this probability is proportional
to e−βui . This is just the same current wrong construing of Eq. (1). The
correct is that we say that in the true relation ni = gie

−αe−βui the factor
e−βui is what that in this paper appears in the form of Eq. (1).

(Under the condition E � E∗ we showed that Pr(E) = c′e−β′(E′)E .
It is obvious that we must have

∑
r
Pr(E) = 1, in which the sum-

mation is over all the accessible states in energy E. Therefore, c′ =
(
∑

r
e−β′(E′)E)−1 = (Ω(E)e−β′(E′)E)−1 and then, as it is expected, we

shall have Pr(E) = 1/Ω(E). If y is a quantity that assumes the amount
yr when the system A, with the constant energy E, is in the state r, then
the mean value of y will be obtained from the relation y =

∑
r
Pr(E)yr =

(
∑

r
yr)/Ω(E) which could be written in the unsimplified form of

y =

∑
r
e−β′(E′)Eyr∑
r
e−β′(E′)E

.

4 Maxwell velocity distribution

Before more continuing the discussion it is necessary to say that the rela-
tion (1) can yield the fundamental relations of the statistical mechanics.
For showing this, we shall obtain the Maxwell velocity distribution:

We saw that if E � E∗, then Pr ∝ e−β′(E′)E . It is obvious that
this probability (ie Pr) is also proportional to the volume of the cell in the

phase space, h′3 = δxδyδzδpxδpyδpz. Thus Pr ∝ e−β′(E′)Eδxδyδzδpxδpyδpz.

Pr/h′3 is the density of the probability of finding the system A, with
the energy E, in the special state r, and we indicate it by Pr. Thus

Prh
′3 = c1e

−β′(E′)Eh′3

in which c1 is the proportion constant. We have∑
r
Prδxδyδzδpxδpyδpz = 1, which in differential and integral form we can

write it as
∫

r
Prdxdydzdpxdpydpz = 1. (It is important to mind that the

integration must be done over the different r-states not over any special
volume in the phase space.) Therefore,

c1 = 1/(
∑

r
e−β′(E′)Eδxδyδzδpxδpyδpz) or

c1 = 1/(
∫

r
e−β′(E′)Edxdydzdpxdpydpz).
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In the case of a particle of a monoatomic perfect gas we have E =

1/2mv2 = p2/(2m); so the expression e−β′(E′)mv2/2d3rd3p, in which we
have d3r = dxdydz and d3p = dpxdpydpz, is proportional to the proba-
bility of finding the location of the particle in the cubic range between r
and r+ dr, and the momentum of the particle in the cubic range between
p and p + dp. Now since mv = p and so md3v = d3p, we conclude

that e−β′(E′)mv2/2d3rd3p is proportional to the probability of finding the
location of the particle in the cubic range between r and r + dr and the
velocity of the particle in the cubic range between v and v + dv. If the
proportion constant of this proportion is c2, then this probability will

be c2e
−β′(E′)mv2/2d3rd3v. If we integrate this probability over the unit

volume about a definite point, the result, ie
∫

V
c2e

−β′(E′)mv2/2d3rd3v =

c2e
−β′(E′)mv2/2d3v in which V is the same unit volume about the point,

will be the probability of this matter that in a unit volume about this
point, the end of the velocity vector of a particle, which has the abso-
lute speed v, is in the cubic range between v and v + dv (ie its velocity
components are between vx and vx + dvx, vy and vy + dvy, and vz and
vz + dvz). If we show this probability as a percentage, eg in the form
of m%, this will mean that if, in the unit volume about the given point,
we evaluate simultaneously a hundred particles, each of which having the
absolute speed v, from the totality of the particles which are similar to
and independent of each other, we shall see that on the average only
m particles of these one hundred particles will have the velocity vectors
the end of each being in the cubic range between v and v + dv. So,
if we have nv particles with absolute speed v in the unit volume about
that definite point, and evaluate them simultaneously, we shall see that
nv × (m/100) particles of them will have the above characteristic. There-

fore, since we said that (m/100) = c2e
−β′(E′)mv2/2d3v, the expression

nv × (m/100) = nvc2e
−β′(E′)mv2/2d3v is in fact the volume density of

those particles which the end of the velocity of each of them is in the
cubic range between v and v + dv, in a definite point r (or in fact in a
desirable point r, because there isn’t any dependence on r on the right
side of the recent relation). Since the range of the velocity is a differential
range (d3v), this volume density is also in fact differential, and if we divide
it by d3v, the velocitical density of the volume density of those particles
which the end of the velocity vector of each of them is in the cubic range
between v and v+dv will be obtained that we show it by f(v). Therefore,

we reach the Maxwell velocity distribution: f(v)d3v = c3e
−β′(E′)mv2/2d3v

in which c3 = nvc2.

5 Consequences of the wrong construing
of the Boltzmann factor

In this section we want to see how the first deduction of the relation
E = hν has been based on the wrong construing of the Boltzmann factor.
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So we accept the relation (1) in the form of PEr = c′e−β′(E′)Er delib-
erately temporarily and then we shall evaluate its consequences: Since∑

r
PEr = 1, we have c′ = 1/(

∑
r
e−β′(E′)Er ) and so

PEr = e−β′(E′)Er /(
∑

r

e−β′(E′)Er ).

Now we divide each side of the recent relation by δEr:

PEr

δEr
=

e−β′Er

(
∑

r
e−β′Er )δEr

in which the expression on the left side is the density of probability, and
in limit will result in the relation PEr = e−β′Er /

∫ ∞
0

e−β′(E′)Er dEr, and

since
∫ ∞
0

e−β′Er dEr = 1/β′, we shall have PEr = β′e−β′Er which is the
density of probability of finding the system A with some energy between
Er and Er + δEr. If we have a big system consisting of some numerous
number of smaller systems (eg each similar to A) such that all of them are
in contact with a thermal source which is much more energetic than each
of them, then the mean value of the energy of each of these small systems
will be E =

∫ ∞
0

ErPEr dEr or E =
∫ ∞
0

β′e−β′Er ErdEr = 1/β′ = kT ′

in which T ′ is the source temperature and k is the Boltzmann constant.
(Just here we see another contradiction, because while it is claimed that
E = kT ′ is the mean energy of the small systems which are in contact with
a thermal source which its temperature is T ′, the limit of the smallness of
these systems is not at all distinct, and so if we suppose that the source
is the whole universe for example, we can suppose that the big system,
mentioned above, to be a set of some separate molecules in a turn, and in
another turn to be a set of some separate blocks of stone for example, while
in each turn we shall obtain the same result E = kT ′ for the mean value of
the energy of each molecule or each block! It is obvious that this is quite
irrational.) Since according to the current equipartition theorem the mean
value of the energy of each particle of a system of particles having both
kinetic and elastic potential energies, is equal to 1/2kT ′ + 1/2kT ′ = kT ′,
the obtained E = kT ′ can be interpreted as the mean value of the energy
of these particles.

Now we suppose that these particles are the contents of a black-
body cavity in the temperature T ′. Experience shows that the mean
energy of the cavity radiation is about kT ′ for the frequencies approach-
ing zero, but is about zero for the frequencies approaching infinity. As
an attempt to justify this matter, we can draw the curve of ErPEr in
terms of Er (see Quantum Physics of atoms, molecules, solids, nuclei
and particles by Eisberg and Resnick, John Wiley & Sons, 1974). Since

PEr = (1/(kT ′))e−Er/(kT ′), the maximum of the curve will occur in
Er = E = kT ′, also we have

E =

∫ ∞

0

ErPEr dEr = kT ′
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which is equal to the area under the curve. If we suppose that Er can exist
in discontinuous forms of 0, ∆Er, 2∆Er, 3∆Er, · · · , then we shall see
that E ≈ kT ′ when ∆Er ≈ 0, and E ≈ 0 when ∆Er ≈ ∞. Comparison of
these results with the previous results obtained by the experience indicates
that we must have ∆Er ∝ ν.

Above reasoning is Planck’s reasoning in obtaining the relation ∆Er ∝ ν
or E = hν; but as we said, this reasoning is on the basis of a quite wrong
construing of Eq. (1). Therefore, the equation ∆E = hν or simply E = hν
may be valid only if it can be derived uniquely from the results obtained
from the photoelectric effect (which is not of course the case as shown in
the paper “Classical justification of the photoelectric effect”).

The Langevin formula for orientational polarizability has also been
obtained in a similar manner by using the above mentioned wrong con-
struing of Eq. (1), and then can not be valid unless it can be obtained
through another way.

6 Specific heat of solids and gases

Maybe it is said that but the equipartition theorem has been obtained by
using the very current construing of the Boltzmann factor which according
to this paper is wrong. (To prove this theorem, in fact, integration is done
over different energies not over different forms of a constant energy.) And
important is that the result of this theorem can predict the empirical
relation cV = 3R valid for hot crystalline metals. Thus, let’s see what the
actuality is:

As we said, temperature of a set of molecules is an expression propor-
tional to the mean kinetic energy of them. Indicating this mean kinetic
energy by ε, the total kinetic energy (not including the potential one) of
the molecules of the set by E, and the number of the molecules of the set
by f , we saw that for the temperature of the system (or set), T , we have

T =
2

3k
ε =

2

3k

E

f
=

2

3R/N0

E

f
=

2E

3(f/N0)R
=

2

3nR
E (2)

in which R is the gas constant, k is the Boltzmann constant, N0 is Avo-
gadro’s number and n is the number of moles of the molecules of the
set.

Notice a point again. Temperature is the mean “kinetic ” energy of
each molecule, not its mean total energy regardless of its kind (includ-
ing probably its potential energy). Therefore, if we should calculate the
expression

cV =
1

n

dU

dT
(3)

for the molar specific heat of a crystalline solid by giving it the energy dU
and measuring its increment of dT in temperature, we must be attentive
that U in this relation (ie in Eq. (3)) is other than the term E in Eq. (2).
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In other words all the energy given to the set won’t necessarily be con-
served as the kinetic energy of the molecules of the set, but a part of the
given energy may be conserved, eg, in the form of potential energy of the
molecules of the set if possible.

Then, we suppose that the conditions of the molecules of the set are
such that only 1/z of the energy given to the set conserves in the form of
kinetic energy of the molecules of the set and the rest of it conserves as
the potential energy of these molecules. Then, we must write E = U/z
which considering Eq. (2) results in T = 2U/(3nRz) which leads to U/n =
3/2RzT whereby we shall have n−1dU/dT = 3/2Rz. Therefore, we have

cV =
3Rz

2
(4)

for Eq. (3).

For ideal gases that all the energy given to the gas molecules are con-
served as their kinetic energy and z is equal to one for them, we have
cV = 3/2R. But for a crystalline solid which, on average, half of the
energy of each of its molecules, like an oscillating spring, is in the form
of kinetic energy and the other half is in the form of potential energy,
z is equal to 2. In this case we shall have cV = 3R for Eq. (4). As we
see the empirical equation cV = 3R for hot crystalline metals has been
obtained without any necessity to use the current wrong construing of the
Boltzmann factor.

The mechanism presented above by introducing the factor z merits the
name of partition of energy instead of equipartition of energy.
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