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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours to
print out the predictions of this kind of unified theory as an article in the desired format. TGD is
something different and I am not ashamed to confess that I have devoted the last 32 years of my life
to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it
was October. What I realized was that the representability of physical space-times as 4-dimensional
surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space
with some very small compact internal space could resolve the conceptual difficulties of general rela-
tivity related to the definition of the notion of energy. This belief was too optimistic and only with
the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance
has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with
particles being represented by space-time surfaces with finite size so that TGD could be also seen as
a generalization of the string model. Much later it became clear that this generalization is consistent
with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of
imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary
particle quantum numbers could be possible in this framework: it took two years to find the unique
internal space providing this geometrization involving also the realization that family replication
phenomenon for fermions has a natural topological explanation in TGD framework and that the
symmetries of the standard model symmetries are much more profound than pragmatic TOE builders
have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading
to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the
gauge group implying instability of proton.

There have been also longstanding problems.

e Gravitational energy is well-defined in cosmological models but is not conserved. Hence the
conservation of the inertial energy does not seem to be consistent with the Equivalence Princi-
ple. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum
extremals with respect to the inertial energy. About 25 years was needed to realize that the sign
of the inertial energy can be also negative and in cosmological scales the density of inertial energy
vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the
notion of zero energy ontology which deviates dramatically from the standard ontology being
however consistent with the crossing symmetry of quantum field theories. In this framework the
quantum numbers are assigned with zero energy states located at the boundaries of so called
causal diamonds defined as intersections of future and past directed light-cones. The notion of
energy-momentum becomes length scale dependent since one has a scale hierarchy for causal
diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence
Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro
algebras providing also a justification for p-adic thermodynamics.

e From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical electro-
magnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields
are classical correlates for long range color and weak interactions assignable to dark matter.
The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy
of fractal copies of standard model physics. Also the understanding of electro-weak massivation
and screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of
the problem and provides also surprisingly powerful insights to the mathematical structure of
quantum TGD.



iv

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be enough
to construct the quantum theory but the first discovery made already during first year of TGD was that
these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy
of the theory. This turned out to be the case.

e It took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
"world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still
a coupled of years and I discovered that quantum states of the Universe can be identified as
classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of
quantum physics.

e During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with sheets
representing physical subsystems of various sizes. At the beginning of 90s I became dimly
aware of the importance of p-adic number fields and soon ended up with the idea that p-adic
thermodynamics for a conformally invariant system allows to understand elementary particle
massivation with amazingly few input assumptions. The attempts to understand p-adicity from
basic principles led gradually to the vision about physics as a generalized number theory as
an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW
approach. One of its elements was a generalization of the number concept obtained by fusing real
numbers and various p-adic numbers along common rationals. The number theoretical trinity
involves besides p-adic number fields also quaternions and octonions and the notion of infinite
prime.

e TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measure-
ment theory by identifying quantum jump as a moment of consciousness and by replacing the
observer with the notion of self identified as a system which is conscious as long as it can avoid
entanglement with environment. ”Everything is conscious and consciousness can be only lost”
summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition
and intentionality emerged also rather naturally and implies perhaps the most dramatic gener-
alization of the space-time concept in which most points of p-adic space-time sheets are infinite
in real sense and the projection to the real imbedding space consists of discrete set of points.
One of the most fascinating outcomes was the observation that the entropy based on p-adic
norm can be negative. This observation led to the vision that life can be regarded as something
in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as
a correlate for various positively colored aspects of conscious experience and means also the
possibility of strongly correlated states stable under state function reduction and different from
the conventional bound states and perhaps playing key role in the energy metabolism of living
matter.

e One of the latest threads in the evolution of ideas is only slightly more than six years old.
Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits
as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to
see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. During summer 2010 several new insights about the mathematical
structure and interpretation of TGD emerged. One of these insights was the realization that
the postulated hierarchy of Planck constants might follow from the basic structure of quantum
TGD. The point is that due to the extreme non-linearity of the classical action principle the
correspondence between canonical momentum densities and time derivatives of the imbedding
space coordinates is one-to-many and the natural description of the situation is in terms of local
singular covering spaces of the imbedding space. One could speak about effective value of Planck



constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

e With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
which can be interpreted as a complex square root of density matrix representable as a diagonal
and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
energy ontology can be said to define a square root of thermodynamics at least formally.

e A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
which the induced metric of space-time surfaces changes its signature and in terms of space-like
3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
measurement interaction term assigned with light-like 3-surfaces.

e The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further general-
ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
Yangian symmetry of AV = 4 supersymmetric Yang-Mills theories is highly suggestive. Here the
replacement of point like particles with partonic 2-surfaces means the replacement of conformal
symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
metry provides also a further refinement to the notion of conserved quantum numbers allowing
to define them for bound states using non-local energy conserved currents.

e A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kéahler action for the preferred extremals defining WCW Kahler
function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
duality reduces the Kahler action to Chern-Simons term with the condition that the 3-surfaces
are extremals of Chern-Simons action subject to the constraint force defined by the weak form
of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
theory to a topological quantum field theory. Also the identification of the Kéahler function of
WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
in terms of braids with interpretation in terms of finite measurement resolution coded to the
basic structure of the solutions of field equations.

e In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
is however plagued by UV and IR divergences and one must keep mind open for the possibility
that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic
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2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like ” wormhole
throats” suggests that virtual particle do not differ from on mass shell particles only in that
the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the
wormhole defining virtual particle would contact carry on mass shell quantum numbers but
for virtual particles the four-momenta need not be parallel and can also have opposite signs of
energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the
virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive
and reduce the dimension of the sub-space of virtual momenta and if massless particles are
not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman
diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV
and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable
that fermionic propagatos are massless propagators but for on mass shell four-momenta. This
gives a connection with the twistor approach and inspires the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and
I have left all about applications to the introductions of the books whose purpose is to provide a
bird’s eye of view about TGD as it is now. This vision is single man’s view and doomed to contain
unrealistic elements as I know from experience. My dream is that young critical readers could take
this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to
develop an alternative based on these or better premises. I must be however honest and tell that 32
years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to
cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the
power of easy rhetoric tricks.

Matti Pitkdnen

Hanko,
September 15, 2010
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Chapter 1

Introduction

1.1 Background

T(opological) G(eometro)D (ynamics) is one of the many attempts to find a unified description of basic
interactions. The development of the basic ideas of TGD to a relatively stable form took time of about
half decade [I]. The great challenge is to construct a mathematical theory around these physically
very attractive ideas and I have devoted the last twenty-three years for the realization of this dream
and this has resulted in seven online books about TGD and eight online books about TGD inspired
theory of consciousness and of quantum biology.

Quantum T (opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-dimensional
configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness
and of quantum biology have been for last decade of the second millenium the basic three strongly
interacting threads in the tapestry of quantum TGD.

For few years ago the discussions with Tony Smith initiated a fourth thread which deserves the
name "T'GD as a generalized number theory’. The basic observation was that classical number fields
might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a
deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the
basic views about what the final form and physical content of quantum TGD might be. Together with
the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads
fused to the ”physics as generalized number theory” th

A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at
all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynam-
ical quantized Planck constant might be necessary and certainly possible in TGD framework. The
identification of hierarchy of Planck constants whose values TGD ”predicts” in terms of dark matter
hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper
interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge
fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-
adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus
TGD Universe would be fractal in very abstract and deep sense.

Every updating of the books makes me frustrated as I see how badly the structure of the repre-
sentation reflects my bird’s eye of view as it is at the moment of updating. At this time I realized
that the chronology based identification of the threads is quite natural but not logical and it is much
more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes
as sub-threads of a thread which might be called ”physics as a generalized number theory”. In the
following I adopt this view. This reduces the number of threads to four! I am not even sure about
the number of threads! Be patient!

TGD forces the generalization of physics to a quantum theory of consciousness, and represent TGD
as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics
of cognitive representations. The seven online books [58], [41], [35] 32, 42, [49], (48] about TGD and eight
online books about TGD inspired theory of consciousness and of quantum biology [53] [6, B9} [5, 2T



2 Chapter 1. Introduction

25, 28], [47] are warmly recommended to the interested reader.

1.2 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches:
namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the
old-fashioned string model.

1.2.1 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is
regarded as a surface in the 8-dimensional space H = M2 C P, where M* denotes Minkowski space
and CP, = SU(3)/U(2) is the complex projective space of two complex dimensions [52, [32] 46], [30].

The identification of the space-time as a submanifold [28, [50] of M*x C'P, leads to an exact Poincare
invariance and solves the conceptual difficulties related to the definition of the energy-momentum in
General Relativity.

It soon however turned out that submanifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the
geometrization of the elementary particle quantum numbers is achieved. The geometry of C P, explains
electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the
conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The
projections of the C'P; spinor connection, Killing vector fields of C P, and of H-metric to four-surface
define classical electro-weak, color gauge fields and metric in X*.

1.2.2 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in
the sense that the quantum numbers of the elementary particles reside on the boundaries. Various
boundary topologies (number of handles) correspond to various fermion families so that one obtains
an explanation for the known elementary particle quantum numbers. This approach leads also to a
natural topological description of the particle reactions as topology changes: for instance, two-particle
decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the
space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

1.2.3 Fusion of the two approaches via a generalization of the space-time
concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial 3-
space of General Relativity is replaced with a ”topological condensate” containing matter as particle
like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum operation.
Secondly, the assumption about connectedness of the 3-space is given up. Besides the ”topological
condensate” there could be ”vapor phase” that is a ”"gas” of particle like 3-surfaces (counterpart of
the "baby universies” of GRT) and the nonconservation of energy in GRT corresponds to the transfer
of energy between the topological condensate and vapor phase.
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What one obtains is what I have christened as many-sheeted space-time. One particular aspect
is topological field quantization meaning that various classical fields assignable to a physical system
correspond to space-time sheets representing the classical fields to that particular system. One can
speak of the field body of a particular physical system. Field body consists of topological light rays,
and electric and magnetic flux quanta. In Maxwell’s theory system does not possess this kind of
field identity. The notion of magnetic body is one of the key players in TGD inspired theory of
consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic notion
of ZEO is causal diamond (CD) identified as the Cartesian product of C'P, and of the intersection
of future and past directed light-cones and having scale coming as an integer multiple of C P, size is
fundamental. C'Ds form a fractal hierarchy and zero energy states decompose to products of positive
and negative energy parts assignable to the opposite boundaries of C'D defining the ends of the space-
time surface. The counterpart of zero energy state in positive energy ontology is in terms of initial
and final states of a physical event, say particle reaction.

General Coordinate Invariance allows to identify the basic dynamical objects as space-like 3-
surfaces at the ends of space-time surface at boundaries of C'D: this means that space-time sur-
face is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian and interpreted as lines of
generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar interpretation. The
requirement that the two interpretations are equivalent, leads to a strong form of General Coordinate
Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified
as intersections of the space-like ends of space-time surface and light-like wormhole throats are the
fundamental objects. That only effective 2-dimensionality is in question is due to the effects caused by
the failure of strict determinism of Kéahler action. In finite length scale resolution these effects can be
neglected below UV cutoff and above IR cutoff. One can also speak about strong form of holography.

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time.

A very concise manner to express how TGD differs from Special and General Relativities could
be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and Equiva-
lence Principle remain true. What is new is the notion of sub-manifold geometry: this allows to realize
Poincare Invariance and geometrize gravitation simultaneously. This notion also allows a geometriza-
tion of known fundamental interactions and is an essential element of all applications of TGD ranging
from Planck length to cosmological scales. Sub-manifold geometry is also crucial in the applications
of TGD to biology and consciousness theory.

1.3 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants inter-
preted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following
these threads are briefly described.

1.3.1 Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was "Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since then
and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrédinger amplitude in the configuration space C'H consisting of all possible 3-surfaces in H.
” All possible” means that surfaces with arbitrary many disjoint components and with arbitrary
internal topology and also singular surfaces topologically intermediate between two different
manifold topologies are included. Particle reactions are identified as topology changes [42] [53] [54].
For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay A — B + C.
Classically this corresponds to a path of configuration space leading from 1-particle sector
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to 2-particle sector. At quantum level this corresponds to the dispersion of the generalized
Schrodinger amplitude localized to 1-particle sector to two-particle sector. All coupling con-
stants should result as predictions of the theory since no nonlinearities are introduced.

. During years this naive and very rough vision has of course developed a lot and is not anymore
quite equivalent with the original insight. In particular, the space-time correlates of Feynman
graphs have emerged from theory as Euclidian space-time regions and the strong form of General
Coordinate Invariance has led to a rather detailed and in many respects un-expected visions.
This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also startd introduced the word ”world of classical worlds” (WCW)
instead of rather formal ”configuration space”. I hope that ”WCW?” does not induce despair in
the reader having tendency to think about the technicalities involved!

. WCW is endowed with metric and spinor structure so that one can define various metric related
differential operators, say Dirac operator, appearing in the field equations of the theory. The
most ambitious dream is that zero energy states correspond to a complete solution basis for the
Dirac operator of WCW so that this classical free field theory would dictate M-matrices which
form orthonormal rows of what I call U-matrix. Given M-matrix in turn would decompose to a
product of a hermitian density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative energy
parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a
hermitian quare root of density matrix multiplied by a unitary S-matrix. Quantum theory would
be in well-defined sense a square root of thermodynamics. The orthogonality and hermiticity
of the complex square roots of density matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quantum
TGD would reduce to group theory in well-defined sense: its own symmetries would define the
symmetries of the theory. In fact the Lie algebra of Hermitian M-matrices extends to Kac-
Moody type algebra obtained by multiplying hermitian square roots of density matrices with
powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers
of S-matrix is possible.

. By quantum classical correspondence the construction of WCW spinor structure reduces to the
second quantization of the induced spinor fields at space-time surface. The basic action is so
called modified Dirac action in which gamma matrices are replaced with the modified gamma
matrices defined as contractions of the canonical momentum currents with the imbedding space
gamma matrices. In this manner one achieves super-conformal symmetry and conservation of
fermionic currents among other things and consistent Dirac equation. This modified gamma
matrices define as anticommutators effective metric, which might provide geometrization for
some basic observables of condensed matter physics. The conjecture is that Dirac determinant
for the modified Dirac action gives the exponent of K&hler action for a preferred extremal
as vacuum functional so that one might talk about bosonic emergence in accordance with the
prediction that the gauge bosons and graviton are expressible in terms of bound states of fermion
and antifermion.

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kahler function. Kahler function is Kahler
action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is?
The obvious first guess was as absolute minimum of Kéhler action but could not be proven to be right
or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost
topological QFT in which braids wold replace 3-surfaces in finite measurement resolution, which could
be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete
points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kéahler action for preferred extremals

reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
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Euclidian regions would give at wormhole throats the same contribution apart from coefficients
and in Minkowskian regions the /g4 factor would be imaginary so that one would obtain sum of
real term identifiable as K&hler function and imaginary term identifiable as the ordinary action
giving rise to interference effects and stationary phase approximation central in both classical
and quantum field theory. Imaginary contribution - the presence of which I realized only after
33 years of TGD - could also havetopological interpretation as a Morse function. On physical
side the emergence of Euclidian space-time regions is something completely new and leads to a
dramatic modification of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulom-
bic contribution to Kéhler action is required and is true for all known extremals if one makes a
general ansatz about the form of classical conserved currents. The so called weak form of electric-
magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons
terms. In this manner almost topological QFT results. But only ”almost” since the Lagrange
multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred
extremals depends on metric.

3. A further quite recent hypothesis inspired by effective 2-dimensionality is that Chern-Simons
terms reduce to a sum of two 2-dimensional terms. An imaginary term proportional to the total
area of Minkowskian string world sheets and a real tem proportional to the total area of partonic
2-surfaces or equivalently strings world sheets in Euclidian space-time regions. Also the equality
of the total areas of strings world sheets and partonic 2-surfaces is highly suggestive and would
realize a duality between these two kinds of objects. String world sheets indeed emerge naturally
for the proposed ansatz defining preferred extremals. Therefore Kéhler action would have very
stringy character apart from effects due to the failure of the strict determinism meaning that
radiative corrections break the effective 2-dimensionality.

1.3.2 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have
been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD.
The fourth thread deserves the name "TGD as a generalized number theory’. It involves three sep-
arate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring
number theoretic universality discussed already, the formulation of quantum TGD in terms of hyper-
counterparts of classical number fields identified as sub-spaces of complexified classical number fields
with Minkowskian signature of the metric defined by the complexified inner product, and the notion
of infinite prime.

p-Adic TGD and fusion of real and p-adiuc physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be
important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification
mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass
calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-
Moody algebra associated with a Lie-group containing standard model gauge group. Although the
details of the calculations have varied from year to year, it was clear that p-adic physics reduces not
only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary
particle mass scales, to number theory if one assumes that primes near prime powers of two are in a
physically favored position. Why this is the case, became one of the key puzzless and led to a number
of arguments with a common gist: evolution is present already at the elementary particle level and
the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale
as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic
length scales varying to even cosmological length scales. The idea about the connection of p-adics
with cognition motivated already the first attempts to understand the role of the p-adics and inspired
"Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic
numbers are however in a central role in TGD inspired theory of consciousness). It became however
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obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and
that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about
p-adic regions as cognitive regions of space-time providing cognitive representations for real regions
had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both,
how should one glue the physics in different number field together to get The Physics? Should
one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly
the p-adicization at the level of super-conformal representation is necessary for the p-adic mass
calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic
definite integral which is a crucial element of any variational principle based formulation of the
field equations. Here the frustration was not due to the lack of solution but due to the too large
number of solutions to the problem, a clear symptom for the sad fact that clever inventions
rather than real discoveries might be in question. Quite recently I however learned that the
problem of making sense about p-adic integration has been for decades central problem in the
frontier of mathematics and a lot of profound work has been done along same intuitive lines
as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic
continuation from the world of rationals belonging to the intersection of real world and various
p-adic worlds.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic
physics growed steadily and the applications turned out to be relatively stable so that it was clear
that the solution to these problems must exist. It became only gradually clear that the solution of
the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept and
one can speak about real and p-adic space-time sheets. The quantum dynamics should be such that
it allows quantum transitions transforming space-time sheets belonging to different number fields to
each other. The space-time sheets in the intersection of real and p-adic worlds are of special interest
and the hypothesis is that living matter resides in this intersection. This leads to surprisingly detailed
predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy
concept allows negentropic entanglement central for the applications to living matter.

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolution
and cognitive resolution. The notion of finite measurement resolution has become one of the basic
principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces and
inclusions of hyper-finite factors as a representation for finite measurement resolution.

The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic
compactifiction stating that space-time surfaces can be regarded as surfaces of either M8 or M4 x C'P,.
As surfaces of M?® identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-
quaternionic- and thus maximally associative or co-associative. This means that their tangent space
is either hyper-quaternionic plane of M?® or an orthogonal complement of such a plane. These surface
can be mapped in natural manner to surfaces in M* x C' P, [52] provided one can assign to each point
of tangent space a hyper-complex plane M?(x) C M*. One can also speak about M® — H duality.
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This vision has very strong predictive power. It predicts that the extremals of Kéahler action
correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign
to tangent space at each point of space-time surface a hyper-complex plane M?(z) C M*. As a
consequence, the M* projection of space-time surface at each point contains M?(z) and its orthogonal
complement. These distributions are integrable implying that space-time surface allows dual slicings
defined by string world sheets Y2 and partonic 2-surfaces X2. The existence of this kind of slicing
was earlier deduced from the study of extremals of Kéhler action and christened as Hamilton-Jacobi
structure. The physical interpretation of M?(x) is as the space of non-physical polarizations and the
plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the under-
standing of quantum TGD that has emerged during last years. This includes the realization of Equiv-
alence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string
model type theories, the precise identification of preferred extremals of Kahler action as extremals
for which second variation vanishes (at least for deformations representing dynamical symmetries)
and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid
implied by the basic dynamics of Kahler action and crucial for precise construction of quantum TGD
as almost-topological QFT, the construction of configuration space metric and spinor structure in
terms of second quantized induced spinor fields with modified Dirac action defined by Kéahler action
realizing automatically the notion of finite measurement resolution and a connection with inclusions
of hyper-finite factors of type II; about which Clifford algebra of configuration space represents an
example.

The two most important number theoretic conjectures relate to the preferred extremals of Kéhler
action. The general idea is that classical dynamics for the preferred extremals of Kéhler action should
reduce to number theory: space-time surfaces should be either associative or co-associative in some
sense.

1. The first meaning for associativity (co-associativity) would be that tangent (normal) spaces of
space-time surfaces are quaternionic in some sense and thus associative. This can be formu-
lated in terms of octonionic representation of the imbedding space gamma matrices possible in
dimension D = 8 and states that induced gamma matrices generate quaternionic sub-algebra at
each space-time point. It seems that induced rather than modified gamma matrices must be in
question.

2. Second meaning for associative (co-associativity) would be following. In the case of complex
numbers the vanishing of the real part of real-analytic function defines a 1-D curve. In oct-
nionic case one can decompose octonion to sum of quaternion and quaternion multiplied by an
octonionic imaginary unit. Quaternionicity could mean that space-time surfaces correspond to
the vanishing of the imaginary part of the octonion real-analytic function. Co-quaternionicity
would be defined in an obvious manner. Octonionic real analytic functions form a function field
closed also with respect to the composition of functions. Space-time surfaces would form the
analog of function field with the composition of functions with all operations realized as algebraic
operations for space-time surfaces. Co-associaty could be perhaps seen as an additional feature
making the algebra in question also co-algebra.

3. The third conjecture is that these conjectures are equivalent.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a
repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations
about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces
geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite
primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and
various generalizations of p-adics emerge dynamically from algebraic physics as various completions of
the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic,
topological and dimensional democracy would characterize the theory.
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What is especially satisfying is that p-adic and real regions of the space-time surface could emerge
automatically as solutions of the field equations. In the space-time regions where the solutions of
field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic
solution can exist for some values of the p-adic prime. The characteristic non-determinism of the p-
adic differential equations suggests strongly that p-adic regions correspond to 'mind stuff’, the regions
of space-time where cognitive representations reside. This interpretation implies that p-adic physics
is physics of cognition. Since Nature is probably an extremely brilliant simulator of Nature, the
natural idea is to study the p-adic physics of the cognitive representations to derive information about
the real physics. This view encouraged by T'GD inspired theory of consciousness clarifies difficult
interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.3.3 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large h phase

D. Da Rocha and Laurent Nottale [I] have proposed that Schréodinger equation with Planck constant
GmM

h replaced with what might be called gravitational Planck constant fig, = ™ (h=c=1). vy is
a velocity parameter having the value vy = 144.7 .7 km/s giving vy/c = 4.6 x 10~*. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of vg
seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrodinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrodinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [45] .

TGD predicts correctly the value of the parameter vy assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of vy can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also
a model for the formation of planetary system as a condensation of ordinary matter around quantum
coherent dark matter emerges [45] .

The values of Planck constants postulated by Nottale are gigantic and it is natural to assign them
to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes
(quanta). The magnetic energy of these flux quanta would correspond to dark energy and magnetic
tension would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads
to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Hierarchy of Planck constants from the anomalies of neuroscience biology

The quantal effects of ELF em fields on vertebrate brain have been known since seventies. ELF em
fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5
times that of Earth for biologically important ions have physiological effects and affect also behavior.
What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies
for the photons of ELF em fields are extremely low - about 10710 times lower than thermal energy
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at physiological temperatures- so that quantal effects are impossible in the framework of standard
quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can appear
in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark
relative to each other. The phase transitions changing Planck constant can however make possible
interactions between phases with different Planck constant but these interactions do not manifest
themselves in particle physics. Also the interactions mediated by classical fields should be possible.
Dark matter would not be so dark as we have used to believe.

Also the anomalies of biology support the view that dark matter might be a key player in living
matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kiahler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple i = nhgy of the ordinary Planck constant Ay is assigned with a multiple singular covering
of the imbedding space [I7]. One ends up to an identification of dark matter as phases with non-
standard value of Planck constant having geometric interpretation in terms of these coverings providing
generalized imbedding space with a book like structure with pages labelled by Planck constants or
integers characterizing Planck constant. The phase transitions changing the value of Planck constant
would correspond to leakage between different sectors of the extended imbedding space. The question
is whether these coverings must be postulated separately or whether they are only a convenient
auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective. Many-
sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The huge
vacuum degeneracy of Kahler action implies that the relationship between gradients of the imbedding
space coordinates and canonical momentum currents is many-to-one: this was the very fact forcing to
give up all the standard quantization recipes and leading to the idea about physics as geometry of the
”world of classical worlds”. If one allows space-time surfaces for which all sheets corresponding to the
same values of the canonical momentum currents are present, one obtains effectively many-sheeted
covering of the imbedding space and the contributions from sheets to the Kahler action are identical.
If all sheets are treated effectively as one and the same sheet, the value of Planck constant is an integer
multiple of the ordinary one. A natural boundary condition would be that at the ends of space-time
at future and past boundaries of causal diamond containing the space-time surface, various branches
co-incide. This would raise the ends of space-time surface in special physical role.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2).,, invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. A possible solution of the matter antimatter asymmetry is based on the identification of also
antimatter as dark matter.

1.3.4 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between
entire deterministic quantum histories rather than time=constant snapshots of single history. The
new view about quantum jump forces a generalization of quantum measurement theory such that
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observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable
outcome. This theory is developed in detail in the books [53] 6, [39] 5] 211, 25], 28] [47] .

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space
spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum
jump involves the steps

\I/i—>U‘1/i—>\I/f s

where U is informational ”time development” operator, which is unitary like the S-matrix charac-
terizing the unitary time evolution of quantum mechanics. U is however only formally analogous to
Schrodinger time evolution of infinite duration although there is no real time evolution involved. It is
not however clear whether one should regard U-matrix and S-matrix as two different things or not: U-
matrix is a completely universal object characterizing the dynamics of evolution by self-organization
whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field
theories where it at least formally represents unitary time translation operator at the limit of an in-
finitely long interaction time. The S-matrix understood in the spirit of superstring models is however
something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed
by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply
that the final states of quantum jump correspond to quantum superpositions of space-time surfaces
which are macroscopically equivalent. Hence the world of conscious experience looks classical. At
least formally quantum jump can be interpreted also as a quantum computation in which matrix U
represents unitary quantum computation which is however not identifiable as unitary translation in
time direction and cannot be ’engineered’.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal
aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the
sequential informational time evolutions’ U. Exactly vanishing entanglement is practically impossible
in ordinary quantum mechanics and it might be that 'vanishing entanglement’ in the condition for
self-property should be replaced with ’subcritical entanglement’. On the other hand, if space-time
decomposes into p-adic and real regions, and if entanglement between regions representing physics in
different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last 'wake-up’ sum up to single average
experience. This means that subjective memory is identifiable as conscious, immediate short term
memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also
interpreted as mental images: our mental images are selves having mental images and also we represent
mental images of a higher level self. A natural hypothesis is that self S experiences the experiences
of its subselves as kind of abstracted experience: the experiences of subselves S; are not experienced
as such but represent kind of averages (S;;) of sub-subselves S;;. Entanglement between selves, most
naturally realized by the formation of join along boundaries bonds between cognitive or material space-
time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the
fusion of the mental images representing separate right and left visual fields to single visual field) and
forms wholes from parts at the level of mental images.

An attractive possibility suggested by zero energy ontology is that the notions of self and quantum
jump reduce to each other and that a fractal hierarchy of quantum jumps within quantum jumps
is enough. C'Ds would serve as imbedding space correlates of selves and quantum jumps would be
followed by cascades of state function reductions beginning from given C'D and proceeding downwards
to the smaller scales (smaller C'Ds). State function reduction cascades could also take place in parallel
branches of the quantum state. One ends up with concrete ideas about how the arrow of geometric
time is induced from that of subjective time defined by the experiences induced by the sequences
of quantum jumps for sub-selves of self. One ends also ends up with concrete ideas about how the
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localization of the contents of sensory experience and cognition to the upper boundaries of C'D could
take place.

Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory.
The assumption that localization occurs in zero modes in each quantum jump implies that the world
of conscious experience looks classical. It also implies the state function reduction of the standard
quantum measurement theory as the following arguments demonstrate (it took incredibly long time
to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain
with the measurement apparatus. If this interaction corresponds to entanglement between mi-
croscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M
characterizing the reading of the measurement apparatus coded to brain state, then the reduc-
tion of this entanglement in quantum jump reproduces standard quantum measurement theory
provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and
correlates completely some orthonormal basis of configuration space spinor fields in non-zero
modes with the values of the zero modes. The flow property guarantees that the localization is
consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables
(say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface
(shape, size, classical Kéhler field,...), they have interpretation as effectively classical degrees
of freedom and are the TGD counterpart of the degrees of freedom M representing the reading
of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes
and zero modes is the TGD counterpart for the m — M entanglement. Therefore the localization
in zero modes is equivalent with a quantum jump leading to a final state where the measurement
apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum
measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the
replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-
dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential.
Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.

Standard quantum measurement theory involves also the notion of state preparation which reduces
to the notion of self measurement. Each localization in zero modes is followed by a cascade of self
measurements leading to a product state. This process is obviously equivalent with the state prepa-
ration process. Self measurement is governed by the so called Negentropy Maximization Principle
(NMP) stating that the information content of conscious experience is maximized. In the self mea-
surement the density matrix of some subsystem of a given self localized in zero modes (after ordinary
quantum measurement) is measured. The self measurement takes place for that subsystem of self for
which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context
NMP can be regarded as the variational principle defining the dynamics of cognition. In real context
self measurement could be seen as a repair mechanism allowing the system to fight against quantum
thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest
hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum
jump as the basic step of self-organization [43] . Quantum entanglement gives rise to the generation
of long range order and the emergence of longer p-adic length scales corresponds to the emergence of
larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum
entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization.
Zero modes represent fundamental order parameters and localization in zero modes implies that the
sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical
theory of self organization applies almost as such. Spin glass analogy is a further important element:
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self-organization of self leads to some characteristic pattern selected by dissipation as some valley of
the ”energy” landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The
mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipa-
tion terms to the reversible fundamental dynamical equations derivable from an action principle can be
understood as a phenomenological description replacing in a well defined sense the series of reversible
quantum histories with its envelope.

Classical non-determinism of Kahler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The
huge vacuum degeneracy of the Kahler action suggests strongly that the absolute minimum space-time
is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time
branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the
orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time
surface decomposes into maximal deterministic regions and their temporal sequences have interpre-
tation a space-time correlate for a sequence of quantum states defined by the initial (or final) states
of quantum jumps. This is consistent with the fact that the variational principle selects preferred
extremals of K&hler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence
of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents
of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as
volitional non-determinism associated with our choices. Association sequences relate closely with the
cognitive space-time sheets defined as space-time sheets having finite time duration and psychological
time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The
gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the
future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes
into regions obeying real and p-adic topologies labelled by primes p = 2,3,5, .... p-Adic regions obey
the same field equations as the real regions but are characterized by p-adic non-determinism since
the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant
functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like
numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time
regions are obtained by gluing together regions for which integration constants are genuine constants.
The natural interpretation of the p-adic regions is as cognitive representations of real physics. The
freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and
make possible for the Universe to form cognitive representations about itself. p-Adic physics space-
time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept
obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic
extensions among common algebraic numbers). This picture is discussed in [51] . The application
this notion at the level of the imbedding space implies that imbedding space has a book like structure
with various variants of the imbedding space glued together along common rationals (algebraics). The
implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so
that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the
projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and
intentionality are almost completely outside the real cosmos and touch it at a discrete set of points
only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing
long range real physics and provides an explanation for p-adic length scale hypothesis stating that
the primes p ~ 2*, k integer are especially interesting. It also explains the long range correlations
and short term chaos characterizing intentional behavior and explains why the physical realizations
of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete
quantum model for how intentions are transformed to actions emerges.
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The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical
thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind
of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the
p = 2F —n pinary digits represent a Boolean logic B¥ with k elementary statements (the points of the
k-element set in the set theoretic realization) with n taboos which are constrained to be identically
true.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings
additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in
principle appear as arbitrarily large scaled up copies (Compton length scales as f). The phase
transition to this kind of phase implies that space-time sheets of particles overlap and this makes
possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary
ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated
with EEG turns out to be above thermal energy at room temperature for the level of dark matter
hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale
of Earth and a successful quantitative model for EEG results [15] .

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [I5] . The general prediction is that Universe is a kind of inverted Mandelbrot
fractal for which each bird’s eye of view reveals new structures in long length and time scales rep-
resenting scaled down copies of standard physics and their dark variants. These structures would
correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per
cent of matter in the universe is dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly
the band structure and even individual resonance bands and also generalizing the notion of EEG [15]
. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
standard dogma [26], [15] . A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [I5] .

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of i at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [I4} [I5] . The larger the value of Planck constant, the longer
the subjectively experienced duration and the average geometric duration T'(k) o % of the quantum
jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric
durations of quantum jumps scale like /. Dark matter hierarchy suggests also a slight modification of
the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether
the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of
quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
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sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and
single moment of consciousness would be experienced as a history of events. The quantum parallel
dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron
as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system
at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire
life cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark matter hierarchy

The basic question is what time scale can one assign to the geometric duration of quantum jump
measured naturally as the size scale of the space-time region about which quantum jump gives con-
scious information. This scale is naturally the size scale in which the non-determinism of quantum
jump is localized. During years I have made several guesses about this time scales but zero energy
ontology and the vision about fractal hierarchy of quantum jumps within quantum jumps leads to a
unique identification.

Causal diamond as an imbedding space correlate of self defines the time scale 7 for the space-
time region about which the consciousness experience is about. The temporal distances between the
tips of C'D as come as integer multiples of C' P, length scales and for prime multiples correspond to
what I have christened as secondary p-adic time scales. A reasonable guess is that secondary p-adic
time scales are selected during evolution and the primes near powers of two are especially favored.
For electron, which corresponds to Mersenne prime Mjs; = 227 — 1 this scale corresponds to .1
seconds defining the fundamental time scale of living matter via 10 Hz biorhythm (alpha rhythm).
The unexpected prediction is that all elementary particles correspond to time scales possibly relevant
to living matter.

Dark matter hierarchy brings additional finesse. For the higher levels of dark matter hierarchy 7
is scaled up by h/hg. One could understand evolutionary leaps as the emergence of higher levels at
the level of individual organism making possible intentionality and memory in the time scale defined
T.

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and
its evolution. Various levels of dark matter hierarchy would naturally correspond to higher levels in
the hierarchy of consciousness and the typical duration of life cycle would give an idea about the
level in question. The level would determine also the time span of long term memories as discussed
in [I5] . The emergence of these levels must have meant evolutionary leap since long term memory is
also accompanied by ability to anticipate future in the same time scale. This picture would suggest
that the basic difference between us and our cousins is not at the level of genome as it is usually
understood but at the level of the hierarchy of magnetic bodies [26, [I5]. In fact, higher levels of dark
matter hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The
genomes of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes
would result from the fusion of genomes of different organisms and collective levels of consciousness
would express themselves via hyper-genome and make possible social rules and moral.

1.4 Bird’s eye of view about the topics of the book

The topics of this book are the purely geometric aspects of the vision about physics as an infinite-
dimensional Kéahler geometry of the "world of classical worlds”, with ” classical world” identified
either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The
non-determinism of Kéahler action forces to generalize the notion of 3-surface so that unions of space-
like surfaces with time like separations must be allowed. Zero energy ontology allows to formulate
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this picture elegantly in terms of causal diamonds defined as intersections of future and past directed
light-cones. Also a a geometric realization of coupling constant evolution and finite measurement
resolution emerges.

There are two separate tasks involved.

1. Provide configuration space of 3-surfaces with Kéahler geometry which is consistent with 4-
dimensional general coordinate invariance so that the metric is Diff* degenerate. General coor-
dinate invariance implies that the definition of metric must assign to a given light-like 3-surface
X3 a 4-surface as a kind of Bohr orbit X*(X?3).

2. Provide the configuration space with a spinor structure. The great idea is to identify config-
uration space gamma matrices in terms of super algebra generators expressible using second
quantized fermionic oscillator operators for induced free spinor fields at the space-time surface
assignable to a given 3-surface. The isometry generators and contractions of Killing vectors with
gamma matrices would thus form a generalization of Super Kac-Moody algebra.

The condition of mathematical existence poses surprisingly strong conditions on configuration
space metric and spinor structure.

1. From the experience with loop spaces one can expect that there is no hope about existence of
well-defined Riemann connection unless this space is union of infinite-dimensional symmetric
spaces with constant curvature metric and simple considerations requires that vacuum Einstein
equations are satisfied by each component in the union. The coordinates labeling these sym-
metric spaces are zero modes having interpretation as genuinely classical variables which do not
quantum fluctuate since they do not contribute to the line element of the configuration space.

2. The construction of the Kéhler structure involves also the identification of complex structure.
Direct construction of Kéahler function as action associated with a preferred Bohr orbit like
extremal for some physically motivated action action leads to a unique result. Second approach
is group theoretical and is based on a direct guess of isometries of the infinite-dimensional
symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isometries
is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group with the
group of symplectic transformations of 6Mi x C' Py, where (5Mi is the boundary of 4-dimensional
future light-cone. A crucial role is played by the generalized conformal invariance assignable to
light-like 3-surfaces and to the boundaries of causal diamond. In particular, a generalization of
Equivalence Principle can be formulated in terms of generalized coset construction.

3. Fermionic statistics and quantization of spinor fields can be realized in terms of configuration
space spinors structure. Quantum criticality and the idea about space-time surfaces as analogs of
Bohr orbits have served as basic guiding lines of Quantum TGD. These notions can be formulated
more precisely in terms of the modified Dirac equation for induced spinor fields allowing also
realization of super-conformal symmetries and quantum gravitational holography. A rather
detailed view about how configuration space Kéhler function emerges as Dirac determinant
allowing a tentative identification of the preferred extremals of K&hler action as surface for
which second variation of Kéhler action vanishes for some deformations of the surface. The
catastrophe theoretic analog for quantum critical space-time surfaces are the points of space
spanned by behavior and control variables at which the determinant defined by the second
derivatives of potential function with respect to behavior variables vanishes. Number theoretic
vision leads to rather detailed view about preferred extremals of Kéhler action. In particular,
preferred extremals should be what I have dubbed as hyper-quaternionic surfaces. It it still an
open question whether this characterization is equivalent with quantum criticality or not.

The seven online books about TGD [58] 4T, [42, [49] 35 [32 48] and eight online books about
TGD inspired theory of consciousness and quantum biology [63, [6] [39, [5, 2], (25| 28], [47] are warmly
recommended for the reader willing to get overall view about what is involved.

1.5 The contents of the book

In the following abstracts of various chapters of the book are given in order to provide overall view.
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1.5.1 Identification of the Configuration Space Kahler Function

There are two basic approaches to quantum TGD. The first approach, which is discussed in this
chapter, is a generalization of Einstein’s geometrization program of physics to an infinite-dimensional
context. Second approach is based on the identification of physics as a generalized number theory.
The first approach relies on the vision of quantum physics as infinite-dimensional Kéhler geometry for
the ”world of classical worlds” (WCW) identified as the space of 3-surfaces in in certain 8-dimensional
space. There are three separate approaches to the challenge of constructing WCW Kahler geometry
and spinor structure. The first approach relies on direct guess of Kéahler function. Second approach
relies on the construction of Ké&hler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach relies
on the construction of spinor structure based on the hypothesis that complexified WCW gamma
matrices are representable as linear combinations of fermionic oscillator operator for second quantized
free spinor fields at space-time surface and on the geometrization of super-conformal symmetries in
terms of WCW spinor structure.

In this chapter the proposal for Kéahler function based on the requirement of 4-dimensional General
Coordinate Invariance implying that its definition must assign to a given 3-surface a unique space-time
surface. Quantum classical correspondence requires that this surface is a preferred extremal of some
some general coordinate invariant action, and so called Kéhler action is a unique candidate in this
respect. The preferred extremal has intepretation as an analog of Bohr orbit so that classical physics
becomes and exact part of WCW geometry and therefore also quantum physics.

The basic challenge is the explicit identification of WCW Kahler function K. Two assumptions
lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of
causal diamond and with the light-like wormhole throats at which the signature of the induced metric
changes. The first assumption is the weak form of electric magnetic duality. Second assumption is
that the K&hler current for preferred extremals satisfies the condition jx Adjx = 0 implying that the
flow parameter of the flow lines of jx defines a global space-time coordinate. This would mean that
the vision about reduction to almost topological QFT would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality. Electric-
magnetic duality helps considerably here. The realization that the hierarchy of Planck constant
realized in terms of coverings of the imbedding space follows from basic quantum TGD leads to a
further understanding. The extreme non-linearity of canonical momentum densities as functions of
time derivatives of the imbedding space coordinates implies that the correspondence between these
two variables is not 1-1 so that it is natural to introduce coverings of CD x C'P,. This leads also to a
precise geometric characterization of the criticality of the preferred extremals.

1.5.2 Construction of Configuration Space Kahler Geometry from Sym-
metry Principles

There are three separate approaches to the challenge of constructing WCW Kéhler geometry and
spinor structure. The first one relies on a direct guess of Kéhler function. Second approach relies
on the construction of Kéahler form and metric utilizing the huge symmetries of the geometry needed
to guarantee the mathematical existence of Riemann connection. The third approach relies on the
construction of spinor structure assuming that complexified WCW gamma matrices are representable
as linear combinations of fermionic oscillator operator for the second quantized free spinor fields
at space-time surface and on the geometrization of super-conformal symmetries in terms of spinor
structure.

In this chapter the construction of Kahler form and metric based on symmetries is discussed. The
basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with lines
thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy ontology
the strong form of General Coordinate Invariance (GCI) implies effective 2-dimensionality and the
basic objects are pairs partonic 2-surfaces X? at opposite light-like boundaries of causal diamonds
(CDs).

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric spaces
G/H labeled by zero modes having an interpretation as classical, non-quantum fluctuating variables.
A crucial role is played by the metric 2-dimensionality of the light-cone boundary 5Mi and of light-
like 3-surfaces implying a generalization of conformal invariance. The group G acting as isometries of
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WCW is tentatively identified as the symplectic group of 5M_‘f_ x C'Py localized with respect to X?2.
H is identified as Kac-Moody type group associated with isometries of H = M* x CP, acting on
light-like 3-surfaces and thus on X2.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux Hamilto-
nians is proposed and also the elements of Kéhler form can be constructed in terms of these. Explicit
expressions for WCW flux Hamiltonians as functionals of complex coordinates of the Cartesisian prod-
uct of the infinite-dimensional symmetric spaces having as points the partonic 2-surfaces defining the
ends of the the light 3-surface (line of generalized Feynman diagram) are proposed.

1.5.3 Configuration space spinor structure

There are three separate approaches to the challenge of constructing WCW Kahler geometry and
spinor structure. The first approach relies on a direct guess of Kéhler function. Second approach
relies on the construction of Kéhler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach discussed
in this chapter relies on the construction of spinor structure based on the hypothesis that complexified
WCW gamma matrices are representable as linear combinations of fermionic oscillator operator for the
second quantized free spinor fields at space-time surface and on the geometrization of super-conformal
symmetries in terms of spinor structure. This implies a geometrization of fermionic statistics.

The basic philosophy is that at fundamental level the construction of WCW geometry reduces to the
second quantization of the induced spinor fields using Dirac action. This assumption is parallel with
the bosonic emergence stating that all gauge bosons are pairs of fermion and antifermion at opposite
throats of wormhole contact. Vacuum function is identified as Dirac determinant and the conjecture
is that it reduces to the exponent of Kéhler function. In order to achieve internal consistency induced
gamma matrices appearing in Dirac operator must be replaced by the modified gamma matrices
defined uniquely by Kéahler action and one must also assume that extremals of Kéhler action are in
question so that the classical space-time dynamics reduces to a consistency condition. This implies
also super-symmetries and the fermionic oscillator algebra at partonic 2-surfaces has intepretation as
N = oo generalization of space-time super-symmetry algebra different however from standard SUSY
algebra in that Majorana spinors are not needed. This algebra serves as a building brick of various
super-conformal algebras involved.

The requirement that there exist deformations giving rise to conserved Noether charges requires
that the preferred extremals are critical in the sense that the second variation of the Kéahler action
vanishes for these deformations. Thus Bohr orbit property could correspond to criticality or at least
involve it.

Quantum classical correspondence demands that quantum numbers are coded to the properties
of the preferred extremals given by the Dirac determinant and this requires a linear coupling to
the conserved quantum charges in Cartan algebra. Effective 2-dimensionality allows a measurement
interaction term only in 3-D Chern-Simons Dirac action assignable to the wormhole throats and the
ends of the space-time surfaces at the boundaries of C'D. This allows also to have physical propagators
reducing to Dirac propagator not possible without the measurement interaction term. An essential
point is that the measurement interaction corresponds formally to a gauge transformation for the
induced Kahler gauge potential. If one accepts the weak form of electric-magnetic duality Kéhler
function reduces to a generalized Chern-Simons term and the effect of measurement interaction term
to Kahler function reduces effectively to the same gauge transformation.

The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at the
boundaries of C'D. The basic building brick of WCW is the product of infinite-D symmetric spaces
assignable to the ends of the propagator line of the generalized Feynman diagram. WCW Kéhler
metric has in this case "kinetic” parts associated with the ends and ”interaction” part between the
ends. General expressions for the super-counterparts of WCW flux Hamiltoniansand for the matrix
elements of WCW metric in terms of their anticommutators are proposed on basis of this picture.

1.5.4 Does modified Dirac action define the fundamental action principle?

The construction of the spinor structure for the world of classical worlds (WCW) leads to the vision
that second quantized modified Dirac equation codes for the entire quantum TGD. Among other
things this would mean that Dirac determinant would define the vacuum functional of the theory
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having interpretation as the exponent of Kahler function of WCW and Kahler function would reduce
to Kahler action for a preferred extremal of Kahler action. In this chapter the recent view about the
modified Dirac action are explained in more detail.

1. Identification of the modified Dirac action

The modified Dirac action action involves several terms. The first one is 4-dimensional assignable
to Kéhler action. Second term is instanton term reducible to an expression restricted to wormhole
throats or any light-like 3-surfaces parallel to them in the slicing of space-time surface by light-like
3-surfaces. The third term is assignable to Chern-Simons term and has interpretation as a mea-
surement interaction term linear in Cartan algebra of the isometry group of the imbedding space in
order to obtain stringy propagators and also to realize coupling between the quantum numbers asso-
ciated with super-conformal representations and space-time geometry required by quantum classical
correspondence.

This means that 3-D light-like wormhole throats carry induced spinor field which can be regarded
as independent degrees of freedom having the spinor fields at partonic 2-surfaces as sources and acting
as 3-D sources for the 4-D induced spinor field. The most general measurement interaction would
involve the corresponding coupling also for Kéhler action but is not physically motivated. There are
good arguments in favor of Chern-Simons Dirac action and corresponding measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kéhler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M* coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y;® in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X;* with light-like 3-surface Y;* " parallel” with it in the
definition of Dirac determinant corresponds to the U(1) gauge transformation K — K + f + f
for Kahler function of WCW so that WCW Kahler metric is not affected. Here f is holomorphic
function of WCW (world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kahler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kéhler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K — K + f + f. p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (C'Ds).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kéhler action and its instanton term. CP breaking, irreversibility
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and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description for
dissipative effects. It must be however emphasized that the mere addition of instanton term to
Kéhler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M-matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

2. Hyper-quaternionicity and quantum criticality

The conjecture that quantum critical space-time surfaces are hyper-quaternionic in the sense that
the modified gamma matrices span a quaternionic subspace of complexified octonions at each point
of the space-time surface is consistent with what is known about preferred extremals. The condition
that both the modified gamma matrices and spinors are quaternionic at each point of the space-time
surface leads to a precise ansatz for the general solution of the modified Dirac equation making sense
also in the real context. The octonionic version of the modified Dirac equation is very simple since
SO(7,1) as vielbein group is replaced with G5 acting as automorphisms of octonions so that only the
neutral Abelian part of the classical electro-weak gauge fields survives the map.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Quaternionicity condition implies that octo-
twistors reduce to something closely related to ordinary twistors.

8. The exponent of Kdhler function as Dirac determinant for the modified Dirac action

Although quantum criticality in principle predicts the possible values of Kahler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography.

1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X f associated with a given space-time sheet X* is the simplest candidate
for vacuum functional identifiable as the exponent of the Kéhler function. Individual Dirac de-
terminant is defined as the product of eigenvalues of the dimensionally reduced modified Dirac
operator D 3 and there are good arguments suggesting that the number of eigenvalues is finite.
p-Adicization requires that the eigenvalues belong to a given algebraic extension of rationals.
This restriction would imply a hierarchy of physics corresponding to different extensions and
could automatically imply the finiteness and algebraic number property of the Dirac deter-
minants if only finite number of eigenvalues would contribute. The regularization would be
performed by physics itself if this were the case.

2. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kéahler
action for the preferred extremal of Kahler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

3. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigenvalues
of Dk 3 and closely related to Riemann Zeta since the spectrum consists essentially for the
cyclotron energy spectra for localized solutions region of non-vanishing induced Kéahler magnetic
field and hence is in good approximation integer valued up to some cutoff integer. In zero
energy ontology the Dirac zeta function associated with these eigenvalues defines ”square root”
of thermodynamics assuming that the energy levels of the system in question are expressible
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as logarithms of the eigenvalues of the modified Dirac operator defining kind of fundamental
constants. Critical points correspond to approximate zeros of Dirac zeta and if Kéhler function
vanishes at criticality as it indeed should, the thermal energies at critical points are in first
order approximation proportional to zeros themselves so that a connection between quantum
criticality and approximate zeros of Dirac zeta emerges.

4. The discretization induced by the number theoretic braids reduces the world of classical worlds
to effectively finite-dimensional space and configuration space Clifford algebra reduces to a finite-
dimensional algebra. The interpretation is in terms of finite measurement resolution represented
in terms of Jones inclusion M C AN of HFFs with M taking the role of complex numbers.
The finite-D quantum Clifford algebra spanned by fermionic oscillator operators is identified
as a representation for the coset space N'/M describing physical states modulo measurement
resolution. In the sectors of generalized imbedding space corresponding to non-standard values
of Planck constant quantum version of Clifford algebra is in question.

1.5.5 Knots and TGD

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is to find a
quantum physical construction of Khovanov homology analous to the topological QFT defined by
Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation value of Wilson
loop in non-Abelian gauge theory.

Witten’s approach to Khovanov homology relies on fivebranes as is natural if one tries to define
2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the difference
in approaches it is very useful to try to find the counterparts of this approach in quantum TGD since
this would allow to gain new insights to quantum TGD itself as almost topological QFT identified
as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns out to be
extremely useful from TGD point of view.

1. A highly unique identification of string world sheets and therefore also of the braids whose ends
carry quantum numbers of many particle states at partonic 2-surfaces emerges if one identifies the
string word sheets as singular surfaces in the same manner as is done in Witten’s approach. This
identification need of course not be correct and later in the article a less ad hoc identification is
proposed. Even more, the conjectured slicings of preferred extremals by 3-D surfaces and string
world sheets central for quantum TGD can be identified uniquely if the identification is accepted.
The slicing by 3-surfaces would be interpreted in gauge theory in terms of Higgs= constant
surfaces with radial coordinate of C'P, playing the role of Higgs. The slicing by string world
sheets would be induced by different choices of U(2) subgroup of SU(3) leaving Higgs=constant
surfaces invariant.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges. P
would correspond to instanton number and F to the fermion number assignable to right handed
neutrinos. The breaking of M* chiral invariance makes possible to realize Q physically. The
finding that the generalizations of Wilson loops can be identified in terms of the gerbe fluxes
| H4J supports the conjecture that TGD as almost topological QFT corresponds essentially to
a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generalization
Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired by
zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are needed if
bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduce and the possibility that it could be
applied to generalized Feynman diagrams is discussed. The algebraic structrures kei, quandle,
rack, and biquandle and their algebraic modifications as such are not enough. The lines of
Feynman graphs are replaced by braids and in vertices braid strands redistribute. This poses
several challenges: the crossing associated with braiding and crossing occurring in non-planar
Feynman diagrams should be integrated to a more general notion; braids are replaced with sub-
manifold braids; braids of braids ....of braids are possible; the redistribution of braid strands
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in vertices should be algebraized. In the following I try to abstract the basic operations which
should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as well
as partonic 2-surfaces and I have discussed several identifications during last years. Legendrian
braids turn out to be very natural candidates for braids and their duals for the partonic 2-
surfaces. String world sheets in turn could correspond to the analogs of Lagrangian sub-manifolds
or two minimal surfaces of space-time surface satisfying the weak form of electric-magnetic
duality. The latter opion turns out to be more plausible. This identification - if correct -
would solve quantum TGD explicitly at string world sheet level which corresponds to finite
measurement resolution.

3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This
requires the identification of vertices, propagators, and prescription for integrating over al 3-
surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are
well-defined.

4. The notion of generalized Feynman diagram leads to a beautiful duality between the descriptions
of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity duality and
AdS/CFT duality but requiring no additional assumptions. The model of quark gluon plasma
as s strongly interacting phase is proposed. Color magnetic flux tubes are responsible for the
long range correlations making the plasma phase more like a very large hadron rather than a
gas of partons. One also ends up with a simple estimate for the viscosity/entropy ratio using
black-hole analogy.

1.5.6 Miscellaneous topics

This chapter contains topics which do not fit naturally under any umbrella, but which I feel might be
of some relevance. Basically TGD inspired comments to the work of the people not terribly relevant to
quantum TGD itself are in question. For few years ago Witten’s approach to 3-D quantum gravitation
raised a considerable interest and this inspired the comparison of this approach with quantum TGD in
which light-like 3-surfaces are in a key role. Few years later the entropic gravity of Verlinde stimulated
a lot of fuss in blogs and it is interesting to point out how the formal thermodynamical structure (or
actually its "square root”) emerges in the fundamental formulation of TGD. Lisi’s Eg theory was a
further blog favorite and some comments about its failures and possible manners to cure them are
discussed. It is also shown ho how FEg can be seed as being replaced with the Kac-Moody algebra
associated standard model symmetry group in TGD framework.
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Chapter 2

Identification of the Configuration
Space Kahler Function

2.1 Introduction

The motivation or the construction of configuration space geometry is the postulate that physics
reduces to the geometry of classical spinor fields in the the ”world of the classical worlds” (WCW)
identified as the infinite-dimensional configuration space of 3-surfaces of some subspace of M* x CP.
The first candidates were Mi x OPy and M* x CP,, where M* and M_‘i denote Minkowski space
and its light cone respectively. The recent identification of WCW is as the the union of sub-WCWs
consisting of light-like 3-surface representing generalized Feynman diagrams in C'D x C' P, where CD
is intersection of future and past directed light-cones of M*. The details of this identification will be
discussed later.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that configuration space possesses Kéhler geometry. One of the basic features of the Kéhler geometry
is that it is solely determined by the so called K&hler function, which defines both the Kéhler form J
and the components of the Kahler metric ¢ in complex coordinates via the formulas [52]

= 0O Kdz" NdE
ds® 20,0;KdzFdz (2.1.1)

Kahler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the configuration space

T = —g (2.1.2)

As a consequence Kahler form defines also symplectic structure in configuration space.

2.1.1 Configuration space Kahler metric from Kahler function

The task of finding Kéahler geometry for the configuration space reduces to that of finding the Kéhler
function. The main constraints on the Kéhler function result from the requirement of General Co-
ordinate Invariance (GCI) -or more technically Diff* symmetry and Diff degeneracy. GCI requires
that the definition of the Kéhler function assigns to a given 3-surface X3 a unique space-time surface
X4(X?3), the generalized Bohr orbit defining the classical physics associated with X3. The natural
guess inspired by quantum classical correspondence is that Kahler function is defined by what might
be called Kahler action, which is essentially Maxwell action with Maxwell field expressible in terms
of C'Py coordinates and that the space-time surface corresponds to a preferred extremal of Kéahler
action.

One can end up with the identification of the preferred extremal via several routes. Kéhler action
contains Kahler coupling strength as a temperature like parameter and this leads to the idea of
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quantum criticality fixing this parameter. One could go even even further, and require that space-
time surfaces are critical in the sense that there exist an infinite number of vanishing second variations
of Kéhler action defining conserved Noether charges. The approach based on the modified Dirac action
indeed leads naturally to this picture [I8] . K&hler coupling strength should be however visible in the
solutions of field equations somehow before one can say that these two criticalities have something to
do with each other. Since Kahler coupling strength does not appear in field equations it can make its
way to field equations only via boundary conditions. This is achieved if one accepts the weak form of
self-duality discussed in [9] which roughly states that for the partonic 2-surfaces the induced Kéahler
electric field is proportional to the Kahler magnetic field strength. The proportionality constant turns
out to be essentially the Kahler coupling strength. The simplest hypothesis is that Kahler coupling
strength has single universal value for given value of Planck constant and the weak form of self-duality
fixes it.

If Kahler action would define a strictly deterministic variational principle, Diff* degeneracy and in-
variance would be achieved by restricting the consideration to 3-surfaces Y3 at the boundary of M fi and
by defining Kihler function for 3-surfaces X2 at X4(Y?) and diffeo-related to Y3 as K(X3) = K(Y?).
This reduction might be called quantum gravitational holography. The classical non-determinism of
the Kéhler action introduces complications which might be overcome in zero energy ontology (ZEO).
ZEO and strong from of GCI lead to the effective replacement of X2 with partonic 2-surfaces at the
ends of C'D plus the 4-D tangent space distribution associated with them as basic geometric objects
so that one can speak about effective 2-dimensionality and strong form of gravitational holography.

2.1.2 Configuration space metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based on
symmetries. The work of Dan [29] [29] has demonstrated that the Kahler geometry of loop spaces is
unique from the existence of Riemann connection and fixed completely by the Kac Moody symmetries
of the space. In 3-dimensional context one has even better reasons to expect uniqueness. The guess
is that configuration space is a union symmetric spaces labeled by zero modes not appearing in
the line element as differentials and having interpretations as classical degrees providing a rigorous
formulation of quantum measurement theory. The generalized conformal invariance of metrically 2-
dimensional light like 3-surfaces acting as causal determinants is the corner stone of the construction.
The construction works only for 4-dimensional space-time and imbedding space which is a product of
four-dimensional Minkowski space or its future light cone with C'P.

In this sequel I will first consider the basic properties of the configuration space, propose an
identification of the Kéhler function and discuss various physical and mathematical motivations behind
the proposed definition. The key feature of the Kahler action is the failure of classical determinism in
its standard form, and various implications of the failure are discussed.

2.2 Configuration space

The view about configuration space or world of classical worlds (WCW) has developed considerably
during the last two decades. Here only the recent view is summarized in order to not load reader with
unessential details.

2.2.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and configuration space or ”world of
classical worlds” (WCW), are central to quantum TGD. The original idea was that 3-surfaces are
space-like 3-surfaces of H = M* x CPy or H = M_‘f_ x C'P;, and WCW consists of all possible 3-
surfaces in H. The basic idea was that the definition of Kéhler metric of WCW assigns to each X? a
unique space-time surface X4(X?) allowing in this manner to realize GCI. During years these notions
have however evolved considerably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [51
52, [50] .
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1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book. As matter fact,
this gluing idea generalizes to the level of WCW.

2. With the discovery of zero energy ontology [8l 12] it became clear that the so called causal
diamonds (C'Ds) interpreted as intersections M{ N M2 of future and past directed light-cones
of M* x CP, define correlates for the quantum states. The position of the "lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of C' P, length, p-adic length scale hypothesis [3] follows
as a consequence. The upper resp. lower light-like boundary 6Mi x CPy resp. M* x CP,
of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD x C'Pss and have their
3-D ends at the light-like boundaries of C'D x C'P,. Fractal structure is present in the sense
that C'Ds can contains C'Ds within CDs, and measurement resolution dictates the length scale
below which the sub-C'Ds are not visible.

3. The realization of the hierarchy of Planck constants [I7] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Carte-
sian products of singular coverings and possibly also factor spaces of C'D and C'P, to form a
book like structure. There are good physical and mathematical arguments suggesting that only
the singular coverings should be allowed [50] . The particles at different pages of this book
behave like dark matter relative to each other. This generalization also brings in the geometric
correlate for the selection of quantization axes in the sense that the geometry of the sectors of
the generalized imbedding space with non-standard value of Planck constant involves symmetry
breaking reducing the isometries to Cartan subalgebra. Roughly speaking, each CD and CP; is
replaced with a union of C'Ds and C P,s corresponding to different choices of quantization axes
so that no breaking of Poincare and color symmetries occurs at the level of entire WCW.

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont view
is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiva-
lence implied by GCI. There was a problem related to the realization of GCI since it was not at
all obvious why the preferred extremal X*(Y?) for Y3 at X*(X?) and Diff* related X® should
satisfy X4(Y?3) = X4(X?) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identification
resolves the above mentioned problem) and understanding the conformal symmetries of the
theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore it seems
that one must choose between light-like and space-like 3-surfaces or assume generalized GCI
requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the ends of
CDs can be identified as the fundamental geometric objects. General GCI requires that the
basic objects correspond to the partonic 2-surfaces identified as intersections of these 3-surfaces
plus common 4-D tangent space distribution. At the level of WCW metric this means that
the components of the Kahler form and metric can be expressed in terms of data assignable
to 2-D partonic surfaces. Since the information about normal space of the 2-surface is needed
one has only effective 2-dimensionality. Weak form of self-duality [9] however implies that the
normal data (flux Hamiltonians associated with Kéahler electric field) reduces to magnetic flux
Hamiltonians. This is essential for conformal symmetries and also simplifies the construction
enormously.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
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representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-C'Ds. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-C Ds containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

. A further but inessential complication relates to the hierarchy of Planck constants forcing to

generalize the notion of imbedding space and also to the fact that for non-standard values of
Planck constant there is symmetry breaking due to preferred plane M? preferred homologically
trivial geodesic sphere of C'P, having interpretation as geometric correlate for the selection of
quantization axis. For given sector of C'H this means union over choices of this kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces correspond

to preferred extremals X4(X?) of Kihler action and are thus analogous to Bohr orbits. Kihler function
K(X?) defining the Kihler geometry of the world of classical worlds would correspond to the Kihler
action for the preferred extremal. The precise identification of the preferred extremals actually has
however remained open.

The study of the modified Dirac equation led to the realization that classical field equations for

Kahler action can be seen as consistency conditions for the modified Dirac action and led to the
identification of preferred extremals in terms of criticality. This identification which follows naturally
also from quantum criticality.

1. The detailed construction of the generalized eigen modes of the dimensional reduction of the

modified Dirac operator Dk associated with Kéhler action [8] relies on the vision that the
generalized eigenvalues of this operator code for information about preferred extremal of K&hler
action and that vacuum functional identified as Dirac determinant equals to exponent of Kahler
action for a preferred extremal.

. The next step of progress was the realization that the requirement that the conservation of the

Noether currents associated with the modified Dirac equation requires that the second variation
of the Kahler action vanishes. In strongest form this condition would be satisfied for all variations
and in weak sense only for those defining dynamical symmetries. The interpretation is as a space-
time correlate for quantum criticality and the vacuum degeneracy of Kéhler action makes the
criticality plausible. Weak form of electric-magnetic duality gives a precise formulation for how
Kéhler coupling strength is visible in the properties of preferred extremals. A generalization
of the ideas of the catastrophe theory to infinite-dimensional context results. These conditions
make sense also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding

of the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T'(X*(X})) C M® a subspace

M?(x) C M* having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M? degrees of freedom.

. In number theoretical framework M?(x) has interpretation as a preferred hyper-complex sub-

space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M®. The condition
M?(z) C T(X*(X}))) in principle fixes the tangent space at X}, and one has good hopes that
the boundary value problem is well-defined and could fix X*(X3) at least partially as a preferred
extremal of Kithler action. This picture is rather convincing since the choice M?(x) C M* plays
also other important roles.



2.2. Configuration space 37

3. At the level of H the counterpart for the choice of M?(z) seems to be following. Suppose
that X*(X 13) has Minkowskian signature. One can assign to each point of the M* projection
Pyra(X*4(X})) a sub-space M?(z) C M* and its complement E?(z), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kahler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Yl3 parallel to X l?’ follows under
certain conditions on the induced metric of X*(X}). This decomposition exists for known
extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level. A physically attractive realization of the slicings of space-time surface by 3-surfaces and
string world sheets is discussed in [23] by starting from the observation that TGD could define
a natural realization of braids, braid cobordisms, and 2-knots.

4. The weakest form of number theoretic compactification [52] states that light-like 3-surfaces
X? c X4(X?) ¢ M® where X*(X?) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X? C X*(X?3) € M* x CP,, where X*(X3) is now preferred
extremum of Kihler action. The natural guess is that X*(X?) Cc M?® is a preferred extremal of
Kahler action associated with Kahler form of E4 in the decomposition M8 = M* x E*, where
M* corresponds to hyper-quaternions. The conjecture would be that the value of the Kéhler
action in M® is same as in M* x C'Py: in fact that 2-surface would have identical induced metric
and Kahler form so that this conjecture would follow trivial. M?® — H duality would in this sense
be Kéahler isometry.

If one takes M~ H duality seriously, one must conclude that one can choose any partonic 2-surface
in the slicing of X* as a representative. This means gauge invariance reflect in the definition of Kahler
function as U(1) gauge transformation K — K + f + f having no effect on Kihler metric and Kihler
form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
M4 x CPy. The basic outcome is that Kihler metric is expressible using the data at partonic 2-surfaces
X2 Cc 6M fi X C'P,. The generalization to the actual physical situation requires the replacement of
X% C 5Mi x C'P, with unions of partonic 2-surfaces located at light-like boundaries of C'Ds and
sub-C Ds.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
("world of classical worlds” (WCW)). Should one regard C'H as the space of 3-surfaces of M* x C' Py
or M} x C'P; or perhaps something more delicate.

1. For a long time I believed that the basis question is ”Mj‘; or M*?” and that this question
had been settled in favor of Mjl_ by the fact that Mjl_ has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to M fi x C' P, were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M* instead of M fi.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or "world of classical worlds” (WCW). The spaces CD x CP; regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of §M$ x C'Py as isometries of WCW. The
gigantic symmetries associated with the §M$ x CP, are also laboratory symmetries. Poincare
invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces M x C'P, of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X7, which can be boundaries of X* and light-like surfaces separating
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space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces C DxCP,. CDs can contain C'Ds within C'Ds so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. It must be however emphasized that
Kaéhler function depends on partonic 2-surfaces at both ends of space-time surface so that WCW is
topologically Cartesian product of corresponding symmetric spaces. WCW metric must therefore have
parts corresponding to the partonic 2-surfaces (free part) and also an interaction term depending
on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion is that
geometrization reduces to that for single like of generalized Feynman diagram containing partonic
2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck constants
are not relevant for the basic construction, it reduces to a high degree to a study of a simple special
case corresponding to a line of generalized Feynman diagram. One can also deduce the free part of
the metric by restricting the consideration to partonic 2-surfaces at single end of generalized Feynman
diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kéhler form at the partonic 2-surface X? - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of €*? Jap at
X? define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kéhler forms of C'P; and
SM?% at the partonic 2-surfaces X2 at the light-like boundaries of C'Ds are fixed. The symplectic
group of § M4} x C'P, parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given C'D in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S? x CP, is in question: this was one of the first ideas about
configuration space which I gave up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identical actions of Super Virasoro
generators for super-symplectic and super Kac-Moody algebras implies that inertial and gravi-
tational four-momenta are identical.

2.2.2 Constraints on the configuration space geometry

The constraints on the WCW result both from the infinite dimension of the configuration space and
from physically motivated symmetry requirements. There are three basic physical requirements on the
configuration space geometry: namely four-dimensional GCI in strong form, Kéhler property and the
decomposition of configuration space into a union U;G/H; of symmetric spaces G/ H;, each coset space
allowing G-invariant metric such that G is subgroup of some ’universal group’ having natural action
on 3-surfaces. Together with the infinite dimensionality of the configuration space these requirements
pose extremely strong constraints on the configuration space geometry. In the following we shall
consider these requirements in more detail.

Diff* invariance and Diff* degeneracy

Diff* plays fundamental role as the gauge group of General Relativity. In string models Dif f?
invariance (Dif f2 acts on the orbit of the string) plays central role in making possible the elimination
of the time like and longitudinal vibrational degrees of freedom of string. Also in the present case the
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elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity and Diff*
invariance provides an obvious manner to do the job.

In the standard path 1 integral formulation the realization of Diff* invariance is an easy task at the
formal level. The problem is however that path integral over four-surfaces is plagued by divergences
and doesn’t make sense. In the present case the configuration space consists of 3-surfaces and only
Dif f3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one should
somehow define the action of Diff* in the space of 3-surfaces. Whatever the action of Diff* is it must
leave the configuration space metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of the configuration space so that 3-surface and its Diff* image have zero distance. The
conclusion is that configuration space metric should be both Diff* invariant and Diff* degenerate.

The problem is how to define the action of Diff* in C'(H). Obviously the only manner to achieve
Diff* invariance is to require that the very definition of the configuration space metric somehow
associates a unique space time surface to a given 3-surface for Diff* to act on. The obvious physical
interpretation of this space time surface is as ”classical space time” so that ” Classical Physics” would
be contained in configuration space geometry. In fact, this space-time surface is analogous to Bohr
orbit so that semiclassical quantization rules become an exact part of the quantum theory. It is this
requirement, which has turned out to be decisive concerning the understanding of the WCW geometry.

Decomposition of the configuration space into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan sug-
gests that configuration space should possess decomposition into a union of coset spaces CH = U;G/H;
such that the metric inside each coset space G/H; is left invariant under the infinite dimensional isom-
etry group G. The metric equivalence of surfaces inside each coset space G/H; does not mean that
3-surfaces inside G/ H; are physically equivalent. The reason is that the vacuum functional is exponent
of Kéhler action which is not isometry invariant so that the 3-surfaces, which correspond to maxima of
Kahler function for a given orbit, are in a preferred position physically. For instance, one can imagine
of calculating functional integral around this maximum perturbatively. Symmetric space property
actually allows also much more powerful non-perturbative approach based on harmonic analysis [18] .
The sum of over i means actually integration over the zero modes of the metric (zero modes correspond
to coordinates not appearing as coordinate differentials in the metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions. De-
noting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement ¢ by g = h @ t, one has

[h,h] Ch , [ht]Ct, [t,t]Ch .

This decomposition turn out to play crucial role in guaranteing that G indeed acts as isometries and
that the metric is Ricci flat.

The four-dimensional Dif f invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Dif f* equivalent to the intersection of X4(X?)
with the light cone boundary. This in turn implies that 3-surfaces in the space 6H = dM{ x CP,
should be all what is needed to construct configuration space geometry. The group G can be identified
as some subgroup of diffeomorphisms of §H and H; contains that subgroup of G, which acts as
diffeomorphisms of the 3-surface X3. Since G preserves topology, configuration space must decompose
into union U;G/H;, where i labels 3-topologies and various zero modes of the metric. For instance,
the elements of the Lie-algebra of G invariant under configuration space complexification correspond
to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kéhler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.

Kahler property

Kahler property implies that the tangent space of the configuration space allows complexification and
that there exists a covariantly constant two-form Jg;, which can be regarded as a representation of
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the imaginary unit in the tangent space of the configuration space:

T T = =Gy (2.2.1)

There are several physical and mathematical reasons suggesting that configuration space metric should
possess Kéahler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is basic
mathematical operation of quantum theory.

2. Kéhler property turns out to be a necessary prerequisite for defining divergence free configuration
space integration. We will leave the demonstration of this fact later although the argument as
such is completely general.

3. Kahler property very probably implies an infinite-dimensional isometry group. The study of the
loop groups Map(S!,G) [29] shows that loop group allows only single Kihler metric with well
defined Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X?3, H). The defining
formula for the connection is given by the expression

2AVXY,Z) = X(YV,2)+Y(Z X)—Z(X,Y)
+ ([X,Y],2)+ (2, X),Y) - ([Y, 2], X) (2.2.2)

X,Y, Z are smooth vector fields in Map(X3,G). This formula defines V xY uniquely provided
the tangent space of Map is complete with respect to Riemann metric. In the finite-dimensional
case completeness means that the inverse of the covariant metric tensor exists so that one can
solve the components of connection from the conditions stating the covariant constancy of the
metric. In the case of the loop spaces with Kéhler metric this is however not the case.

Now the symmetry comes into the game: if XY, Z are left (local gauge) invariant vector fields
defined by the Lie-algebra of local G then the first three terms drop away since the scalar
products of left invariant vector fields are constants. The expression for the covariant derivative
is given by

VxY = (AdxY — AdyY — AdyX)/2 (2.2.3)

where Ad% is the adjoint of Adx with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry group
of the configuration space to be Map(X?, M* x SU(3))! Any symmetry group, whose Lie algebra
is complete with respect to the configuration space metric ( in the sense that any tangent space
vector is expressible as superposition of isometry generators modulo a zero norm tangent vector)
is an acceptable alternative.

The Kéhler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of the
metric turns out to be even larger than in 1-dimensional case due to the four-dimensional Diff
degeneracy. So we expect that the metric ought to possess some infinite-dimensional isometry
group and that the above formula generalizes also to the 3-dimensional case and to the case of
local coset space. Note that in M* degrees of freedom Map(X?, M*) invariance would imply
the flatness of the metric in M* degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be underes-
timated. For example, one natural looking manner to construct physical theory would be based
on the idea that configuration space geometry is dynamical and this approach is followed in the
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attempts to construct string theories [14] . Various physical considerations (in particular the
need to obtain oscillator operator algebra) seem to imply that configuration space geometry is
necessarily Kéhler. The above result however states that configuration space Kahler geometry
cannot be dynamical quantity and is dictated solely by the requirement of internal consistency.
This result is extremely nice since it has been already found that the definition of the configura-
tion space metric must somehow associate a unique classical space time and ” classical physics” to
a given 3-surface: uniqueness of the geometry implies the uniqueness of the ”classical physics”.

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that con-
figuration space is not only symmetric space but also (contact) Kédhler manifold inheriting its
(degenerate) Kéhler structure from the imbedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces C'P,, are perhaps the only
possible candidates for H. The reason for the unique position of the four-dimensional Minkowski
space turns out to be that the boundary of the light cone of D-dimensional Minkowski space
is metrically a sphere SP~2 despite its topological dimension D — 1: for D = 4 one obtains
two-sphere allowing Kéhler structure and infinite parameter group of conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model in
terms of the Kéhler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not necessarily
Map!) correspond to the ordinary representations of the corresponding centrally extended
group [3I]. The representations of Kac Moody group indeed play central role in string
models [35] [19] and configuration space approach would explain their occurrence, not as a
result of some quantization procedure, but as a consequence of symmetry of the underlying
geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the configuration
space.

(¢) The ”fermionic” fields ( Ramond fields, [35] [19] ) should correspond to gamma matrices
of the configuration space. Fermionic oscillator operators would correspond simply to
contractions of isometry generators j¥ with complexified gamma matrices of configuration
space

ri = iy
rf = (rF+Jkrh V2 (2.2.4)

(J* is the Kihler form of the configuration space) and would create various spin excita-
tions of the configuration space spinor field. Fki are the complexified gamma matrices,
complexification made possible by the Kéhler structure of the configuration space.

This suggests that some generalization of the so called Super Kac Moody algebra of string models
[35, [19] should be regarded as a spectrum generating algebra for the solutions of field equations in
configuration space.

Although the Kéahler structure seems to be physically well motivated there is a rather heavy counter
argument against the whole idea. Kahler structure necessitates complex structure in the tangent space
of the configuration space. In C'P, degrees of freedom no obvious problems of principle are expected:
configuration space should inherit in some sense the complex structure of C'Ps.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only two
Euclidian degrees of freedom remain. An analogous difficulty is encountered in quantum field theories:
only two of the four possible polarizations of gauge boson correspond to physical degrees of freedom:
mathematically the wrong polarizations correspond to zero norm states and transverse states span a
complex Hilbert space with Euclidian metric. Also in string model analogous situation occurs: in case
of D-dimensional Minkowski space only D —2 transversal degrees of freedom are physical. The solution
to the problem seems therefore obvious: configuration space metric must be degenerate so that each
vibrational mode spans effectively a 2-dimensional Euclidian plane allowing complexification.
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We shall find that the definition of Kéahler function to be proposed indeed provides a solution to
this problem and also to the problems listed before.

1. The definition of the metric doesn’t differentiate between 1- and N-particle sectors, avoids spin
statistics difficulty and has the physically appealing property that one can associate to each
3-surface a unique classical space time: classical physics is described by the geometry of the
configuration space and d the geometry of the configuration space is determined uniquely by the
requirement of mathematical consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to four
and is due to the effective 3-dimensionality of light-cone boundary.

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry group
G. G is subgroup of the diffeomorphism group of §Mi x CP,. Essential role is played by the
fact that the boundary of the four-dimensional light cone, which, despite being topologically
3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore allows infinite-
parameter groups of isometries as well as conformal and symplectic symmetries and also Kéhler
structure unlike the higher-dimensional light cone boundaries. Therefore configuration space
metric is Kéhler only in the case of four-dimensional Minkowski space and allows symplectic
U (1) central extension without conflict with the no-go theorems about higher dimensional central
extensions.

The study of the vacuum degeneracy of Kéhler function defined by Kéhler action forces to
conclude that the isometry group must consist of the symplectic transformations of 6 H = (5Mi X
CP,. The corresponding Lie algebra can be regarded as a loop algebra associated with the
symplectic group of S? x CP,, where S? is r); = constant sphere of light cone boundary.
Thus the finite-dimensional group G defining loop group in case of string models extends to
an infinite-dimensional group in TGD context. This group has a monstrous size. The radial
Virasoro localized with respect to S? x C'P, defines naturally complexification for both G and H.
The general form of the Kéahler metric deduced on basis of this symmetry has same qualitative
properties as that deduced from Kéhler function identified as preferred extremal of Kahler action.
Also the zero modes, among them isometry invariants, can be identified.

4. The construction of the configuration space spinor structure is based on the identification of
the configuration space gamma matrices as linear superpositions of the oscillator operators
associated with the second quantized induced spinor fields. The extension of the symplectic
invariance to super symplectic invariance fixes the anti-commutation relations of the induced
spinor fields, and configuration space gamma matrices correspond directly to the super genera-
tors. Physics as number theory vision suggests strongly that configuration space geometry exists
for 8-dimensional imbedding space only and that the choice Mi x C' Py for the imbedding space
is the only possible one.

2.3 Identification of the Kahler function

There are three approaches to the construction of the WCW geometry: a direct physics based guess
of the Ké&hler function, a group theoretic approach based on the hypothesis that C H can be regarded
as a union of symmetric spaces, and the approach based on the construction of WCW spinor structure
first by second quantization of induced spinor fields. Here the first approach is discussed.

2.3.1 Definition of Kahler function
Kahler metric in terms of Kahler function

Quite generally, Kahler function K defines Kéhler metric in complex coordinates via the following
formula

‘]kf = ig,d:iﬁk&lK. (231)
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Kahler function is defined only modulo a real part of holomorphic function so that one has the gauge
symmetry

K — K+f+f. (2.3.2)

Let X3 be a given 3-surface and let X* be any four-surface containing X? as a sub-manifold:
X% > X3. The 4-surface X* possesses in general boundary. If the 3-surface X? has nonempty
boundary 6X? then the boundary of X3 belongs to the boundary of X*: § X3 C §X*.

Induced Kahler form and its physical interpretation

Induced Kéahler form defines a Maxwell field and it is important to characterize precisely its relationship
to the gauge fields as they are defined in gauge theories. Kéhler form J is related to the corresponding
Maxwell field F' via the formula

J = zF |, v="—"7— . (2.3.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to h does not matter in the ordinary gauge theory context where one routinely choses units by
putting & = 1 but becomes very important when one considers a hierachy of Planck constants [17] .
Unless one has J = (gx/ho), where Ry corresponds to the ordinary value of Planck constant,
ak = g% /4mh together the large Planck constant means weaker interactions and convergence of the
functional integral defined by the exponent of Kéhler function and one can argue that the convergence
of the functional integral is what forces the hierarchy of Planck constants. This is in accordance with
the vision that Mother Nature likes theoreticians and takes care that the perturbation theory works
by making a phase transition increasing the value of the Planck constant in the situation when
perturbation theory fails. This leads to a replacement of the M* (or more precisely, causal diamond
CD) and C P, factors of the imbedding space (CD x C'Py) with its r = h/hiy-fold singular covering (one
can counsider also singular factor spaces). If the components of the space-time surfaces at the sheets
of the covering are identical, one can interpret r-fold value of Kéhler action as a sum of r identical
contributions from the sheets of the covering with ordinary value of Planck constant and forget the
presence of the covering. Physical states are however different even in the case that one assumes that
sheets carry identical quantum states and anyonic phase could correspond to this kind of phase [3§] .

Kahler action

One can associate to Kahler form Maxwell action and also Chern-Simons anomaly term proportional
to f 4 J A J in well known manner. Chern Simons term is purely topological term and well defined
for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable space-time
surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore Kéhler action
Sk (X*) can be defined as

Se(XY) = kb / JA (%) . (2.3.4)
X4 X3CcX4

The sign of the square root of the metric determinant, appearing implicitly in the formula, is defined
in such a manner that the action density is negative for the Euclidian signature of the induced metric
and such that for a Minkowskian signature of the induced metric Kahler electric field gives a negative
contribution to the action density.

The notational convention

1
k= 2.3.5
! 16rak ( )

where ax will be referred as Kéhler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [52] the absolute value of the action in each region where action density
has a definite sign, the value of ax can depend on space-time sheet.



44 Chapter 2. Identification of the Configuration Space Kihler Function

Kahler function

One can define the Kéhler function in the following manner. Consider first the case H = Mi x C'Py
and neglect for a moment the non-determinism of Kihler action. Let X2 be a 3-surface at the light-
cone boundary §M3 x CP,. Define the value K (X?) of Kahler function K as the value of the Kéhler
action for some preferred extremal in the set of four-surfaces containing X3 as a sub-manifold:

K(X?) = K(Xp.p) » Xpep C{X*X?C X'} . (2.3.6)
The most plausible identification of preferred extremals is in terms of quantum criticality in the sense
that the preferred extremals allow an infinite number of deformations for which the second variation of
Kéhler action vanishes. Combined with the weak form of electric-magnetic duality forcing appearence
of Kéahler coupling strength in the boundary conditions at partonic 2-surfaces this condition might be
enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently- 33
years after the birth of TGD - I have been forced to reconsider the question whether the precise
identification of Kahler function. Should Kahler function actually correspond to the Kéhler action for
the space-time regions with Euclidian signature having interpretation as generalized Feynman graphs?
If so what would be the interpretation for the Minkowskian contribution?

1. If one accepts just the formal definition for the square root of the metric determinant, Minkowskian
regions would naturally give an imaginary contribution to the exponent defining the vacuum
functional. The presence of the phase factor would give a close connection with the path inte-
gral approach of quantum field theories and the exponent of Kéhler function would make the
functional integral well-defined.

2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons
terms from opposite sides of wormhole throats with degenerate four-metric with a constraint term
guaranteeing the duality plus measurement interaction terms describing coupling to isometry
charges formally representable as an addition of a gauge term to Chern-Simons-Dirac action. The
measurement interaction terms would correspond to couplings to four-momenta at Minkowskian
side and color charges at Euclidian side and would give different contributions to the Euclidian
and Minkowskian Chern-Simons terms.

The motivation for this reconsideration came from the applications of ideas of Floer homology to
TGD framework [62]: the Minkowskian contribution to Kéhler action for preferred extremals would
define Morse function providing information about WCW homology. Both Kéahler and Morse would
find place in TGD based world order.

2.3.2 What are the values of the Kahler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of the
Kahler function, the dynamics depends on the normalization of the Kéhler function. Since the Theory
of Everything should be unique it would be highly desirable to find arguments fixing the normalization
or equivalently the possible values of the Kéhler coupling strength ajy. Also a discrete spectrum of
values is acceptable.

The quantization of Kéhler form could result in the following manner. It will be found that Abelian
extension of the isometry group results by coupling spinors of the configuration space to a multiple
of Kahler potential. This means that Kéahler potential plays role of gauge connection so that Kahler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kahler form
is co-homologically nontrivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition fixing
the value of ax. Vacuum functional exp(K) is analogous to the exponent exp(—H/T) appearing
in the definition of the partition function of a statistical system and S-matrix elements and other
interesting physical quantities are integrals of type (O) = [ exp(K )OVGdV and therefore analogous
to the thermal averages of various observables. ajy is completely analogous to temperature. The
critical points of a statistical system correspond to critical temperatures T, for which the partition
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function is nonanalytic function of T'— T, and according RGE hypothesis critical systems correspond
to fixed points of renormalization group evolution. Therefore, a mathematically more precise manner
to fix the value of aj is to require that some integrals of type (O) (not necessary S-matrix elements)
become nonanalytic at 1/ax — 1/a%.

This analogy suggests also a physical motivation for the unique value or value spectrum of ay. Be-
low the critical temperature critical systems suffer something analogous to spontaneous magnetization.
At the critical point critical systems are characterized by long range correlations and arbitrarily large
volumes of magnetized and non-magnetized phases are present. Spontaneous magnetization might
correspond to the generation of Kdhler magnetic fields: the most probable 3-surfaces are Kéahler mag-
netized for subcritical values of ax. At the critical values of ax the most probable 3-surfaces contain
regions dominated by either Kéhler electric and or Kéhler magnetic fields: by the compactness of C P,
these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have suffered topological condensation on each other.
Therefore the critical value of ak allows the richest possible topological structure for the most probable
3-space. In fact, this hierarchical structure is in accordance with the basic ideas about renormalization
group invariance. This hypothesis has highly nontrivial consequences even at the level of ordinary
condensed matter physics.

Renormalization group invariance is closely related with criticality. The self duality of the Kahler
form and Weyl tensor of C'P; indeed suggest RG invariance. The point is that in N = 4 super-
symmetric field theories duality transformation relates the strong coupling limit for ordinary particles
with the weak coupling limit for magnetic monopoles and vice versa. If the theory is self-dual these
limits must be identical so that action and coupling strength must be RG invariant quantities. This
form of self-duality cannot hold true in TGD. The weak form of self-duality discussed in [9] roughly
states that for the partonic 2-surface the induce Kéhler electric field is proportional to the Kahler
magnetic field strength. The proportionality constant is essentially Kéhler coupling strength. The
simplest hypothesis is that Kéhler coupling strength has single universal valiue and the weak form
of self-duality fixes it. The proportionality ax = g% /4mh and the proposed quantization of Planck
constant requiring a generalization of the imbedding space imply that Kahler coupling strength varies
but is constant at a given page of the ”Big Book” defined by the generalized imbedding space [17] .

2.3.3 What preferred extremal property means?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kahler action is the most obvious guess for the principle selecting the preferred extremals
and has been taken as a working hypothesis for about one and half decades. Quantum criticality of
Quantum TGD should have however led to the idea that preferred extremals are critical in the sense
that space-time surface allows deformations for which second variation of Kéahler action vanishes so
that the corresponding Noether currents are conserved.

Further insights emerged through the realization that Noether currents assignable to the modified
Dirac equation are conserved only if the first variation of the modified Dirac operator Dy defined
by Kéhler action vanishes. This is equivalent with the vanishing of the second variation of Kahler
action -at least for the variations corresponding to dynamical symmetries having interpretation as
dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge
symmetries.

The vanishing of the second variation in interior of X*(X?) is what corresponds exactly to quantum
criticality so that the basic vision about quantum dynamics of quantum TGD would lead directly to
a precise identification of the preferred extremals.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X*(X}) vanishing at the intersections of X*(X}*) with the light-like boundaries
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of causal diamonds C'D would represent behavior variables. At least the vacuum extremals of
Kéhler action would represent extremals for which the second variation vanishes identically (the
"tip” of the multi-furcation set).

. The zero modes of Kéhler function would define the control variables interpreted as classical

degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality (or
holography or quantum classical correspondence) meaning that the configuration space metric
is determined by the data coming from partonic 2-surfaces X2 at intersections of X13 with
boundaries of CD, the interiors of 3-surfaces X? at the boundaries of C'Ds in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the Kéhler
metric of configuration space represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

. The complex variables characterizing X? would represent third kind of variables identified as

quantum fluctuating degrees of freedom contributing to the configuration space metric. Quantum
classical correspondence requires 1-1 correspondence between zero modes and these variables.
This would be essentially holography stating that the 2-D ”causal boundary” X? of X3(X?)
codes for the interior. Preferred extremal property identified as criticality condition would
realize the holography by fixing the values of zero modes once X? is known and give rise to
the holographic correspondence X2 — X3(X?). The values of behavior variables determined by
extremization would fix then the space-time surface X*(X}') as a preferred extremal.

. Clearly, the presence of zero modes would be absolutely essential element of the picture. Quan-

tum criticality, quantum classical correspondence, holography, and preferred extremal property
would all represent more or less the same thing. One must of course be very cautious since the
boundary conditions at X 13 involve normal derivative and might bring in delicacies forcing to
modify the simplest heuristic picture.

One must be very cautious with what one means with the preferred extremal property and criti-

cality.

1. Does one assign criticality with the partonic 2-surfaces at the ends of C'Ds? Does one restrict

it with the throats for which light-like 3-surface has also degenerate induced 4-metric? Or does
one assume stronger form of holography requiring a slicing of space-time surface by partonic
2-surfaces and string world sheets and assign criticality to all partonic 2-surfaces. This kind of
slicing is suggested by the study of the extremals [4] , required by the number theoretic vision
(M® — H duality [50] ), and also by the purely physical condition that a stringy realization of
GCI is possible.

. What is the exact meaning of the preferred extremal property? The assumption that the vari-

ations of Kahler action leaving 3-surfaces at the ends of C'Ds invariant would not be consistent
with the effective 2-dimensionality. The assumption that the critical deformations leave invari-
ant only partonic 2-surfaces would imply genuine 2-dimensionality. Should one assume that
critical deformations leave invariant partonic 2-surface and 3-D tangent space in the direction of
space-like 3-surface or light-like 3-surface but not both. This would be consistent with effective
3-dimensionality and would explain why Kac-Moody symmetries associated with the light-like
3-surfaces act as gauge symmetries. This is also essential for the realization of Poincare invari-
ance since the quantization of the light-cone proper time distance between C'Ds implies that
infinitesimal Poincare transformations lead out of C'D unless compensated by Kac-Moody type
transformations acting like gauge transformations. In the similar manner it would explain why
symplectic transformations of dCD act like gauge transformations.

. Could one pose the criticality condition for all partonic 2-surfaces in the slicing or only for the

throats of light-like 3-surfaces? This hypothesis looks natural but is not necessary. Light-like
throats are very singular objects criticality might apply only to their variations only in the
limiting sense and it might be necesary to assume criticality for all partonic 2-surfaces.
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2.3.4 Why non-local Kahler function?

Kéhler function is nonlocal functional of 3-surface. Non-locality of the K&ahler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: configuration
space integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kéhler structure the representations of the
isometry group necessitate the modification of the integration measure defining the inner product so
that the integration measure becomes proportional to the exponent exp(K) of the Kéhler function
[37]. The generalization to infinite-dimensional case is obvious. Also the requirement of Kac-Moody
symmetry leads to the presence of this kind of vacuum functional as will be found later. The exponent
is in fact uniquely fixed by finiteness requirement. Configuration space integral is of the following form

/Slexp(K)Sl\/ng . (2.3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in the
following manner. The (1,1)-part of the second variation of the Kéhler function defines the metric
and therefore propagagator as contravariant metric and the remaining (2,0)— and (0, 2)-parts of the
second variation are treated perturbatively. The most natural choice for the 3-surface are obviously
the 3-surfaces, which correspond to extrema of the Kéhler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined determi-
nants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kéhler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kéhler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1,1). Therefore
these two ill defined determinants (recall the presence of Diff degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is
perhaps an exception [2I] ) for induced geometric quantities are extremely nonlinear there is no hope
of obtaining a finite theory. For nonlocal action the situation is however completely different. There
are no local interaction vertices and therefore no products of delta functions in perturbation theory.

A further nice feature of the perturbation theory is that the propagator for small deformations is
nothing but the contravariant metric. Also the various vertices of the theory are closely related to the
metric of the configuration space since they are determined by the Kahler function so that perturbation
theory would have a beautiful geometric interpretation. Furthermore, since four-dimensional Diff
degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(iks [ 1 J A J). The term
is not well defined for non-orientable space-time surfaces and one must assume that ko vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If ko is integer multiple of 1/(87) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(iks |, sx2 J N A) it is possible to guarantee that the exponent is integer valued for 4-surfaces with
boundary, too.

There are two arguments suggesting that local Chern Simons term would not introduce diver-
gences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to define
a divergence free field theory [21I] . The term doesn’t depend at all on the induced metric and there-
fore contains no dimensional parameters (C' P, radius) and its expansion in terms of C' P, coordinate
variables is of the form allowed by renormalizable field theory in the sense that only quartic terms



48 Chapter 2. Identification of the Configuration Space Kihler Function

appear. This is seen by noticing that there always exist symplectic coordinates, where the expression
of the Kahler potential is of the form

A = ) PdQt . (2.3.8)
k

The expression for Chern-Simons term in these coordinates is given by

kg/ > PdP, AdQ" A dQ' (2.3.9)
X

5k

and clearly quartic CP, coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of CP,, which are realized as U(1) gauge
transformation for the Kéahler potential.

2.4 Some properties of Kahler action

In this section some properties of Kahler action and Kéahler function are discussed in light of experi-
enced gained during about 15 years after the introduction of the notion.

2.4.1 Vacuum degeneracy and some of its implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kdhler action. Although it
is not associated with the preferred extremals of K&hler action, there are good reasons to expect that
it has deep consequences concerning the structure of the theory.

Vacuum degeneracy of the Kéahler action

The basic reason for choosing Kéhler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [34] ). The Kéhler form of C'P; defines symplectic structure and any 4-surface
for which CP, projection is so called Lagrangian manifold (at most two dimensional manifold with
vanishing induced Kéhler form), is vacuum extremal due to the vanishing of the induced Kéahler form.
More explicitly, in the local coordinates, where the vector potential A associated with the Ké&hler form
reads as A=), P,dQ*. Lagrangian manifolds are expressible locally in the following form

P = afQ) . (2.4.1)

where the function f is arbitrary. Notice that for the general Y M action surfaces with one-dimensional
C P, projection are vacuum extremals but for Kahler action one obtains additional degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called C' P, type vacuum extremals are warped imbeddings X* of C P, to H such that
Minkowski coordinates are functions of a single C' P, coordinate, and the one-dimensional projection
of X* is random light like curve. These extremals have a non-vanishing action but vanishing Poincare
charges. Their small deformations are identified as space-time counterparts of fermions and their
super partners. Wormhole throats identified as pieces of these extremals are identified as bosons and
their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models
and this actually led to the eventualo realization that conformal invariance is a basic symmetry of
TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having
identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.
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Approximate symplectic invariance

Vacuum extremals have diffeomorphisms of M{ and M} local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kahler form invariant and only
induced metric breaks these symmetries. Symplectic transformations of C'P, act on the Maxwell
field defined by the induced Kéhler form in the same manner as ordinary U(1) gauge symmetries.
They are however not gauge symmetries since gauge invariance is still present. In fact, the construc-
tion of the configuration space geometry relies on the assumption that symplectic transformations
of 5Mi x C'P, which infinitesimally correspond to combinations of Mﬁ local C' P, symplectic and
C'Py-local M_?_ symplectic transformations act as isometries of the configuration space. In zero en-
ergy ontology these transformations act simultanoeusly on all partonic 2-surfaces characterizing the
space-time sheet representing a generalized Feynman diagram inside C'D.

The fact that C' P, symplectic transformations do not act as genuine gauge transformations means
that U(1) gauge invariance is effectively broken. This has non-trivial implications. The field equations
allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics [4] . For the
known extremals (massless extremals) they are light-like and a possible interpretation is in terms of
Bose-Einstein condensates of collinear massless bosons.

Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging to Mi x Y2, Y2 any Lagrangian sub-manifold
of C'P, are vacua irrespective of the topology and that symplectic transformations of C'P, generate
new surfaces Y2, If preferred extremals are obtained as small deformations of vacuum extremals (for
which the criticality is maximal), one expects therefore enormous ground state degeneracy, which
could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy corresponds
to the hypothesis that configuration space is a union of symmetric spaces labeled by zero modes which
do not appear at the line-element of the configuration space metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and the
maxima Ké&hler function as a function of zero modes define a discrete set which might be called
reduced configuration space. Spin glass degeneracy turns out to be crucial element for understanding
how macro-temporal quantum coherence emerges in TGD framework. One of the basic ideas about
p-adicization is that the maxima of Kahler function define the TGD counterpart of spin glass energy
landscape [51], 20] . The hierarchy of discretizations of the symmetric spaces corresponding to a
hierarchy of measurement resolutions [I8] could allow an identification in terms of a hierarchy spin
glass energy landscapes so that the algebraic points of the WCW would correspond to the maxima
of Kahler function. The hierarchical structure would be due to the failure of strict non-determinism
of Kahler action allowing in zero energy ontology to add endlessly details to the space-time sheets
representing zero energy states in shorter scale.

Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to 6 H =
6M3 x CP,. An analogous idea in string model context became later known as quantum gravitational
holography. The basic implication of the vacuum degeneracy is classical non-determinism, which is
expected to reflect itself as the properties of the Kéhler function and configuration space geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the degeneracy
and save quantum gravitational holography in its simplest form. This would mean that one just
replaces space-like 3-surfaces with ”association sequences” consisting of sequences of space-like 3-
surfaces with time like separations as causal determinants. This would mean that the absolute minima
of Kahler function would become degenerate: same space-like 3-surface at 6 H would correspond to
several association sequences with the same value of Kéhler function.

The life turned out to be more complex than this. CP, type extremals have Euclidian signature
of the induced metric and therefore C'P;, type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces Xl?’, which might be called
elementary particle horizons. The non-determinism of the C'P, type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in M_‘i. Pieces of C' P, type extremals are good candidates
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for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this
non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of C'Ds seems to provide the most plausible
treatment of the non-determinism and has indeed led to a breakthrough in the construction and
understanding of quantum TGD. At the level of generalized Feynman diagrams sub-C'Ds containing
zero energy states represent a hierarchy of radiative corrections so that the classical determinism
is direct correlate for the quantum non-determinism. Determinism makes sense only when one has
specified the length scale of measurement resolution. One can always add a C'D containing a vacuum
extremal to get a new zero energy state and a preferred extremal containing more details.

Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must for
several reasons. Quantum classical correspondence, which has become a basic guide line in the de-
velopment of TGD, states that all quantum phenomena have classical space-time correlates. This is
not new as far as properties of quantum states are considered. What is new that also quantum jumps
and quantum jump sequences which define conscious existence in TGD Universe, should have classical
space-time correlates: somewhat like written language is correlate for the contents of consciousness of
the writer. Classical non-determinism indeed makes this possible. Classical non-determinism makes
also possible the realization of statistical ensembles as ensembles formed by strictly deterministic
pieces of the space-time sheet so that even thermodynamics has space-time representations. Space-
time surface can thus be seen as symbolic representations for the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not be
possible. Classical non-determinism together with quantum-classical correspondence however suggests
that it is possible to have quantum jumps in which non-determinism is concentrated in space-time
region so that also conscious experience contains information about this region only.

2.4.2 Four-dimensional General Coordinate Invariance

The proposed definition of the Kéhler function is consistent with GCI and implies also 4-dimensional
Diff degeneracy of the Kahler metric. Zero energy ontology inspires strengthening of the GCI in the
sense that space-like 3-surfaces at the boundaries of C'D are physically equivalent with the light-like
3-surfaces connecting the ends. This imples that basic geometric objects are partonic 2-surfaces at
the boundaries of CDs identified as the intersections of these two kinds of surfaces. Besides this the
distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so that one would have
only effective 2-dimensionality. The failure of the non-determinism of Kahler action in the standard
sense of the word affects the situation also and one must allow a fractal hierarchy of C'Ds inside C' Ds
having interpretation in terms of radiative corrections.

Resolution of tachyon difficulty and absence of Diff anomalies

In TGD as in string models the tachyon difficulty is potentially present: unless the time like vibrational
excitations possess zero norm they contribute tachyonic term to the mass squared operator of Super
Kac Moody algebra. This difficulty is familiar already from string models [35] [19] .

The degeneracy of the metric with respect to the time like vibrational excitations guarantees that
time like excitations do not contribute to the mass squared operator so that mass spectrum is tachyon
free. It also implies the decoupling of the tachyons from physical states: the propagator of the theory
corresponds essentially to the inverse of the K&hler metric and therefore decouples from time like
vibrational excitations. The experience with string model suggests that if metric is degenerate with
respect to diffeomorphisms of X4(X3) there are indeed good hopes that time like excitations possess
vanishing norm with respect to configuration space metric.

The four-dimensional Diff invariance of the Kahler function implies that Diff invariance is guaran-
teed in the strong sense since the scalar product of two Diff vector fields given by the matrix associated
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with (1,1) part of the second variation of the Kéhler action vanishes identically. This property gives
hopes of obtaining theory, which is free from Diff anomalies: in fact loop space metric is not Diff de-
generate and this might be the underlying reason to the problems encountered in string models [35], [19]

Complexification of the configuration space

Strong form of GCI plays a fundamental role in the complexification of the configuration space. GCI
in strong form reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their
4-D tangent space data associated with ends of light-like 3-surface at light-like boundaries of C'D.
At boths end the imbedding space is effectively reduces to 5Mi x CPy (forgetting the complications
due to non-determinism of Kahler action). Light cone boundary in turn is metrically 2-dimensional
Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kéahler structure.
Therefore one can say that in certain sense configuration space metric inherits the Kahler structure
of S x CP,. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kéhler structure. In fact, it turns out that the quantum
fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of S? x C'P, and
thus as an infinite-dimensional analog of symmetric space as the considerations of [9] demonstrate.

The details of the complexification were understood only after the construction of configuration
space geometry and spinor structure in terms of second quantized induced spinor fields [§] . This also
allows to make detailed statements about complexification [9] .

Contravariant metric and Diff* degeneracy

Diff degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered in
both GRT and gauge theories [16 [I5] . In TGD a solution of the problem is provided by the existence
of infinite-dimensional isometry group. If the generators of this group form a complete set in the sense
that any vector of the tangent space is expressible as as sum of these generators plus some zero norm
vector fields then one can restrict the consideration to this subspace and in this subspace the matrix
9(X,Y) defined by the components of the metric tensor indeed indeed possesses well defined inverse
g 1(X,Y). This procedure is analogous to gauge fixing conditions in gauge theories and coordinate
fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible an
approach to WCW integration based on harmonic analysis replacing the perturbative approach based
on perturbative functional integral. This approach allows also a p-adic variant and leads an effective
discretization in terms of discrete variants of WCW for which the points of symmetric space consist
of algebraic points. There is an infinite number of these discretizations [51] and the interpretation is
in terms of finite measurement resolution. This gives a connection with the p-adicization program,
infinite primes, inclusions of hyper-finite factors as representation of the finite measurement resolution,
and the hierarchy of Planck constants [50] so that various approaches to quantum TGD converge nicely.

General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Diff* invariant. This in fact
fixes not only classical but also quantum dynamics completely. The point is that the values of the
configuration space spinor fields must be essentially same for all Diff* related 3-surfaces at the orbit
X* associated with a given 3-surface. This would mean that the time development of Diff* invariant
configuration spinor field is completely determined by its initial value at the moment of the big bang!

This is of course a naive over statement. The non-determinism of Kéhler action and zero energy
ontology force to take the causal diamond (C'D) defined by the intersection of future and past directed
light-cones as the basic structural unit of configuration space, and there is fractal hierarchy of CDs
within C'Ds so that the above statement makes sense only for giving C'D in measurement resolution
neglecting the presence of smaller C' Ds. Strong form of GCI also implies factorization of WCW spinor
fields into a sum of products associated with various partonic 2-surfaces. In particular, one obtains
time-like entanglement between positive and negative energy parts of zero energy states and entangle-
ment coefficients define what can be identified as M-matrix expressible as a ” complex square root” of
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density matrix and reducing to a product of positive definite diagonal square root of density matrix
and unitary S-matrix. The collection of orthonormal M-matrices in turn define unitary U-matrix
between zero energy states. M-matrix is the basic object measured in particle physics laboratory.

2.4.3 Configuration space geometry, generalized catastrophe theory, and
phase transitions

The definition of configuration space geometry has nice catastrophe theoretic interpretation. To
understand the connection consider first the definition of the ordinary catastrophe theory [57] .

1. In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c. The basic space decomposes locally into carte-
sian product £ = C' x X of control variables ¢, appearing as parameters in potential function
V(e,z) and of state variables x appearing as dynamical variables. Equilibrium states of the
system correspond to the extrema of the potential V (x, ¢) with respect to the variables x and in
the absence of symmetries they form a sub-manifold of M with dimension equal to that of the
parameter space C. In some regions of C' there are several extrema of potential function and
the extremum value of z as a function of ¢ is multi-valued. These regions of C' x X are referred
to as catastrophes. The simplest example is cusp catastrophe (see Fig. with two control
parameters and one state variable.

2. In catastrophe regions the actual equilibrium state must be selected by some additional physical
requirement. If system obeys flow dynamics defined by first order differential equations the
catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On the other
hand, the Maxwell rule obeyed by thermodynamic phase transitions states that the equilibrium
state corresponds to the absolute minimum of the potential function and the state of system
changes in discontinuous manner along the Maxwell line in the middle between the folds of the

cusp (see Fig. [2.4.3]).

3. As far as discontinuous behavior is considered fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there ’satellites’ and one aim of the catastrophe theory is to derive
all possible manners for the stable organization of folds into higher catastrophes. The funda-
mental result of the catastrophe theory is that for dimensions d of C' smaller than 5 there are
only 7 basic catastrophes and polynomial potential functions provide a canonical representation
for the catastrophes: fold catastrophe corresponds to third order polynomial (in fold the two
real roots become a pair of complex conjugate roots), cusp to fourth order polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe theories.

1. The first one is related to Kahler action as a local functional of 4-surface. The nature of this
catastrophe theory depends on what one means with the preferred extremals.

2. Second catastrophe theory corresponds to Kéhler function a non-local functional of 3-surface.
The maxima of the vacuum functional defined as the exponent of Kahler function define what
might called effective space-times, and discontinuous jumps changing the values of the parame-
ters characterizing the maxima are possible.

Consider first the option based on Kéhler action.

1. Potential function corresponds to Kéhler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kéhler
action with respect to to the variables of X (time derivatives of coordinates of C' specifying X3
in H,) keeping the variables of C specifying 3-surface X3 fixed. Preferred extremal property is
analogous to the Bohr quantization since canonical momenta cannot be chosen freely as in the
ordinary initial value problems of the classical physics. Preferred extremals are by definition at
criticality. Behavior variables correspond to the deformations of the 4-surface keeping partonic
2-surfaces and 3-D tangent space data fixed and preserving extremal property. Control variables
would correspond to these data.
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2. At criticality the rank of the infinite-dimensional matrix defined by the second functional deriva-
tives of the K&hler action is reduced. Catastrophes form a hierarchy characterized by the reduc-
tion of the rank of this matrix and Thom’s catastrophe theory generalizes to infinite-dimensional
context. Criticality in this sense would be one aspect of quantum criticality having also other
aspects. No discrete jumps would occur and system would only move along the critical surface
becoming more or less critical.

3. There can exist however several critical extremals assignable to a given partonic 2-surface but
have nothing to do with the catastrophes as defined in Thom’s approach. In presence of degen-
eracy one should be able to choose one of the critical extremals or replace this kind of regions
of WCW by their multiple coverings so that single partonic 2-surface is replaced with its multi-
ple copy. The degeneracy of the preferred extremals could be actually a deeper reason for the
hierarchy of Planck constants involving in its most plausible version n-fold singular coverings of
CD and C'P,. This interpretation is very satisfactory since the generalization of the imbedding
space and hierarchy of Planck constants would follow naturally from quantum criticality rather
than as separate hypothesis.

4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kéahler action.
For example, for pieces of Minkowski space in Mi x CPy the second variation of the Kahler
action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces are
analogous to the tip of the cusp catastrophe. There are also space-time surfaces for which the
second variation is non-vanishing but degenerate and a hierarchy of subsets in the space of
extremal 4-surfaces with decreasing degeneracy of the second variation defines the boundaries of
the projection of the catastrophe surface to the space of 3-surfaces. The space-times for which
second variation is degenerate contain as subset the critical and initial value sensitive absolute
minimum space-times.

Consider next the catastrophe theory defined by Kéhler function.

1. In this case the most obvious identification for the behavior variables would be in terms of the
space of all 3-surfaces in CD x C'P, - and if one believes in holography and zero energy ontology
- the 2-surfaces assignable the boundaries of causal diamonds (C'Ds).

2. The natural control variables are zero modes whereas behavior variables would correspond to
quantum fluctuating degrees of freedom contributing to the configuration space metric. The
induced Kéhler form at partonic 2-surface would define infinitude of purely classical control vari-
ables. There is also a correlation between zero modes identified as degrees of freedom assignable
to the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic
2-surfaces. This is nothing but holography and effective 2-dimensionality justifying the basic
assumption of quantum measurement theory about the correspondence between classical and
quantum variables. The absence of several maxima implies also the presence of saddle surfaces
at which the rank of the matrix defined by the second derivatives is reduced. This could lead
to a non-positive definite metric. It seems that it is possible to have maxima of Kahler function
without losing positive definiteness of the metric since metric is defined as (1,1)-type derivatives
with respect to complex coordinates. In case of C'P, however Kéhler function has single degen-
erate maximum corresponding to the homologically trivial geodesic sphere at r = oco. It might
happen that also in the case of infinite-D symmetric space finite maxima are impossible.

3. The criticality of K&hler function would be analogous to thermodynamical criticality and to the
criticality in the sense of catastrophe theory. In this case Maxwell’s rule is possible and even
plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kahler
action (as distinguished from that for Kéhler function).

1. The set M of the critical 4-surfaces corresponds to the V-shaped boundary of the 2-D cusp
catastrophe in 3-D space to plane. In general case it forms codimension one set in configuration
space. In TGD Universe physical system would reside at this line or its generalization to higher
dimensional catastrophes. For the criticality associated with Kahler action the transitions would
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be smooth transitions between different criticalities characterized by the rank defined above: in
the case of cusp from the tip of cusp to the vertex of cusp or vice versa. Evolution could
mean a gradual increase of criticality in this sense. If preferred extremals are not unique, cusp
catastrophe does not provide any analogy. The strong form of criticality would mean that
the system would be always ”at the tip of cusp” in metaphoric sense. Vacuum extremals are
maximally critical in trivial sense, and the deformations of vacuum extremals could define the
hierarchy of criticalities.

. For the criticality of Kahler action Maxwell’s rule stating that discontinuous jumps occur along

the middle line of the cusp is in conflict with catastrophe theory predicting that jumps occurs
along at criticality. For the criticality of Kéhler function -if allowed at all by symmetric space
property- Maxwell’s rule can hold true but cannot be regarded as a fundamental law. It is of
course known that phase transitions can occur in different manners (super heating and super
cooling).

Mamwell ing

fold lmen
f .

Figure 2.1: Cusp catastrophe
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2.5 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [§] was proposed first by Olive and Montonen and is central
in /' = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for C' P, geometry
Kahler form is self-dual and Kahler magnetic monopoles are also Kahler electric monopoles and
Kahler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kéahler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [9] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2, —1,—1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kéahler leads to
the reduction of Kahler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kahler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kéhler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kéhler current (Kéhler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.
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6. The general solution ansatz works for induced Kéahler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of C'D are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

2.5.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kahler form of WCW in terms of
the Kihler fluxes weighted by Hamiltonians of M3 at the partonic 2-surface X? looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kihler form assignable to the complement of the tangent space of X2 C X4,

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of C'P, type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (2%, 23, 2!, 2?) such
(x',2?) define coordinates for the partonic 2-surface and (z°,23) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kahler electric fluxes are apart from constant proportional to
Kéhler magnetic fluxes. This requires the condition
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J®g = Kl . (2.5.1)

A more general form of this duality is suggested by the considerations of [22] reducing the hierar-
chy of Planck constants to basic quantum TGD and also reducing Kéahler function for preferred
extremals to Chern-Simons terms [I] at the boundaries of C'D and at light-like wormhole throats.
This form is following

JP g2 = Kex Pl s /g1 . (2.5.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. € is a sign factor which is opposite for the two ends of C'D.
It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kéhler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Jotdm = (A+K)J, (2.5.3)

where J can denotes the Kahler magnetic flux, makes it possible to have a non-trivial configu-
ration space metric even for K = 0, which could correspond to the ends of a cosmic string like
solution carrying only Kéahler magnetic fields. This condition suggests that it can depend only
on Kéhler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then
K could be a non-constant function of X? depending on string world sheet coordinates. The
light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant
slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

szngdszn.

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z° fields in terms of Kihler form [2] , [2] read
as
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Fem .
v = € - =3J — sin*(0w)Ros ,
F
70 = 92;3:23%. (2.5.4)

Here Ry3 is one of the components of the curvature tensor in vielbein representation and Fg,,
and Fz correspond to the standard field tensors. From this expression one can deduce

€ .
J:§#%+me%&. (2.5.5)

3. The weak duality condition when integrated over X? implies

62 2
%QemJF%QZ,V = KfJ:Kn ,
I3 9
Qzy = = —=Qem , p=sin’(Ow) . (2.5.6)

Here the vectorial part of the Z° charge rather than as full Z° charge Qz = I3 + sin?(0w )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using A = rhy one can write

« 3
aeerm + p7ZQZ,V = E x rnK )
e? 97 Qem
I Cay = _ _Qem 2.5.7
@ 47hg az drhy  p(1—p) ( )

4. There is a great temptation to assume that the values of Q.,, and @z correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Q¢,, and @z would be also seen as
the identification of the fine structure constants a.,, and az. This however requires weak isospin
invariance.

The value of K from classical quantization of Kahler electric charge

The value of K can be deduced by requiring classical quantization of Kéahler electric charge.

1. The condition that the flux of F% = (h/g)J? defining the counterpart of Kihler electric field
equals to the Kihler charge gx would give the condition K = g% /h, where gy is Kihler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has ax = g%( /4mthy = Qem =~ 1/137, where oy, is finite
structure constant in electron length scale and hg is the standard value of Planck constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn C'P,. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Q.. and Q7 allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [38] supports this interpretation.

3. The identification of J as a counterpart of eB/h means that Kéhler action and thus also Ké&hler
function is proportional to 1/ak and therefore to f. This implies that for large values of &
Kihler coupling strength g% /41 becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling @ — «/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.

4. The condition K = g% /h implies that the Kéhler magnetic charge is always accompanied by
Kahler electric charge. A more general condition would read as

K = nng,nGZ. (2.5.8)

This would apply in the case of cosmic strings and would allow vanishing Kéahler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kéhler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z° flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the FEuclidian side much more natural condition is

1
K = . 2.5.9
hbar ( )

In fact, the self-duality of C' P, Kéhler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for C'P, type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP; radius and a the effective replacement g% — 1 would spoil the argument.

The boundary condition Jg = Jp for the electric and magnetic parts of Kahlwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kahler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded C P is such that
in C'P, coordinates for the Euclidian region the tensor (g®?g** — g®¥ gi#)/ /g remains invariant. This
is certainly the case for C'P; type vacuum extremals since by the light-likeness of M* projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole throat. Full
self-duality is indeed an un-necessarily strong condition.
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Reduction of the quantization of Kahler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kéhler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kahler charge. This would replace induced Kahler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z° field

D 3J—Sin29wR03 5

Here Zy = 2Ry3 is the appropriate component of CP, curvature form [2]. For a vanishing
Weinberg angle the condition reduces to that for Kéhler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kahler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kihler form and classical Z" fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical ZY field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [40]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kéhler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordstrém metric and C' P, are allowed
as simplest possible solutions of field equations [56]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with C'P, metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar 4+ cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of C'P, makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.



2.5. Weak form electric-magnetic duality and its implications 61

2.5.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X_1/2 = vLVR or X3 = Vpvg. viVg would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3 cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state g1/ — X+1 /2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kahler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (£2,F1,F1). This brings in mind the spectrum of color hyper charges
coming as (£2,F1,F1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kahler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered C'P, and believed on M* x S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of v/2 in the most general
case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes M, = 2¥ — 1 and Gaussian Mersennes Mg = (1 + 4)* — 1 has been proposed to
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define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime Mgg should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(197=89/2 = 512 The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of Mgg physics takes place in some shorter scale
and Mg is the first Mersenne prime to be considered. The mass scale of Mg; weak bosons would
be by a factor 2(89-61)/2 = 214 higher and about 1.6 x 10* TeV. Mgy quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to Mgk, k = 151,157,163,167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [3] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [19] . The upper and
lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with sum
over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of joining
of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary but
now there is no need to assign the entities X1 with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime Mjo7. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X* replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X4,/5. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
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form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X*? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [29] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X,/ in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [30] .

Should J + J; appear in Kahler action?

The presence of the S? Kihler form J; in the weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J + Jp in the Kéhler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kihler action. Canonically imbedded M* would become a monopole
configuration with an infinite magnetic energy and Kéhler action due to the monopole singularity at
the line connecting tips of the C'D. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M*?.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a C'P, magnetic monopole with opposite contribution to the magnetic charge so that J + J; = 0
holds true. This is achieved if one can regard space-time surface as a map M* — CP, reducing to
a map (0,®) = (0,+¢) with the sign chosen by properly projecting the homologically non-trivial
ry = constant spheres of C'D to the homologically non-trivial geodesic sphere of CP,. Symplectic
transformations of S? x C'P, produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J = Zk:m P,dQF and assuming that (P;, Q) corresponds to the C P, image of
52, one can take Q2 to be arbitrary function of P2, which in turn is an arbitrary function of M*
coordinates to obtain even more general vacuum extremals with 3-D C' P, projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that Jj is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the C'D becoming carrying the monopole
charge but is compensated since Lorentz boosts of C'Ds are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kihler field part of photon and Z° boson would
receive an additional contribution.



64 Chapter 2. Identification of the Configuration Space Kihler Function

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordstrom
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M* — CP, projecting the 7, constant
spheres S? of M? to the homologically non-trivial geodesic sphere of CP,. The winding number of
this map is —1 in order to achieve vanishing of the induced Kéahler form J 4 J;. For instance, the
following two canonical forms of the map are possible

©,v) = (Om,—dm) ,
(CA (m—0n, ) -

~—

(2.5.11)

Here (O, W) refers to the geodesic sphere of CP, and (7, ¢ar) to the sphere of M*.

The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics

can be constructed from this metric by a deformation making the C'P, projection 3-dimensional.
Using the expression of the C'P, line element in Eguchi-Hanson coordinates [10]

ds®_dr® + ﬁ(de/ + cos0dd)? + ﬁ(deﬂ + fracr?4F sin*©d®?)
= - ot E cos iF racr“4Fsin
(2.5.12)
and s the relationship r = tan(©), one obtains following expression for the C' P, metric
ds? 9 9 2 Lo o 2
= = dOys + sin(0ar) | (dpas + cos(0)dP)= + Z(dﬁ + sin”(0)d®
(2.5.13)

The resulting metric is obtained from the metric of S? by replacing d¢? which 3-D line element. The
factor sin?(6s) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin®(fs) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J; option are not physical.

2.5.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kahler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kaébhler action density can be written as a 4-dimensional integral of the Coulomb term j# A, plus
and integral of the boundary term J"%Ag,/gs over the wormhole throats and of the quantity
J% Ag./g1 over the ends of the 3-surface.

2. If the self-duality conditions generalize to J™ = dmaxe™J,5 at throats and to J% =
47raK60575J75 at the ends, the Ké&hler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement hy — rhy would effectively describe this. Boundary conditions would however give
1/r factor so that i would disappear from the Kéhler function! The original attempt to real-
ize quantum T'GD as an almost topological QFT was in terms of Chern-Simons action but was
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given up. It is somewhat surprising that Kahler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kahler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kihler action and non-trivial quantum dynamics in M* degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals j% either vanishes or is light-like (”massless extremals” for which weak
self-duality condition does not make sense [4] ) so that the Coulombic term vanishes identically in
the gauge used. The addition of a gradient to A induces terms located at the ends and wormhole
throats of the space-time surface but this term must be cancelled by the other boundary terms
by gauge invariance of Kahler action. This implies that the M* part of WCW metric vanishes
in this case. Therefore massless extremals as such are not physically realistic: wormhole throats
representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on C' P, coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M* degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kahler function must respect the weak electro-magnetic duality which relates Kéahler electric
field depending on the induced 4-metric at 3-surface to the Kéhler magnetic field. Therefore the
dependence on M* coordinates creeps via a Lagrange multiplier term

/AQ(J"“ — K" ]y ) aadPx . (2.5.14)

The (1,1) part of second variation contributing to M* metric comes from this term.

3. This erratic conclusion about the vanishing of M* part WCW metric raised the question about
how to achieve a non-trivial metric in M* degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides C'P» Kahler form there would be the Kahler
form assignable to the light-cone boundary reducing to that for r5; = constant sphere - call it
J'. The generalization of the weak form of self-duality would be J" = P K (J,5 + eJA}(s).
This form implies that the boundary term gives a non-trivial contribution to the M* part of
the WCW metric even without the constraint from electric-magnetic duality. Kéahler charge is
not affected unless the partonic 2-surface contains the tip of C'D in its interior. In this case the
value of Kéhler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation ¢ is

Jk0ad = —j"Aa . (2.5.15)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jx by using dz®/dt = j%. Global solution is obtained only if one can combine the flow
parameter ¢ with three other coordinates- say those at the either end of C'D to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
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proportional to the covariant form of Kahler current: dt = ¢jx. This condition in turn implies
d*t = d(¢jx) = d(¢jx) = do A ji + ¢djx = 0 implying jx A djx = 0 or more concretely,

ePifo K = 0. (2.5.16)

ji is a four-dimensional counterpart of Beltrami field [25] and could be called generalized Bel-
trami field.

The integrability conditions follow also from the construction of the extremals of Ké&hler action
[] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jx A J = 0. One manner to guarantee this is the topologization of
the Kahler current meaning that it is proportional to the instanton current: jx = ¢j;, where
jr = *(J A A) is the instanton current, which is not conserved for 4-D C P, projection. The
conservation of jx implies the condition j{*0,¢ = 0,5 ¢ and from this ¢ can be integrated if the
integrability condition j; Adj; = 0 holds true implying the same condition for jx. By introducing
at least 3 or C'P, coordinates as space-time coordinates, one finds that the contravariant form of
41 is purely topological so that the integrability condition fixes the dependence on M* coordinates
and this selection is coded into the scalar function ¢. These functions define families of conserved
currents j%¢ and j§¢ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing

condition for the Coulomb term is gauge invariant only under the gauge transformations A —
A+ V¢ for which the scalar function the integral [ j%9,¢ reduces to a total divergence a giving
an integral over various 3-surfaces at the ends of C'D and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents

Do(j%¢) = 0 . (2.5.17)

As a consequence Coulomb term reduces to a difference of the conserved charges Q= JJ 0¢¢g7d3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kéahler magnetic flux Q7' = > f J¢pdA over wormhole throats is conserved. The
existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

. The gauge transformations respecting the reduction to almost topological QFT should have some

special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kéahler gauge potential of C'P,. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kéahler action. The gauge transformed Kéahler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kéhler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kéhler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kéhler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.
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7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of C'D x C' P, generating the gauge transformation
represented by ¢. This interpretation makes sense if the fluxes defined by Q7" and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of C'D and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kahler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kahler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kéahler geometry.

2.5.4 Kahler action for Euclidian regions as Kahler function and Kahler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kéahler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kéahler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kéahler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [62] I realized that
the Minkowskian contribution is an excellent candidate for Morse function whose critical points give
information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kahler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kéahler function. One would have maxima also for the Kéhler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [I8] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of C'P, bounded by wormhole throats: for C'P, itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

If the reduction occurs in Euclidian regions, it gives in the case of C'P; two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for C'P; so that one would have two Chern-Simons terms. Without any
other contributions the first term would be identical with that from Minkowskian region apart
from imaginary unit. Second Chern-Simons term would be however independent of this. For
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wormhole contacts the two terms could be assigned with opposite wormhole throats and would
be identical with their Minkowskian cousins from imaginary unit. This looks a little bit strange.

2. There is however a very delicate issue involved. Quantum classical correspondence requires that
the quantum numbers of partonic states must be coded to the space-time geometry, and this is
achieved by adding to the action a measurement interaction term which reduces to what is almost
a gauge term present only in Chern-Simons-Dirac equation but not at space-time interior [18].
This term would represent a coupling to Poincare quantum numbers at the Minkowskian side
and to color and electro-weak quantum numbers at C P, side. Therefore the net Chern-Simons
contributions and would be different.

3. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kéahler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kéahler function.

The Minkowskian contribution of K&hler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since
\/9 can have two signs in Minkowskian regions. Therefore the inner products between states
associated with the two ground states define 2 x 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full C'P; type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K — K and of CKM matrix should reduce to this
mixing. K° mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of C'Py type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B® mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K° but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kéahler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kéhler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.
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2.5.5 A general solution ansatz based on almost topological QFT property

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kéahler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kéhler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kéahler current. In
the more general case one would have several hydrodynamic flows. Also the braidings (several of them
for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined by the flow
lines of conserved currents. The independent behavior of particles at different flow lines can be seen
as a realization of the complete integrability of the theory. In free quantum field theories on mass
shell Fourier components are in a similar role but the geometric interpretation in terms of flow is of
course lacking. This picture should generalize also to the solution of the modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and leads
to the isometry group T'x SO(3) x SU(3) corresponding to time translations, rotations, and color
group. The Cartan algebra is four-dimensional and field equations reduce to the conservation
laws of energy F, angular momentum J, color isospin I3, and color hypercharge Y.

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y.

Do [Ds(J*PHy) — joe HA + TP jY hiyOph'] = 0 . (2.5.18)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kahler form
and vanishes so that one has

Do [j&HA = TP jihudsh'] = 0 . (2.5.19)

For energy one has H4 = 1 and energy current associated with the flow lines is proportional to
the Kahler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j%J,g and contraction of second fundamental form with energy momentum
tensor so that one obtains

JEDoHY = jed,Pif + TP HE 5t (2.5.20)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydrody-
namics analogous to that for a continuous distribution of particles iniatially at the end of X3 of the
light-like 3-surface moving along flow lines defined by currents j4 satisfying the integrability condi-
tion ja Adja = 0. Field theory would reduce effectively to particle mechanics along flow lines with
conserved charges defined by various isometry currents. The strongest condition is that all isometry
currents j4 and also Kahler current jx are proportional to the same current j. The more general
option corresponds to multi-hydrodynamics.

1. Solution ansatz
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Conserved currents are analogous to hydrodynamical currents in the sense that the flow parameter
along flow lines extends to a global space-time coordinate. The conserved current is proportional to
the gradient V® of the coordinate varying along the flow lines: J = UV ® and by a proper choice of
W one can allow to have conservation. The initial values of ¥ and ® can be selected freely along the
flow lines beginning from either the end of the space-time surface or from wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (effective 2-dimensionality is required
for preferred extremals), the initial values of scalar functions can be chosen freely only at the partonic
2-surfaces. The freedom to chose the intial values of the charges conserved along flow lines at the
partonic 2-surfaces means the existence of an infinite number of conserved charges so that the theory
would be integrable and even in two different coordinate directions. The basic difference as compared
to ordinary conservation laws is that the conserved currents are parallel and their flow parameter
extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

I = RH =T jlhudsh! (2.5.21)

and Kahler current as well as instanto current are integrable in the sense that Ja A J4 = 0 and
ik N jk = 0 hold true. One could imagine the possibility that the currents are not parallel. If
instanton current and Kéahler current are proportional to each other, Coulomb interaction term
in the Kéahler action vanishes and almost topological QFT property is achieved.

2. The integrability condition dJ4 A J4 = 0 is satisfied if one one has

Ja = Uuddy . (2.5.22)

The ansatz allows a gauge transformation induced by a symplectic transformation of S2.® 4 is
same for Kéahler current and instanton current.

3. The conservation of J4 gives

dx (Taddy) = 0. (2.5.23)

This would mean separate hydrodynamics for each of the currents involved. In principle there is
not need to assume any further conditions and one can imagine infinite basis of scalar function
pairs (U 4, @ 4) since criticality implies infinite number deformations implying conserved Noether
currents.

4. The conservation condition reduces to d’Alembert equation in the induced metric if one assumes
that VW 4 is orthogonal with every d® 4.

dvdPy = 0, dUy-dby=0 . (2.5.24)

Taking z = ® 4 as a coordinate the orthogonality condition states g*7 0;¥ 4 = 0 and in the gen-
eral case one cannot solve the condition by simply assuming that ¥ 4 depends on the coordinates
transversal to ® 4 only. These conditions bring in mind p-p = 0 and p - e condition for massless
modes of Maxwell field having fixed momentum and polarization. d® 4 would correspond to p
and d¥ 4 to polarization. The condition that each isometry current corresponds its own pair
(U4, 4) would mean that each isometry current corresponds to independent light-like momen-
tum and polarization. Ordinary free quantum field theory would support this view whereas
hydrodynamics and QFT limit of TGD would support single flow.
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These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isometry
charges flow along same flow lines so that one would have

Jo = Uadd . (2.5.25)

In this case same ® would satisfy simultaneously the d’Alembert type equations.

dxdd = 0, dVyu-dd=0. (2.5.26)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have different polarizations. The spinor modes associated with light-light like
3-surfaces carry parallel four-momenta, which suggest that this option is correct. This allows a
very general family of solutions and one can have a complete 3-dimensional basis of functions
U 4 with gradient orthogonal to d®.

2. Isometry invariance under T' x SO(3) x SU(3) allows to consider the possibility that one has

JA = kA\I/Ad(I)G(A) s d*(d‘bg(A)):O s d\I’A-d(I)G(A))ZO . (2.5.27)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for color
currents. Energy would thus flow along its own flux lines, angular momentum along its own flow
lines, and color quantum numbers along their own flow lines. For instance, color currents would
differ from each other only by a numerical constant. The replacement of W4 with ¥g(4) would
be too strong a condition since Killing vector fields are not related by a constant factor.

To sum up, the most general option is that each conserved current J, defines its own integrable
flow lines defined by the scalar function pair (¥4, ®4). A complete basis of scalar functions satisfying
the d’Alembert type equation guaranteing current conservation could be imagined with restrictions
coming from the effective 2-dimensionality reducing the scalar function basis effectively to the partonic
2-surface. The diametrically opposite option corresponds to the basis obtained by assuming that only
single ® is involved. The ansatz does not distinguish between J and J + J; options.

The proposed solution ansatz can be compared to the earlier ansatz [22] stating that Kéahler
current is topologized in the sense that for D(C'P;) = 3 it is proportional to the identically conserved
instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CPy) = 4 (Maxwell phase).
This hypothesis requires that instanton current is Beltrami field for D(C'P;) = 3. In the recent
case the assumption that also instanton current satisfies the Beltrami hypothesis in strong sense
(single function ®) generalizes the topologization hypothesis for D(C'P;) = 3 and guarantees that
Coulomb term in Kéhler action vanishes identically. A weaker form is obtained by replacing Kéhler
potential by its gauge transform in which case one also obtains a boundary term. As a matter fact,
the topologization hypothesis applies to isometry currents also for D(CP,) = 4 although instanton
current is not conserved anymore. One can consider variants of instanton current since both (Ay, Jy)
and (A, J) are available.

Can one require the extremal property in the case of Chern-Simons action?

Effective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-Simons
action. The strongest condition would be that space-time surfaces allow orthogonal slicings by 3-
surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. K&hler magnetic field B = *.J defines a conserved



72 Chapter 2. Identification of the Configuration Space Kihler Function

current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degener-
ate and the contravariant metric must be restricted to the complement of the light-like direction. This
means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like 3-surfaces
one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as sources. The
interpretation in terms of analogs of Coulomb potentials created by 2-D charge distributions would
be natural.

If J 4+ J1 appears in Kahler action the extremals need not have 2-dimensional C'P, projection as
they must have for J option, and one can hope of obtaining large enough solution family consistent
with effective 2-dimensionality. The field equations can be reduced to conservation conditions for the
isometry currents for SO(3) x SU(3) along flow lines.

2.5.6 Holomorphic factorization of Kihler function

One can guess the general form of the core part of the Kéhler function as function of complex coordi-
nates assignable to the partonic surfaces at positive and negative energy ends of C'D. It its convenient
to restrict the consideration to the simplest possible non-trivial case which is represented by single
propagator line connecting the ends of CD.

1. The propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group. This coset space is as a manifold Cartesian product
(G/H) x (G/H) of symmetric spaces G/H associated with ends of the line. Kéhler metric
contains also an interaction term between the factors of the Cartesian product so that Kéahler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. The exponent of Kéahler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kahler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kahler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kyin: = Zfi,n(Zi)fi,n(Zi)+C'c»

Kt = Y g10(Z1)g2n(Z2) +cc i=1,2 . (2.5.28)

Here Kjip,; define "kinetic” terms and Ky, defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.
Kyin would correspond to the Chern-Simons term assignable to the ends of the line and Kj,; to
the Chern-Simons terms assignable to the wormhole throats.

2.5.7 Could the dynamics of Kahler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of C'D and C'P, emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.
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One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kahler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD x CP;.

1. In canonical quantization canonical momentum densities 79 = 7, = Ly /0(0ph*), where doh*
denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J 03\/57 =dragJis
and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kédhler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X* for which the second variation of the Kéhler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing 73, with these conserved
Noether charges.

2. Canonical quantization requires that ph* in the energy is expressed in terms of 7. The equation
defining 7, in terms of 9ph* is however highly non-linear although algebraic. By taking squares
the equations reduces to equations for rational functions of dyh*. 9yh* appears in contravariant
and covariant metric at most quadratically and in the induced Kahler electric field linearly and
by multplying the equations by det(g4)® one can transform the equations to a polynomial form
so that in principle 9yh* can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M* — CP; M* coordinates are natural and the
time derivatives dys* of C'P, coordinates are multivalued. One would obtain four polynomial
equations with 9ys* as unknowns. In regions where C' P, projection is 4-dimensional -in particular
for the deformations of C' P, vacuum extremals the natural coordinates are C' P, coordinates and
one can regard JymF as unknows. For the deformations of cosmic strings, which are of form
X*=X?xY?%C M* x CP,, one can use coordinates of M? x S2, where S? is geodesic sphere
as natural coordinates and regard as unknowns E? coordinates and remaining C'P, coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kahler action
are however identically vanishing and this means that there is an infinite number of value distri-
butions for dyh*. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of dph*. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots dph* = F¥(m;) with four-surfaces in the covering
space of CD x CP, corresponding to different branches of the many-valued function dgh* = F (m)
co-inciding at the ends of C'D.
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Do the coverings forces by the many-valuedness of Jyh* correspond to the coverings
associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of dyh*
means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP, degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of 7 = OLy/OhF, where n refers to space-like normal
coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is 7 = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that C' P, projection is four-
dimensional so that one can use C' P, coordinates and regard Oom* as un-knows. The basic
idea about topological condensation in turn suggests that M* projection can be assumed
to be 4-D inside space-like 3-surfaces so that here Jys* are the unknowns. At partonic 2-
surfaces one would have conditions for both 7r2 and 7. One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by n,
for dym”* and by ny, for dys*. The optimistic guess is that n, and n; corresponds to the
numbers of sheets for singular coverings of CD and C'P,. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have ngn; branches.
ny branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and n, branches would degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of 7 and 7' should relate closely to the
effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both 7r2 and 7 must be fixed at X 3and X 13 in order to effectively bring
in dynamics in two directions so that X2 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X} as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for 7§ would give n;, branches in CP, degrees
of freedom and the conditions for 7}> would split each of these branches to n, branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for 7)) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be n,n, times larger than for single branch. Kahler action need not
(but could!) be same for different branches but the total action is n,n;, times the average action
and this effectively corresponds to the replacement of the hg/g% factor of the action with /g%,
r = h/hy = ngnp. Since the conserved quantum charges are proportional to /i one could argue
that r = ngnp tells only that the charge conserved charge is n,np times larger than without
multi-valuedness. i would be only effectively n,n; fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J°3,/g; = 4wrak Ji2 and its generalization to be discussed
below in this framework? The first observation is that the total Kéhler electric charge is by
ag x 1/(ngny) same always. The interpretation would be in terms of charge fractionization
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meaning that each branch would carry Kéhler electric charge Qx = ngi /nqenp. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M* covariant metric is proportional to A2 follows from
the physical idea about A scaling of quantum lengths as what Compton length is. One can
always introduce scaled M* coordinates bringing M* metric into the standard form by scaling
up the M* size of CD. It is not clear whether the scaling up of C'D size follows automatically
from the proposed scenario. The basic question is why the M* size scale of the critical extremals
must scale like nynp? This should somehow relate to the weak self-duality conditions implying
that Kéhler field at each branch is reduced by a factor 1/r at each branch. Field equations
should posses a dynamical symmetry involving the scaling of C'D by integer k and J°? V91 and
J"B\/gz by 1/k. The scaling of C'D should be due to the scaling up of the M* time interval
during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M? Cc M* for CD and to S? C CP, for CP,. Here S? is any
homologically trivial geodesic sphere of C' P, and has vanishing Kéahler form. Weak self-duality
condition is indeed consistent with any value of i and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of A is
free for any 2-D Lagrangian sub-manifold of CP;.

The branching along M? would mean that the branches of preferred extremals always collapse
to single branch when their M* projection belongs to M?. Magnetically charged light-light-like
throats cannot have M* projection in M2 so that self-duality conditions for different values of
h do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of C' D the condition
would mean that the M* projection becomes light-like geodesic. Straight cosmic strings would
have M? as M* projection. Also C'P, type vacuum extremals for which the random light-
like projection in M* belongs to M? would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X? x Y2, where
X? defines a minimal surface in M*. For these the weak self-duality condition would imply
h = oo at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the n,n; branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD x CP, and at the throats.

2.6 Does the exponent of Chern-Simons action reduce to the
exponent of the area of minimal surfaces?
As T scanned of hep-th I found an interesting |article by Giordano, Peschanski, and Seki [28] based

on AdS/CFT correspondence. What is studied is the high energy behavior of the gluon-gluon and
quark-quark scattering amplitudes of A = 4 SUSY.

1. The proposal made earlier by Aldaya and Maldacena| [24] is that gluon-gluon scattering am-
plitudes are proportional to the imaginary exponent of the area of a minimal surface in AdSj5
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whose boundary is identified as momentum space. The boundary of the minimal surface would
be polygon with light-like edges: this polygon and its dual are familiar from twistor approach.

2. Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy quarks
corresponds to the exponent of the area for a minimal surface in the Fuclidian version of AdSs
which is hyperbolic space (space with a constant negative curvature): it is interpreted as a
counterpart of configuration space rather than momentum space and amplitudes are obtained
by analytic continuation. For instance, a universal Regge behavior is obtained. For general
amplitudes the exponent of the area alone is not enough since it does not depend on gluon
quantum numbers and vertex operators at the edges of the boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum TGD
framework. I hasten to inform that I am not a specialist in AdS/CFT and can make only general
comments inspired by analogies with TGD.

2.6.1 Why Chern-Simons action should reduce to area for minimal sur-
faces?

The minimal surface conjectures are highly interesting from TGD point of view. The weak form of
electric magnetic duality implies the reduction of Kéhler action to 3-D Chern-Simons terms. Effective
2-dimensionality implied by the strong form of General Coordinate Invariance suggests a further
reduction of Chern-Simons terms to 2-D terms and the areas of string world sheet and of partonic
2-surface are the only non-topological options that one can imagine. Skeptic could of course argue
that the exponent of the minimal surface area results as a characterizer of the quantum state rather
than vacuum functional. In the following I defend the minimal interpretation as Chern-Simons terms.
Let us look this conjecture in more detail.

1. In zero energy ontology twistor approach is very natural since all physical states are bound states
of massless particles. Also virtual particles are composites of massless states. The possibility
to have both signs of energy makes possible space-like momenta for wormhole contacts. Mass
shell conditions at internal lines imply extremely strong constraints on the virtual momenta and
both UV and IR finiteness are expected to hold true.

2. The weak form of electric magnetic duality [18] implies that the exponent of Kéhler action re-
duces to the exponent of Chern-Simons term for 3-D space-like surfaces at the ends of space-time
surface inside C'D and for light-like 3-surfaces. The coefficient of this term is complex since the
contribution of Minkowskian regions of the space-time surface is imaginary (,/gs is imaginary)
and that of Euclidian regions (generalized Feynman diagrams) real. The Chern-Simons term
from Minkowskian regions is like Morse function and that from Euclidian regions defines Kéhler
function and stationary phase approximation makes sense. The two contributions differ only by
imaginary coefficient if Chern-Simons term contains only contributions from wormhole throats
and ends of space-time at C'Ds. This need not be the case.

3. Electric magnetic duality [I8] leads also to the conclusion that wormhole throats carrying el-
ementary particle quantum numbers are K&hler magnetic monopoles. This forces to identify
elementary particles as string like objects with ends having opposite monopole charges. Also
more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired by
quantum classical correspondence is that it corresponds to the p-adic length scale of the particle
characterizing its Compton length. Second possibility is that it corresponds to electroweak scale.
For leptons stringyness in Compton length scale might not have any fatal implications since the
second end of string contains only neutrinos neutralizing the weak isospin of the state. This kind
of monopole pairs could appear even in condensed matter scales: in particular if the proposed
hierarchy of Planck constants [I7] is realized.

4. Strong form of General Coordinate Invariance requires effective 2-dimensionality. In given UV
and IR resolutions either partonic 2-surfaces or string world sheets form a finite hierarchy of C'Ds
inside C'Ds with given C'D characterized by a discrete scale coming as an integer multiple of a
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fundamental scale (essentially C' P, size). The string world sheets have boundaries consisting of
either light-like curves in induced metric at light-like wormhole throats and space-like curves at
the ends of CD whose M* projections are light-like. These braids intersect partonic 2-surfaces
at discrete points carrying fermionic quantum numbers.

This implies a rather concrete analogy with AdSs x S5 duality, which describes gluons as open
strings. In zero energy ontology (ZEO) string world sheets are indeed a fundamental notion
and the natural conjecture is that these surfaces are minimal surfaces whose area by quantum
classical correspondence depends on the quantum numbers of the external particles. String
tension in turn should depend on gauge couplings -perhaps only Kéhler coupling strength- and
geometric parameters like the size scale of C'D and the p-adic length scale of the particle.

5. Are the minimal surfaces in question minimal surfaces of the imbedding space M* x C'P;, or of
the space-time surface X*? All possible 2-surfaces at the boundary of C'D must be allowed so
that they cannot correspond to minimal surfaces in M* x C'P», unless one assumes that they
emerge in stationary phase approximation only. The boundary conditions at the ends of C'D
could however be such that any partonic 2-surface correspond to a minimal surfaces in X*4. Same
applies to string world sheets. One might even hope that these conditions combined with the
weak form of electric magnetic duality fixes completely the boundary conditions at wormhole
throats and space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic 2-
surface as sub-manifold of space-time surface would vanish: this is nothing but a generalization
of the geodesic motion obtained by replacing word line with a 2-D surface. It does not imply
the vanishing of the trace of the second fundamental form in M* x C'P, having interpretation
as a generalization of particle acceleration [56]. Effective 2-dimensionality would be realized if
Chern-Simons terms reduce to a sum of the areas of these minimal surfaces.

These arguments suggest that scattering amplitudes are proportional to the product of exponents
of 2-dimensional actions which can be either imaginary or real. Imaginary exponent would be pro-
portional to the total area of string world sheets and the imaginary unit would come naturally from
V/92. Teal exponent proportional to the total area of partonic 2-surfaces. The coefficient of these areas
would not in general be same.

The equality of the Minkowskian and Fuclidian Chern-Simons terms is suggestive but not nec-
essarily true since there could be also other Chern-Simons contributions than those assignable to
wormhole throats and the ends of space-time. The equality would imply that the total area of string
world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality meaning that
either Euclidian or Minkowskian regions carry the needed information.

2.6.2 IR cutoff and connection with p-adic physics

In twistor approach the IR cutoff is necessary to get rid of IR divergences. Also in the AdS5 approach
the condition that the minimal surface area is finite requires an IR cutoff. The problem is that there
is no natural IR cutoff. In TGD framework zero energy ontology brings in a natural IR cutoff via the
finite and quantized size scale of CD guaranteeing that the minimal surfaces involved have a finite
area. This implies that also particles usually regarded as massless have a small mass characterized by
the size of C'D. The size scale of C'D would correspond to the scale parameter R assigned with the
metric of AdSs.

1. String tension relates in AdS5 approach to the gauge coupling gy s and to the number N, of
colors by the formula

A = g2y yNe=— . (2.6.1)

1/N.-expansion is in terms of 1/v/X. The formula has an alternative form as an expression for
the string tension
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2
o = 2 (2.6.2)

V g)Q/MNc

The analog this formula in TGD framework suggests an connection with p-adic length scale hy-
pothesis.

1. As already noticed, the natural counterpart for the scale R could be the discrete value of the
size scale of C'D. Since the symplectic group assignable to dM{ x C'P (or the upper or lower
boundary of CD) is the natural generalization of the gauge group, it would seem that N, = oo
holds true in the absence of cutoff. At the limit N, = oo only planar diagrams would contribute
to YM scattering amplitudes. Finite measurement resolution must make the effective value of
N, finite so that also A would be finite. String tension would depend on both the size of C'D
and the effective number of symplectic colors.

2. If o is characterized by the square of the Compton length of the particle, A would be essentially
the square of the ratio of C'D size scale given by secondary p-adic lengths and of the primary
p-adic length scale associated with the particle: A = g% m+/Ds where p is the p-adic prime
characterizing the particle. Favored values of the p-adic prime correspond to primes near powers
of two. The effective number of symplectic colors would be N. = /p/ g%, and the expansion
would come in powers of g%M/\/;B. For electron one would have p = Moy = 212771 so that the
expansion would converge extremely fast. Together with the amazing success of the p-adic mass
calculations based on p-adic thermodynamics for the scaling generator Lo [32] this suggests a
deep connection with p-adic physics and number theoretic universality.

2.6.3 Could Kahler action reduce to Kiahler magnetic flux over string world
sheets and partonic 2-surfaces?

Can one consider alternative identifications of Kahler action for preferred extremals? The only alter-
native identification of Kéahler function that I can imagine is that Kéhler action proportional to the
Kahler magnetic flux fY2 J or Kahler electric flux sz xJ for string world sheets and possibly also
partonic 2-surfaces. These fluxes are dimensionless numbers. If the weak form of electric-magnetic du-
ality holds true also at string world sheets, the two options are equivalent apart from a proportionality
constant.

1. For Kéhler magnetic flux there would be no explicit dependence on the induced metric. This is
in accordance with the almost topological QFT property.

2. Unless the weak form of electric-magnetic duality holds true, the Kahler electric flux has an
explicit dependence on the induced metric but in a scaling invariant manner. The most obvious
objection relates to the sign factor of the dual flux which depends on the orientation of the
string world sheet and thus changes sign when the orientation of space-time sheet is changed
by changing that of the string world sheet. This is in conflict with the independence of K&hler
action on orientation. One can however argue that the orientation makes itself actually physically
visible via the weak form of electric-magnetic duality and that the change of the orientation as
a symmetry is dynamically broken. This breaking would be anagous to parity breaking at the
level of imbedding space.

3. In [23] it is proposed that braids defined by the boundaries of string world sheets could corre-
spond to Legendrian sub-manifolds, whereas partonic 2-surfaces could the duals of Legendrian
manifolds, so that braiding would take place dynamically. The identification of the Kéhler action
as Kéhler magnetic flux associated with string world sheets and possibly also partonic 2-surfaces
is consistent with the assumption that the extremal of Kéhler action in question. Indeed, the
Legendrian property says that the projection of the Kéahler gauge potential on braid strand
vanishes and this expresses the extremality of the Kéahler magnetic flux.



2.6. Does the exponent of Chern-Simons action reduce to the exponent of the area of
minimal surfaces? 79

The assumption that Kahler action is proportional to Kéhler magnetic flux seems to be consistent
with the minimal surface property. The weak form of electric-magnetic duality gives a constraint on
the normal derivatives of imbedding space coordinates at the string world sheet and minimal surface
property strengthens these constraints. One could perhaps say that space-time surface chooses its
shape in such a manner that the string world sheet has a minimal area.

The open questions are following.

1. Does Kahler action for the preferred exremals reduce to the area of the string world sheet
or to Kahler flux, or are the representations equivalent so that the induced Kahler form would
effectively define area form? If the K&hler form form associated with the induced metric on string
world sheet is proportional to the induced Kéhler form the Kéahler magnetic flux is proportional
to the area and Kahler action reduces to genuine area. This condition looks like a natural
additional constraint on string world sheets besides minimal surface property.

2. The proportionality of the induced Kéahler form and K&hler form of the induced 2-metric implies
as such only the extremal property against the symplectic variations so that one cannot have
minimal surface property at imbedding space level. Minimality at space-time level is however
possible since space-time surface itself can arrange the situation so that general variations de-
forming the string world sheet along space-time surface reduce to symlectic variations at the
level of the imbedding space.

3. Does the situation depend on whether the string world sheet is in Minkowskian or Euclidian
space-time region? The problem is that in Euclidian regions the value of Kéhler action is positive
definite and it is not obvious why the K&hler magnetic flux for Euclidian string world sheets
should have a fixed sign. Could weak form of electric-magnetic duality fix the sign?

Irrespective whether the Kéhler action is proportional to the total area or the Kéhler electric
flux over string world sheets, the theory would be exactly solvable at string world sheet level (finite
measurement resolution).

2.6.4 What is the interpretation of Yangian duality in TGD framework?

Minimal surfaces in both configuration space and momentum space are used in the above mentioned
two articles [24, 28]. The possibility of these two descriptions must reflect the Yangian symmetry
unifying the conformal symmetries of Minkowski space and momentum space in twistorial approach.

The minimal surfaces in X* C M* x C'P, are natural in TGD framework. Could also the minimal
surfaces in momentum space have some interpretation in TGD framework? Ore more generally,
what could be the interpretation of the dual descriptions provided by twistor diagrams with light-like
edges and dual twistor diagrams with light-like vertices? One can imagine many interpretations but
zero energy ontology suggests an especially attractive and natural interpretation of this duality as
the exchange of the roles of wormhole throats carrying always on mass shell massless momenta and
wormhole contacts carrying in general off-mass shell momenta and massive momenta in incoming lines.

1. For configuration space twistor diagrams vertices correspond to incoming and outgoing light-
like momenta. The light-like momenta associated with the wormhole throats of the incoming
and outgoing lines of generalized Feynman diagram could correspond to the light-like momenta
associated with the vertices of the polygon. The internal lines defined by wormhole contacts
carrying virtual off mass shell momenta would naturally correspond to to edges of the twistor
diagram.

2. What about dual twistor diagrams in which light-like momenta correspond to lines? Zero energy
ontology implies that virtual wormhole throats carry on mass shell massless momenta whereas
incoming wormhole contacts in general carry massive particles: this guarantees the absence of IR
divergences. Could one identify the momenta of internal wormhole throats as light-like momenta
associated with the lines dual twistor diagrams and the incoming net momenta assignable to
wormhole contacts as incoming and outgoing momenta.

Also the transition from Minkowskian to Euclidian signature by Wick rotation could have interpre-
tation in TGD framework. Space-time surfaces decompose into Minkowskian and Euclidian regions.
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The latter ones represent generalized Feynman diagrams. This suggests a generalization of Wick rota-
tion. The string world sheets in Euclidian regions would define the analogs of the minimal surfaces in
Euclidian AdS5 and the string world sheets in Minkowskian regions the analogs of Minkowskian AdSs5.
The magnitudes of the areas would be identical so that they might be seen as analytical continuations
of each other in some sense. Note that partonic 2-surfaces would belong to the intersection of Eu-
clidian and Minkowskian space-time regions. This argument tells nothing about possible momentum
space analog of M* x CP;.
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Chapter 3

Construction of Configuration
Space Kahler Geometry from
Symmetry Principles

3.1 Introduction

The most general expectation is that configuration space can be regarded as a union of coset spaces
which are infinite-dimensional symmetric spaces with K&hler structure: C(H) = U;G/H (). Index ¢
labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be identified as
a subgroup of diffeomorphisms of 5Mi x CPy, and H must contain as its subgroup a group, whose
action reduces to Dif f(X?) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space of
the configuration space allows Kéahler structure, in other words that the Lie-algebras of G and H (i)
allow complexification. One must also identify the zero modes and construct integration measure
for the functional integral in these degrees of freedom. Besides this one must deduce information
about the explicit form of configuration space metric from symmetry considerations combined with
the hypothesis that K&hler function is Kéahler action for a preferred extremal of Kéhler action. One
must of course understand what ”preferred” means.

3.1.1 General Coordinate Invariance and generalized quantum gravita-
tional holography

The basic motivation for the construction of configuration space geometry is the vision that physics
reduces to the geometry of classical spinor fields in the infinite-dimensional configuration space of
3-surfaces of M_‘f_ x CPy or of M* x CP,. Hermitian conjugation is the basic operation in quantum
theory and its geometrization requires that configuration space possesses Kéhler geometry. Kahler
geometry is coded into Kéhler function.

The original belief was that the four-dimensional general coordinate invariance of Kéhler function
reduces the construction of the geometry to that for the boundary of configuration space consisting
of 3-surfaces on §Mjl_ x C'Py, the moment of big bang. The proposal was that Kihler function K(Y?3)
could be defined as a preferred extremal of so called Kéhler action for the unique space-time surface
X*(Y3) going through given 3-surface Y at M} x CP,. For Diff* transforms of Y* at X*(Y3) Kéhler
function would have the same value so that Diff* invariance and degeneracy would be the outcome.
The proposal was that the preferred extremals are absolute minima of Kéahler action.

This picture turned out to be too simple.

1. T have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kéhler action and will not repeat
what has been said.

2. Tt has also become obvious that the gigantic symmetries associated with M4 xC P, C CDxCP,y
manifest themselves as the properties of propagators and vertices. Cosmological considerations,
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Poincare invariance, and the new view about energy favor the decomposition of the configu-
ration space to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that C'Ds
label the sectors of C' H: the nice feature of this option is that the considerations of this chapter
restricted to 5Mjl_ x C' Py generalize almost trivially. This option is beautiful because the center
of mass degrees of freedom associated with the different sectors of CH would correspond to M*
itself and its Cartesian powers.

The definition of the Kéhler function requires that the many-to-one correspondence X — X4(X3)
must be replaced by a bijective correspondence in the sense that X 13 as light-like 3-surface is unique
among all its Diff* translates. This also allows physically preferred ”gauge fixing” allowing to get rid
of the mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time
sheet must define the preferred 3-surface X;.

The realization of this vision means a considerable mathematical challenge. The effective metric
2-dimensionality of 3-dimensional light-like surfaces X} of M 4 implies generalized conformal and sym-
plectic symmetries allowing to generalize quantum gravitational holography from light like boundary
so that the complexities due to the non-determinism can be taken into account properly.

3.1.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X} of space-time surface appear as 3-D causal determinants. Basic examples
are boundaries and elementary particle horizons at which Minkowskian signature of the induced metric
transforms to Euclidian one. This brings in a second conformal symmetry related to the metric 2-
dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD counterpart of
the Kac Moody symmetry of string models. The challenge is to understand the relationship of this
symmetry to configuration space geometry and the interaction between the two conformal symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces Xl?’ -generalized Feynman diagrams -
correspond to the particle aspect of field-particle duality whereas the physics in the interior of
space-time surface X*(X;*) would correspond to the field aspect. Generalized Feynman diagrams
in 4-D sense could be identified as regions of space-time surface having Euclidian signature.

2. One could also say that light-like 3-surfaces X l3 and the space-like 3-surfaces X2 in the inter-
sections of X*(X}) N CD x CP, where the causal diamond CD is defined as the intersections
of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super Kac-
Moody type Super Virasoro generators annihilated physical states. This implies Equivalence
Principle. This construction in turn led to the realization that configuration space for fixed
values of zero modes - in particular the values of the induced Kéhler form of JM$t x CP, -
allows identification as a coset space obtained by dividing the symplectic group of dM{ x C'P,
with Kac-Moody group, whose generators vanish at X2 = X} x §M{ x CP,. One can say that
quantum fluctuating degrees of freedom in a very concrete sense correspond to the local variant
of §% x CP;.

The analog of conformal invariance in the light-like direction of X} and in the light-like radial
direction of §M$ implies that the data at either X® or X} should be enough to determine configuration
space geometry. This implies that the relevant data is contained to their intersection X? at least for
finite regions of X3. This is the case if the deformations of X} not affecting X? and preserving light
likeness corresponding to zero modes or gauge degrees of freedom and induce deformations of X3 also
acting as zero modes. The outcome is effective 2-dimensionality. One must be however cautious in
order to not make over-statements. The reduction to 2-D theory in global sense would trivialize the
theory and the reduction to 2-D theory must takes places for finite region of X3 only so one has in
well defined sense three-dimensionality in discrete sense. A more precise formulation of this vision
is in terms of hierarchy of C'Ds containing C'Ds containing.... The introduction of sub-C'D:s brings
in improved measurement resolution and means also that effective 2-dimensionality is realized in the
scale of sub-C'D only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for configuration space metric involving 3-dimensional integrals over
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X3 c M_‘f_ x CP, reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X*(X, 13) once X 13 is fixed and one can hope that this mapping is one-to-one.

3.1.3 Magic properties of light cone boundary and isometries of configu-
ration space

The special conformal, metric and symplectic properties of the light cone of four-dimensional Minkowski
space: 5Mj4r, the boundary of four-dimensional light cone is metrically 2-dimensional(!) sphere allowing
infinite-dimensional group of conformal transformations and isometries(!) as well as Kéhler structure.
Kahler structure is not unique: possible Kéahler structures of light cone boundary are parameterized
by Lobatchevski space SO(3,1)/SO(3). The requirement that the isotropy group SO(3) of S? cor-
responds to the isotropy group of the unique classical 3-momentum assigned to X*(Y3) defined as a
preferred extremum of Kéhler action, fixes the choice of the complex structure uniquely. Therefore
group theoretical approach and the approach based on Kéhler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light cone
boundary. Even more, in case of 5Mfﬁ x C' Py the isometry group of 6Mi becomes localized with
respect to C'Py! Furthermore, the Kéhler structure of 5Mjl_ defines also symplectic structure.

Hence any function of M} x C'P; would serve as a Hamiltonian transformation acting in both
CP, and 0 M fi degrees of freedom. These transformations obviously differ from ordinary local
gauge transformations. This group leaves the symplectic form of 5Mjl_ X C' Py, defined as the sum
of light cone and C P, symplectic forms, invariant. The group of symplectic transformations of
5Mff; x C'Ps is a good candidate for the isometry group of the configuration space.

2. The approximate symplectic invariance of Kéhler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kahler function were exactly invariant under the symplectic
transformations of C' P, C' P, symplectic transformations wiykd correspond to zero modes having
zero norm in the Kdhler metric of configuration space. This does not make sense since symplectic
transformations of 6 M* x C' P, actually parameterize the quantum fluctuation degrees of freedom.

3. The groups G and H, and thus configuration space itself, should inherit the complex structure
of the light cone boundary. The diffeomorphims of M* act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S? x C'P, could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

3.1.4 Symplectic transformations of §M} x CP, as isometries of configura-
tion space

The symplectic transformations of 5Mjl_ x C P, are excellent candidates for inducing symplectic trans-
formations of the configuration space acting as isometries. There are however deep differences with
respect to the Kac Moody algebras.

1. The conformal algebra of the configuration space is gigantic when compared with the Virasoro +
Kac Moody algebras of string models as is clear from the fact that the Lie-algebra generator of
a symplectic transformation of 6Mi x C' Py corresponding to a Hamiltonian which is product of
functions defined in 6Mi and CP, is sum of generator of 5Mi—loca1 symplectic transformation
of CP, and C Py-local symplectic transformations of 5Mi. This means also that the notion of
local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy and
momentum at quantum level are predicted. The appearance of a new kind of angular momentum
not assignable to elementary particles might shed some light to the longstanding problem of
baryonic spin (quarks are not responsible for the entire spin of proton). The possibility of a new
kind of color might have implications even in macroscopic length scales.
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3. The central extension induced from the natural central extension associated with 5M_‘f_ x CPy
Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of C'P, symplectic
transformations localized with respect to 5M_‘f_ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For 5Mjl_ x CP, symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that 5Mi—local CP, symplectic transformations are accompanied by CPs local
(FMj‘r symplectic transformations. Therefore the Poisson bracket of two 5Mi local C P, Hamil-
tonians involves a term analogous to a central extension term symmetric with respect to C Py
Hamiltonians, and resulting from the 5Mi bracket of functions multiplying the Hamiltonians.
This additional term could give the entire bracket of the configuration space Hamiltonians at
the maximum of the Kéhler function where one expects that C P, Hamiltonians vanish and have
a form essentially identical with Kac Moody central extension because it is indeed symmetric
with respect to indices of the symplectic group.

3.1.5 Does the symmetric space property reduce to coset construction for
Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition g =t+h
satisfying the defining conditions

g=t+h , [tLch, [htct. (3.1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

Configuration space geometry allows two super-conformal symmetries. The first one corresponds to
super-symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respecting their light-
likeness. Super Kac-Moody algebra can be regarded as sub-algebra of super-symplectic algebra, and
quantum states correspond to the coset representations for these two algebras so that the differences
of the corresponding super-Virasoro generators annihilate physical states. This obviously generalizes
Goddard-Olive-Kent construction [51] . The physical interpretation is in terms of Equivalence Prin-
ciple. After having realized this it took still some time to realize that this coset representation and
therefore also Equivalence Principle also corresponds to the coset structure of the configuration space!

The conclusion would be that ¢ corresponds to super-symplectic algebra made also local with
respect to X® and h corresponds to super Kac-Moody algebra. The experience with finite-dimensional
coset, spaces would suggest that super Kac-Moody generators interpreted in terms of h leave the points
of configuration space analogous to the origin of say C'P, invariant and in fact vanish at this point.
Therefore super Kac-Moody generators should vanish for those 3-surfaces X f’ which correspond to
the origin of coset space. The maxima of Kéhler function could correspond to this kind of points
and could play also an essential role in the integration over configuration space by generalizing the
Gaussian integration of free quantum field theories.

3.1.6 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points, which
directly relate to what one means with holography:.

1. The strongest view about effective 2-dimensionality (holography) is that for preferred extremals
the partonic 2-surfaces X2 at the ends of CD act as causal determinants fixing Xl3 in the
resolution defined by C'D. A weaker view about holography is that light-like 3-surfaces with
fixed ends give rise to same configuration space metric and the deformations of these surfaces
by Kac-Moody algebra correspond to zero modes just like the interior degrees of freedom for
space-like 3-surface do. Which of these options is the correct one? The same question can be
posed in the case of space-like 3-surfaces.
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2. The non-trivial action of Kac-Moody algebra in the interior of X f together with effective 2-
dimensionality and holography would encourage the interpretation of Kac-Moody symmetries
acting trivially at X? as gauge symmetries. Light-like 3-surfaces having fixed partonic 2-surfaces
at their ends would be equivalent physically and effective 2-dimensionality and holography would
be realized modulo gauge transformations.

3. There are also Kac-Moody generators which do not vanish at the ends of the X l?’, and these
would act as physical symmetries and their action would reduce at X2 to symplectic action.
This Kac-Moody algebra should appear in p-adic mass calculations. This seems to be in conflict
with the idea that coset construction corresponds to coset space construction. Perhaps strict
correspondence is too naive an assumption. Why couldn’t one use the larger Kac-Moody algebra
in coset construction and smaller Kac-Moody algebra in coset space construction?

4. Gauge symmetry property means that the Kéhler metric of the configuration space is same for all
gauge equivalent choices of X7 and Kac-Moody deformations correspond to zero modes. Kéhler
function could differ by a real part of a holomorphic function of configuration space coordinates
representing now Kac-Moody transforms of Xz3~ If Dirac determinant gives the exponent of
Kahler function, the eigenvalues of the modified Dirac action can differ only by scalings with are
products of holomorphic function of configuration space coordinates and its conjugates labeling
different Kac-Moody transforms of X?. This condition makes sense if one restricts the consid-
eration to the finite number of eigenvalues A\ assigned to Dy. The introduction of instanton
term transforming the eigenvalues to Ag + y/n would not allow his scaling.

Either one must assume more general spectrum of form A; + /nxy with \; and xj scaling in
identical manner or that n = 0 modes are enough to define Kahler function. The latter option
might be correct since the preferred extremal realizes effective 2-dimensionality at space-time
level and conformal excitations break it so that they should not contribute to Kéhler function.
Also number theoretic universality favors this option. One cannot however exclude the first
option. It must be admitted that the situation is not completely understood.

3.1.7 About the relationship between super-symplectic and super Kac-
Moody algebras

The relationship between Kac-Moody and symplectic algebras is now relatively well understood but
the physical interpretation of Kac-Moody algebra deserves attention. There are two Kac-Moody
algebras: the smaller one leaves partonic 2-surfaces invariant and second one affects also them. Both
of them are in dual relation to the symplectic algebra and these relations correspond to coset space
construction and coset construction.

TGD inspired quantum measurement theory suggests that the super-symplectic algebra and smaller
Kac-Moody algebra correspond to each other like classical and quantal degrees of freedom. Hence
smaller Kac-Moody algebra would act in the zero modes of the configuration space metric. In the
proposed construction this indeed is the case for Kac Moody algebra elements leaving partonic 2-
surface invariant and appearing in the coset space construction but not for those Kac-Moody algebra
elements affecting partonic 2-surface and allowing interpretation as sub-algebra of symplectic algebra
and appearing in coset construction. This interpretation conforms also with the fact that Kac-Moody
algebra generates massive excitations in p-adic thermodynamics.

In TGD inspired quantum measurement theory zero modes correspond to classical non-quantum
fluctuating dynamical variables in 1-1 correspondence with quantum fluctuating degrees of freedom
like the positions of the pointer of the measurement apparatus with the directions of spin of electron.
Hence Kac-Moody algebra would define configuration space coordinates in terms of the map induced
by correlation between classical and quantal degrees of freedom induced by entanglement. The choice
of gauge selecting one particular light-like 3-surface X} could have thus interpretation as a map
mapping quantum degrees of freedom to classical ones. This choice of gauge could be achieved by
the addition of phase factor depending on quantum numbers assigned with the braid strands so that
stationary phase approximation would select the preferred 3-surface with fluctuations around them
allowed.

The dual relation between super symplectic algebra and bigger Kac-Moody algebra is realized in
terms of coset construction. The idea inspired by Olive-Goddard-Kent coset construction is that the
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generators of Super Virasoro algebra corresponds to the differences of those associated with Super
Kac-Moody and super-symplectic algebras. The justification comes from the miraculous geometry
of the light cone boundary implying that Super Kac-Moody conformal symmetries of X2 can be
compensated by super-symplectic local radial scalings so that the differences of corresponding Super
Virasoro generators annihilate physical states. If the central extension parameters are same, the
resulting central extension is trivial. What is done is to construct first a state with a non-positive
conformal weight using super-symplectic generators, and then to apply Super-Kac Moody generators
to compensate this conformal weight to get a state with vanishing conformal weight. Mass squared
would however correspond to either Super-Kac Moody or super-symplectic mass. The identity of these
masses gives rise to Equivalence Principle as a one manifestation of the coset representation.

3.1.8 Attempts to identify configuration space Hamiltonians

I have made several attempts to identify configuration space Hamiltonians. The first two candidates
referred to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third
candidate identifies Hamiltonians as Noether charges and is motivated by the QFT analogy. Mag-
netic option is the simplest one and the only one consistent with the interpretation of Kac-Moody
symmetries leaving the ends of X} invariant.

Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of 5Mfi have zero norm, one ends up with
an explicit identification of the symplectic structures of the configuration space. There is almost
unique identification for the symplectic structure. Configuration space counterparts of M* x CP,
Hamiltonians are defined by the generalized signed and and unsigned Kahler magnetic fluxes

Qum(Ha, X?) =Z [, Hal\/g2d’x
Q%(HA,TM) :ZfX2 HA|J‘\/g>2d21? s

J=ePJ,s .

H, is CP, Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of C'Ps.

The most general flux is superposition of signed and unsigned fluxes Q,, and Q.

Q%P (Ha, X?) = aQu(Ha, X?) + 5Q, (Ha, X?) .

Thus it seems that symmetry arguments fix the form of the configuration space metric apart from
the presence of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the
signed and unsigned fluxes.

Holography requires that the relevant data about configuration space geometry is contained by
2-D surfaces X? at the intersections of light-like 3-surfaces M} + xCP, defining the boundaries of
causal diamonds. In this case the entire Hamiltonian could be defined as the sum of magnetic fluxes
over surfaces X? C X3.

The key feature of these Hamiltonians is that they depend on X? only. This conforms with the
interpretation of Kac-Moody transformations leaving X? invariant as gauge symmetries deforming
light-like 3-surfaces and leaving configuration space metric as such. By the identify g,; = iJ,; the

half brackets j4%.J, 7581 = 9, HaJ¥OHB would define the matrix elements of both Kihler metric
and Kahler form: this means a tight constraint if Kéhler action defines the metric and magnetic
Hamiltonians are the correct choice.

Electric Hamiltonians and electric-magnetic duality

Preferred extremal property allows to consider the possibility that one can identify configuration
space Hamiltonians as classical charges Q.(H ) associated with the Hamiltonians of the symplectic
transformations of the light cone boundary, that is as variational derivatives of the Kéhler action with
respect to the infinitesimal deformations induced by 5M_‘f_ x C P, Hamiltonians.
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Alternatively, one might simply replace Kahler magnetic field J with Kéhler electric field defined
by space-time dual *J in the formulas of previous section. These Hamiltonians are analogous to Kahler
electric charge and the hypothesis motivated by the experience with the instantons of the Euclidian
Yang Mills theories and "Yin-Yang’ principle, as well as by the duality of C'P, geometry, is that for
the preferred extremals of the Kéhler action these Hamiltonians are affinely related:

Qe(HA) =27 [Qm(HA) + Qe(HA)]

Here Z and ¢. are constants depending on symplectic invariants only. Thus the equivalence of the
two approaches to the construction of configuration space geometry boils down to the hypothesis of a
physically well motivated electric-magnetic duality.

The crucial technical idea is to regard configuration space metric as a quadratic form in the entire
Lie-algebra of the isometry group G such that the matrix elements of the metric vanish in the sub-
algebra H of G acting as Dif f3(X3). The Lie-algebra of G with degenerate metric in the sense that
H vector fields possess zero norm, can be regarded as a tangent space basis for the configuration space
at point X3 at which H acts as an isotropy group: at other points of the configuration space H is
different. For given values of zero modes the maximum of Kahler function is the best candidate for
X3. This picture applies also in symplectic degrees of freedom.

There are objections against electric representation.

1. Without additional assumptions the Hamiltonians obtained by replacing induced Kéhler form
with its dual brings in the dependence on the induced metric of space-time surface at X2 so that
configuration space Hamiltonians do not transform nicely under symplectic transformations.
Only if the contravariant Kéhler electric field defines a symplectic invariant - maybe the pre-
ferred extremal property could guarantee this- electric representation of the Hamiltonians looks
attractive. Electric-magnetic duality would follow trivially if the self duality of the induced
Kahler form of C'P; is preserved in the induction procedure at X?2.

2. Kac-Moody transformations vanishing at X? are not expected to leave the Hamiltonians in-
variant since they affect the induced metric. This is however highly desirable if effective 2-
dimensionality holds true as gauge invariance.

3.1.9 For the reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making clear
the evolution of ideas. This led gradually to a rather chaotic situation in which it was difficult for me
to control the internal consistency and for the possible reader to distinguish between the big ideas and
ad hoc guesses, most of them related to the detailed realization of big visions. Therefore I decided to
clean up a lot of the ad hoc stuff. I have also changed the representation so that it is more top-down
and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion of this
visions. Hence simple linear representation in which reader climbs to a tree of wisdom is impossible. I
must summarize overall view from the beginning and refer to the results deduced in chapters towards
the end of the book and also to ideas discussed in other books. For instance, the construction
of configuration space spinor structure discussed in the last chapter [8] provides the understanding
necessary to make the construction of configuration space geometry more detailed. Also number
theoretical vision discussed in another book [49] is necessary. Somehow it seems that a graphic
representation emphasizing visually the big picture should be needed to make the representation more
comprehensible.

3.2 How to generalize the construction of configuration space
geometry to take into account the classical non-determinism?
If the imbedding space were H = M$ x C'P, and if Kéhler action were deterministic, the construction

of configuration space geometry reduces to 6Mj‘; X C'Py. Thus in this limit quantum holography prin-
ciple [I8] 29] would be satisfied also in TGD framework and actually reduce to the general coordinate
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invariance. The classical non-determinism of Ké&hler action however means that this construction is
not, quite enough and the challenge is to generalize the construction.

3.2.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena conjecture
[29] which (very roughly) states that string theory in Anti-de-Sitter space AdS is equivalent with a
conformal field theory at the boundary of AdS. In purely quantum gravitational context [I8] , quantum
holography principle states that quantum gravitational interactions at high energy limit in AdS can
be described using a topological field theory reducing to a conformal (and non-gravitational) field
theory defined at the time like boundary of the AdS. Thus the time like boundary plays the role of a
dynamical hologram containing all information about correlation functions of d+1 dimensional theory.
This reduction also conforms with the fact that black hole entropy is proportional to the horizon area
rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle as-
signing space-time surface to a given 3-surface X2 at light cone boundary were completely determinis-
tic, four-dimensional general coordinate invariance would reduce the construction of the configuration
geometry for the space of 3-surfaces in Mi x C'P, to the construction of the geometry at the bound-
ary of the configuration space consisting of 3-surfaces in (5Mi x C'Py (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kéhler action however implies that quantum holography in this
strong form fails. This is very desirable from the point of view of both physics and consciousness theory.
Classical determinism would also mean that time would be lost in TGD as it is lost in GRT. Classical
non-determinism is also absolutely essential for quantum consciousness and makes possible conscious
experiences with contents localized into finite time interval despite the fact that quantum jumps occur
between configuration space spinor fields defining what I have used to call quantum histories. Classical
non-determinism makes it also possible to generalize quantum-classical correspondence in the sense
that classical non-determinism at the space-time level provides correlate for quantum non-determinism.
The failure of classical determinism is a difficult challenge for the construction of the configuration
space geometry. One might however hope that the notion of quantum holography generalizes.

3.2.2 How the classical determinism fails in TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the notion
of 3-surface by allowing unions of space-like 3-surfaces with time like separations with very strong
but not complete correlations between the space-like 3-surfaces. In this case the non-determinism
would mean that the 3-surfaces Y3 at light cone boundary correspond to at most enumerable number
of preferred extremals X*(Y?) of Kihler action so that one would get finite or at most enumerably
infinite number of replicas of a given configuration space region and the construction would still reduce
to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP, projection which
belongs to so called Lagrange manifold of C'P, having by definition vanishing induced Kéhler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of H
for which all extremals of Kahler action are vacua.

2. CP, type vacuum extremals are different since they possess non-vanishing Kéhler form and
Kahler action. They are identifiable as classical counterparts of elementary particles have Mi
projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons to
suspect that classical non-determinism might destroy the dream about complete reduction to
the light cone boundary.

3. The wormhole contacts connecting different space-time sheets together can be seen as pieces
of C'P, type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M. fi projection) might be a crucial element in the un-
derstanding of quantum TGD. The non-determinism of C'P; type extremals is absolutely crucial
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for the ordinary elementary particle physics. It seems that the conformal symmetries responsible
for the ordinary elementary particle quantum numbers acting in these degrees of freedom do not
contribute to the configuration space metric line element.

4. The possibility of space-time sheets with a negative time orientation with ensuing negative sign
of classical energy is a further blow against é M fi reductionism. Space-time sheets can be created
as pairs of positive and negative energy space-time sheet from vacuum and this forces to modify
radically the ontology of physics. Crossing symmetry allows to interpret particle reactions as a
creation of zero energy states from vacuum, and the identification of the gravitational energy as
the difference between positive and negative energies of matter supports the view that the net
inertial (conserved Poincare-) energy of the universe vanishes both in quantal and classical sense.
This option resolves unpleasant questions about net conserved quantum numbers of Universe,
and provides an elegant interpretation of the vacuum extremals as correlates for systems with
vanishing Poincare energy. This option is the only possible alternative from the point of view of
TGD inspired cosmology where Robertson-Walker metrics are vacuum extremals with respect to
inertial energy. In particular, super-symplectic invariance transforms to a fundamental symmetry
of elementary particle physics besides the conformal symmetry associated with 3-D light like
causal determinants which means a dramatic departure from string models unless it is somehow
equivalent with the super-symplectic symmetry.

The treatment of the non-determinism in a framework in which the prediction of time evolution is
seen as initial value problem, seems to be difficult. Also the notion of configuration space becomes a
messy concept. Zero energy ontology changes the situation completely. Light-like 3-surfaces become
representations of generalized Feynman diagrams and brings in the notion of finite time resolution.
One obtains adirect connection with the concepts of quantum field theory with path integral with
cutoff replaced with a sum over various preferred extremals with cutoff in time resolution.

3.2.3 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M* x CP, or H = Mj‘; x CPy, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kihler metric of WCW assigns to each X3 a unique
space-time surface X*(X?) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably. Therefore it seems better to begin directly
from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [51
52, B0 .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [8, [12] it became clear that the so called causal
diamonds (C'Ds) interpreted as intersections M_‘i N M* of future and past directed light-cones
of M* x CP, define correlates for the quantum states. The position of the "lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of C'P; length, p-adic length scale hypothesis [34] follows
as a consequence. The upper resp. lower light-like boundary 5Mfi x CPy resp. SM* x CP,
of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside C'D x C'Pss and have their
3-D ends at the light-like boundaries of C'D x C'P,. Fractal structure is present in the sense
that C'Ds can contains C'Ds within C'Ds, and measurement resolution dictates the length scale
below which the sub-C'Ds are not visible.
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3. The realization of the hierarchy of Planck constants [I7] led to a further generalization of the
notion of imbedding space. Generalized imbedding space is obtained by gluing together Cartesian
products of singular coverings and factor spaces of C'D and CP» to form a book like structure.
The particles at different pages of this book behave like dark matter relative to each other.
This generalization also brings in the geometric correlate for the selection of quantization axes
in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each C'D and CP; is replaced with a union of C'Ds and CPss
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kahler gauge potential of C'P,. Kéhler gauge potential must have what one might call
pure gauge parts in M* in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M* x CP, breaks down in a delicate
manner. These additional gauge components -present also in C'P»- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [38] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of General Coordinate Invariance since it was not at all obvious why the preferred extremal
X4(Y3) for Y3 at X4(X?) and Diff* related X? should satisfy X4(Y3) = X*(X?3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kéhler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-C'Ds. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-C'Ds containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred plane M? preferred homologically trivial geodesic
sphere of C'P, having interpretation as geometric correlate for the selection of quantization axis.
For given sector of C'H this means union over choices of this kind.

The basic vision forced by the generalization of General Coordinate Invariance has been that space-
time surfaces correspond to preferred extremals X*(X?) of Kihler action and are thus analogous to
Bohr orbits. Kihler function K(X?) defining the Kéhler geometry of the world of classical worlds
would correspond to the Kéhler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

The obvious but rather ad hoc guess motivated by physical intuition was that preferred extremals
correspond to the absolute minima of Kéahler action for space-time surfaces containing X 3. This choice
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has some nice implications. For instance, one can develop an argument for the existence of an infinite
number of conserved charges. If X3 is light-like surface- either light-like boundary of X* or light-like
3-surface assignable to a wormhole throat at which the induced metric of X* changes its signature-
this identification circumvents the obvious objections. This option however failed to have a direct
analog in the p-adic sectors of the world of classical worlds (WCW). The reason is that minimization
does not make sense for the p-adic valued counterpart of Kéahler action since it is not even well-defined
although the field equations make sense p-adically. Therefore, if absolute minimization makes sense
it must have expression as purely algebraic conditions.

Much later number theoretical compactication led to important progress in the understanding of
the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T(X*(X})) C M® a subspace
M?(x) € M* having interpretation as the plane of non-physical polarizations. This in the case
that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic surface
is in question, similar assigned should be possible in normal space. This means a close connection
with super string models. Geometrically this would mean that the deformations of 3-surface in
the plane of non-physical polarizations would not contribute to the line element of WCW. This
is as it must be since complexification does not make sense in M? degrees of freedom.

2. In number theoretical framework M?(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M®. The condition
M?(z) C T(X*(X}))) in principle fixes the tangent space at X}, and one has good hopes that
the boundary value problem is well-defined and could fix X4(X3) at least partially as a preferred
extremal of Kihler action. This picture is rather convincing since the choice M?(x) C M* plays
also other important roles.

3. At the level of H the counterpart for the choice of M?(z) seems to be following. Suppose
that X4(Xl3) has Minkowskian signature. One can assign to each point of the M* projection
Py (X*(X})) a sub-space M?(z) C M* and its complement E?(z), and the distributions of
these planes are integrable and define what I have called Hamilton-Jacobi coordinates which can
be assigned to the known extremals of Kéhler with Minkowskian signature. This decomposition
allows to slice space-time surfaces by string world sheets and their 2-D partonic duals. Also a
slicing to 1-D light-like surfaces and their 3-D light-like duals Yl?’ parallel to X f follows under
certain conditions on the induced metric of X*(X}). This decomposition exists for known
extremals and has played key role in the recent developments. Physically it means that 4-
surface (3-surface) reduces effectively to 3-D (2-D) surface and thus holography at space-time
level.

4. The weakest form of number theoretic compactification [52] states that light-like 3-surfaces
X3 ¢ X4(X?) ¢ M® where X*(X?) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X? C X*4(X?3) € M* x CP,, where X*(X3) is now preferred
extremum of Kihler action. The natural guess is that X4(X?) Cc M?® is a preferred extremal of
Kahler action associated with Kahler form of E4 in the decomposition M8 = M* x E*, where
M* corresponds to hyper-quaternions. The conjecture would be that the value of the Kéhler
action in M® is same as in M* x C'Py: in fact that 2-surface would have identical induced metric
and Kahler form so that this conjecture would follow trivial. M?® — H duality would in this sense
be Kahler isometry.

The study of the modified Dirac equation meant further steps of progress and lead to a rather
detailed view about what preferred extremals are.

1. The detailed construction of the generalized eigen modes of the modified Dirac operator Dy
associated with Kéhler action [§] relies on the vision that the generalized eigenvalues of this
operator code for information about preferred extremal of Kéhler action. The view about TGD
as almost topological QFT is realized if the eigenmodes correspond to the solutions of Dy,
which are effectively 3-dimensional. Otherwise almost topological QFT property would require
Chern-Simons action alone and this choice is definitely un-physical. The first guess was that the
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eigenmodes are restricted to X l3 and therefore analogous to spinorial shock waves. As I realized
that number theoretical compactification requires the slicing of X*(X 13) by light-like 3-surfaces
Y;? parallel to X}, it became clear that super-conformal gauge invariance with respect to the
coordinate labeling the slices is a more natural manner to realized effective 3-dimensionality and
guarantees that Y;* is gauge equivalent with X;* (General Coordinate Invariance).

. The eigen modes of the modified Dirac operator Dk have the defining property that they

are localized in regions of X}, where the induced Kéahler gauge field is non-vanishing. This
guarantees that the number of generalized eigen modes is finite so that Dirac determinant is
also finite and algebraic number if eigenvalues are algebraic numbers, and therefore makes sense
also in p-adic context although Kéahler action itself does not make sense p-adically.

. The construction of the configuration space geometry in terms of modified Dirac action strength-

ens also the boundary conditions to the condition that there exists space-time coordinates in
which the induced C' P, Kahler form and induced metric satisfy the conditions J,,; =0, g,; =0
hold at X}. One could say that at X;® situation is static both metrically and for the Maxwell
field defined by the induced Kahler form.

. The final step in the rapid evolution of ideas that too place during three months - at least I hope

so since I do not want to continue this updating endlessly - was the realization that the introduc-
tion of imaginary CP breaking instanton part to the Kahler action is possible and also necessary
if one wants a stringy variant of Feynman rules. Imaginary part does not contribute to the
configuration space metric. This enriches the spectrum of the modified Dirac operator with an
infinite number of conformal excitations breaking the effective 2-dimensionality of 3-surfaces and
exact holography. Conformal excitations make possible stringy Feynman diagrammatics [I1] . A
breaking of effective 3-dimensionality of space-time surface comes through the non-determinism
of Kéhler action which indeed is the mechanism breaking the effective 2-dimensionality. Dirac
determinant can be defined in terms of zeta function regularization using Riemann Zeta. Finite
measurement resolution realized in terms of braids defined on basis of purely physical criteria
however forces a cutoff in conformal weight and finiteness so that number theoretical universality
is not lost.

. This picture relying crucially on the the slicing of X4(X3) did not yet fix the definition of pre-

ferred extremals analytically at the level of field equations. The next step of progress was the
realization that the requirement that the conservation of the Noether currents associated with
the modified Dirac equation requires that the second variation of the Kéahler action vanishes.
In strongest form this condition would be satisfied for all variations and in weak sense only for
those defining dynamical symmetries. The interpretation is as space-time correlate for quan-
tum criticality and the vacuum degeneracy of Kéahler action makes the criticality plausible. A
generalization of the ideas of the catastrophe theory to infinite-dimensional context results [22]
. These conditions make sense also in p-adic context and have a number theoretical universal
form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces in
Mi X C' P,. The basic outcome is that Kéhler metric is expressible using the data at partonic 2-surfaces
X% c 5Mfﬁ X CP,. The generalization to the actual physical situation requires the replacement of
X? C 6M} x CP, with unions of partonic 2-surfaces located at light-like boundaries of C'Ds and
sub-CDs.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
("world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M* x CP,
or Mi x C' Py or perhaps something more delicate.

1.

For a long time I believed that the question ”M{ or M*?” had been settled in favor of M$ by
the fact that M fi has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to 5Mi x C' P, were interpreted as cosmological rather than laboratory
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symmetries. The work with the conceptual problems related to the notions of energy and time,
and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M* instead of M.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or "world of classical worlds” (WCW). The spaces CD x C'P; regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of §M4 x C'Py as isometries of WCW. The
gigantic symmetries associated with the §M$ x CP, are also laboratory symmetries. Poincare
invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces M+t x C Py of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X7, which can be boundaries of X* and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CDxCP,. CDs can contain C' Ds within C'Ds so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case 6Mjl_ X CPs.

A further piece of understanding emerged from the following observations.

1. The induced Kéhler form at the partonic 2-surface X? - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of €*” Jop at
X? define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kéhler forms of C'P, and
SM? at the partonic 2-surfaces X2 at the light-like boundaries of C'Ds are fixed. The symplectic
group of § M4 x C'P, parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given C'D in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S% x CP, is in question: this was one of the first ideas about
configuration space which I gave up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identical actions of Super Virasoro
generators for super-symplectic and super Kac-Moody algebras implies that inertial and gravi-
tational four-momenta are identical.

3.2.4 The treatment of non-determinism of Kahler action in zero energy
ontology

The non-determinism of Kéahler action means that the reduction of the construction of the configura-
tion space geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of
Kahler action, the non-determinism should manifest itself as a presence of causal determinants also
other than light cone boundary.

One can imagine two kinds of causal determinants.
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. Elementary particle horizons and light-like boundaries X 13 C X* of 4-surfaces representing worm-

hole throats act as causal determinants for the space-time dynamics defined by Kéhler action.
The boundary values of this dynamics have been already considered.

. At imbedding space level causal determinants correspond to light like CD forming a fractal

hierarchy of C'Ds within C' Ds. These causal determinants determine the dynamics of zero energy
states having interpretation as pairs of initial and final states in standard quantum theory.

The manner to treat the classical non-determinism would be roughly following.

1.

The replacement of space-like 3-surface X2 with X} transforms initial value problem for X3 to
a boundary value problem for X?. In principle one can also use the surfaces X3 C 6CD x CP,
if X f’ fixes X4(X f) and thus X uniquely. For years an important question was whether both
X3 and X 13 contribute separately to the configuration space geometry or whether they provide
descriptions, which are in some sense dual. This lead to the notion of 7-3 duality and I even
considered the possibility that 5Mi x CPy could be replaced with a more general surface X} x
CP; allowing also generalized symplectic and conformal symmetries. 7-3 duality is not a good
term since the actual duality actually relates descriptions based on space-like 3-surfaces X3 and
light-like 3-surfaces X l3 Hence it seems that the proper place for 7-3 duality is in paper basked.

. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X?. In the 2-D

intersections of X} with the boundary of causal diamond (C'D) defined as intersection of future
and past directed light-cones super-symplectic algebra makes sense. This implies effective two-
dimensionality which is broken by the non-determinism represented using the hierarchy of C'Ds
meaning that the data from these 2-D surfaces and their normal spaces at boundaries of C'Ds
in various scales determine the configuration space metric.

An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality seems
to be satisfied in the sense of generalized coset construction meaning that the differences of
Super Virasoro generators of super-symplectic and super Kac-Moody algebras annihilate physical
states. Among other things this means that four-momenta assignable to the two Super Virasoro
representations are identical. T he interpretation is in terms of a generalization of Equivalence
Principle [8, [12] . This gives also a justification for p-adic thermodynamics applying only to
Super Kac-Moody algebra.

. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite length

resolution mean means also a cutoff in the number of generalized Feynman diagrams and this
number remains always finite if the light-like 3-surfaces identifiable as maxima of Kéhler function
correspond to the diagrams. The finiteness of this number is also essential for number theoretic
universality since it guarantees that the elements of M-matrix are algebraic numbers if momenta
and other quantum numbers have this property. The introduction of new sub-CDs means also
introduction of zero energy states in corresponding time scale.

. The notion of finite measurement resolution expressed in terms of hierarchy of C'Ds within

CDs is important for the treatment of classical non-determinism. In a given resolution the non-
determinism of Kéhler action remains invisible below the time scale assigned to the smallest C'Ds.
One could also say that complete non-determinism characterized in terms path integral with
cutoff is replaced in TGD framework with the partial failure of classical non-determinism leading
to generalized Feynman diagrams. This gives rise to to discrete coupling constant evolution and
avoids the mathematical ill-definedness and infinities plaguing path integral formalism since the
functional integral over 3-surfaces is well defined.

Dirac determinant defining vacuum functional is assumed to correspond to exponent of Kahler
action for its preferred extremal. Dirac determinant is defined as a product of finite number
of eigenvalues of the transverse part Dy (X?) of the modified Dirac operator Dy assumed
to have decomposition Dx = Dy (X?) + Dk (Y?) reflecting the dual slicings of X* to string
world sheets Y2 and partonic 2-surfaces X2. The existence of the slicing is supported by the
properties of known extremals of Kédhler action and strongly suggested by number theoretical
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compactification, and it implies among other things dimensional reduction to Minkowskian string
model like theory and its Euclidian equivalent allowing to understand how Equivalence Principle
is realized at space-time level. Finite number for the eigenvalues raises even hope that in a given
resolution the functional integral reduces to Gaussian integral over a finite-dimensional space of
logarithms of eigenvalues.

7. One can ask why Kéhler action and playing with all these delicacies related to the failure of
complete determinism. After all, one could formally replace Kéhler action with 4-volume as
in brane models. Space-time surfaces would be minimal surfaces and Dirac operator would
be standard Dirac operator for the induced metric. Dirac determinant would however become
infinite since the modes would not be anymore analogs of cyclotron states necessarily localized
to a finite region of X?. Recall that for Kahler action X} indeed decomposes into patches
inside with induced Ké&hler form is non-vanishing and Dirac determinant defining the exponent
of Kahler function is well-defined and finite without any regularization procedure. Hence Ké&hler
action is completely unique.

3.2.5 Category theory and configuration space geometry

Due the effects caused by the classical non-determinism even classical TGD universes are very far from
simple Cartesian clockworks, and the understanding of the general structure of the configuration space
is a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of the configuration space geometry and the basic ideas of category
theory are discussed in this spirit and as an innocent layman. It indeed turns out that the approach
makes highly non-trivial predictions.

In zero energy ontology the effects of non-determinism are taken into account in terms of causal
diamonds forming a hierarchical fractal structure. One must allow also the unions of C'Ds, CDs
within C'Ds, and probably also overlapping of C'Ds, and there are good reasons to expert that CDs
and corresponding algebraic structures could define categories. If one does not allow overlapping C'Ds
then set theoretic inclusion map defines a natural arrow. If one allows both unions and intersections
then C'Ds would form a structure analogous to the set of open sets used in set theoretic topology.
One could indeed see CDs (or rather their Cartesian products with C'P;) as analogs of open sets in
Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and allow
to build bridge to topological and conformal field theories. This discussion based on standard ontology.
In [7] rather detailed category theoretical constructions are discussed. Important role is played by the
notion of operad [I1}, [39] : this structure can be assigned with both generalized Feynman diagrams
and with the hierarchy of symplectic fusion algebras realizing symplectic analogs of the fusion rules
of conformal field theories.

3.3 Identification of the symmetries and coset space structure
of the configuration space

In this section the identification of the isometry group of the configuration space will be discussed at
general level.

3.3.1 Reduction to the light cone boundary

The reduction to the light cone boundary would occur exactly if Kdhler action were strictly determin-
istic. This is not the case but it is possible to generalize the construction at light cone boundary to
the general case if causal diamonds define the basic structural units of the configuration space.

Old argument

The identification of the configuration space follows as a consequence of 4-dimensional Diff invariance.
The right question to ask is the following one. How could one coordinatize the physical(!) vibrational
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degrees of freedom for 3-surfaces in Diff* invariant manner: coordinates should have same values for
all Diff* related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y3) on the orbit of X3 in Diff* invariant manner.

2. Use as configuration space coordinates of X? and all its diffeomorphs the coordinates param-
eterizing small deformations of Y3. This kind of replacement is physically acceptable since
metrically the configuration space is equivalent with Map/Dif f*.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in question
leave light Mfr invariant and thus act as isometries.

The simplest choice of Y2 is the intersection of the orbit of 3-surface (X*) with the set 6M{ x CPs ,
where §M? denotes the boundary of the light cone (moment of big bang):

Y? = X'néMixCPs (3.3.1)

Lorentz invariance allows also the choice X x C'P,, where X corresponds to the hyperboloid a =

(m9)2 — r2, = constant but only the proposed choice (a = 0) leads to a natural complexification in
M* degrees of freedom. This choice is also cosmologically very natural and completely analogous to
the quantum gravitational holography of string theories.

Configuration space has a fiber space structure. Base space consists of 3-surfaces Y3 C 5Mi x C'Py
and fiber consists of 3-surfaces on the orbit of Y2 , which are Diff* equivalent with Y3. The distance
between the surfaces in the fiber is vanishing in configuration space metric. An elegant manner to
avoid difficulties caused by Diff* degeneracy in configuration space integration is to define integration
measure as integral over the reduced configuration space consisting of 3-surfaces Y2 at the light cone
boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kéhler action suggests strongly
classical non-determinism so that there are several, possibly, infinite number of preferred extremals
X*(Y3) associated with given Y on light cone boundary. This implies additional degeneracy.

One might hope that the reduced configuration space could be replaced by its covering space so
that given Y3 corresponds to several points of the covering space and configuration space has many-
sheeted structure. Obviously the copies of Y2 have identical geometric properties. Configuration space
integral would decompose into a sum of integrals over different sheets of the reduced configuration
space. Note that configuration space spinor fields are in general different on different sheets of the
reduced configuration space.

Even this is probably not enough: it is quite possible that all light like surfaces of M* possessing
Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction of
the configuration space geometry. Because of their metric two-dimensionality the proposed construc-
tion should generalize. This would mean that configuration space geometry has also local laboratory
scale aspects and that the general ideas might allow testing.

New version of the argument

This is was the argument for two decades ago. A more elegant formulation would in terms of light-like
3-surfaces connecting the boundaries of causal diamond taken as basic geometric objects and identified
as generalized Feynman diagrams so that they are singular as manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that effective 2-dimensionality
must hold true in the scale of given C'D. In other words, the intersection X? = X?NX3 at the boundary
of CD is effectively the basic dynamical unit. The failure of strict non-determinism however forces to
introduce entire hierarchy of C Ds responsible also for coupling constant evolution defined in terms of
the measurement resolution identified as the size of the smallest C'D present.

3.3.2 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and curvature
are independent of the metric, provided it is left invariant under G. The hope is that same holds true
in infinite-dimensional context. The most one can hope of obtaining is the decomposition C(H) =
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U;G/H; over orbits of G. One could allow also symmetry breaking in the sense that G and H depend
on the orbit: C'(H) = U;G;/H; but it seems that G can be chosen to be same for all orbits. What
is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kéahler function on a given orbit and one obtains
perturbation theory around this maximum (Ké&hler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kahler function defining the metric, it became finally clear
that these identifications follow quite nicely from Dif f* invariance and Dif f* degeneracy as well as
special properties of the Kéahler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of §M$ x C'P, leaving the induced Kihler form invariant. If G acts as isometries the values of Kéhler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kahler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X} and acting in X} but trivially at the partonic 2-surface X 2.
This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

Configuration space isometries as a subgroup of Diff((SMﬁ x CPy)

The reduction to light cone boundary leads to the identification of the isometry group as some subgroup
of for the group G for the diffeomorphisms of § M fi X C'P,. These diffeomorphisms indeed act in a
natural manner in §C'H, the the space of 3-surfaces in 5Mi x C'Py. Configuration space is expected
to decompose to a union of the coset spaces G/H,;, where H; corresponds to some subgroup of G
containing the transformations of G acting as diffeomorphisms for given X3. Geometrically the vector
fields acting as diffeomorphisms of X2 are tangential to the 3-surface. H; could depend on the topology
of X3 and since G does not change the topology of 3-surface each 3-topology defines separate orbit
of G. Therefore, the union involves sum over all topologies of X2 plus possibly other ’zero modes’.
Different topologies are naturally glued together since singular 3-surfaces intermediate between two
3-topologies correspond to points common to the two sectors with different topologies.

3.3.3 Isometries of configuration space geometry as symplectic transfor-
mations of M} x CPy

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Dif f ((5Mi x CPy). To begin with let us write
the general decomposition of diff((;M_?_ x CPy):

dif f(M{ x CPy) = S(CPy) x dif f(6M{) & S(6M}) x dif f(CP,) . (3.3.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP, and C P, diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.
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1. The fact that symplectic transformations of C'P, and M_jl_ diffeomorphisms are dynamical sym-
metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of C'P; could leave Kéhler function invariant and
thus correspond to zero modes. The symplectic transformations of C'P;, localized with respect
to light cone boundary acting as symplectic transformations of C'P, have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kahler action is not a problem: if they
were exact symmetries, Kéhler function would be invariant and zero modes would be in question.

2. CP, local conformal transformations of the light cone boundary act as isometries of 5Mi. Be-
sides this there is a huge group of the symplectic symmetries of 5Mfﬁ x C P if light cone boundary
is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. 5Mi x C' P, option exploits fully the special properties of 5Mi x C' Py, and
one can develop simple argument demonstrating that (5Mj4r x C' P, symplectic invariance is the
correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports 5Mi x C'P, option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X? local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kihler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ® 4(2)j4*, where A labels Hamiltonians in the sum and by j the generator of X?
diffeomorphism.

2. The invariance of J = €*# Jag+/g2 modulo diffeomorphism under the infinitesimal symplectic
transformation gives

{HA, @4} = 0, HAP3D 4 = 0,J5% . (3.3.3)

3. Note that here the Poisson bracket is not defined by J3 but ¢*? defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
®4(x) on X? coordinate which and comes from the gradients of §M* x C'P, coordinates in the
expression of the induced Kéhler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.

4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by ®(z)H4 and that to each ®(z) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form e** and
generated by Hamiltonian ¥(z). This transforms the invariance condition to

{HA,®) = 0,H** P30 = 0,Je*P0gW 4 = {J, U4} . (3.3.4)

This condition can be solved identically by assuming that ® 4 and ¥ are proportional to arbitrary
smooth function of J:

d=f(J), Uy=—f(J)H, . (3.3.5)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2
with Hamiltonians depending on single coordinate J of X?2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.
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5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations ®4 H4 ®% H4 the commutator is

ol = fPCpac (3.3.6)

where f,P¢ are the structure constants for the symplectic algebra of §M$} x C'P,. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.

6. If space-time surface allows a slicing to light-like 3-surfaces Y;* parallel to X}, these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y;? with M x CP,
and ”parallel” to X 2. The local symplectic transformations also generalize to their local variants
in X l3 Light-likeness of X 53 means effective metric 2-dimensionality so that 2-D Kéahler metric
and symplectic form as well as the invariant J = €*# Jap exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

3.3.4 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.

Identification of Kac-Moody algebra
The generators of bosonic super Kac-Moody algebra leave the light-likeness condition /g3 = 0 invari-
ant. This gives the condition

89asCof(g*) = 0, (3.3.7)
Here Cof refers to matrix cofactor of g,g and summation over indices is understood. The conditions

can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms x#* — x* 4 £
of X? and of infinitesimal conformal symmetries of the induced metric

5gaﬁ = )‘(x)gaﬁ + augaﬁfu + guﬁaozgu + gauaﬁfu . (338)

Ansatz as an X3-local conformal transformation of imbedding space

Write 6h* as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields J4 = j4F9,:

S = ca(x)itE . (3.3.9)

This gives

CA(I) [Dk]lA + Dljj?] 8ahk8/3hl + 28acAhkle’k85hl
= )‘(x)gozﬁ + augaﬁf'u + guﬂaocg'u + gauaﬁ§“ . (3.3.10)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has
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Diji* + Dijilt = 2hu . (3.3.11)

The transformations in question includes conformal transformations of Hi and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3
reducible to infinitesimal conformal transformation *:

200cahij 05 = €10, 00p + 910" + Gapdst . (3.3.12)

A rough analysis of the conditions

One could consider a strategy of fixing ¢4 and solving solving &* from the differential equations. In
order to simplify the situation one could assume that g;, = ¢g,» = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for g, gives

Orcahpj*o.n* = 0 . (3.3.13)

The radial derivative of the transformation is orthogonal to X3. No condition on £ results. If
¢4 has common multiplicative dependence on ¢4 = f(r)da by a one obtains

dahrj?*o.n* = 0 . (3.3.14)

so that J4 is orthogonal to the light-like tangent vector d,h* X3 which is the counterpart for
the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components g,; is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = r™ and the notion
of radial conformal weight makes sense. The dependence of ¢4 on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for g,; gives

& = Opcahpi*hI9;RF (3.3.15)

The equation states that g,; are not affected by the symmetry. The radial dependence of £ is
fixed by this differential equation. No condition on £" results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for g;; give

£00gij + grj 0" + g1i0;€F = OicahnjtO;R' (3.3.16)

These are 3 differential equations for 3 functions €% on 2 independent variables x* with r ap-
pearing as a parameter. Note however that the derivatives of ¢ do not appear in the equation.
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At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of c4 as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X2 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all ¢4 except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.

Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields &* are functionals c4 and of the induced metric and also c4 depends on induced metric via the
orthogonality condition. What this means that j4* in principle acts also to ¢ in the commutator
[CAJA,CBJB].

[cAJA,cBJB] = cacgdWB 4+ JhocgdB — JB ocud? (3.3.17)

where o is a short hand notation for the change of cp induced by the effect of the conformal transfor-
mation J4 on the induced metric.

Luckily, the conditions in the case g, = gi = 0 state that the components g, and g;. of the
induced metric are unchanged in the transformation so that the condition for c4 resulting from g,
component of the metric is not affected. Also the conditions coming from g¢;, = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P° in a preferred M* coordinate frame
to be the preferred generator J4° = PY whose coefficient ® 4, = U(PY) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator J4 besides P° and putting d4 = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the J4 #
P in the sense that the proportionality of d4 to r™ for J4 # P° must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P* it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P°. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = m*9,,» the mutually
commuting generators K* = (m"m,.0,,» — 2m*m'9,,.)/2. The commutators involving added
generators are

D,K*¥] = —K* | [D,P*] = PF |

Kk,Kl] =0 ; Kk,Pl] — mle _ Mkl . (3318)

From the last commutation relation it is clear that the inclusion of K* would mean loss of
well-defined radial conformal weights.

3. The coefficient dm®/dr of ¥(PY) in the equation

0
q/(pO)ddﬂr = —J% R0, 1!



Chapter 3. Construction of Configuration Space Kihler Geometry from Symmetry
116 Principles

is always non-vanishing due to the light-likeness of . Since P° commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify W(P°) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
fact, also the Kac-Moody type symmetries for which c4 depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m® with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
M. Thus it would be natural to assume that the preferred M* coordinate varies along this
light ray or its dual. The Kac-Moody group SO(3) x E? respecting the radial conformal weights
would reduce to SO(2) x E? as in string models. E? would act in tangent plane of S% along
this ray defining also SO(2) rotation axis.

3.3.5 Coset space structure for a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g=h+1t,
[h,h] Ch , [ht]Ct, [t,t]Ch .
In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also that G acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.
The algebras suggesting themselves as candidates are symplectic algebra of §M* x C'P; and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.
The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X?-local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H = > da(x)H" . (3.3.19)

Here H# are Hamiltonians of SO(3) x SU(3) acting in §X x C'P,. For symplectic algebra any
Hamiltonian is allowed. If x corresponds to any point of X 13, one must assume a slicing of the
causal diamond CD by translates of M.

2. For symplectic generators the dependence of form on 72 on light-like coordinate of 6.X P x CPy
is allowed. A is complex parameter whose modulus squared is interpreted as conformal weight.
A is identified as analogous quantum number labeling the modes of induced spinor field.

3. One can wonder whether the choices of the 7y, = constant sphere S? is the only choice. The
Hamiltonin-Jacobi coordinate for X;l(lg suggest an alternative choice as E? in the decomposition
of M* = M?(x) x E?(z) required by number theoretical compactification and present for known
extremals of Kéhler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X*(X}})
would remain the same since any other curve along light-like boundary would be space-like.
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4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X? C §M{ x CPy. The corresponding vector field must vanish at each point of X?:

o= D> @a(e)IMHA =0 . (3.3.20)

This means that the vector field corresponds to SO(2) x U(2) defining the isotropy group of the
point of S x CP;.

This expression could be deduced from the idea that the surfaces X? are analogous to origin of
C P, at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S? x C'P,. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2) x U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X} preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kéhler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X? gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.

3.4 Complexification

A necessary prerequisite for the Kéhler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.

3.4.1 Why complexification is needed?

The Minkowskian signature of M* metric seems however to represent an insurmountable obstacle for
the complexification of M* type vibrational degrees of freedom. On the other hand, complexification
seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation po-
larization vector e and massless four-momentum vector p (p?> = 0, p-e = 0). These vectors define
the decomposition of the tangent space of M*: M* = M? x E?, where M? type polarizations
correspond to zero norm states and E? type polarizations correspond to physical states with non-
vanishing norm. Same type of decomposition occurs also in the linearized theory of gravitation.
The crucial feature is that E? allows complexification! The general conclusion is that the modes
of massless, linear, boson fields define always complexification of M* (or its tangent space) by
effectively reducing it to E?. Also in string models similar situation is encountered. For a string
in D-dimensional space only D-2 transversal Euclidian degrees of freedom are physical.

2. Since symplectically extended isometry generators are expected to create physical states in TGD
approach same kind of physical complexification should take place for them, too: this indeed
takes place in string models in critical dimension. Somehow one should be able to associate
polarization vector and massless four momentum vector to the deformations of a given 3-surface
so that these vectors define the decomposition M* = M? x E? for each mode. Configuration
space metric should be degenerate: the norm of M? deformations should vanish as opposed to
the norm of E? deformations.

Consider now the implications of this requirement.
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1. In order to associate four-momentum and polarization (or at least the decomposition M* =
M? x E?) to the deformations of the 3-surface one should have field equations, which determine
the time development of the 3-surface uniquely. Furthermore, the time development for small
deformations should be such that it makes sense to associate four momentum and polarization
or at least the decomposition M4 = M? x E? to the deformations in suitable basis.

The solution to this problem is afforded by the proposed definition of the Kéahler function. The
definition of the Kahler function indeed associates to a given 3-surface a unique four-surface
as the preferred extremal of the Kahler action. Therefore one can associate a unique time
development to the deformations of the surface X3 and if TGD describes the observed world
this time development should describe the evolution of photon, gluon, graviton, etc. states and
so we can hope that tangent space complexification could be defined.

2. We have found that M? part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in configuration space metric. This is true if Kahler
function is not only Dif f3 invariant but also Diff* invariant in the sense that Kihler function has
same value for all 3-surfaces belonging to the orbit of X? and related to X? by diffeomorphism
of X*. This is indeed the case.

3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3 so
that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Dif f* invariance makes possible to identify
the complexification. Crucial role is played by the special properties of the boundary of 4-dimensional
light cone, which is metrically two-sphere and thus allows generalized complex and Kahler structure.

3.4.2 The metric, conformal and symplectic structures of the light cone
boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone boundary
is topologically 3-dimensional it is metrically 2-dimensional: effectively sphere. In standard spherical
Minkowski coordinates light cone boundary is defined by the equation 7); = m® and induced metric
reads

ds*> = —r2,d0? = —r3,dzdz/(1 + 22)* | (3.4.1)

and has Euclidian signature. Since S? allows complexification and thus also Kéhler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M* degrees of freedom: configuration space would effectively
inherit its Kahler structure from S? x CP;.

By its effective two-dimensionality the boundary of the four-dimensional light cone has infinite-
dimensional group of (local) conformal transformations. Using complex coordinate z for S? the general
local conformal transformation reads

r = f(rm,2,2) ,
z = g(z), (3.4.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = LoR,
[L,R]C R , (3.4.3)



3.4. Complexification 119

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

L, = 2""'d/dz (3.4.4)

and R denotes the algebra generated by the vector fields

Rn = fn(z,é,rM)ﬁrM B (345)

where f(z, z,75r) forms complete real scalar function basis for light cone boundary. The vector fields
of R have the special property that they have vanishing norm in M* metric.

This modification of conformal group implies that the Virasoro generator Ly becomes Ly = zd/dz—
rad/dry; so that the scaling momentum becomes the difference n — m or S? and radial scaling
momenta. One could achieve conformal invariance by requiring that S? and radial scaling quantum
numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isometries!
An arbitrary conformal transformation z — f(z) induces to the metric a conformal factor given by
|df /dz|?. The compensating radial scaling 75 — ras/|df /dz| compensates this factor so that the line
element remains invariant.

The Kéahler structure of light cone boundary defines automatically symplectic structure. The
symplectic form is degenerate and just the area form of S? given by

J =r2,5in(0)d0 A de,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S?) invariant. These transformations
are local with respect to the radial coordinate rj;. The symplectic and Kéahler structures of light
cone boundary are not unique: different structures are labeled by the coset space SO(3,1)/SO(3).
One can however associate with a given 3-surface Y2 a unique structure by requiring that the the
corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved classical
four-momentum assigned to Y3 by the preferred extremal property.

In case of 6Mfi x C'P, both the conformal transformations, isometries and symplectic transfor-
mations of the light cone boundary can be made local also with respect to C'P,. The idea that the
infinite-dimensional algebra of symplectic transformations of § M x C'P, act as isometries of the con-
figuration space and that radial vector fields having zero norm in the metric of light cone boundary
possess zero norm also in configuration space metric, looks extremely attractive.

In the case of 5M_‘f_ x C'Ps one could combine the symplectic and Kahler structures of 5M_‘f_ and
CP, to single symplectic/Kahler structure. The symplectic transformations leaving this symplectic
structure invariant would be generated by the function algebra of 5Mi x CP, such that a arbitrary
function serves as a Hamiltonian of a symplectic transformation. This group serves as a candidate for
the isometry group of the configuration space. An alternative identification for the isometry algebra
is as symplectic symmetries of C'P;, localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of 5.Mj‘r x C'P, but their Poisson brackets would
be defined using only C' P, symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the latter op-
tion. The symplecticly imbedded C' P, would be left invariant under (5Mi local symplectic transforma-
tions of C'P,. This seems strange. Under symplectic algebra of 6Mfﬁ x C Py also symplecticly imbedded
CP, is deformed and this sounds more realistic. The isometry algebra is therefore assumed to be the
group can(6M? x CP,) generated by the scalar function basis S(6M{ x CP,) = S(6M%) x S(CPs)
of the light cone boundary using the Poisson brackets to be discussed in more detail later.

There are some no-go theorems associated with higher-dimensional Abelian extensions [40] , and
although the contexts are quite different, it is interesting to consider the recent situation in light of
these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is effectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra associated
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with the metrically 2-dimensional elementary particle horizons surrounding wormhole contacts
allows the usual Kac Moody algebra and actually also contributes to the configuration space
metric.

2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result has an
analog at the level of configuration space geometry. The extension associated with the symplectic
algebra of C' P, localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p,q} = 1. The central extension is the function space
associated with 5Mjl_ and indeed infinite-dimensional if only only C'P, symplectic structure
induces the Poisson bracket but one-dimensional if 5Mi x CP, Poisson bracket induces the
extension. In the latter case the symmetries fix the metric completely at the point corresponding
to the origin of symmetric space (presumably the maximum of K&hler function for given values
of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [40] . It might be that the degeneracy of the configuration space metric is
the analog for the loss of faithful representations.

3.4.3 Complexification and the special properties of the light cone bound-
ary

In case of Kahler metric G and H Lie-algebras must allow complexification so that the isometries can
act as holomorphic transformations. Since G and H can be regarded as subalgebras of the vector fields
of 5M_‘f_ x C Py, they inherit in a natural manner the complex structure of the light cone boundary.

There are two candidates for the configuration space complexification. The simplest, and also the
correct, alternative is that complexification is induced by natural complexification of vector field basis
on (5Mfi X CPy. In C'P, degrees of freedom there is natural complexification

E¢€.
In 5Mfﬁ degrees of freedom this could involve the transformation
zZ—Z

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

flrar) = flra)

which turns out to play same role as the function basis of circle in the Kéahler geometry of loop
groups [29] .

The requirement that the functions are eigen functions of radial scalings favors functions (77 /70)*,
where k is in general a complex number. The function can be expressed as a product of real power of
ryr and logarithmic plane wave. It turns out that the radial complexification alternative is the correct
manner to obtain Kéhler structure. The reason is that symplectic transformations leave the value of
rp invariant. Radial Virasoro invariance plays crucial role in making the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the configuration
space geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: L, — L_, = LIL. Clearly this complexification is induced from the transformation
z — % and differs from the complexification induced by complex conjugation z — Z. The basis
would be polynomial in z and Z. Since radial algebra could be also seen as Virasoro algebra localized
with respect to S? x C'P, one could consider the possibility that also in radial direction the inversion
Ty — i is involved.

The essential prerequisite for the Kéhler structure is that both G and H allow same complexifi-
cation so that the isometries in question can be regarded as holomorphic transformations. In finite-
dimensional case this essentially what is needed since metric can be constructed by parallel translation
along the orbit of G from H-invariant Kéhler metric at a representative point. The requirement of
H-invariance forces the radial complexification based on complex powers rﬁz: radial complexification
works since symplectic transformations leave r,; invariant.

Some comments on the properties of the proposed complexification are in order.
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1. The proposed complexification, which is analogous to the choice of gauge in gauge theories is
not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart from
SO(3) rotation not affecting the value of the radial coordinate rj; (if the imaginary part of & in
¥, is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying C'P, Hamiltonians cor-
responds to unitary representations of the Lorentz group at light cone boundary so that the
Lorentz invariance is rather manifest.

3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mF = (m° m?) momentum is proportional to the vector (m° —m?®). Since the particles are
massless only two polarization vectors are possible and these correspond to the tangent vectors
to the sphere m® = rj;. Of course, one must always fix polarizations at some point of tangent
space but since massless polarization vectors are not physical this doesn’t imply difficulties:
different choices correspond to different gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere S”~2 and the decomposition to (1,0) and (0,1) parts is pos-
sible only when the sphere in question is two-dimensional since other spheres do allow neither
complexification nor Kéhler structure.

3.4.4 How to fix the complex and symplectic structures in a Lorentz in-
variant manner?

One can assign to light-cone boundary a symplectic structure since it reduces effectively to S2. The
possible symplectic structures of §M? are parameterized by the coset space SO(3,1)/S0(3)), where
H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of the
spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest Lorentz
invariance but is possible if physical theory remains Lorentz invariant. The more natural possibility
is that 3-surface Y3 itself fixes in some natural manner the choice of the symplectic structure so
that there is unique subgroup SO(3) of SO(3,1) associated with Y. If configuration space Kihler
function corresponds to a preferred extremal of Ké&hler action, this is indeed the case. One can
associate unique conserved four-momentum P¥(Y3) to the preferred extremal X*(Y?) of the Kéhler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P¥(Y3) invariant, fixes the symplectic structure associated with Y uniquely.

Therefore configuration space decomposes into a union of symplectic spaces labeled by SO(3,1)/50(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular momen-
tum vector wk = e'™n P, J  determined by the classical angular momentum tensor of associated with
Y3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3) acting as rotation
around this coordinate axis acts as phase transformation of the complex coordinate z of S2. Other
rotations act as nonlinear holomorphic transformations respecting the complex structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication
in this case. If P*(Y?) is light like, one can only require that the rotation group SO(2) serving as the
isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure
and it seems that symplectic structure cannot be uniquely fixed without additional constraints in
this case. Probably this has no practical consequences since the 3-surfaces considered have actually
infinite size and 4-momentum is most probably time like for them. Note however that the direction of
3-momentum defines unique axis such that SO(2) rotations around this axis are represented as phase
multiplication.

Similar almost unique frame exists also in C' P, degrees of freedom and corresponds to the complex
coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra element
defined by classical color charges Q, of Y3. One can fix unique Cartan subgroup of U(2) by noticing
that SU(3) allows completely symmetric structure constants dgp. such that R, = dachch defines
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Lie-algebra element commuting with @,. This means that R, and @, span in generic case U (1) x U (1)
Cartan subalgebra and there are unique complex coordinates for which this subgroup acts as phase
multiplications. The space of nonequivalent frames is isomorphic with C'P(2) so that one can say
that cm degrees of freedom correspond to Cartesian product of SO(3,1)/SO(3) hyperboloid and C' P
whereas coordinate choices correspond to the Cartesian product of SO(3,1)/S0O(2) and SU(3)/U(1) x
U(l).

Symplectic transformations leave the value of 6 M ff_ radial coordinate rj; invariant and this implies
large number of additional zero modes characterizing the size and shape of the 3-surface. Besides
this Kahler magnetic fluxes through the rj; = constant sections of X3 as a function of 7, provide
additional invariants, which are functions rather than numbers. The Fourier components for the
magnetic fluxes provide infinite number of symplectic invariants. The presence of these zero modes
imply that 3-surfaces behave much like classical objects in the sense that neither their shape nor
form nor classical Kahler magnetic fields, are subject to Gaussian fluctuations. Of course, quantum
superpositions of 3-surfaces with different values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations corre-
spond to zero modes of the Kéhler metric (symplectic transformations act as dynamical symmetries
of the vacuum extremals of the Kéhler action). If this is indeed the case, one can ask whether it is
possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines integra-
tion measure in a standard manner (for 2n-dimensional symplectic manifold the integration measure is
just the n-fold wedge power JAJ...AJ of the symplectic form J). Unfortunately, in infinite-dimensional
context this is not enough since divergence free functional integral analogous to a Gaussian integral is
needed and it seems that it is not possible to integrate in zero modes and that this relates in a deep
manner to state function reduction. If all symplectic transformations of 5Mi x C Py are represented
as symplectic transformations of the configuration space, then the existence of symplectic structure
decomposing into Kéhler (and symplectic) structure in complexified degrees of freedom and symplectic
(but not Kéhler) structure in zero modes, is an automatic consequence.

3.4.5 The general structure of the isometry algebra

There are three options for the isometry algebra of configuration space

1. Isometry algebra as the algebra of C' P, symplectic transformations leaving invariant the sym-
plectic form of C'P; localized with respect to (5Mi.

2. Certainly the configuration space metric in 5Mi must be non-trivial and actually given by the
magnetic flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic
generators constructed from quarks automatically give as anti-commutators this part of the
configuration space metric. One could interpret these symplectic invariants as configuration
space Hamiltonians for ciMj‘,‘r symplectic transformations obtained when C'P, Hamiltonian is
constant.

3. Isometry algebra consists of dM¢{ x CP, symplectic transformations. In this case a local color
transformation involves necessarily a local S? transformation. Unfortunately, it is difficult to
decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the basic
functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S? provide an alternative function basis for the light cone boundary:

o= Ym0, 0)rh
(3.4.6)

One can criticize this basis for not having nice properties under Lorentz group.
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The product of basis functions is given by Glebch-Gordan coefficients for symmetrized tensor
product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator L generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator Ly = zd/dz = p0, — %5‘¢ has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of Ly, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions H, ~and H7, can be calculated and is of the general form

{(H" Hi? Y = Cljimagamalj,mi + mo) aHJ e

(3.4.7)

The coefficients are Glebch-Gordan coefficients for the anti-symmetrized tensor product for the rep-
resentations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accompanied
by a local radial scaling compensating the conformal factor coming from the conformal transforma-
tions having parametric dependence of radial variable and C'P, coordinates. It seems however that
isometries cannot in general be realized as symplectic transformations. The first difficulty is that
symplectic transformations cannot affect the value of the radial coordinate. For rotation algebra the
representation as symplectic transformations is however possible.

In C'P, degrees of freedom scalar function basis having definite color transformation properties is
desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians of color
transformations by multiplication. The elements of basis can be typically expressed as monomials of
color Hamiltonians H*

HY = > Chpip,. my [[HE (3.4.8)
{B,} B;

where summation over all index combinations {B;} is understood. The coefficients C B1B,.. By A€
Glebch-Gordan coefficients for completely symmetric N:th power 8 ® 8... ® 8 of octet representations.
The representation is not unique since Y, HAHA = 1 holds true. One can however find for each
representation D some minimum value of V.

The product of Hamiltonians HY" and H 5, can be decomposed by Glebch-Gordan coefficients of
the symmetrized representation (D ® Ds)g as

Hp Hp, = Chlippc(S)Hp (3.4.9)

where 'S’ indicates that the symmetrized representation is in question. In the similar manner one can
decompose the Poisson bracket of two Hamiltonians

{Hp, . HB,} = Op/ppc(AHS . (3.4.10)

Here 'A’ indicates that Glebch-Gordan coefficients for the anti-symmetrized tensor product of the
representations D; and Dy are in question.

One can express the infinitesimal generators of C'P, symplectic transformations in terms of the
color isometry generators J2 using the expansion of the Hamiltonian in terms of the monomials of
color Hamiltonians:

ipy = Fppl?,
Fpp = N Z ChBiBy. By 1B HHch , (3.4.11)
{B,} J
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where summation over all possible {B;}:s appears. Therefore, the interpretation as a color group
localized with respect to C'P, coordinates is valid in the same sense as the interpretation of space-time
diffeomorphism group as local Poincare group. Thus one can say that TGD color is localized with
respect to the entire 6M$ x CPs.

A convenient basis for the Hamiltonians of (YMj‘r x CP, is given by the functions

mA __ m T A

The symplectic transformation generated by H}’,‘f‘g acts both in M* and C'P, degrees of freedom and
the corresponding vector field is given by

JT = H{JUSMY)OH:+ HRJ (CP)oHp (3.4.12)

The general form for their Poisson bracket is:

m,lAl m2A2 _ Al A2 ma mo ma mo A1 A2
{Hjllel ’ Hj2k2D2} - HD1 HD2 {Hjlkl ’ HijQ} + Hjllejzkz{HDl ’ HD2 }

A1 A A . . . A1 A A . . .
= [CR BB ()CGrmajamaljm) a + CHBB(ACGuma jamalim)s| B,

(3.4.13)

What is essential that radial 'momenta’ and angular momentum are additive in 6M{ degrees of
freedom and color quantum numbers are additive in C'Py degrees of freedom.

3.4.6 Representation of Lorentz group and conformal symmetries at light
cone boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary might
provide natural building blocks for the construction of the configuration space Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced, and a
function basis giving rise to the representations of Lorentz group and having very simple properties
under modified Poisson bracket of 5Mfi is constructed.

Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for S2.
The expression for the SU(2) generators of the Lorentz group are

J. = (*—=1)d/dz+cc.=L —L_1+cec.

Jy, = (i2®+1)d/dz+cc.=ily+il_1+cec. ,
d

J. = zzd— +cc =il,+cc. . (3.4.14)
z

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m? direction
corresponds to an infinitesimal transformation

om® = —ery

oryy = —em’ = 75\/7"]%[ — (m1)2 — (m?)? . (3.4.15)

The relationship between complex coordinates of S% and M* coordinates m* is given by stereographic
projection
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i (m! 4 im?)
"l Vi @ )
_ sin(0)(cosp + ising)
(1 — cosb) ’
cot(0/2) = p=vzz,
tan(p) = Z—j . (3.4.16)

This implies that the change in z coordinate doesn’t depend at all on rj; and is of the following form

€ z(z+2)

51+ 22) . (3.4.17)

The infinitesimal generator for the boosts in z-direction is therefore of the following form

222
(1+22)

L. = | —ry=—— —iJ. . (3.4.18)

8T M

Generators of L, and L,, are most conveniently obtained as commutators of [L., J,] and [L., J;]. For
L, one obtains the following expression:

_ G+ +iz—2) 0 .
L, = 2 (it 227 M B iy (3.4.19)

For L, one obtains analogous expressions. All Lorentz boosts are of the form L; = —iJ;+local radial scaling
and of zeroth degree in radial variable so that their action on the general generator X*™ o zkilﬂ\’}[
doesn’t change the value of the label m being a mere local scaling transformation in radial direction.
If radial scalings correspond to zero norm isometries this representation is metrically equivalent with

the representations of Lorentz boosts as Mdbius transformations.

Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S? define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure r3,d2drys/ry remains invariant under Lorentz boosts since the scaling of rjs induced by
the Lorentz boost compensates for the conformal scaling of df) induced by a Lorentz transforma-
tion represented as a Md&bius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-integer m
and imaginary number ks = ip, where p is any real number [35] . A natural guess is that m = 0 holds
true for all representations realizable at the light cone boundary and that radial waves are of form
TR, k = ki +ika = —1 +ip and thus eigen states of the radial scaling so that the action of Lorentz
boosts is simple in the angular momentum basis. The inner product in radial degrees of freedom
reduces to that for ordinary plane waves when log(ras) is taken as a new integration variable. The
complexification is well-defined for non-vanishing values of p.

It is also possible to have non-unitary representations of the Lorentz group and the realization of
the symmetric space structure suggests that one must have k = k; + tka, k1 half-integer. For these
representations unitarity fails because the inner product in the radial degrees of freedom is non-unitary.
A possible physical interpretation consistent with the general ideas about conformal invariance is
that the representations £k = —1 + ip correspond to the unitary ground state representations and
k=-14n/24ip, n = +1,+£2, ..., to non-unitary representations. The general view about conformal
invariance suggests that physical states constructed as tensor products satisfy the condition ), n; =0
completely analogous to Virasoro conditions.
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Representations of the Lorentz group with E? x SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2,C) is the group generated by the generators Ly and Ly of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator J, and corresponding boost generator L,. For functions which do
not depend on 7,; these generators are completely analogous to the generators L, generating scalings
and iLg generating rotations. Also the generator of radial scalings appears in the formulas and one
must consider the possibility that it corresponds to the generator L.

In order to construct scalar function eigen basis of L, and J., one can start from the expressions

.
Ly = (L, +L;) = 2i[——= 7= Uy — +indy

222 0

(1+ =22 Oras
J3s = L, —iL; =10, . (3.4.20)

If the eigen functions do not depend on 7/, one obtains the usual basis 2™ of Virasoro algebra, which

however is not normalizable basis. The eigenfunctions of the generators Ls, J3 and Lo = irpyd/drag
satisfying

J3fm,n,k = mfm,n,k )
L3fm,n,k == nfm,n,k P
LOfm,n,k‘ = kfm,n,k . (3421)

are given by

_ ime_P Mk 3.4.22
fm,n,k (& (1+p2)k X ( o ) . ( 4. )

n =ni1 +ing and k = k1 + iko are in general complex numbers. The condition

ny — kl Z 0
is required by regularity at the origin of S? The requirement that the integral over S? defining norm
exists (the expression for the differential solid angle is dQ) = dedd)) implies
ny <3k +2 .

From the relationship (cos(), sin(0)) = (p*> —1)/(p*+1),2p/(p?> +1)) one can conclude that for ny =
ks = 0 the representation functions are proportional to f sin(6)" *(cos(f) — 1)"~*. Therefore they
have in their decomposition to spherical harmonics only spherical harmonics with angular momentum
I < 2(n — k). This suggests that the condition

Im| < 2(n — k) (3.4.23)

is satisfied quite generally.

The emergence of the three quantum numbers (m,n, k) can be understood. Light cone boundary
can be regarded as a coset space SO(3,1)/E? x SO(2), where E? x SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E2 x SO(2). The three quantum numbers (m,n, k) have interpretation as
quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one com-
plex parameter. Thus k2 and ns, which are Lorentz invariants, might not be independent parameters,
and the simplest option is ko = no.

The nice feature of the function basis is that various quantum numbers are additive under multi-
plication:
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f(m(hn(lvka) X f(mbvnbakb) = f(mfl +mb7na + Ny, k(l + kb) .

These properties allow to cast the Poisson brackets of the symplectic algebra of the configuration
space into an elegant form.

The Poisson brackets for the 6Mjl_ Hamiltonians defined by f,.,,x can be written using the expres-
sion JP? = (1 + p?)/p as

{fma,na,ka’ fmb,nmkb} = i [(na - ka)mb - (nb - kb)ma] X fma+mb7’ﬂa+nb*2,ka+kb
+ 20 [(2 = ka)mp — (2 = kp)Ma] X frnatmynatny—1kathy—1 -
(3.4.24)

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations of Lorentz
group discussed in [35] .

1. The unitary representations discussed in [35] are characterized by are constructed by deducing
the explicit representations for matrix elements of the rotation generators J,Jy,J, and boost
generators L, Ly, L, by decomposing the representation into series of representations of SU(2)
defining the isotropy subgroup of a time like momentum. Therefore the states are labeled by
eigenvalues of J,. In the recent case the isotropy group is E? x SO(2) leaving light like point
invariant. States are therefore labeled by three different quantum numbers.

2. The representations of [35] are realized the space of complex valued functions of complex co-
ordinates ¢ and & labeling points of complex plane. These functions have complex degrees
ny =m/2 — 1+ 1; with respect to & and n_ = —m/2 — 1 + I3 with respect to £. Iy is complex
number in the general case but for unitary representations of main series it is given by [y = ip
and for the representations of supplementary series [ is real and satisfies 0 < |I1| < 1. The main
series representation is derived from a representation space consisting of homogenous functions
of variables 20, 2! of degree n, and of 2° and z! of degrees n4. One can separate express these
functions as product of (zl)"+ (z')"- and a polynomial of £ = z'/22 and ¢ with degrees n
and n_. Unitarity reduces to the requirement that the integration measure of complex plane is
invariant under the Lorentz transformations acting as Moebius transformations of the complex
plane. Unitarity implies [y = —1 + ip.

3. For the representations at 6Mfi formal unitarity reduces to the requirement that the integration
measure of TIQ\/[deT M /T of éMi remains invariant under Lorentz transformations. The action
of Lorentz transformation on the complex coordinates of S? induces a conformal scaling which
can be compensated by an S? local radial scaling. At least formally the function space of 5Mi
thus defines a unitary representation. For the function basis f,,,x kK = —1-+ip defines a candidate
for a unitary representation since the logarithmic waves in the radial coordinate are completely
analogous to plane waves for k; = —1. This condition would be completely analogous to the
vanishing of conformal weight for the physical states of super conformal representations. The
problem is that for k&, = —1 guaranteing square integrability in $? implies —2 < n; < —2 so
that unitarity is possible only for the function basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k; is half-integer valued. First of all, configuration space spinor fields
are analogous to ordinary spinor fields in M*, which also define non-unitary representations of
Lorentz group. Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals
defined by f,nk over 3-surfaces Y2 are always well-defined. Thirdly, the continuous spectrum
of ko could be transformed to a discrete spectrum when k; becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S? degrees of freedom
and the non-unitarity of the inner product reflects itself as non-orthogonality of the the eigen function
basis. Introducing the variable u = p? + 1 as a new integration variable, one can express the inner
product in the form
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o (u—1)">

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = k14 + k1 > —1. For k1; = —1/2 the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand
and given by

=
<
S~—
|
\
—
)
S
3
£
Il

[1 - eiﬂ'AjI f(u) )
A = nig—kia —nw+ ki - (3.4.26)

This means that one can transform the integral to an integral around the cut. This integral can in
turn completed to an integral over closed loop by adding the circle at infinity to the integration path.
The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains

omi .
I = 1%><R><(R—l)....x(Rfol)x(—1)N2K*K*1,
—e T
N-K

2

R

+iA . (3.4.27)

This expression is non-vanishing for A # 0. Thus it is not possible to satisfy orthogonality conditions
without the un-physical n = k, k1 = 1/2 constraint. The result is finite for K > —1 so that k3 > —1/2
must be satisfied and if one allows only half-integers in the spectrum, one must have k; > 0, which is
very natural if real conformal weights which are half integers are allowed.

3.4.7 How the complex eigenvalues of the radial scaling operator relate to
conformal weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator ryd/dray,
and the first guess was that the correct interpretation is as conformal weights. The problem is however
that the eigenvalues are complex. Second problem is that general arguments are not enough to fix
the spectrum of eigenvalues. There should be a direct connection to the dynamics defined by Kahler
action with instanton term included and the modified Dirac action defined by it.

The construction of configuration space spinor structure in terms of second quantized induced
spinor fields [§] leads to the conclusion that the modes of induced spinor fields are labeled by generalized
eigenvalues ) such that |A\|? has interpretation as a conformal weight and \ itself is analogous to Higgs
expectation value. Coset construction requires that super-symplectic and super Kac-Moody conformal
weights |\|? are same. This is achieved if the Hamiltonians are generalized eigen modes of D = v*d/dz,
x = log(r /7o), satistying DH = Ay*H and thus of form exp(Az) = (r/r0)* with the same spectrum
of complex eigenvalues A as associated with the modified Dirac operator. That log(r/ro) naturally
corresponds to the coordinate u assignable to the generalized eigen modes of modified Dirac operator
supports this interpretation.

If the Kahler action and modified Dirac action involve also the CP breaking instanton term,
the eigenvalues A are complex and complexity relates directly also to the breaking of time reversal
invariance.
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3.5 Magnetic and electric representations of the configuration
space Hamiltonians

Symmetry considerations lead to the hypothesis that configuration space Hamiltonians are apart from
a factor depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kéhler function corresponds to a preferred extremal of Kahler action leads to
the hypothesis that configuration space Hamiltonians corresponds to classical charges associated with
the Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of C'P;,
corresponding duality corresponds to the self-duality of Kahler form stating that the magnetic and
electric parts of Kéhler form are identical.

3.5.1 Radial symplectic invariants

All (5Mjl_ x C'P, symplectic transformations leave invariant the value of the radial coordinate rj;.
Therefore the radial coordinate rj; of X3 regarded as a function of S? x C'P, coordinates serves as
height function. The number, type, ordering and values for the extrema for this height function in
the interior and boundary components are isometry invariants. These invariants characterize not only
the topology but also the size and shape of the 3-surface. The result implies that configuration space
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) 7y, = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of the
situation. A good example about non-topological extrema is provided by a sphere with two horns.

There are additional symplectic invariants. The 'magnetic fluxes’ associated with the 5Mj‘_ Sym-
plectic form

Jg2 = r2,sin(0)dO A do

over any X? C X3 are symplectic invariants. In particular, the integrals over ry; = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the solid
angle Q(ry) spanned by rys = constant section and thus r3,Q(r)s) characterizes transversal geometric
size of the 3-surface. A convenient manner to discretize these invariants is to consider the Fourier
components of these invariants in radial logarithmic plane wave basis discussed earlier:

k) = /m"'m(rM/rmagc)kQ(rM)@ Ck=ky +iky . perky >0 . (35.1)
M

Tmin

One must take into account that for each section in which the topology of rj; = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rys, rj constant section contains several components (to visualize the
situation consider torus as an example).

Also the quantities

Q+(X2):/X2|J|E/|eaﬁJag|¢gEd2m

are symplectic invariants and provide additional geometric information about 3-surface. These fluxes
are non-vanishing also for closed surfaces and give information about the geometry of the boundary
components of 3-surface (signed fluxes vanish for boundary components unless they enclose the dip of
the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kéhler metric vanishes. It is not at all obvious whether the configuration space integration measure
in these degrees of freedom exists at all. A localization in zero modes occurring in each quantum
jump seems a more plausible and under suitable additional assumption it would have interpretation
as a state function reduction. In string model similar situation is encountered; besides the functional
integral determined by string action, one has integral over the moduli space.

If the effective 2-dimensionality implied by the strong form of general coordinate invariance dis-
cussed in the introduction is accepted, there is no need to integrate over the variable r; and just the
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fluxes over the 2-surfaces X? identified as intersections of light like 3-D causal determinants with X3
contain the data relevant for the construction of the configuration space geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.5.2 Kahler magnetic invariants

The Kahler magnetic fluxes defined both the normal component of the Kéhler magnetic field and by
its absolute value

Qm(X?) = /2JCP2 = JopePJgad*x |
X
X% = / \JCP2|E/ | Jape®®|/gad*x (3.5.2)
X2 X2

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic trans-
formations of C'P, and can be calculated once X3 is given.

For a closed surface @Q,,(X?) vanishes unless the homology equivalence class of the surface is
nontrivial in C'P, degrees of freedom. In this case the flux is quantized. QL(X 2) is non-vanishing for
closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary of X?2
only:

Jx2d = [5x2 A .
J=dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of X?
in which the sign of J remains fixed.

Qum(X?) = / Jop, = Jape™\Jgad’x
X2

Qn(X?) = / \JCP2|E/ | Jape®? |Vg2d’z (3.5.3)
X2 X2

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm,(KaXQ) = / fKJCPQ )
X2
Q;;(K,XQ) = / fK|JCP2| ;
X2
n—=k

is P "M \k
fr=(smp) = €°9x e (H) (3.5.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X2, and the
magnetic fluxes over the representatives these surfaces give thus good candidates for zero modes.

1. If effective 2-dimensionality is accepted, the surfaces X? defined by the intersections of light like
3-D causal determinants X 13 and X? provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic transfor-
mations leave 7, invariant, a natural set of 2-surfaces X2 appearing in the definition of fluxes
are separate pieces for ry; = constant sections of 3-surface. For a generic 3-surface, these sur-
faces are 2-dimensional and there is continuum of them so that discrete Fourier transforms of
these invariants are needed. One must however notice that r); = constant surfaces could be be
3-dimensional in which case the notion of flux is not well-defined.
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3.5.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition U;G/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kéhler function (Gaussian in lowest approximation) but also by a wave function in vacuum
modes. Therefore the functional integral over the configuration space decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for the
various vacuum mode contributions are given by the probability density associated with the zero
modes. The integration over the zero modes is a highly problematic notion and it could be eliminated
if a localization in the zero modes occurs in quantum jumps. The localization would correspond to a
state function reduction and zero modes would be effectively classical variables correlated in one-one
manner with the quantum numbers associated with the quantum fluctuating degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(—H/T). In fact, since TGD Universe is also critical, exact similarity requires that also
the temperature is critical for various contributions to the average partition function of spin glass
phase. The characterization of isometry invariants and zero modes of the K&hler metric provides a
precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field theory
limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase motivates the
hypothesis that effective quantum average space-time possesses ultra-metric topology. This approach
leads to excellent predictions for elementary particle masses and predicts even new branches of physics
[30, 55] . As a matter fact, an entire fractal hierarchy of copies of standard physics is predicted.

3.5.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying effective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X? defined by the
intersections of light-like light-like 3-surfaces X l?:i with X? at the boundaries of C'D considered. Bear-
ing in mind that zero energy ontology is the correct approach, one can restrict the consideration on
fluxes at 5Mj‘; X C'P, One must also remember that if the proposed symmetries hold true, it is in
principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-time sheet
to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically attractive real-
ization of the slicings of space-time surface by 3-surfaces and string world sheets is discussed in [23] by
starting from the observation that TGD could define a natural realization of braids, braid cobordisms,
and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for the
configuration space. Symplectic transformations of CP, act as U(1) gauge transformations on the
Kéhler potential of C'P, (similar conclusion holds at the level of M} x C'P,).

One can generalize these transformations to local symplectic transformations by allowing the
Hamiltonians to be products of the C'P, Hamiltonians with the real and imaginary parts of the
functions fi, n.i (see Eq. defining the Lorentz covariant function basis H4, A = (a,m,n, k) at
the light cone boundary: Hs = H, x f(m,n, k), where a labels the Hamiltonians of C'Ps.

One can associate to any Hamiltonian H4 of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm(HA|X2)

HAJ7
X2
/ HalJ| .
X2

Here X? corresponds to any surface X7 resulting as intersection of X* with X7;. Both signed and
unsigned magnetic fluxes and their superpositions

m(HalX?)

m

(3.5.5)
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QP (HAIX?) = aQum(Ha|X?) +BQ) (HAIX?) , A= (a,s,n,k) (3.5.6)

provide representations of Hamiltonians. Note that symplectic invariants Q%” correspond to HA = 1
and HA = fsmp H A =1 can be regarded as a natural central term for the Poisson bracket algebra.
Therefore, the isometry invariance of Kahler magnetic and electric gauge fluxes follows as a natural
consequence.

The obvious question concerns about the correct values of the parameters o and 8. One possibility
is that the flux is an unsigned flux so that one has o = 0. This option is favored by the construction
of the configuration space spinor structure involving the construction of the fermionic super charges
anti-commuting to configuration space Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so that
[ vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the defining
formulas with its dual xJ

§
*Jag = Gag J,Yg.

For H4 =1 these fluxes reduce to ordinary Kahler electric fluxes. These fluxes are however not sym-
plectic covariants since the definition of the dual involves the induced metric, which is not symplectic
invariant. The electric gauge fluxes for Hamiltonians in various representations of the color group
ought to be important in the description of hadrons, not only as string like objects, but quite gener-
ally. These degrees of freedom would be identifiable as non-perturbative degrees of freedom involving
genuinely classical Kahler field whereas quarks and gluons would correspond to the perturbative de-
grees of freedom, that is the interactions between C' P, type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kahler magnetic field it follows that the
Lie-derivative of the flux Q%" (H 4) with respect to the vector field X (Hp) is given by

X(Hp)-Q%P(Ha) = Qu’({Hp,Ha}) . (3.5.7)

The transformation properties of Qﬁ;ﬁ (H4) are very nice if the basis for Hp transforms according to
appropriate irreducible representation of color group and rotation group. This in turn implies that the
fluxes Q% (H 4) as functionals of 3-surface on given orbit provide a representation for the Hamiltonian
as a functional of 3-surface. For a given surface X?, the Poisson bracket for the two fluxes Q%" (H4)

and Q%P (Hpg) can be defined as

{Q7(Ha), Q" (Hp)} = X(Hp) Q' (Ha)
QuP({Ha, Hp}) = Q" ({Ha, Hp}) . (3.5.8)

The study of configuration space gamma matrices identifiable as symplectic super charges demon-
strates that the supercharges associated with the radial deformations vanish identically so that radial
deformations correspond to zero norm degrees of freedom as one might indeed expect on physical
grounds. The reason is that super generators involve the invariants j**~, which vanish by 7,,, = 0.

The natural central extension associated with the symplectic group of CP, ({p,q} = 1!) induces
a central extension of this algebra. The central extension term resulting from {H4, Hg} when CP;
Hamiltonians have {p,q} = 1 equals to the symplectic invariant Q%% (f(ma + mp, na + N, ka + kp))
on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac Moody
type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deformations
of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at 6C'D intact
and are highly relevant to the elementary particle physics. This algebra allows a representation in



3.6. General expressions for the symplectic and Kéahler forms 133

terms of X f local Hamiltonians generating isometries of §M} x CP,. Hamiltonian representation is
essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians rather
than vector fields: this is one of the deep differences between TGD and string models. Kac-Moody
algebra does not contribute to configuration space metric since by definition the generators vanish at
partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the C'P, symplectic algebra localized with respect to the light cone
boundary and relevant to the configuration space geometry. This extends to S2 x C'P, -or rather
S§M$ x CPy symplectic algebra and this gives the strongest predictions concerning configuration space
metric. The local radial Virasoro localized with respect to S? x C'P, acts in zero modes and has
automatically vanishing norm with respect to configuration space metric defined by super charges.

3.5.5 Symplectic transformations of M{ x CP, as isometries and electric-
magnetic duality

According to the construction of Kihler metric, symplectic transformations of §M$ x C P act as
isometries whereas radial Virasoro algebra localized with respect to C'P; has zero norm in the config-
uration space metric.

Hamiltonians can be organized into light like unitary representations of so(3,1) x su(3) and the
symmetry condition Zg(X,Y) = 0 requires that the component of the metric is so(3,1) x su(3)
invariant and this condition is satisfied if the component of metric between two different representations
D, and Ds of so0(3, 1) x su(3) is proportional to Glebch-Gordan coefficient Cp, p, ps between Dy @ Dy
and singlet representation Dg. In particular, metric has components only between states having
identical so(3,1) x su(3) quantum numbers.

Magnetic representation of configuration space Hamiltonians means the action of the symplectic
transformations of the light cone boundary as configuration space isometries is an intrinsic property of
the light cone boundary. If electric-magnetic duality holds true, the preferred extremal property only
determines the conformal factor of the metric depending on zero modes. This is precisely as it should
be if the group theoretical construction works. Hence it should be possible by a direct calculation check
whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in complex
coordinates is invariant under isometries. Symplectic invariance of the metric means that matrix
elements of the metric are left translates of the metric along geodesic lines starting from the origin
of coordinates, which now naturally corresponds to the preferred extremal of Kéhler action. Since
metric derives from symplectic form this means that the matrix elements of symplectic form given by
Poisson brackets of Hamiltonians must be left translates of their values at origin along geodesic line.
The matrix elements in question are given by flux Hamiltonians and since symplectic transforms of
flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian, it seems that the
conditions are satisfied.

3.6 General expressions for the symplectic and Kahler forms

One can derive general expressions for symplectic and Kahler forms as well as Kéhler metric of the
configuration space. The fact that these expressions involve only first variation of the Kéahler action
implies huge simplification of the basic formulas. Duality hypothesis leads to further simplifications
of the formulas.

3.6.1 Closedness requirement

The fluxes of Kéhler magnetic and electric fields for the Hamiltonians of 5M_‘f_ x C' Py suggest a general
representation for the components of the symplectic form of the configuration space. The basic
requirement is that Kéhler form satisfies the defining condition

X-J(Y,2)+ J(X,Y],2) + J(X,[Y,Z]) = O, (3.6.1)

where X, Y, Z are now vector fields associated with Hamiltonian functions defining configuration space
coordinates.
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3.6.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(Ha4), X (Hpg)) between vector fields X (Hy4)) and X (Hpg))
defined by the Hamiltonians H4 and Hp of 5Mff_ x CP, isometries is expressible as Poisson bracket

JAB = J(X(Ha),X(Hp)) = {Ha,Hp} . (3.6.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset of
Hamiltonians. The magnetic flux Hamiltonians Q%’B(HA,k) of Eq. K4.7.1) provide an explicit rep-
resentation for the Hamiltonians at the level of configuration space so that the components of the
symplectic form of the configuration space are expressible as classical charges for the Poisson brackets
of the Hamiltonians of the light cone boundary:

J(X(Ha),X(Hp)) = Qu’({Ha, Hp}) .
(3.6.3)

Recall that the superscript «, 3 refers the coefficients of J and |J| in the superposition of these
Kahler magnetic fluxes. Note that Q%’ﬁ contains unspecified conformal factor depending on symplectic
invariants characterizing Y and is unspecified superposition of signed and unsigned magnetic fluxes.

This representation does not carry information about the tangent space of space-time surface at
the partonic 2-surface, which motivates the proposal that also electric fluxes are present and propor-
tional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators of flux
Hamiltonians come out correctly. This would give

B Ha)em = QUF(Ha)+ Q%P (HA) = (1+K)Q%P(Hy) . (3.6.4)

Since Kéahler form relates to the standard field tensor by a factor e/h, flux Hamiltonians are dimen-
sionless so that commutators do not involve . The commutators would come as

QY ({Ha, Hp}) = (1+ K)Q%P({Ha, Hp}) . (3.6.5)

The factor 1 + K plays the same role as Planck constant in the commutators.

WCW Hamiltonians vanish for the extrema of the Ké&hler function as variational derivatives of the
Kaéhler action. Hence Hamiltonians are good candidates for the coordinates appearing as coordinates in
the perturbative functional integral around extrema (with maxima giving dominating contribution). It
is clear that configuration space coordinates around a given extremum include only those Hamiltonians,
which vanish at extremum (that is those Hamiltonians which span the tangent space of G/H) In
Darboux coordinates the Poisson brackets reduce to the symplectic form

{PI,QJ} _ JIJ:J](SI’J )
Jo= 1. (3.6.6)

It is not clear whether Darboux coordinates with J; = 1 are possible in the recent case: probably the
unit matrix on right hand side of the defining equation is replaced with a diagonal matrix depending
on symplectic invariants so that one has J; # 1. The integration measure is given by the symplectic
volume element given by the determinant of the matrix defined by the Poisson brackets of the Hamil-
tonians appearing as coordinates. The value of the symplectic volume element is given by the matrix
formed by the Poisson brackets of the Hamiltonians and reduces to the product

Vol =[] 71
1

in generalized Darboux coordinates.
Kahler potential (that is gauge potential associated with Kéhler form) can be written in Darboux
coordinates as

A = > JPdQ . (3.6.7)
I
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3.6.3 General expressions for Kahler form, Kahler metric and Kahler func-
tion

The expressions of Kéhler form and Kéhler metric in complex coordinates can obtained by transform-
ing the contravariant form of the symplectic form from symplectic coordinates provided by Hamilto-
nians to complex coordinates:

JZ 2 —iGZ = 9uaZidysZiJAB (3.6.8)

where J42 is given by the classical Kahler charge for the light cone Hamiltonian { H4, H®}. Complex
coordinates correspond to linear coordinates of the complexified Lie-algebra providing exponentiation
of the isometry algebra via exponential mapping. What one must know is the precise relationship
between allowed complex coordinates and Hamiltonian coordinates: this relationship is in principle
calculable. In Darboux coordinates the expressions become even simpler:

J77 =GP = N (1) (0pi 201 27 — 01 Z'0p:1 Z7) (3.6.9)
I
Kahler function can be formally integrated from the relationship

Ay = i0uK
i K . (3.6.10)

S
ty
|

holding true in complex coordinates. Kahler function is obtained formally as integral

zZ
K = /(AzidZi—AZidZi). (3.6.11)
0

3.6.4 Diff(X?) invariance and degeneracy and conformal invariances of the
symplectic form

J(X(Ha), X (Hpg)) defines symplectic form for the coset space G/H only if it is Dif f(X?3) degenerate.
This means that the symplectic form J(X(H4), X(Hp)) vanishes whenever Hamiltonian H4 or Hp
is such that it generates diffeomorphism of the 3-surface X?3. If effective 2-dimensionality holds true,
J(X(Ha),X(Hp)) vanishes if H4 or Hp generates two-dimensional diffeomorphism d(H4) at the
surface X?.

One can always write

J(X(Ha),X(Hp)) = X(HA)Q(Hp|X}) .

If H, generates diffeomorphism, the action of X (H,4) reduces to the action of the vector field X4 of
some X?2-diffeomorphism. Since Q(Hp|rys) is manifestly invariant under the diffemorphisms of X?
the result is vanishing:

XAQ(Hp|X?) =0,

so that Diff? invariance is achieved.

The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce
trouble. The change of the flux integrand X under the infinitesimal transformation rys — rar + erfy;
is given by r7,;dX/dry. Replacing rpr with r&"“ /(—=n + 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X?. Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X? induces a unique conformal structure and since the conformal transformations
of X? can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.
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3.6.5 Complexification and explicit form of the metric and Kahler form

The identification of the Ké&hler form and Ké&hler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The re-
quirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond to
‘positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is to
decompose the generators of the symplectic algebra to three sets Cany, Can_ and Cang. One must
distinguish between Cang and zero modes, which are not considered here at all. For instance, C'P;
Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the ¢ = ¢t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S! in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of ko does not contain ko = 0 at all so that the sector Cang
could be empty. This complexification is physically very natural since it is manifestly invariant
under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is
unique if the classical four-momentum associated with the 3-surface is time like so that there
are no problems with Lorentz invariance.

2. If ko = 0 is possible one could have

Cany = {Hﬁz,n,k=k1+ik27k2 >0},
Can_ = {Hp, , 1 k2 <0},
C(J/no = {Hr%,n,kﬂ kQ = 0} . (3612)

3. If it is possible to ny # 0 for ky = 0, one could define the decomposition as

Cany = {Hp, , k2 >0 or kg =0,ny >0} ,
Can_ = {Hp, , 1, k2 <0 orky =0,ny <0} ,
CG,TLO = {Hzl,n,kﬂ k2 =Ny = 0} . (3613)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the
SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be
the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kéhler form and Kahler metric is to write the half Poisson bracket
defined by Eq. [3.6.15)

Ji(X(Ha) X(Hp)) = 2Im (iQ;({Ha, Hg}—1)) .
Gr(X(Ha),X(Hp)) = 2Re(iQp({Ha,Hp}_4)) - (3.6.14)

Symplectic form, and thus also Kéahler form and K&ahler metric, could contain a conformal factor
depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage
one cannot say much about the functional form of this factor.



3.6. General expressions for the symplectic and Kéahler forms 137

3.6.6 Comparison of C'P, Kahler geometry with configuration space geom-
etry

The explicit discussion of the role of g =t + h decomposition of the tangent space of the configuration
space provides deep insights to the metric of the symmetric space. There are indeed many questions
to be answered. To what point of configuration space (that is 3-surface) the proposed g = t + h
decomposition corresponds to? Can one derive the components of the metric and Kéhler form from
the Poisson brackets of complexified Hamiltonians? Can one characterize the point in question in terms
of the properties of configuration space Hamiltonians? Does the central extension of the configuration
space reduce to the symplectic central extension of the symplectic algebra or can one consider also
other options?

Cartan decomposition for C'P,

A good manner to gain understanding is to consider the C'P, metric and Kéhler form at the origin of
complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case of
CP, u(2) sub-algebra transforms as g o u(2) o g~ when the point s is replaced by gsg~!. This
is expected to hold true also in case of configuration space (unless it is flat) so that the task is
to identify the point of the configuration space at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of C'P; in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It is
possible to add suitable constants to the Hamiltonians in order to guarantee that they vanish
at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to holo-
morphic components J¢ = j*%9;, and j® = j**0;. One can introduce what might be called half
Poisson bracket and half inner product defined as

O HJH 9, H"
G I = =i 50 (3.6.15)

{Hav Hb}—+

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{H*,H*} = 2Im(i{H*, H"}_;) ,
(5%, 7% 2Re (i(j¢,5%)) = 2Re (i{H*, H"}_) . (3.6.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kahler form. Obviously this is of utmost importance in the case of the configuration space
metric whose symplectic structure and central extension are derived from those of C'Ps.

Consider now the properties of the metric and Kéahler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{hvh}*Jr =0 )
Re(i{h,ty_) =0 , Im(i{h,t}_1) =0 | (3.6.17)

Re(i{t,t}_.) £0 , Im(i{t,t}_4+) #0 .
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2. The first two conditions state that h vector fields have vanishing inner products at the origin.
The first condition states also that the Hamiltonians for the commutator algebra [k, h] = SU(2)
vanish at origin whereas the Hamiltonian for U(1) algebra corresponding to the color hyper
charge need not vanish although it can be made vanishing. The third condition implies that the
Hamiltonians of ¢ vanish at origin.

3. The last two conditions state that the Kahler metric and form are non-vanishing between the
elements of ¢. Since the Poisson brackets of ¢ Hamiltonians are Hamiltonians of h, the only pos-
sibility is that {¢,¢} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian at the origin
or that the bracket at the origin is due to the symplectic central extension. The requirement
that all Hamiltonians vanish at origin is very attractive aesthetically and forces to interpret
{t,t} brackets at origin as being due to a symplectic central extension. For instance, for S? the
requirement that Hamiltonians vanish at origin would mean the replacement of the Hamiltonian
H = cos(0) representing a rotation around z-axis with Hs = cos(f) — 1 so that the Poisson
bracket of the generators H; and Hs can be interpreted as a central extension term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with respect
to g vanish at origin. Thus «(2) Hamiltonians have extremum value at origin.

5. Also the Kahler function of C'P, has extremum at the origin. This suggests that in the case of
the configuration space the counterpart of the origin corresponds to the maximum of the Kéhler
function.

Cartan algebra decomposition at the level of configuration space

The discussion of the properties of C'P, Kéhler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of the configuration space. The use of the half
bracket for the configuration space Hamiltonians in turn allows to calculate the matrix elements of
the configuration space metric and Kéahler form explicitly in terms of the magnetic or electric flux
Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was assigned
with Super Virasoro algebra, which indeed allows this kind of decompositions but without any strong
physical justification. The realization that super-symplectic and super Kac-Moody symmetries define
coset construction at the level of basic quantum TGD, and that this construction provides a realization
of Equivalence Principle at microscopic level, forced eventually the realization that also the coset space
decomposition of configuration space realizes Equivalence Principle geometrically.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effectively
reduce Kac-Moody generators associated with X f to X2 =X f NdM%E x CP;. In the similar manner
super-symplectic generators can be dimensionally reduced to X2. Number theoretical compactification
forces the dimensional reduction and the known extremals are consistent with it [4] . The construction
of configuration space spinor structure and metric in terms of the second quantized spinor fields [8]
relies to this picture as also the recent view about M-matrix [I1] .

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of C'P» Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with respect
to X? is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2. Since
Lie-algebra action does not lead out of irreps, this means that Cartan algebra decomposition is
satisfied.

3.6.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie group G [29] , which served as the inspirer of the configuration space geometry
approach but later turned out to not apply as such in TGD framework.
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In the case of loop groups the tangent space T' corresponds to the local Lie-algebra T'(k, A) =
exp(ik®)Ta, where T4 generates the finite-dimensional Lie-algebra g and ¢ denotes the angle variable
of circle; k is integer. The complexification of the tangent space corresponds to the decomposition

T={X(k>0A)}e{X(k<0,A}e{X(k=0A4)}=T, aT_& T

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Ké&hler form is given by

J(X(ky < 0,A), X(ky > 0,B)) = kad(ky + k2)5(A, B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of (5Mi x C'P, centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length Ary; with periodic boundary
conditions; effectively one has circle also now.

The basic difference is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, ¢} = 1) defined
by Poisson bracket. This extension is anti-symmetric with respect to the generators of the
symplectic group: in the case of the Kac Moody central extension it is symmetric with respect
to the group G. The symplectic transformations of C'P, might correspond to non-zero modes
also because they are not exact symmetries of Kahler action. The situation is however rather
delicate since k = 0 light cone harmonic has a diverging norm due to the radial integration
unless one poses both lower and upper radial cutoffs although the matrix elements would be
still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations correspond
to the zero modes. Light cone function algebra can be regarded as a local U(1) algebra defining
central extension in the case that only C'P, symplectic transformations local with respect to
5Mfi act as isometries: for Kac Moody algebra the central extension corresponds to an ordinary
U(1) algebra. In the case that entire light cone symplectic algebra defines the isometries the
central extension reduces to a U(1) central extension.

3.6.8 Symmetric space property implies Ricci flatness and isometric action
of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g=h+t,
A Ch, [hict, [LecCh . (3.6.18)
In present case the equations imply that all commutators of the Lie-algebra generators of Can(# 0)
having non-vanishing integer valued radial quantum number ns, possess zero norm. This condition is
extremely strong and guarantees isometric action of C’an(éM_‘f_ x C'Py) as well as Ricci flatness of the
configuration space metric.

The requirement [¢t,t] C h and [h,t] C t are satisfied if the generators of the isometry algebra possess
generalized parity P such that the generators in ¢ have parity P = —1 and the generators belonging
to h have parity P = 4+1. Conformal weight n must somehow define this parity. The first possibility
to come into mind is that odd values of n correspond to P = —1 and even values to P = 1. Since
n is additive in commutation, this would automatically imply h & t decomposition with the required
properties. This assumption looks however somewhat artificial. TGD however forces a generalization
of Super Algebras and N-S and Ramond type algebras can be combined to a larger algebra containing
also Virasoro and Kac Moody generators labeled by half-odd integers. This suggests strongly that
isometry generators are labeled by half integer conformal weight and that half-odd integer conformal
weight corresponds to parity P = —1 whereas integer conformal weight corresponds to parity P = 1.
Coset space would structure would state conformal invariance of the theory since super-symplectic
generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions
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X-g(Y,2) = 0=y(X,Y],2) +9(Y,[X, Z]) . (3.6.19)

If the commutators of the complexified generators in Can(# 0) have zero norm then the two terms
on the right hand side of Eq. ([3.6.19)) vanish separately. This is true if the conditions

Qu’({HA{H” H}}) = 0, (3.6.20)

are satisfied for all triplets of Hamiltonians in Can-. These conditions follow automatically from the
[t,t] C h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kahler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. as consistency conditions on the initial values of the time derivatives of
imbedding space coordinates whereas in general case this is possible. If the consistency conditions are
satisfied for a single surface on the orbit of symplectic group then they are satisfied on the entire orbit.
Clearly, isometry and Ricci flatness requirements and the requirement of time reversal invariance might
well force Kahler electric alternative.

3.6.9 How to find Kahler function?

If one has found the expansion of configuration space Kéahler form in terms of electric fluxes one
can solve also the Ké&hler function from the defining partial differential equations J,,; = 0kO;K. The
solution is not unique since the equation allows the symmetry

K — K+ f(z*) + f(zF) |

where f is arbitrary holomorphic function of z*. This non-uniqueness is probably eliminated by the
requirement that K&hler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of K&hler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry invari-
ants, one can solve Kéhler metric without any knowledge on the initial values of the time derivatives
of the imbedding space coordinates. Apart from conformal factor the resulting geometry is purely
intrinsic to 6C H. The role of Kihler action is only to to define Dif f* invariance and give the rule how
the metric is translated to metric on arbitrary point of C'H. The degeneracy of the preferred extrema
also implies that configuration space has multi-sheeted structure analogous to that encountered in
case of Riemann surfaces.

As shown in [22] , very general assumptions inspired by the light-likeness of Kéhler current for
the known extremals combined with electric-magnetic duality imply the reduction of Kéhler action
for the preferred extremals to Chern-Simons terms at the ends of C'D and at wormhole throats plus
boundary term depending on induced metric so that one has almost topological QFT. The latter is
due to the possibility to choose the gauge for Kéhler potential to code information about conserved
quantum numbers to the Kéahler function and is the counterpart for the measurement interaction term
in Dirac action. This term should correspond to a real part of a holomorphic function so that it does
not contribute to the Kahler metric.

Also a promising concrete construction recipe for Kéhler function is in terms of the modified
Dirac operator [8] . The recipe is described briefly in the introduction. If the conjecture that Dirac
determinant coincides with the exponent of Kahler action for a preferred extremal is correct, the value
of the Kéhler coupling strength follows as a prediction of the theory. From the construction it is clear
that Dirac determinant involves only a finite number of eigenvalues of the modified Dirac operator
and can thus be an algebraic or even rational number if eigenvalues have this property. The most
satisfactory property of the construction is that one can use the intuition from the behavior of 2-D
magnetic systems.

3.7 Ricci flatness and divergence cancelation

Divergence cancelation in configuration space integration requires Ricci flatness and in this section
the arguments in favor of Ricci flatness are discussed in detail.
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3.7.1 Inner product from divergence cancelation

Forgetting the delicacies related to the non-determinism of the Kahler action, the inner product is
given by integrating the usual Fock space inner product defined at each point of the configuration space
over the reduced configuration space containing only the 3-surfaces Y3 belonging to 6 H = 5M_‘f_ x C' Py
(’lightcone boundary’) using the exponent exp(K) as a weight factor:

(W1]W2)

/ Ty (YU (Y exp(K)WGAY? |
U (Y)U(Y?) = (U1(Y?)|Wa(Y?)) Fock - (3.7.1)

The degeneracy for the preferred extremals of Kahler action implies additional summation over the
degenerate extremals associated with Y3. The restriction of the integration on light cone boundary is
Diff* invariant procedure and resolves in elegant manner the problems related to the integration over
Diff* degrees of freedom. A variant of the inner product is obtained dropping the bosonic vacuum
functional exp(K) from the definition of the inner product and by assuming that it is included into
the spinor fields themselves. Probably it is just a matter of taste how the necessary bosonic vacuum
functional is included into the inner product: what is essential that the vacuum functional exp(K) is
somehow present in the inner product.

The unitarity of the inner product follows from the unitary of the Fock space inner product and
from the unitarity of the standard L? inner product defined by configuration space integration in
the set of the L? integrable scalar functions. It could well occur that Dif f* invariance implies the
reduction of the configuration space integration to C'(6H).

Consider next the bosonic integration in more detail. The exponent of the Kahler function appears
in the inner product also in the context of the finite dimensional group representations. For the
representations of the noncompact groups (say SL(2, R)) in coset spaces (now SL(2, R)/U (1) endowed
with K&hler metric) the exponent of Kéhler function is necessary in order to get square integrable
representations [37]. The scalar product for two complex valued representation functions is defined as

(f,9) = / fgexp(nK)\/gdV . (3.7.2)

By unitarity, the exponent is an integer multiple of the K&hler function. In the present case only
the possibility n = 1 is realized if one requires a complete cancelation of the determinants. In finite
dimensional case this corresponds to the restriction to single unitary representation of the group in
question.

The sign of the action appearing in the exponent is of decisive importance in order to make
theory stable. The point is that the theory must be well defined at the limit of infinitely large
system. Minimization of action is expected to imply that the action of infinitely large system is bound
from above: the generation of electric Kéahler fields gives negative contributions to the action. This
implies that at the limit of the infinite system the average action per volume is non-positive. For
systems having negative average density of action vacuum functional exp(K) vanishes so that only
configurations with vanishing average action per volume have significant probability. On the other
hand, the choice exp(—K) would make theory unstable: probability amplitude would be infinite for
all configurations having negative average action per volume. In the fourth part of the book it will be
shown that the requirement that average Kéahler action per volume cancels has important cosmological
consequences.

Consider now the divergence cancelation in the bosonic integration. One can develop the Kéhler
function as a Taylor series around maximum of Kéhler function and use the contravariant K&hler
metric as a propagator. Gaussian and metric determinants cancel each other for a unique vacuum
functional. Ricci flatness guarantees that metric determinant is constant in complex coordinates so
that one avoids divergences coming from it. The non-locality of the Kahler function as a functional
of the 3-surface serves as an additional regulating mechanism: if K (X?) were a local functional of X3
one would encounter divergences in the perturbative expansion.

The requirement that quantum jump corresponds to a quantum measurement in the sense of quan-
tum field theories implies that quantum jump involves localization in zero modes. Localization in the
zero modes implies automatically p-adic evolution since the decomposition of the configuration space
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into sectors Dp labeled by the infinite primes P is determined by the corresponding decomposition in
zero modes. Localization in zero modes would suggest that the calculation of the physical predictions
does not involve integration over zero modes: this would dramatically simplify the calculational appa-
ratus of the theory. Probably this simplification occurs at the level of practical calculations if U-matrix
separates into a product of matrices associated with zero modes and fiber degrees of freedom.

One must also calculate the predictions for the ratios of the rates of quantum transitions to different
values of zero modes and here one cannot actually avoid integrals over zero modes. To achieve this
one is forced to define the transition probabilities for quantum jumps involving a localization in zero
modes as

P(a,a—y,8) = Y [S(r,a = s, B) [0, () P ¥ (y)]*

T8

where z and y correspond to the zero mode coordinates and r and s label a complete state functional
basis in zero modes and S(r,m — s,n) involves integration over zero modes. In fact, only in this
manner the notion of the localization in the zero modes makes mathematically sense at the level of
S-matrix. In this case also unitarity conditions are well-defined. In zero modes state function basis
can be freely constructed so that divergence difficulties could be avoided. An open question is whether
this construction is indeed possible.

Some comments about the actual evaluation of the bosonic functional integral are in order.

1. Since configuration space metric is degenerate and the bosonic propagator is essentially the
contravariant metric, bosonic integration is expected to reduce to an integration over the zero
modes. For instance, isometry invariants are variables of this kind. These modes are analogous
to the parameters describing the conformal equivalence class of the orbit of the string in string
models.

2. ak is a natural small expansion parameter in configuration space integration. It should be
noticed that a g, when defined by the criticality condition, could also depend on the coordinates
parameterizing the zero modes.

3. Semiclassical approximation, which means the expansion of the functional integral as a sum
over the extrema of the Kahler function, is a natural approach to the calculation of the bosonic
integral. Symmetric space property suggests that for the given values of the zero modes there
is only single extremum and corresponds to the maximum of the Ké&hler function. There are
theorems (Duistermaat-Hecke theorem) stating that semiclassical approximation is exact for
certain systems (for example for integrable systems [27] ). Symmetric space property suggests
that Kéahler function might possess the properties guaranteing the exactness of the semiclassical
approximation. This would mean that the calculation of the integral f exp(K )\/@dY?’ and even
more complex integrals involving configuration space spinor fields would be completely analogous
to a Gaussian integration of free quantum field theory. This kind of reduction actually occurs
in string models and is consistent with the criticality of the K&hler coupling constant suggesting
that all loop integrals contributing to the renormalization of the K&hler action should vanish.
Also the condition that configuration space integrals are continuable to p-adic number fields
requires this kind of reduction.

3.7.2 Why Ricci flatness

It has been already found that the requirement of divergence cancelation poses extremely strong
constraints on the metric of the configuration space. The results obtained hitherto are the following.

1. If the vacuum functional is the exponent of Kéhler function one gets rid of the divergences
resulting from the Gaussian determinants and metric determinants: determinants cancel each
other.

2. The non-locality of the Kahler action gives good hopes of obtaining divergence free perturbation
theory.

The following arguments show that Ricci flatness of the metric is a highly desirable property.
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1. Dirac operator should be a well defined operator. In particular its square should be well defined.
The problem is that the square of Dirac operator contains curvature scalar, which need not
be finite since it is obtained via two infinite-dimensional trace operations from the curvature
tensor. In case of loop spaces [29] the Kéahler property implies that even Ricci tensor is only
conditionally convergent. In fact, loop spaces with K&hler metric are Einstein spaces (Ricci
tensor is proportional to metric) and Ricci scalar is infinite.

In 3-dimensional case situation is even worse since the trace operation involves 3 summation
indices instead of one! The conclusion is that Ricci tensor had better to vanish in vibrational
degrees of freedom.

2. For Ricci flat metric the determinant of the metric is constant in geodesic complex coordinates
as is seen from the expression for Ricci tensor [52]

R,y = Ok0Ofn(det(g)) (3.7.3)

in Kéhler metric. This obviously simplifies considerably functional integration over the config-
uration space: one obtains just the standard perturbative field theory in the sense that metric
determinant gives no contributions to the functional integration.

3. The constancy of the metric determinant results not only in calculational simplifications: it also
eliminates divergences. This is seen by expanding the determinant as a functional Taylor series
with respect to the coordinates of the configuration space. In local complex coordinates the first
term in the expansion of the metric determinant is determined by Ricci tensor

5\/g x Ryz"zt . (3.7.4)

In configuration space integration using standard rules of Gaussian integration this term gives
a contribution proportional to the contraction of the propagator with Ricci tensor. But since
the propagator is just the contravariant metric one obtains Ricci scalar as result. So, in order
to avoid divergences, Ricci scalar must be finite: this is certainly guaranteed if Ricci tensor
vanishes.

4. The following group theoretic argument suggests that Ricci tensor either vanishes or is divergent.
The holonomy group of the configuration space is a subgroup of U(n = oo) (D = 2n is the
dimension of the K&hler manifold) by Kéhler property and Ricci flatness is guaranteed if the
U(1) factor is absent from the holonomy group. In fact Ricci tensor is proportional to the trace of
the U(1) generator and since this generator corresponds to an infinite dimensional unit matrix
the trace diverges: therefore given element of the Ricci tensor is either infinite or vanishes.
Therefore the vanishing of the Ricci tensor seems to be a mathematical necessity. This naive
argument doesn’t hold true in the case of loop spaces, for which Ké&hler metric with finite non-
vanishing Ricci tensor exists [29] . Note however that also in this case the sum defining Ricci
tensor is only conditionally convergent.

There are indeed good hopes that Ricci tensor vanishes. By the previous argument the vanishing
of the Ricci tensor is equivalent with the absence of divergences in configuration space integration.
That divergences are absent is suggested by the non-locality of the Kéhler function as a functional of
3-surface: the divergences of local field theories result from the locality of interaction vertices. Ricci
flatness in vibrational degrees of freedom is not only necessary mathematically. It is also appealing
physically: one can regard Ricci flat configuration space as a vacuum solution of Einstein’s equations
G*P = 0.
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3.7.3 Ricci flatness and Hyper Kahler property

Ricci flatness property is guaranteed if configuration space geometry is Hyper Kéahler [48] [I8] (there
exists 3 covariantly constant antisymmetric tensor fields, which can be regarded as representations
of quaternionic imaginary units). Hyper Kéhler property guarantees Ricci flatness because the con-
tractions of the curvature tensor appearing in the components of the Ricci tensor transform to traces
over Lie algebra generators, which are SU(n) generators instead of U(n) generators so that the traces
vanish. In the case of the loop spaces left invariance implies that Ricci tensor in the vibrational degrees
is a multiple of the metric tensor so that Ricci scalar has an infinite value. This is basically due to
the fact that Kac-Moody algebra has U(1) central extension.
Consider now the arguments in favor of Ricci flatness of the configuration space.

1. The symplectic algebra of (FMj‘r takes effectively the role of the U(1) extension of the loop
algebra. More concretely, the SO(2) group of the rotation group SO(3) takes the role of U(1)
algebra. Since volume preserving transformations are in question, the traces of the symplectic
generators vanish identically and in finite-dimensional this should be enough for Ricci flatness
even if Hyper Kéhler property is not achieved.

2. The comparison with C'P, allows to link Ricci flatness with conformal invariance. The elements
of the Ricci tensor are expressible in terms of traces of the generators of the holonomy group
U(2) at the origin of C'P,, and since U(1) generator is non-vanishing at origin, the Ricci tensor
is non-vanishing. In recent case the origin of C'P; is replaced with the maximum of Ké&hler
function and holonomy group corresponds to super-symplectic generators labelled by integer
valued real parts k; of the conformal weights k = ky + ip. If generators with k&1 = n vanish at
the maximum of the Kéhler function, the curvature scalar should vanish at the maximum and by
the symmetric space property everywhere. These conditions correspond to Virasoro conditions
in super string models.

A possible source of difficulties are the generators having k; = 0 and resulting as commutators
of generators with opposite real parts of the conformal weights. It might be possible to assume
that only the conformal weights k = k1 + ip, k1 = 0,1, ... are possible since it is the imaginary
part of the conformal weight which defines the complexification in the recent case. This would
mean that the commutators involve only positive values of k.

3. In the infinite-dimensional case the Ricci tensor involves also terms which are non-vanishing even
when the holonomy algebra does not contain U (1) factor. It will be found that symmetric space
property guarantees Ricci flatness even in this case and the reason is essentially the vanishing
of the generators having k; = n at the maximum of Kéhler function.

There are also arguments in favor of the Hyper Kéhler property.

1. The dimensions of the imbedding space and space-time are 8 and 4 respectively so that the
dimension of configuration space in vibrational modes is indeed multiple of four as required by
Hyper Kéhler property. Hyper Kahler property requires a quaternionic structure in the tangent
space of the configuration space. Since any direction on the sphere S? defined by the linear com-
binations of quaternionic imaginary units with unit norm defines a particular complexification
physically, Hyper Kihler property means the possibility to perform complexification in $2-fold
manners.

2. S2%-fold degeneracy is indeed associated with the definition of the complex structure of the
configuration space. First of all, the direction of the quantization axis for the spherical harmonics
or for the eigen states of Lorentz Cartan algebra at JMi can be chosen in S?-fold manners.
Quaternion conformal invariance means Hyper Kéhler property almost by definition and the
S2-fold degeneracy for the complexification is obvious in this case.

If these naive arguments survive a more critical inspection, the conclusion would be that the effec-
tive 2-dimensionality of light like 3-surfaces implying generalized conformal and symplectic symmetries
would also imply Hyper Kahler property of the configuration space and make the theory well-defined
mathematically. This obviously fixes the dimension of space-time surfaces as well as the dimension of
Minkowski space factor of the imbedding space.
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In the sequel we shall show that Ricci flatness is guaranteed provided that the holonomy group
of the configuration space is isomorphic to some subgroup of SU(n = c0) instead of U(n = o0) (n
is the complex dimension of the configuration space) implied by the Kéhler property of the metric.
We also derive an expression for the Ricci tensor in terms of the structure constants of the isometry
algebra and configuration space metric. The expression for the Ricci tensor is formally identical with
that obtained by Freed for loop spaces: the only difference is that the structure constants of the
finite-dimensional group are replaced with the group Can(dH). Also the arguments in favor of Hyper
Kahler property are discussed in more detail.

3.7.4 The conditions guaranteing Ricci flatness

In the case of Kéahler geometry Ricci flatness condition can be characterized purely Lie-algebraically:
the holonomy group of the Riemann connection, which in general is subgroup of U(n) for Kahler
manifold of complex dimension n, must be subgroup of SU(n) so that the Lie-algebra of this group
consists of traceless matrices. This condition is easy to derive using complex coordinates. Ricci tensor
is given by the following expression in complex vielbein basis

= RAYE | (3.7.5)

where the latter summation is only over the antiholomorphic indices C. Using the cyclic identities

Z RACBD  _ (3.7.6)
cycl CBD

the expression for Ricci tensor reduces to the form

RAB = RABC (3.7.7)

where the summation is only over the holomorphic indices C'. This expression can be regarded as
a trace of the curvature tensor in the holonomy algebra of the Riemann connection. The trace is
taken over holomorphic indices only: the traces over holomorphic and anti-holomorphic indices cancel
each other by the antisymmetry of the curvature tensor. For K&hler manifold holonomy algebra is
subalgebra of U(n), when the complex dimension of manifold is n and Ricci tensor vanishes if and
only if the holonomy Lie-algebra consists of traceless matrices, or equivalently: holonomy group is
subgroup of SU(n). This condition is expected to generalize also to the infinite-dimensional case.

We shall now show that if configuration space metric is Kéahler and possesses infinite-dimensional
isometry algebra with the property that its generators form a complete basis for the tangent space
(every tangent vector is expressible as a superposition of the isometry generators plus zero norm
vector) it is possible to derive a representation for the Ricci tensor in terms of the structure constants
of the isometry algebra and of the components of the metric and its inverse in the basis formed by
the isometry generators and that Ricci tensor vanishes identically for the proposed complexification
of the configuration space provided the generators { H A,mz0, H Bm#o} correspond to zero norm vector
fields of configuration space.

The general definition of the curvature tensor as an operator acting on vector fields reads

RX,Y)Z = |[Vx,Vv]Z—-VixyZ . (3.7.8)

If the vector fields considered are isometry generators the covariant derivative operator is given by the
expression

VxY (AdxY — Ad%Y — AdLX)/2
(AdyY,Z) = (Y,AdxZ) , (3.7.9)

where AdxY = [X,Y] and Ad% denotes the adjoint of Adx with respect to configuration space metric.
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In the sequel we shall assume that the vector fields in question belong to the basis formed by the
isometry generators. The matrix representation of Adx in terms of the structure constants Cx y.z of
the isometry algebra is given by the expression

AanTn = C’X.,Y:Z}A/an )
[va] = C1X,Y:ZZ )
Y = g 'y, V)V, (3.7.10)

where the summation takes place over the repeated indices and Y denotes the dual vector field of YV
with respect to the configuration space metric. From its definition one obtains for Ad% the matrix
representation

AdYr = Cxy.zY™Z,
AdyY = CxuwvgY,U)g ' (VW)W = g(Y,U)g (X, U], W)W , (3.7.11)

where the summation takes place over the repeated indices.

Using the representations of Vx in terms of Adx and its adjoint and the representations of
Adx and Ad% in terms of the structure constants and some obvious identities (such as Cix y,z.v =
Cx,y.vCu, z.v ) one can by a straightforward but tedious calculation derive a more detailed expression
for the curvature tensor and Ricci tensor. Straightforward calculation of the Ricci tensor has however
turned to be very tedious even in the case of the diagonal metric and in the following we shall use a
more convenient representation [29] of the curvature tensor applying in case of the Kahler geometry.

The expression of the curvature tensor is given in terms of the so called Toeplitz operators T'x
defined as linear operators in the ”positive energy part” G4 of the isometry algebra spanned by the
(1,0) parts of the isometry generators. In present case the positive and negative energy parts and cm
part of the algebra can be defined just as in the case of loop spaces:

G+ = {HAk|k>O} )
G_ = {H"™k<0},
Gy = {H**k=0} . (3.7.12)

Here HA* denote the Hamiltonians generating the symplectic transformations of §H. The positive
energy generators with non-vanishing norm have positive radial scaling dimension: k& > 0, which
corresponds to the imaginary part of the scaling momentum K = k; + ¢p associated with the factors
(rar/ro)X. A priori the spectrum of p is continuous but it is quite possible that the spectrum of p
is discrete and p = 0 does not appear at all in the spectrum in the sense that the flux Hamiltonians
associated with p = 0 elements vanish for the maximum of Kéhler function which can be taken to be
the point where the calculations are done.
Tx differs from Adyx in that the negative energy part of AdxY = [X,Y] is dropped away:

TX : G+ — G+ s
Yy - [X,)Y]; . (3.7.13)
Here ” 4+ 7 denotes the projection to ”positive energy” part of the algebra. Using Toeplitz operators

one can associate to various isometry generators linear operators ®(Xy), ®(X_) and ®(X,) acting
on G4:

(I)(Xo) = TXO y X()EGO s
d(X_) = Tx_ , X_eG_
q)(X+) = —T)*(7 5 X+€G+ . (3714)

Here 7*” denotes hermitian conjugate in the diagonalized metric: the explicit representation ® (X )
is given by the expression [29]
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®(X,) = D 'Tx D,
DX, = dX)Xx_ ,
dX) = g(X_,X,) . (3.7.15)

Here d(X) is just the diagonal element of metric assumed to be diagonal in the basis used. denotes
the conformal factor associated with the metric.

The representations for the action of ,®(Xj), ®(X_) and ®(X ) in terms of metric and structure
constants of the isometry algebra are in the case of the diagonal metric given by the expressions

(I)(Xo)Y_A,_ = OXO,Y+:U+U+ )
X )Y, = Cx_y..v Uy,
d(y)
(XY, = 2 . . 7.1
(X4)Y5 d(U)CX_,Y_.U_U+ (3.7.16)

The expression for the action of the curvature tensor in positive energy part G4 of the isometry
algebra in terms of the these operators is given as [29] :

RXY)Ze = {[®(X),0(Y)] = (X, Y)}Zy . (3.7.17)

The calculation of the Ricci tensor is based on the observation that for Kahler manifolds Ricci tensor
is a tensor of type (1,1), and therefore it is possible to calculate Ricci tensor as the trace of the
curvature tensor with respect to indices associated with G.

Ricci(X,Y_) = (Z4,R(X,,Y_)Zy) = Trace(R(X,,Y.)) ,
(3.7.18)

where the summation over Z, generators is performed.
Using the explicit representations of the operators ® one obtains the following explicit expression
for the Ricci tensor

Ricci(X4,Y_) = Trace{[D"'Tx,D,Ty | —Tix, v |
D7'Tix, v |

|Go+G

6y D} . (3.7.19)
This expression is identical to that encountered in case of loop spaces and the following arguments
are repetition of those applying in the case of loop spaces.

The second term in the Ricci tensor is the only term present in the finite-dimensional case. This
term vanishes if the Lie-algebra in question consists of traceless matrices. Since symplectic transfor-
mations are volume-preserving the traces of Lie-algebra generators vanish so that this term is absent.
The last term gives a non-vanishing contribution to the trace for the same reason.

The first term is quadratic in structure constants and does not vanish in case of loop spaces. It
can be written explicitly using the explicit representations of the various operators appearing in the
formula:

d(U
T?“aC@{[DflTx_D,TY_]} = Z [CX_,U_:Z_CY_,Z+:U+ dEZ;
Zy, Uy
d(Z
- OX_,Z_:U_CY_,U+:Z+EU§] . (3.7.20)

Each term is antisymmetric under the exchange of U and Z and one might fail to conclude that
the sum vanishes identically. This is not the case. By the diagonality of the metric with respect to
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radial quantum number, one has m(X_) = m(Y_) for the non-vanishing elements of the Ricci tensor.
Furthermore, one has m(U) = m(Z) — m(Y), which eliminates summation over m(U) in the first
term and summation over m(Z) in the second term. Note however, that summation over other labels
related to symplectic algebra are present.

By performing the change U — Z in the second term one can combine the sums together and as
a result one has finite sum

3 au) 3 m(X)
0<m(Z)<m(X)[CX77U7:Zi Gz (2) - Co<m(Z)<m(X) m(Z) = m(X)
do(U)
= . . 7.21
c ZEAU Cx,u.zCv,z.u do(Z) (3.7.21)

Here the dependence of d(X) = |m(X)|do(X) on m(X) is factored out; do(X) does not depend on kx.
The dependence on m(X) in the resulting expression factorizes out, and one obtains just the purely
group theoretic term C|, which should vanish for the space to be Ricci flat.

The sum is quadratic in structure constants and can be visualized as a loop sum. It is instructive
to write the sum in terms of the metric in the symplectic degrees of freedom to see the geometry
behind the Ricci flatness:

C = > g(lv,2,U)g (X,U], 2) . (3.7.22)
Z,U

Each term of this sum involves a commutator of two generators with a non-vanishing norm. Since
tangent space complexification is inherited from the local coset space, the non-vanishing commutators
in complexified basis are always between generators in C'ano; that is they do not not belong to rigid
su(2) x su(3).

The condition guaranteing Ricci flatness at the maximum of K&hler function and thus everywhere
is simple. All elements of type [X_o,Yo] vanish or have vanishing norm. In case of C'P, Kéhler
geometry this would correspond to the vanishing of the U(2) generators at the origin of C'Py (note
that the holonomy group is U(2) in case of CP). At least formally stronger condition is that the
algebra generated by elements of this type, the commutator algebra associated with Cang, consist of
elements of zero norm. Already the (possibly) weaker condition implies that adjoint map Adxo and
its hermitian adjoint Ad% = create zero norm states. Since isometry conditions involve also adjoint
action the condition also implies that Cano acts as isometries. More concrete form for the condition
is that all flux factors involving double Poisson bracket and three generators in Cany vanish:

Qe({HA,{HB,Hc}}) = 0 s for HA7HB,HC in Can#) . (3.7.23)

The vanishing of fluxes involving two Poisson brackets and three Hamiltonians guarantees isometry
invariance and Ricci flatness and, as found in [9] , is implied by the [t,t] C h property of the Lie-algebra
of coset space G/H having symmetric space structure.

The conclusion is that the mere existence of the proposed isometry group (guaranteed by the
symmetric space property) implies the vanishing of the Ricci tensor and vacuum Einstein equations.
The existence of the infinite parameter isometry group in turn follows basically from the condition
guaranteing the existence of the Riemann connection. Therefore vacuum Einstein equations seem to
arise, not only as a consequence of a physically motivated variational principle but as a mathematical
consistency condition in infinite dimensional K&hler geometry. The flux representation seems to
provide elegant manner to formulate and solve these conditions and isometry invariance implies Ricci
flatness.

3.7.5 Is configuration space metric Hyper Kahler?

The requirement that configuration space integral integration is divergence free implies that configu-
ration space metric is Ricci flat. The so called Hyper-Kéhler metrics [48, [18] , [22] are particularly nice
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representatives of Ricci flat metrics. In the following the basic properties of Hyper-Kahler metrics are
briefly described and the problem whether Hyper Kéahler property could realized in case of Mfﬁ x C' Py
is considered.

Hyper-Kahler property

Hyper-Kéhler metric is a generalization of the Kéhler metric. For Kahler metric metric tensor and
Kahler form correspond to the complex numbers 1 and i and therefore define complex structure in
the tangent space of the manifold. For Hyper Kahler metric tangent space allows three closed Kahler
forms I, J, K, which with respect to the multiplication obey the algebra of quaternionic imaginary
units and have square equal to - 1, which corresponds to the metric of Hyper Kahler space.

I’ = JPP=K*=-11J]=-JI=K, etc. . (3.7.24)

To define Kéhler structure one must choose one of the Kéhler forms or any linear combination
of I,J and K with unit norm. The group SO(3) rotates different Kéhler structures to each other
playing thus the role of quaternion automorphisms. This group acts also as coordinate transformations
in Hyper Kéhler manifold but in general fails to act as isometries.

If K is chosen to define complex structure then K is tensor of type (1,1) in complex coordinates,
I and J being tensors of type (2,0) + (0,2). The forms I 4 i¢J and I — i.J are holomorphic and anti-
holomorphic forms of type (2,0) and (0,2) respectively and defined standard step operators I and
I_ of SU(2) algebra. The holonomy group of Hyper-Kéahler metric is always Sp(k), k < dimM /4, the
group of k X k unitary matrices with quaternionic entries. This group is indeed subgroup of SU(2k),
so that its generators are traceless and Hyper Kéhler metric is therefore Ricci flat.

Hyper Kahler metrics have been encountered in the context of 3-dimensional super symmetric
sigma models: a necessary prerequisite for obtaining N = 4 super-symmetric sigma model is that
target space allows Hyper Kéhler metric [22, [12] . In particular, it has been found that Hyper Kéahler
property is decisive for the divergence cancelation.

Hyper-Kéahler metrics arise also in monopole and instanton physics [I8] . The moduli spaces for
monopoles have Hyper Kahler property. This suggests that Hyper Kahler property is characteristic
for the configuration (or moduli) spaces of 4-dimensional Yang Mills types systems. Since YM action
appears in the definition of configuration space metric there are hopes that also in present case the
metric possesses Hyper-Kéhler property.

C P allows what might be called almost Hyper-Kéhler structure known as quaternionion structure.
This means that the Weil tensor of C'P; consists of three components in one-one correspondence with
components of iso-spin and only one of them- the one corresponding to Kahler form- is covariantly
constant. The physical interpretation is in terms of electroweak symmetry breaking selecting one
isospin direction as a favored direction.

Does the ’almost’ Hyper-Kéahler structure of C' P, lift to a genuine Hyper-Kéahler structure
in configuration space?

The Hyper-Kéahler property of configuration space metric does not seem to be in conflict with the
general structure of TGD.

1. In string models the dimension of the ”space-time” is two and Weyl invariance and complex
structures play a decisive role in the theory. In present case the dimension of the space-time is
four and one therefore might hope that quaternions play a similar role. Indeed, Weyl invariance
implies YM action in dimension 4 and as already mentioned moduli spaces of instantons and
monopoles enjoy the Hyper Kéhler property.

2. Also the dimension of the imbedding space is important. The dimension of Hyper Kéhler
manifold must be multiple of 4. The dimension of configuration space is indeed infinite multiple
of 8: each vibrational mode giving one ”8”.

3. The complexification of the configuration space in symplectic degrees of freedom is inherited
from S? x CP, and C'P, Kahler form defines the symplectic form of configuration space. The
point is that C P, Weyl tensor has 3 covariantly constant components, having as their square
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metric apart from sign. One of them is Kéahler form, which is closed whereas the other two are
non-closed forms and therefore fail to define Kéhler structure. The group SU(2) of electro-weak
isospin rotations rotate these forms to each other. It would not be too suprising if one could
identify the configuration space counterparts of these forms as representations of quaternionic
units at the level of configuration space. The failure of the Hyper Kéahler property at the level of
C P, geometry is due to the electro-weak symmetry breaking and physical intuition (in particular,
p-adic mass calculations [32] ) suggests that electro-weak symmetry might not be broken at the
level of configuration space geometry).

A possible topological obstruction for the Hyper Kéahler property is related to the cohomology
of the configuration space: the three Kéhler forms must be co-homologically trivial as is clear from
the following argument. If any of 3 quaternionic 2-form is cohomologically nontrivial then by SO(3)
symmetry rotating Kahler forms to each other all must be co-homologically nontrivial. On the other
hand, electro-weak isospin rotation leads to a linear combination of 3 Kéhler forms and the flux
associated with this form is in general not integer valued. The point is however that Kahler form
forms only the (1,1) part of the symplectic form and must be co-homologically trivial whereas the
zero mode part is same for all complexifications and can be co-homologically nontrivial. The co-
homological non-triviality of the zero mode part of the symplectic form is indeed a nice feature since
it fixes the normalization of the Kéahler function apart from a multiplicative integer. On the other
hand the hypothesis that Kéhler coupling strength is analogous to critical temperature provides a
dynamical (and perhaps equivalent) manner to fix the normalization of the Kéahler function.

Since the properties of the configuration space metric are inherited from Mj‘r x CP, then also
the Hyper Kahler property should be understandable in terms of the imbedding space geometry. In
particular, the complex structure in C'P;, vibrational degrees of freedom is inherited from C'P,. Hyper
Kihler property implies the existence of a continuum (sphere S?) of complex structures: any linear
superposition of 3 independent Kéhler forms defines a respectable complex structure. Therefore also
C P, should have this continuum of complex structures and this is certainly not the case.

Indeed, if we had instead of C'P, Hyper Kéahler manifold with 3 covariantly constant 2-forms
then it would be easy to understand the Hyper Kahler structure of configuration space. Given the
Kahler structure of the configuration space would be obtained by replacing induced Kahler electric
and magnetic fields in the definition of flux factors Q(Ha,n,) with the appropriate component of the
induced Weyl tensor. C'P, indeed manages to be very nearly Hyper Kéhler manifold!

How C'P, fails to be Hyper Kahler manifold can be seen in the following manner. The Weyl tensor
of C'P;, allows three independent components, which are self dual as 2-forms and rotated to each other
by vielbein rotations.

Wos = Wip=2I3=2("Ne’ +e' Ae?)
Wor = Wo=1=-e"Ne —e*Ne®
Woe = Wa=hh=—-e"Ne?—ePnel . (3.7.25)

The component I3 is just the Kéhler form of CP,. Remaining components are covariantly constant
only with respect to spinor connection and not closed forms so that they cannot be interpreted as
Maxwell fields. Their squares equal however apart from sign with the metric of C P>, when appropriate
normalization factor is used. If these forms were covariantly constant Kéhler action defined by any
linear superposition of these forms would indeed define Kéahler structure in configuration space and
the group SO(3) would rotate these forms to each other. The projections of the components of
the Weyl tensor on 3-surface define 3 vector fields as their duals and only one of these vector fields
(Kéhler magnetic field) is divergenceless. One might regard these 3 vector fields as counter parts of
quaternion units associated with the broken Hyper Kéahler structure, that is quaternion structure.
The interpretation in terms of electro-weak symmetry breaking is obvious.

One cannot exclude the possibility that the symplectic invariance of the induced Kahler electric
field implies that the electric parts of the other two components of induced Weyl tensor are symplectic
invariants. This is the minimum requirement. What is however obvious is that the magnetic parts
cannot be closed forms for arbitrary 3-surfaces at light cone boundary. One counter example is enough
and C'P; type extremals seem to provide this counter example: the components of the induced Weyl
tensor are just the same as they are for C'P, and clearly not symplecticly invariant.
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Thus it seems that configuration space could allow Hyper Kéahler structure broken by electro-weak
interactions but it cannot be inherited from C'P,. An open question is whether it allows genuine
quaternionic structure. Good prospects for obtaining quaternionic structure are provided by the
quaternionic counterpart QP> of C'P,, which is 8-dimensional and has coset space structure QP =
Sp(3)/Sp(2) x Sp(1). This choice does not seem to be consistent with the symmetries of the standard
model. Note however that the over all symmetry group is obtained by replacing complex numbers
with quaternions on the matrix representation of the standard model group.

Could different complexifications for M_‘i and light like surfaces induce Hyper Kahler
structure for configuration space?

Quaternionic structure means also the existence of a family of complex structures parameterized by a
sphere S2. The complex structure of the configuration space is inherited from the complex structure
of some light like surface.

In the case of the light cone boundary (5Mi the complex structure corresponds to the choice
of quantization axis of angular momentum for the sphere rj; = constant so that the coordinates
orthogonal to the quantization axis define a complex coordinate: the sphere S? parameterizes these
choices. Thus there is a temptation to identify the choice of quantization axis with a particular
imaginary unit and Hyper Kéahler structure would directly relate to the properties rotation group.
This would bring an additional item to the list of miraculous properties of light like surfaces of 4-
dimensional space-times.

This might relate to the fact that configuration space geometry is not determined by the symplectic
algebra of C'Ps localized with respect to the light cone boundary as one might first expect but consists
of Mi x C'P, Hamiltonians so that infinitesimal symplectic transformation of C'P, involves always
also Mff_—symplectic transformation. Mj‘_ Hamiltonians are defined by a function basis generated as
products of the Hamiltonians H3 and H; 4 iH, generating rotations with respect to three orthogonal
axes, and two of these Hamiltonians are complexified.

Also the light like 3-surfaces X} associated with quaternion conformal invariance are determined
by some 2-surface X2 and the choice of complex coordinates and if X? is sphere the choices are labelled
by S2. In this case, the presence of quaternion conformal structure would be almost obvious since it
is possible to choose some complex coordinate in several manners and the choices are labelled by S2.
The choice of the complex coordinate in turn fixes 2-surface X? as a surface for which the remaining
coordinates are constant. X2 need not however be located at the elementary particle horizon unless
one poses additional constraint. One might hope that different choices of X? resulting in this manner
correspond to all possible different selections of the complex structure and that this choice could fix
uniquely the conformal equivalence class of X? appearing as argument in elementary particle vacuum
functionals. If X2 has a more complex topology the identification is not so clear but since conformal
algebra SL(2,C) containing algebra of rotation group is involved, one might argue that the choice of
quantization axis also now involves S? degeneracy. If these arguments are correct one could conclude
that Hyper Kahler structure is implicitly involved and guarantees Ricci flatness of the configuration
space metric.

3.8 Consistency conditions on metric

In this section various consistency conditions on the configuration space metric are discussed. In
particular, it will be found that the conditions guaranteing the existence of Riemann connection in
the set of all(!) vector fields (including zero norm vector fields) gives very strong constraints on the
general form of the metric and that these constraints are indeed satisfied for the proposed metric.

3.8.1 Consistency conditions on Riemann connection

To study the consequences of the consistency conditions, it is most convenient to consider matrix
elements of the metric in the basis formed by the isometry generators themselves. The consistency
conditions state the covariant constancy of the metric tensor

Vz9(X,Y) = g(VzX,Y)+9(X,VzY) =2 -g(X)Y) . (3.8.1)
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Z - g(X,Y) vanishes, when Z generates isometries so that conditions state the covariant constancy of
the matrix elements in this case. It must be emphasized that the ill defined-ness of the inner products
of form g(VzX,Y) is just the reason for requiring infinite-dimensional isometry group. The point is
that VzX need not to belong to the Hilbert space spanned by the tangent vector fields since the terms
of type Zg(X,Y’) do not necessarily exist mathematically [29] . The elegant solution to the problem
is that all tangent space vector fields act as isometries so that these quantities vanish identically.

The conditions of Eq. can be written explicitly by using the general expression for the
covariant derivative

9(VzX,Y) = [Z9(X,Y)+ Xg(Z,Y)-Yg(Z,X)
+ g(AdzX — AdLX — Ad Z,Y))/2 . (3.8.2)

What happens is that the terms depending on the derivatives of the matrix elements (terms of type
Zg(X,Y) ) cancel each other (these terms vanish for the metric invariant under isometries), and one
obtains the following consistency conditions

9(AdzX — AdyX — Ad% Z,Y) + g(X, AdgY — AdyY — AdiZ) =0 . (3.8.3)

Using the explicit representations of Adz X and Ad *z X in terms of structure constants

AdzX = [Z,X]=CyxuoU .
Ad*ZX = CZ,U:Vg(X7 V)g_l(Uv W)W = g(X7 [Zv U})g_l(U7 W)W . (384)

where the summation over repeated ”indices” is performed, one finds that consistency conditions are
identically satisfied provided the generators X and Y have a non-vanishing norm. The reason is that
the contributions coming from VzX and VzY cancel each other.

When one of the generators, say X, appearing in the inner product has a vanishing norm so that
one has g(X,Y) = 0, for any generator Y, situation changes! The contribution of V7Y term to
the consistency conditions drops away and using Eqgs. (3.8.3) and (3.8.4]) one obtains the following
consistency conditions

Czxuv9UY)+CxyugU2Z) = —-X-9(Z,Y) . (3.8.5)

Note that summation over U is carried out. If X is isometry generator (this need not be the case
always) the condition reduces to a simpler form:

CX,Z:UQ(U7 Y) + CX,Y:Ug(Zv U) = g([X, Z]Y) +g(Zv [X7 Y]) =0 . (3'8'6)

These conditions have nice geometric interpretation. If the matrix elements are regarded as ordinary
Hilbert space products between the isometry generators the conditions state that the metric defining
the inner product behaves as a scalar in the general case.

3.8.2 Consistency conditions for the radial Virasoro algebra

The action of the radial Virasoro in nontrivial manner in the zero modes. Therefore isometry inter-
pretation is excluded and consistency conditions do not make sense in this case. One can however
consider the possibility that metric is invariant or suffers only an overall scaling under the action of the
radial scaling generated by Lo = rpsd/dras. Since the radial integration measure is scaling invariant
and only powers of rjs/rg appear in Hamiltonians, the effect of the scaling rp; — Arps on the matrix
elements of the metric is a scaling by A\¥2+*4). One can interpret this by saying that scaling changes
the values of zero modes and hence leads outside the symmetric space in question.

Invariance of reduced matrix element obtained by dividing away the powers of the scaling factor
is achieved if the metric contains the conformal factor
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1 T

S = R(E—)’

(3.8.7)

where 7; are the extrema of 7 interpreted as height function of X2 and f is a priori arbitrary positive
definite function. Since the presence of f presumably gives rise to renormalization corrections depend-
ing on the size and shape of 3-surface by scaling the propagator defined by the contravariant metric,
the dependence on the ratios r;/r; should be slow, logarithmic dependence. Also the dependence
on the Fourier components of the solid angles Q(ry) associated with the 7y, = constant sections is
possible.

3.8.3 Explicit conditions for the isometry invariance

The identification of the Lie-algebra of isometry generators has been proposed but cannot provide
any proof for the existence of the infinite parameter symmetry group at this stage. What one can do
at this stage is to formulate explicitly the conditions guaranteing isometry invariance of the metric
and try to see whether there are any hopes that these conditions are satisfied. It has been already
found that the expression of the metric reduces for light cone alternative to the sum of two boundary
terms coming from infinite future and from the boundary of the light cone. If the contribution from
infinitely distant future vanishes, as one might expect, then only the contribution from the boundary
of the light cone remains.

A tedious but straightforward evaluation of the second variation (see Appendix of the book) for
Kahler action implies the following form for the second variation of the Kéhler action

a=0o0
528 = / L oRF Dy (3.8.8)
where the tensor I ,?ZB is defined as partial derivatives of the Kahler Lagrangian with respect to the
derivatives 9, h*

I} = 9 ne0sumLar (3.8.9)

If the upper limit a = /(m9%)2 — r3, = oo in the substitution vanishes then one can calculate second
variation and therefore metric from the knowledge of the time derivatives d,h* and 9,,6h* on the
boundary of the light cone only.

Kéhler metric can be identified as the (1,1) part of the second variation. This means that one
can express the deformation as an element of the isometry algebra plus a arbitrary deformation in
radial direction of the light cone boundary interpretable as conformal transformation of the light cone
boundary. Radial contributions to the second variation are dropped (by definition of Kahler metric)
and what remains is essentially a deformation in S? degrees of freedom.

The left invariance of the metric under the deformations of the isometry algebra implies an infinite
number of conditions of the form

JCg(J4, 0B = 0, (3.8.10)

where J4, JP and J¢ denote the generators of the isometry group. These conditions ought to fix
completely the time derivatives of the coordinates h* for each 3-surface at light cone boundary and
therefore in principle the whole minimizing four-surface provided the initial value problem associated
with the Kahler action possesses a unique solution. What is nice that the requirement of isometry
invariance in principle would provides solution to the problem of finding preferred extremals of the
Kahler action.

These conditions, when written explicitly give infinite number of conditions for the time derivative
of the generator J¢ (we assume for a moment that C is held fixed and let A and B run) at the
boundary of the light cone. Time derivatives are in principle determined also by the requirement that
deformed surface corresponds to an absolute minimum of the Kéahler action. The basis of §H scalar
functions respecting color and rotational symmetries is the most promising one.
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3.8.4 Direct consistency checks

If duality holds true, the most general form of the configuration space metric is defined by the
fluxes Q%%, where o and 3 are the coefficients of signed and unsigned magnetic fluxes. Present
is also a conformal factor depending on those zero modes, which do not appear in the symplectic
form and which characterize the size and shape of the 3-surface. [t,t] C h property implying Ricci
flatness and isometry property of symplectic transformations, requires the vanishing of the fluxes
Q%’ﬁ({HA,m;&o,{HB,n;éo,Hc,p;éo}}) associated with double commutators and poses strong consis-
tency conditions on the metric. If n labelling symplectic generators has half integer values then the
conditions simply state conformal invariance: generators labelled by integers have vanishing norm
whereas half-odd integers correspond to non-vanishing norm. Isometry invariance gives additional
conditions on fluxes Q%#. Lorentz invariance strengthens these conditions further. It could be that
these conditions fix the initial values of the imbedding space coordinates completely.
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Chapter 4

Configuration Space Spinor
Structure

4.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space. In
particular, physical states should correspond to the modes of the configuration space spinor fields.
The immediate consequence is that configuration space spinor fields cannot, as one might naively
expect, be carriers of a definite spin and unit fermion number. Concerning the construction of the
configuration space spinor structure there are some important clues.

4.1.1 Geometrization of fermionic statistics in terms of configuration space
spinor structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the configuration space spinor structure in the sense that the anti-
commutation relations for configuration space gamma matrices require anti-commutation relations for
the oscillator operators for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely related
to the configuration space spinor structure. [35] has as its basic field the anti-commuting field
I'*(x), whose Fourier components are analogous to the gamma matrices of the configuration
space and which behaves like a spin 3/2 fermionic field rather than a vector field. This suggests
that the are analogous to spin 3/2 fields and therefore expressible in terms of the fermionic
oscillator operators so that their naturally derives from the anti-commutativity of the fermionic
oscillator operators.

As a consequence, configuration space spinor fields can have arbitrary fermion number and
there would be hopes of describing the whole physics in terms of configuration space spinor
field. Clearly, fermionic oscillator operators would act in degrees of freedom analogous to the
spin degrees of freedom of the ordinary spinor and bosonic oscillator operators would act in
degrees of freedom analogous to the ’orbital’ degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the configuration space geometry.
It would be very nice if the classical theory for the spinor fields would be contained in the
definition of the configuration space spinor structure somehow. The properties of the associated
with the induced spinor structure are indeed very physical. The modified massless Dirac equation
for the induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary
to the long held belief it seems that covariantly constant right handed neutrino does not generate .
The differences between quarks and leptons result from the different couplings to the C' P, Kéhler
potential. In fact, these properties are shared by the solutions of massless Dirac equation of the
imbedding space.
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3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the configuration space geometry. This is indeed true if the complexified
configuration space gamma matrices are linearly related to the oscillator operators associated
with the second quantized induced spinor field on the space-time surface and its boundaries.
There is actually no deep reason forbidding the gamma matrices of the configuration space to
be spin half odd-integer objects whereas in the finite-dimensional case this is not possible in
general. In fact, in the finite-dimensional case the equivalence of the spinorial and vectorial
vielbeins forces the spinor and vector representations of the vielbein group SO(D) to have same
dimension and this is possible for D = 8-dimensional Euclidian space only. This coincidence
might explain the success of 10-dimensional super string models for which the physical degrees
of freedom effectively correspond to an 8-dimensional Euclidian space.

4. Tt took a long time to realize that the ordinary definition of the gamma matrix algebra in terms
of the anti-commutators {v4,v5} = 2945 must in TGD context be replaced with

{7}47’73} = iJAB )

where Jap denotes the matrix elements of the Kahler form of the configuration space. The
presence of the Hermitian conjugation is necessary because configuration space gamma matrices
carry fermion number. This definition is numerically equivalent with the standard one in the
complex coordinates. The realization of this delicacy is necessary in order to understand how
the square of the configuration space Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second quan-
tization of the induced spinor fields should be carried out and space-time conformal symmetries
allow to explicitly solve the Dirac equation associated with the modified Dirac action in the
interior and at the 3-D light like causal determinants. An essentially new element is the no-
tion of number theoretic braid forced by the fact that the modified Dirac operator allows only
finite number of generalized eigen modes so that the number of fermionic oscillator operators
is finite. As a consequence, anticommutation relations can be satisfied only for a finite set of
points defined by the number theoretic braid, which is uniquely identifiable. The interpretation
is in terms of finite measurement resolution. The finite Clifford algebra spanned by the fermionic
oscillator operators is interpreted as the factor space M /A of infinite hyper-finite factors of type
II; defined by configuration space Clifford algebra A and included Clifford algebra M C N in-
terpreted as the characterizer of the finite measurement resolution. Note that the finite number
of eigenvalues guarantees that Dirac determinant identified as the exponent of Kéahler function
is finite. Finite number of eigenvalues is also essential for number theoretic universality.

4.1.2 Modified Dirac equation for induced classical spinor fields

The earlier approach to the definition of the configuration space spinor structure relied on the second
quantized ordinary massless Dirac action for the induced spinors. This action had some anomalous
looking features. The first anomaly was the appearance of the effective tachyonic mass term propor-
tional to the trace of the second fundamental form vanishing only for minimal surfaces. The breaking
of N = 2 super symmetry generated by right-handed neutrinos for other than minimal surfaces was
the second anomalous feature. It became also clear that the divergences of the fermionic isometry
currents can have a non-vanishing c-number anomaly unless one varies Dirac action also with respect
to the configuration space coordinates. This anomaly obviously might destroy the definition of the
configuration space spinor structure.

The vision about quantum TGD as a generalized number theory [51l B2, 50] comes in rescue
here. One of its outcomes was the realization that, in order to achieve exact super-symmetry, one
must modify Dirac action so that its variation with respect to the imbedding space coordinates gives
the field equations derivable from the action principle in question. By taking the modified Dirac
action as the fundamental action, one can identify vacuum functional as the Dirac determinant. If
this determinant equals to exponent of Kéhler action for the preferred extremal containing partonic
3-surfaces, one can predict even the value of the Kahler coupling constant.
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Chern-Simons - or Kéahler Dirac action?

Two alternative choices represented themselves as candidates for the modified Dirac action: either
the 3-D Chern-Simons Dirac action or 4-D Kahler action. Eventually came the realization that the
addition of a measurement interaction term to either Chern-Simons action or Kédhler action is needed
to resolve a bundle of conceptual problems. It took still some time to conclude that Kéahler action
with instanton term is the correct choice since the measurement interaction term assigned to Chern-
Simons-Dirac action creates more problems than it solves.

1. Basic implications

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kahler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
and the measurement interaction terms giving rise to conserved currents are possible only for
Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states of
Cartan algebra generators. The hierarchy of Planck constants realized in terms of the book like
structure of the generalized imbedding space assigns to each CD (causal diamond) preferred
Cartan algebra: in case of Poincare algebra there are two of them corresponding to linear and
cylindrical M* coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y;? in turn defining fermionic
sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is achieved if the
replacement of light-like wormhole throat X;* with light-like 3-surface Y;* "parallel” with it in the
definition of Dirac determinant corresponds to the U(1) gauge transformation K — K + f + f
for Kéahler function of WCW so that WCW Kahler metric is not affected. Here f is holomorphic
function of WCW ("world of classical worlds”) complex coordinates and arbitrary function of
zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kahler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of K&hler action vanishes for critical deformations and
the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K — K + f + f. p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (C'Ds).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kéhler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description for
dissipative effects. It must be however emphasized that the mere addition of instanton term to
Kaéhler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology emerges
and one could understand the experimental absence of antimatter as being due to the fact
antimatter corresponds to negative energy states. The identification of bosons as wormhole
contacts is the only possible option in this framework.
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8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads to a
long sought general master formula for the M-matrix elements. The counterpart for fermionic
loop defining bosonic inverse propagator at QFT limit is wormhole contact with fermion and
cutoffs in mass squared and hyperbolic angle for loop momenta of fermion and antifermion in
the rest system of emitting boson have precise geometric counterpart.

2. Hyper-quaternionicity and quantum criticality

The conjecture that quantum critical space-time surfaces are hyper-quaternionic in the sense that
the modified gamma matrices span a quaternionic subspace of complexified octonions at each point
of the space-time surface is consistent with what is known about preferred extremals. The condition
that both the modified gamma matrices and spinors are quaternionic at each point of the space-time
surface leads to a precise ansatz for the general solution of the modified Dirac equation making sense
also in the real context. The octonionic version of the modified Dirac equation is very simple since
SO(7,1) as vielbein group is replaced with G5 acting as automorphisms of octonions so that only the
neutral Abelian part of the classical electro-weak gauge fields survives the map.

Octonionic gamma matrices provide also a non-associative representation for the 8-D version of
Pauli sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Quaternionicity condition implies that octo-
twistors reduce to something closely related to ordinary twistors.

Super-conformal symmetries of modified Dirac action

The modified Dirac equation allows large number of super-conformal gauge symmetries as zero modes
of D K(Yl?’) and are interpreted as generators of exact N = 4 super-conformal gauge symmetries in both
quark and lepton sectors. These super-symmetries correspond to pure super gauge transformations
and state the the effective 3-dimensionality of space-time dynamics.

Super-symplectic and super Kac-Moody transformations respecting the light-likeness of light-like 3-
surfaces define dynamical super conformal symmetries with covariantly constant right handed neutrino
spinor serving as the generator of super symmetries. These are crucial for p-adic thermodynamics.
No spartners of ordinary particles are predictedin particular N = 2 space-time super-symmetry is
generated by the righthanded neutrino is absent contrary to the earlier beliefs. There is no need to
emphasize the experimental implications of this finding.

An essential difference with respect to the standard super-conformal symmetries is that Majo-
rana condition is not satisfied and the usual super-space formalism does not apply. The notion of
super-space is un-necessary since fermionic super-generators do not anticommute to vector fields of
symmetries but to their Hamiltonians.

Identification of configuration space gamma matrices

Configuration space gamma matrices identified as super generators of super-symplectic or super Kac-
Moody algebras (depending on CH coordinates used) are expressible in terms of the oscillator oper-
ators associated with the eigen modes of the modified Dirac operator. Super-symplectic and super
Kac-Moody charges are expressible as integrals over 2-dimensional partonic surfaces X2 and interior
degrees of freedom of X* can be regarded as zero modes representing classical variables in one-one
correspondence with quantal degrees of freedom at X 13 as indeed required by quantum measurement
theory. The resulting situation is highly reminiscent of WZW model and the results imply that at
technical level the methods of 2-D conformal field theories should allow to construct quantum TGD.

4.1.3 The exponent of Kahler function as Dirac determinant for the mod-
ified Dirac action?

Although quantum criticality in principle predicts the possible values of Kéhler coupling strength, one
might hope that there exists even more fundamental approach involving no coupling constants and
predicting even quantum criticality and realizing quantum gravitational holography.
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1. The Dirac determinant defined by the product of Dirac determinants associated with the light-
like partonic 3-surfaces X 13 associated with a given space-time sheet X* is the simplest candidate
for vacuum functional identifiable as the exponent of the Kéahler function. One can of course
worry about the finiteness of the Dirac determinant. p-Adicization requires that the eigenvalues
belong to a given algebraic extension of rationals. This restriction would imply a hierarchy of
physics corresponding to different extensions and could automatically imply the finiteness and
algebraic number property of the Dirac determinants if only finite number of eigenvalues would
contribute. The regularization would be performed by physics itself if this were the case.

2. The basic problem has been how to feed in the information about the preferred extremal of
Kahler action to the eigenvalue spectrum of the Dirac operator in question. The identification
of the preferred extremal associated with X became possible via the boundary conditions at X}
dictated by number theoretical compactification, which also predicted the dual slicings of the
M* projection of space-time surface by string world sheets and partonic 2-surfaces. The basic
observation is that the Dirac equation associated with the 4-D Dirac operator Dy associated
with by Kahler action can be seen as a conservation law for a super current. The slicing of
X*4(X?) by the parallel light-like 3-surfaces Y;* allows solutions for which the super current
flows along Y;?> and has no component in normal direction. The zero modes of Dk reducing
to effectively 3-D solutions of Dk at each Yl‘3 give a family of holographic copies of X f The
effective 3-dimensionality is due to the super-conformal gauge invariance in the direction of
light-like coordinate u labeling the 3-surfaces Yl?’.

A physically attractive unique realization of the slicings of space-time surface by 3-surfaces and
string world sheets is discussed in [23] by starting from the observation that TGD could define
a natural realization of braids, braid cobordisms, and 2-knots.

3. The spectrum of eigenvalues corresponds to the ”energy” spectrum of Dk and the product of the
eigenvalues defines the Dirac determinant in standard manner. If the eigenmodes are restricted
to those localized to regions of strong induced electro-weak magnetic field, the number of eigen
modes is finite and therefore also Dirac determinant is finite.

4. The requirement that the Noether currents associated with Dirac Kéahler action are conserved is
that preferred extremals of Kéhler action correspond to extremals for which the second variation
of Kéhler action vanishes at least for the deformations associated with the conserved currents.
Obviously this is nothing but the formulation of quantum criticality at space-time level!

5. The physical analog is energy spectrum for Dirac operator in external magnetic field. The effec-
tive metric appearing in the modified Dirac operator corresponds to §*? = 5‘LK/8h§8LK/6hlﬁ h
and vanishes at the boundaries of regions carrying non-vanishing K&hler magnetic field. Hence
the modes must be localized to regions X l?:i containing a non-vanishing Kéhler magnetic field.
Cyclotron states in constant magnetic field serve as a good analog for the situation and only a
finite number of cyclotron states are possible since for higher cyclotron states the wave function
-essentially harmonic oscillator wave function- would concentrate outside X l31

6. A more precise argument goes as follows. Assume that it is induced K&hler magnetic field
By that matters. The vanishing of the effective contravariant metric near the boundary of
X l?:i corresponds to an infinite effective mass for massive particle in constant magnetic field so
that the counterpart for the cyclotron frequency scale eB/m reduces to zero. The radius of
the cyclotron orbit is proportional to 1/ veB and approaches to infinity. Hence the required
localization is not possible only for cyclotron states for which the cyclotron radius is below that
the transversal size scale of X 132

7. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kahler
action for the preferred extremal of Kdhler action. At this moment the only justification for the
conjecture is that this the only thing that one can imagine.

4.1.4 Super-conformal symmetries

The almost topological QFT property of partonic formulation based on modified Dirac Kahler ac-
tion allows a rich structure of N = 4 super-conformal symmetries. In particular, the generalized
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Kac-Moody symmetries leave corresponding X3-local isometries respecting the light-likeness condi-
tion. A rather detailed view about various aspects of super-conformal symmetries emerge leading to
identification of fermionic anti-commutation relations and explicit expressions for configuration space
gamma matrices and Kéhler metric. This picture is consistent with the conditions posed by p-adic
mass calculations.

The relationship between super-symplectic (SC) and Super Kac-Moody (SK M) symmetries has
been one of the central themes in the development of TGD. The progress in the understanding of
the number theoretical aspects of TGD gives good hopes of lifting SK MV (V denotes Virasoro) to a
subalgebra of SC'V so that coset construction works meaning that the differences of SCV and SK MV
generators annihilate physical states. This condition has interpretation in terms of Equivalence Prin-
ciple with coset Super Virasoro conditions defining a generalization of Einstein’s equations in TGD
framework. Also p-adic thermodynamics finds a justification since the expectation values of SKM
conformal weights can be non-vanishing in physical states.

Number theoretical considerations play a key role and lead to the picture in which effective dis-
cretization occurs so that partonic two-surface is effectively replaced by a discrete set of algebraic
points belonging to the intersection of the real partonic 2-surface and its p-adic counterpart obeying
the same algebraic equations. This implies effective discretization of super-conformal field theory
giving N-point functions defining vertices via discrete versions of stringy formulas.

Before continuing I must represent apologies for the reader. This chapter is just now under
updating due to the dramatic simplifications related to identification of the eigenvalue spectrum of
the modified Dirac operator and the definition of the Dirac determinant. The new vision is briefly
discussed but a lot of mammoth bones remains to be eliminated.

4.2 Configuration space spinor structure: general definition

The basic problem in constructing configuration space spinor structure is clearly the construction of
the explicit representation for the gamma matrices of the configuration space. One should be able to
identify the space, where these gamma matrices act as well as the counterparts of the ”free” gamma
matrices, in terms of which the gamma matrices would be representable using generalized vielbein
coeflicients.

4.2.1 Defining relations for gamma matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{74,798} =294 -

This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD
context until the difficulties related to the understanding of the configuration space d’Alembertian
defined in terms of the square of the Dirac operator forced to reconsider the definition. If configuration
space allows Kahler structure, the most general definition allows to replace the metric any covariantly
constant Hermitian form. In particular, g4p can be replaced with

(U0, Tp} =iJap , (4.2.1)

where Jap denotes the matrix element of the Kahler form of the configuration space. The reason is
that gamma matrices carry fermion number and are non-hermitian in all coordinate systems. This
definition is numerically equivalent with the standard one in the complex coordinates but in arbitrary
coordinates situation is different since in general coordinates iJy; is a nontrivial positive square root
of gx;. The realization of this delicacy is necessary in order to understand how the square of the
configuration space Dirac operator comes out correctly. Obviously, what one must do is the equivalent
of replacing D? = (I'*Dy)? with DD with D defined as

D =iJ"TiD, .
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4.2.2 General vielbein representations

There are two ideas, which make the solution of the problem obvious.

1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is coded

I

-+

into the geometry of the configuration space it seems natural to expect that same applies in the
case of the spinor structure. The time development of the induced spinor fields dictated by TGD
counterpart of the massless Dirac action should be coded into the definition of the configuration
space spinor structure. This leads to the challenge of defining what classical spinor field means.

. Since classical scalar field in the configuration space corresponds to second quantized boson

fields of the imbedding space same correspondence should apply in the case of the fermions,
too. The spinor fields of configuration space should correspond to second quantized fermion
field of the imbedding space and the space of the configuration space spinors should be more
or less identical with the Fock space of the second quantized fermion field of imbedding space
or X*(X3). Since classical spinor fields at space-time surface are obtained by restricting the
spinor structure to the space-time surface, one might consider the possibility that life is really
simple: the second quantized spinor field corresponds to the free spinor field of the imbedding
space satisfying the counterpart of the massless Dirac equation and more or less standard anti-
commutation relations. Unfortunately life is not so simple as the construction of configuration
space spinor structure demonstrates: second quantization must be performed for induced spinor
fields.

is relatively simple to fill in the details once these basic ideas are accepted.

. The only natural candidate for the second quantized spinor field is just the on X*. Since this

field is free field, one can indeed perform second quantization and construct fermionic oscillator
operator algebra with unique anti-commutation relations. The space of the configuration space
spinors can be identified as the associated with these oscillator operators. This space depends
on 3-surface and strictly speaking one should speak of the Fock bundle having configuration
space as its base space.

The gamma matrices of the configuration space (or rather fermionic Kac Moody generators) are
representable as super positions of the fermionic oscillator algebra generators:

Iy = Eja}
I, = Eja,
iJag = Y ELER (4.2.2)

where E’} are the vielbein coefficients. Induced spinor fields can possess zero modes and there
is no oscillator operators associated with these modes. Since oscillator operators are spin 1/2
objects, configuration space gamma matrices are analogous to spin 3/2 spinor fields (in a very
general sense). Therefore the generalized vielbein and configuration space metric is analogous
to the pair of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the
contractions j4*T, of the complexified gamma matrices with the isometry generators are genuine
spin 1/2 objects labeled by the quantum numbers labeling isometry generators. In particular,
in C'P, degrees of freedom these fermions are color octets.

A further great idea inspired by the symplectic and Kéahler structures of the configuration space
is that configuration gamma matrices are actually generators of super-symplectic symmetries.
This simplifies enormously the construction allows to deduce explicit formulas for the gamma
matrices.
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4.2.3 Inner product for configuration space spinor fields

The conjugation operation for configuration space spinors corresponds to the standard ket — bra
operation for the states of the Fock space:

SIS

< |v)
& (U (4.2.3)

The inner product for configuration space spinors at a given point of the configuration space is just
the standard Fock space inner product, which is unitary.

Uy (XP)Ta(X?) = (T|Ws)xs (4.2.4)

Configuration space inner product for two configuration space spinor fields is obtained as the integral of
the Fock space inner product over the whole configuration space using the vacuum functional exp(K)
as a weight factor

This inner product is obviously unitary. A modified form of the inner product is obtained by including
the factor exp(K/2) in the definition of the spinor field. In fact, the construction of the central
extension for the isometry algebra leads automatically to the appearance of this factor in vacuum
spinor field.

The inner product differs from the standard inner product for, say, Minkowski space spinors in
that integration is over the entire configuration space rather than over a time= constant slice of the
configuration space. Also the presence of the vacuum functional makes it different from the finite
dimensional inner product. These are not un-physical features. The point is that (apart from classical
non-determinism forcing to generalized the concept of 3-surface) Diff* invariance dictates the behavior
of the configuration space spinor field completely: it is determined form its values at the moment of
the big bang. Therefore there is no need to postulate any Dirac equation to determine the behavior
and therefore no need to use the inner product derived from dynamics.

4.2.4 Holonomy group of the vielbein connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables
is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is
indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators.
The holonomy group of the vielbein connection is the configuration space counterpart of the electro-
weak gauge group and its algebra is expected to have same general structure as the algebra of the
configuration space isometries. In particular, the generators of this algebra should be labeled by
conformal weights like the elements of Kac Moody algebras. In present case however conformal
weights are complex as the construction of the configuration space geometry demonstrates.

4.2.5 Realization of configuration space gamma matrices in terms of super
symmetry generators

In string models super symmetry generators behave effectively as gamma matrices and it is very
tempting to assume that configuration space gamma matrices can be regarded as generators of the
symplectic algebra extended to super-symplectic Kac Moody type algebra. The experience with
string models suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are
good reasons to expect that configuration space Dirac operator and its square give automatically a
realization of this algebra. It this is indeed the case, then configuration space spinor structure as well
as Dirac equation reduces to mere group theory.
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One can actually guess the general form of the super-symplectic algebra. The form is a direct
generalization of the ordinary super Kac Moody algebra. The complexified super generators Sy are
identifiable as configuration space gamma matrices:

Ty = Sa. (4.2.6)

The anti-commutators {I‘L, I'p}+ = i2J4 p define a Hermitian matrix, which is proportional to the
Kéhler form of the configuration space rather than metric as usually. Only in complex coordinates the
anti-commutators equal to the metric numerically. This is, apart from the multiplicative constant n,
is expressible as the Poisson bracket of the configuration space Hamiltonians H4 and Hpg. Therefore
one should be able to identify super generators Sa(rys) for each values of ry; as the counterparts of
fluxes. The anti-commutators between the super generators S4 and their Hermitian conjugates should
read as

{S4,Sht+ = iQu(Hap) - (4.2.7)

and should be induced directly from the anti-commutation relations of free second quantized spinor
fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transforma-
tion properties of the super generators under symplectic transformations, which are same as for the
Hamiltonians themselves

{HAmaSBn}— - S[Am,Bn] 5 (428)

and are of the same form as in the case of Super-Kac-Moody algebra.

The task is to derive an explicit representation for the super generators S in both cases. For
obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary 6Mjl_ x C'Py
can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type algebra.

What is then the strategy that one should follow?

1. Configuration space Hamiltonians correspond to either magnetic or electric flux Hamiltonians
and the conjecture is that these representations are equivalent. It turns out that this electric-
magnetic duality generalizes to the level of super charges. It also turns out that quark represen-
tation is the only possible option whereas leptonic super charges super-symmetrize the ordinary
function algebra of the light cone boundary.

2. The simplest option would be that second quantized imbedding space spinors could be used in
the definition of super charges. This turns out to not work and one must second quantize the
induced spinor fields.

3. The task is to identify a super-symmetric variational principle for the induced spinors: ordinary
Dirac action does not work. It turns out that in the most plausible scenario the modified
Dirac action varied with respect to both imbedding space coordinates and spinor fields is the
fundamental action principle. The c-number parts of the conserved symplectic charges associated
with this action give rise to bosonic conserved charges defining configuration space Hamiltonians.
The second quantization of the spinor fields reduces to the requirement that super charges and
Hamiltonians generate super-symplectic algebra determining the anti-commutation relations for
the induced spinor fields.

4.2.6 Central extension as symplectic extension at configuration space
level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra
were based on the notion of symplectic extension. This general view is not given up although it
seems that this abstract approach is not very practical. Symplectic extension emerged originally in
the attempts to construct formal expression for the configuration space Dirac equation. The rather
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obvious idea was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro
generators involving the Dirac operator of the imbedding space. The basic difficulty was the necessity
to assign to the gamma matrices of the imbedding space fermion number. In the recent formulation
the Dirac operator of H does not appear in in the Super Virasoro conditions so that this problem
disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the
commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks
rather feasible. Omne could call these conditions as configuration space Dirac equation but at this
moment I feel that this would be just play with words and mask the group theoretical content of these
conditions. In any case, the formulas for the symplectic extension and action of isometry generators
on configuration space spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick.
Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator, by
the covariant derivatives defined by a coupling to a multiple of the Kéahler potential.

i*o, — Dy,
Dp = O +ikAy/2 . (4.2.9)

where Ay denotes Kahler potential. The reality of the parameter k is dictated by the Hermiticity
requirement and also by the requirement that Abelian extension reduces to the standard form in Cartan
algebra. k is expected to be integer also by the requirement that covariant derivative corresponds to
connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators J4 read:

(JA, T8 = JWBl 4k AR B = JAB ik (4.2.10)

Since Kéahler form defines symplectic structure in configuration space one can express Abelian exten-
sion term as a Poisson bracket of two Hamiltonians

Jap = I8 = {HA HB} . (4.2.11)

Notice that Poisson bracket is well defined also when Kahler form is degenerate.
The extension indeed has acceptable properties:

1. Jacobi-identities reduce to the form

> HWEBEA = o, (4.2.12)

cyclic

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representation.

2. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket
for two commuting generators must be a multiple of a unit matrix. This feature is clearly
crucial for the non-triviality of the Abelian extension and is encountered already at the level
of ordinary (g¢,p) Poisson algebra: although the differential operators 9, and J, commute the
Poisson bracket of the corresponding Hamiltonians p and ¢ is nontrivial: {p,q} = 1. Therefore
the extension term commutes with the generators of the Cartan subalgebra. Extension is also
local U(1) extension since Poisson algebra differs from the Lie-algebra of the vector fields in
that it contains constant Hamiltonian (”1” in the commutator), which commutes with all other
Hamiltonians and corresponds to a vanishing vector field.
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3. For the generators not belonging to Cartan sub-algebra of C'H isometries Abelian extension term
is not annihilated by the generators of the original algebra and in this respect the extension differs
from the standard central extension for the loop algebras. It must be however emphasized that for
the super-symplectic algebra generators correspond to products of (5Mi and C'P, Hamiltonians
and this means that generators of say 5Mjl_—local SU(3) Cartan algebra are non-commuting and
the commutator is completely analogous to central extension term since it is symmetric with
respect to SU(3) generators.

4. The proposed method yields a trivial extension in the case of Diff*. The reason is the (four-
dimensional!) Diff degeneracy of the Kéhler form. Abelian extension term is given by the
contraction of the Diff* generators with the Kéhler potential

i Iag®t = 0, (4.2.13)

which vanishes identically by the Diff degeneracy of the Kéahler form. Therefore neither 3- or
4-dimensional Diff invariance is not expected to cause any difficulties. Recall that 4-dimensional
Diff degeneracy is what is needed to eliminate time like vibrational excitations from the spectrum
of the theory. By the way, the fact that the loop space metric is not Diff degenerate makes
understandable the emergence of Diff anomalies in string models [35], 19] .

5. The extension is trivial also for the other zero norm generators of the tangent space algebra, in
particular for the ko = I'm(k) = 0 symplectic generators possible present so that these generators
indeed act as genuine U(1) transformations.

6. Concerning the solution of configuration space Dirac equation the maximum of Kahler function
is expected to be special, much like origin of Minkowski space and symmetric space property
suggests that the construction of solutions reduces to this point. At this point the generators
and Hamiltonians of the algebra h in the defining Cartan decomposition g = h+t should vanish.
h corresponds to integer values of k1 = Re(k) for Cartan algebra of super-symplectic algebra
and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces at
the maximum to an exceptionally simple form since only central extension contributes to the
metric and Kéhler form. In the ideal case the elements of the metric and Kéahler form could be
even diagonal. The degeneracy of the metric might of course pose additional complications.

Super symplectic action on configuration space spinors

The generators of symplectic transformations are obtained in the spinor representation of the isometry
group of the configuration space by the following formal construction. Take isometry generator in
the spinor representation and add to the covariant derivative Dj defined by vielbein connection the
coupling to the multiple of the K&hler potential: Dy — Dy + ik Ak/2.

JA = %Dy + Dz 2
—  JA = jAR(Dy, + ikAr/2) + DijisR )2 |
(4.2.14)

This induces the required central term to the commutation relations. Introduce complex coordinates
and define bosonic creation and annihilation operators as (1,0) and (0, 1) parts of the modified isometry
generators

Bl = JA=j%Dy+..,
By = JA=j*Dp+... .
(4.2.15)

where ”k” refers now to complex coordinates and ”k” to their conjugates.
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Fermionic generators are obtained as the contractions of the complexified gamma matrices with
the isometry generators

A Gy,

Iy = j4%r; . (4.2.16)

Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation re-
lations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the sense
that creation type generators are hermitian conjugates of the annihilation operator type generators.
There are two kinds of representations depending on whether one uses leptonic or quark like oscil-
lator operators to construct the gammas. These will be assumed to correspond to Ramond and NS
type generators with the radial plane waves being labeled by integer and half odd integer indices
respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by the
matrix elements of the Kéhler form in the basis of formed by the isometry generators

1BY.Bs] = JGM, %) = Tap (4.2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not belonging
to Cartan algebra are just those of the local gauge algebra with Abelian extension term added.

The anti-commutators between the fermionic generators are given by the elements of the metric
(as opposed to Kahler form in the case of bosonic generators) in the basis formed by the isometry
generators

{Cat, T} = 29(*,5%) =295 - (4.2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators differ only
the presence of the imaginary unit and the scale factor R relating the metric and Kéhler form to each
other (the factor R is same for C'P, metric and Kéhler form).

The commutators between bosonic and fermionic generators are given by

[Ba,I's] = Tap - (4.2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is essential
for obtaining these nice commutations relations. The commutators vanish identically for Cartan
algebra generators. From the commutation relations it is clear that Super Kac Moody algebra structure
is directly related to the Kéhler structure of the configuration space: the anti-commutator of fermionic
generators is proportional to the metric and the commutator of the bosonic generators is proportional
to the Kahler form. It is this algebra, which should generate the solutions of the field equations of
the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the fermionic
oscillator operators and this suggests the interpretation as the fermionic contribution to the isometry
currents. This means that the action of the bosonic generators is essentially non-perturbative since it
creates fermion antifermion pairs besides exciting bosonic degrees of freedom.

4.2.7 Configuration space Clifford algebra as a hyper-finite factor of type
15

The naive expectation is that the trace of the unit matrix associated with the Clifford algebra spanned
by configuration space sigma matrices is infinite and thus defines an excellent candidate for a source
of divergences in perturbation theory. This potential source of infinities remained un-noticed until it
became clear that there is a connection with von Neumann algebras [26] . In fact, for a separable
Hilbert space defines a standard representation for so called [36] . This guarantees that the trace of
the unit matrix equals to unity and there is no danger about divergences.
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Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The basic
ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow Hermitian
conjugation * and observables correspond to Hermitian operators. Any measurable function f(A) of
operator A belongs to the algebra and one can say that non-commutative measure theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-trivial
requirement of von Neumann was that identical a priori probabilities for a detection of states of infinite
state system must make sense. Since quantum mechanical expectation values are expressible in terms
of operator traces, this requires that unit operator has unit trace: ¢r(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection to
1-dimensional sub-space vanishes if each state is equally probable. The notion of observable must thus
be modified by excluding 1-dimensional minimal projections, and allow only projections for which the
trace would be infinite using the straightforward generalization of the matrix algebra trace as the
dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is
that the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with a
density matrix which is projection operator to infinite-dimensional subspace. The simple von Neumann
algebras for which unit operator has unit trace are known as factors of type I1; [36] .

The definitions of adopted by von Neumann allow however more general algebras. Type I, algebras
correspond to finite-dimensional matrix algebras with finite traces whereas I, associated with a
separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of type 111
non-trivial traces are always infinite and the notion of trace becomes useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent this
problem (the notion of space-time sheet brings the box in physics as something completely real).

Because of the finiteness of traces von Neumann regarded the factors of type II; as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac based
on the notion of delta function, plus the emergence of Feynman graphs, the possibility to formulate
the notion of delta function rigorously in terms of distributions, and the emergence of path integral
approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II; have emerged only much later in conformal and topological quantum field
theories [49, [55] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic structures
known as bi-algebras, Hopf algebras, and ribbon algebras [37, 23] relate closely to type Iy factors.
In topological quantum computation [27] based on braid groups [24] modular S-matrices they play an
especially important role.

Clifford algebra of configuration space as von Neumann algebra

The Clifford algebra of the configuration space provides a school example of a hyper-finite factor of
type II;, which means that fermionic sector does not produce divergence problems. Super-symmetry
means that also "orbital” degrees of freedom corresponding to the deformations of 3-surface define
similar factor. The general theory of hyper-finite factors of type II; is very rich and leads to rather
detailed understanding of the general structure of S-matrix in TGD framework. For instance, there is
a unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner single
particle time evolution. Also a connection with 3-dimensional topological quantum field theories and
knot theory, conformal field theories, braid groups, quantum groups, and quantum counterparts of
quaternionic and octonionic division algebras emerges naturally. These aspects are discussed in detail
in [60] .
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4.3 Hierarchy of Planck constants and the generalization of
the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quantization of
Planck constant is summarized. The question is whether it might be possible in some sense to replace
H or its Cartesian factors by their necessarily singular multiple coverings and factor spaces. One can
consider two options: either M* or the causal diamond C'D. The latter one is the more plausible
option from the point of view of WCW geometry.

4.3.1 The evolution of physical ideas about hierarchy of Planck constants

The evolution of the physical ideas related to the hierarchy of Planck constants and dark matter as a
hierarchy of phases of matter with non-standard value of Planck constants was much faster than the
evolution of mathematical ideas and quite a number of applications have been developed during last
five years.

1. The starting point was the proposal of Nottale [I] that the orbits of inner planets correspond
to Bohr orbits with Planck constant A, = GMm/vy and outer planets with Planck constant
figr = 5GMm /v, vo/c ~ 271, The basic proposal [45] [36] was that ordinary matter condenses
around dark matter which is a phase of matter characterized by a non-standard value of Planck
constant whose value is gigantic for the space-time sheets mediating gravitational interaction.
The interpretation of these space-time sheets could be as magnetic flux quanta or as massless
extremals assignable to gravitons.

2. Ordinary particles possibly residing at these space-time sheet have enormous value of Compton
length meaning that the density of matter at these space-time sheets must be very slowly vary-
ing. The string tension of string like objects implies effective negative pressure characterizing
dark energy so that the interpretation in terms of dark energy might make sense [46] . TGD
predicted a one-parameter family of Robertson-Walker cosmologies with critical or over-critical
mass density and the ”pressure” associated with these cosmologies is negative.

3. The quantization of Planck constant does not make sense unless one modifies the view about
standard space-time is. Particles with different Planck constant must belong to different worlds
in the sense local interactions of particles with different values of A are not possible. This inspires
the idea about the book like structure of the imbedding space obtained by gluing almost copies
of H together along common ”back” and partially labeled by different values of Planck constant.

4. Darkness is a relative notion in this framework and due to the fact that particles at different
pages of the book like structure cannot appear in the same vertex of the generalized Feynman
diagram. The phase transitions in which partonic 2-surface X2 during its travel along X 13 leaks
to another page of book are however possible and change Planck constant. Particle (say photon
-) exchanges of this kind allow particles at different pages to interact. The interactions are
strongly constrained by charge fractionization and are essentially phase transitions involving
many particles. Classical interactions are also possible. It might be that we are actually ob-
serving dark matter via classical fields all the time and perhaps have even photographed it [54]

5. The realization that non-standard values of Planck constant give rise to charge and spin fraction-
ization and anyonization led to the precise identification of the prerequisites of anyonic phase.
If the partonic 2-surface, which can have even astrophysical size, surrounds the tip of C'D, the
matter at the surface is anyonic and particles are confined at this surface. Dark matter could
be confined inside this kind of light-like 3-surfaces around which ordinary matter condenses. If
the radii of the basic pieces of these nearly spherical anyonic surfaces - glued to a connected
structure by flux tubes mediating gravitational interaction - are given by Bohr rules, the find-
ings of Nottale [I] can be understood. Dark matter would resemble to a high degree matter in
black holes replaced in TGD framework by light-like partonic 2-surfaces with a minimum size
of order Schwartschild radius rg of order scaled up Planck length {p; = \/h¢,G = GM. Black
hole entropy is inversely proportional to A and predicted to be of order unity so that dramatic
modification of the picture about black holes is implied.
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6. Perhaps the most fascinating applications are in biology. The anomalous behavior ionic currents
through cell membrane (low dissipation, quantal character, no change when the membrane is
replaced with artificial one) has a natural explanation in terms of dark supra currents. This
leads to a vision about how dark matter and phase transitions changing the value of Planck
constant could relate to the basic functions of cell, functioning of DNA and aminoacids, and to
the mysteries of bio-catalysis. This leads also a model for EEG interpreted as a communication
and control tool of magnetic body containing dark matter and using biological body as motor
instrument and sensory receptor. One especially amazing outcome is the emergence of genetic
code of vertebrates from the model of dark nuclei as nuclear strings [31, 54] , [31] .

4.3.2 The most general option for the generalized imbedding space

Simple physical arguments pose constraints on the choice of the most general form of the imbedding
space.

1. The fundamental group of the space for which one constructs a non-singular covering space or
factor space should be non-trivial. This is certainly not possible for M*, CD, CP,, or H. One
can however construct singular covering spaces. The fixing of the quantization axes implies a
selection of the sub-space Hy = M? x S2 ¢ M* x CP,, where S? is geodesic sphere of C'Ps.
M* = M A\ M? and cpPy = CP,\S? have fundamental group Z since the codimension of the
excluded sub-manifold is equal to two and homotopically the situation is like that for a punctured
plane. The exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

2. CP; allows two geodesic spheres which left invariant by U (2 resp. SO(3). The first one is homo-
logically non-trivial. For homologically non-trivial geodesic sphere Hy = M? x S? represents a
straight cosmic string which is non-vacuum extremal of Kéhler action (not necessarily preferred
extremal). One can argue that the many-valuedness of 7 is un-acceptable for non-vacuum ex-
tremals so that only homologically trivial geodesic sphere S? would be acceptable. One could go
even further. If the extremals in M? x C'P, can be preferred non-vacuum extremals, the singular
coverings of M* are not possible. Therefore only the singular coverings and factor spaces of
CP, over the homologically trivial geodesic sphere S? would be possible. This however looks a
non-physical outcome.

(a) The situation changes if the extremals of type M? x Y2, Y2 a holomorphic surface of C'Ps,
fail to be hyperquaternionic. The tangent space M? represents hypercomplex sub-space
and the product of the modified gamma matrices associated with the tangent spaces of Y2
should belong to M? algebra. This need not be the case in general.

(b) The situation changes also if one reinterprets the gluing procedure by introducing scaled
up coordinates for M* so that metric is continuous at M? x CP, but CDs with different
size have different sizes differing by the ratio of Planck constants and would thus have only
piece of lower or upper boundary in common.

3. For the more general option one would have four different options corresponding to the Cartesian
products of singular coverings and factor spaces. These options can be denoted by C'—C, C'—F,
F —C, and F — F, where C (F) signifies for covering (factor space) and first (second) letter
signifies for CD (CP,) and correspond to the spaces (CDXGy) x (CPyxGy), (CDXGy,) x
CPy /Gy, CD/Gq x (CPyXGh), and CD/Gy x CPy /Gy,

4. The groups G; could correspond to cyclic groups Z,. One can also consider an extension by
replacing M? and S? with its orbit under more general group G (say tedrahedral, octahedral, or
icosahedral group). One expects that the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-manifolds M? or S2. This
would replace the singular manifold with a set of its rotated copies in the case that the subgroups
have genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M? the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices of
tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy groups
into the picture in a natural manner.
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4.3.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and phase tran-
sition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M? x C'P, takes place? It would seem that the
covariant metric of C'D factor proportional to 72 must be discontinuous at the singular manifold
since only in this manner the idea about different scaling factor of C'D metric can make sense.
On the other hand, one can always scale the M* coordinates so that the metric is continuous
but the sizes of C Ds with different Planck constants differ by the ratio of the Planck constants.

2. Ome might worry whether the phase transition changing Planck constant means an instantaneous
change of the size of partonic 2-surface in M* degrees of freedom. This is not the case. Light-
likeness in M? x S? makes sense only for surfaces X! x D? € M? x S?, where X! is light-like
geodesic. The requirement that the partonic 2-surface X2 moving from one sector of H to
another one is light-like at M? x S? irrespective of the value of Planck constant requires that
X? has single point of M? as M? projection. Hence no sudden change of the size X? occurs.

3. A natural question is whether the phase transition changing the value of Planck constant can
occur purely classically or whether it is analogous to quantum tunneling. Classical non-vacuum
extremals of Chern-Simons action have two-dimensional C'P, projection to homologically non-
trivial geodesic sphere S?. The deformation of the entire S? to homologically trivial geodesic
sphere S%; is not possible so that only combinations of partonic 2-surfaces with vanishing total
homology charge (Ké&hler magnetic charge) can in principle move from sector to another one,
and this process involves fusion of these 2-surfaces such that C'P, projection becomes single
homologically trivial 2-surface. A piece of a non-trivial geodesic sphere S? of CP; can be
deformed to that of S7, using 2-dimensional homotopy flattening the piece of S? to curve. If this
homotopy cannot be chosen to be light-like, the phase transitions changing Planck constant take
place only via quantum tunnelling. Obviously the notions of light-like homotopies (cobordisms)
are very relevant for the understanding of phase transitions changing Planck constant.

4.3.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers n, and n; defining the covering
and factors spaces, is far from trivial and I have considered several options. The basic physical inputs
are the condition that scaling of Planck constant must correspond to the scaling of the metric of CD
(that is Compton lengths) on one hand and the scaling of the gauge coupling strength g?/47wh on the
other hand.

1. One can assign to Planck constant to both CD and C'P, by assuming that it appears in the
commutation relations of corresponding symmetry algebras. Algebraist would argue that Planck
constants i(CD) and i(C'P;) must define a homomorphism respecting multiplication and divi-
sion (when possible) by G;. This requires r(X) = ii(X)ho = n for covering and r(X) = 1/n for
factor space or vice versa.

2. If one assumes that h%(X), X = M*, CP, corresponds to the scaling of the covariant metric
tensor g;; and performs an over-all scaling of H-metric allowed by the Weyl invariance of Kahler
action by dividing metric with h?(CP,), one obtains the scaling of M* covariant metric by
r? = h?/h% = h2(M*)/h2(C Py) whereas C P, metric is not scaled at all.

3. The condition that /i scales as n, is guaranteed if one has A(CD) = nyhy. This does not fix
the dependence of A(CPs) on ny, and one could have i(CPz) = nphg or B(CPy) = fig/np. The
intuitive picture is that ny- fold covering gives in good approximation rise to n,n; sheets and
multiplies YM action action by ngn, which is equivalent with the i = n,nyho if one effectively
compresses the covering to C'D x C'P,. One would have A(CPy) = hig/ny and ki = ngnphy. Note
that the descriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.
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This gives the following formulas r = h/hy = r(M*)/r(CPy) in various cases.

c-C¢ F-C C—-F F-F
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4.3.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding to Fermat
polygons constructible using only ruler and compass and given as products np = 2* 1, Fs, where
F, = 22" 4+ 1 are distinct Fermat primes, are favored. The reason would be that quantum phase
g = exp(im/n) is in this case expressible using only iterated square root operation by starting from
rationals. The known Fermat primes correspond to s = 0,1,2,3,4 so that the hypothesis is very
strong and predicts that p-adic length scales have satellite length scales given as multiples of np of
fundamental p-adic length scale. ny = 2'! corresponds in TGD framework to a fundamental constant
expressible as a combination of Kéhler coupling strength, C P, radius and Planck length appearing in
the expression for the tension of cosmic strings, and the powers of 2'! seem to be especially favored
as values of n, in living matter [I5] .

4.3.6 How Planck constants are visible in Kahler action?

R(M*) and h(CP;) appear in the commutation and anticommutation relations of various supercon-
formal algebras. Only the ratio of M* and C'P, Planck constants appears in Kihler action and is
due to the fact that the M* and CP, metrics of the imbedding space sector with given values of
Planck constants are proportional to the corresponding Planck constants. This implies that Kéahler
function codes for radiative corrections to the classical action, which makes possible to consider the
possibility that higher order radiative corrections to functional integral vanish as one might expect
at quantum criticality. For a given p-adic length scale space-time sheets with all allowed values of
Planck constants are possible. Hence the spectrum of quantum critical fluctuations could in the ideal
case correspond to the spectrum of % coding for the scaled up values of Compton lengths and other
quantal lengths and times. If so, large /i phases could be crucial for understanding of quantum critical
superconductors, in particular high T, superconductors.

4.3.7 Could the dynamics of Kahler action predict the hierarchy of Planck
constants?

The original justification for the hierarchy of Planck constants came from the indications that Planck
constant could have large values in both astrophysical systems involving dark matter and also in
biology. The realization of the hierarchy in terms of the singular coverings and possibly also factor
spaces of CD and CP, emerged from consistency conditions. The formula for the Planck constant
involves heuristic guess work and physical plausibility arguments. There are good arguments in
favor of the hypothesis that only coverings are possible. Only a finite number of pages of the Big
Book correspond to a given value of Planck constant, biological evolution corresponds to a gradual
dispersion to the pages of the Big Book with larger Planck constant, and a connection with the
hierarchy of infinite primes and p-adicization program based on the mathematical realization of finite
measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible. One
finds also a precise geometric interpretation of preferred extremal property interpreted as criticality
in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails for
Kahler action

The basic motivation for the geometrization program was the observation that canonical quantization
for TGD fails. To see what is involved let us try to perform a canonical quantization in zero energy
ontology at the 3-D surfaces located at the light-like boundaries of CD x CP;.
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1. In canonical quantization canonical momentum densities 7) = 7, = OLx /0(9oh*), where doh*
denotes the time derivative of imbedding space coordinate, are the physically natural quantities
in terms of which to fix the initial values: once their value distribution is fixed also conserved
charges are fixed. Also the weak form of electric-magnetic duality given by J 03\/97 =dragJis
and a mild generalization of this condition to be discussed below can be interpreted as a manner
to fix the values of conserved gauge charges (not Noether charges) to their quantized values
since Kahler magnetic flux equals to the integer giving the homology class of the (wormhole)
throat. This condition alone need not characterize criticality, which requires an infinite number
of deformations of X* for which the second variation of the Kahler action vanishes and implies
infinite number conserved charges. This in fact gives hopes of replacing 7 with these conserved
Noether charges.

2. Canonical quantization requires that dyh* in the energy is expressed in terms of 7. The equation
defining 7, in terms of ph* is however highly non-linear although algebraic. By taking squares
the equations reduces to equations for rational functions of gh*. dph* appears in contravariant
and covariant metric at most quadratically and in the induced Kahler electric field linearly and
by multplying the equations by det(g4)® one can transform the equations to a polynomial form
so that in principle 9ph* can obtained as a solution of polynomial equations.

3. One can always eliminate one half of the coordinates by choosing 4 imbedding space coordinates
as the coordinates of the spacetime surface so that the initial value conditions reduce to those for
the canonical momentum densities associated with the remaining four coordinates. For instance,
for space-time surfaces representable as map M* — CP, M* coordinates are natural and the
time derivatives 9ys* of C'P, coordinates are multivalued. One would obtain four polynomial
equations with dys* as unknowns. In regions where C P, projection is 4-dimensional -in particular
for the deformations of C' P vacuum extremals the natural coordinates are C Py coordinates and
one can regard JymF as unknows. For the deformations of cosmic strings, which are of form
X4 =X2xY?C M*x CP,, one can use coordinates of M? x S?, where S? is geodesic sphere
as natural coordinates and regard as unknowns E? coordinates and remaining C'P, coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining IV roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situa-
tion is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving up the
canonical quantization program was following. For the vacuum extremals of Kahler action
are however identically vanishing and this means that there is an infinite number of value distri-
butions for dyh*. For small deformations of vacuum extremals one might however hope a finite
number of solutions to the conditions and thus finite number of space-time surfaces carrying
same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must treat
the the many-valuedness of dyh*. The most obvious guess is that one should replace the space of
space-like 4-surfaces corresponding to different roots dph* = F*(m;) with four-surfaces in the covering
space of CD x CP, corresponding to different branches of the many-valued function doh* = F(m;)
co-inciding at the ends of C'D.

Do the coverings forces by the many-valuedness of 9yh* correspond to the coverings
associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces asso-
ciated with the hierarchy of Planck constants. This would conform with quantum classical correspon-
dence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to cure
the failure of the perturbation theory at quantum level. At classical level the multivaluedness of dyh*
means a failure of perturbative canonical quantization and forces the introduction of the covering
spaces. The interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It is of course not
at all obvious whether the proposed structure of the Big Book is really consistent with this hypothesis
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and one also consider modifications of this structure if necessary. The manner to proceed is by making
questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP, degrees of freedom are however needed. How these two coverings
could emerge?

n?

coordinate at the wormhole throats. If one requires that charges do not flow between
regions with different signatures of the metric the natural condition is 7 = 0 and allows
also multi-valued solution. Since wormhole throats carry magnetic charge and since weak
form of electric-magnetic duality is assumed, one can assume that C'P, projection is four-
dimensional so that one can use C' P, coordinates and regard dym"* as un-knows. The basic
idea about topological condensation in turn suggests that M* projection can be assumed
to be 4-D inside space-like 3-surfaces so that here 9ys* are the unknowns. At partonic 2-
surfaces one would have conditions for both 79 and 7. One might hope that the numbers
of solutions are finite for preferred extremals because of their symmetries and given by n,
for Oym”* and by ny, for dys*. The optimistic guess is that n, and n; corresponds to the
numbers of sheets for singular coverings of CD and C'P,. The covering could be visualized
as replacement of space-time surfaces with space-time surfaces which have n,n; branches.
np branches would degenerate to single branch at the ends of diagrams of the generaled
Feynman graph and n, branches would degenerate to single one at wormhole throats.

a) One should fix also the values of 77 = 0Ly /OhE, where n refers to space-like normal
k

(b) This picture is not quite correct yet. The fixing of 72 and 77 should relate closely to the
effective 2-dimensionality as an additional condition perhaps crucial for criticality. One
could argue that both 7 and 7" must be fixed at X® and X} in order to effectively bring
in dynamics in two directions so that X3 could be interpreted as a an orbit of partonic
2-surface in space-like direction and X l3 as its orbit in light-like direction. The additional
conditions could be seen as gauge conditions made possible by symplectic and Kac-Moody
type conformal symmetries. The conditions for w5 would give n;, branches in CP; degrees
of freedom and the conditions for 7;; would split each of these branches to n, branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for 7)) could
relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically the
conserved changes would be n,n;, times larger than for single branch. Kahler action need not
(but could!) be same for different branches but the total action is n,n;, times the average action
and this effectively corresponds to the replacement of the fig/g% factor of the action with %/g%,
r = h/hy = nanp. Since the conserved quantum charges are proportional to % one could argue
that r = ny,ny tells only that the charge conserved charge is ng,np times larger than without
multi-valuedness. i would be only effectively n,ny fold. This is of course poor man’s argument
but might catch something essential about the situation.

3. How could one interpret the condition J 03\/97 = 4dmag Ji2 and its generalization to be discussed
below in this framework? The first observation is that the total Kéhler electric charge is by
ag x 1/(ngny) same always. The interpretation would be in terms of charge fractionization
meaning that each branch would carry Kéhler electric charge Qx = ngx/nenpy. I have indeed
suggested explanation of charge fractionization and quantum Hall effect based on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbedding
space metric. The assumption that the M* covariant metric is proportional to h? follows from
the physical idea about A scaling of quantum lengths as what Compton length is. One can
always introduce scaled M* coordinates bringing M* metric into the standard form by scaling
up the M* size of CD. It is not clear whether the scaling up of CD size follows automatically
from the proposed scenario. The basic question is why the M* size scale of the critical extremals
must scale like n,np? This should somehow relate to the weak self-duality conditions implying
that Kéhler field at each branch is reduced by a factor 1/r at each branch. Field equations
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should posses a dynamical symmetry involving the scaling of C'D by integer k and J° V91 and
J”B\/@ by 1/k. The scaling of CD should be due to the scaling up of the M* time interval
during which the branched light-like 3-surface returns back to a non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M? c M* for CD and to S? C CP, for CP,. Here S? is any
homologically trivial geodesic sphere of C'P; and has vanishing Kéahler form. Weak self-duality
condition is indeed consistent with any value of & and impies that the vacuum property for the
partonic 2-surface implies vacuum property for the entire space-time sheet as holography indeed
requires. This condition however generalizes. In weak self-duality conditions the value of & is
free for any 2-D Lagrangian sub-manifold of CPs.

The branching along M? would mean that the branches of preferred extremals always collapse
to single branch when their M* projection belongs to M2. Magnetically charged light-light-like
throats cannot have M* projection in M2 so that self-duality conditions for different values of
h do not lead to inconsistencies. For spacelike 3-surfaces at the boundaries of C'D the condition
would mean that the M* projection becomes light-like geodesic. Straight cosmic strings would
have M? as M* projection. Also C'P, type vacuum extremals for which the random light-
like projection in M* belongs to M? would represent this of situation. One can ask whether
the degeneration of branches actually takes place along any string like object X2 x Y2, where
X? defines a minimal surface in M*. For these the weak self-duality condition would imply
h = oo at the ends of the string. It is very plausible that string like objects feed their magnetic
fluxes to larger space-times sheets through wormhole contacts so that these conditions are not
encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and light-
like 3-surfaces with degenerate 4-metric and the degeneration of the n,n; branches of the space-time
surface at the its ends and at wormhole throats is exactly what happens at criticality. For instance,
in catastrophe theory roots of the polynomial equation giving extrema of a potential as function of
control parameters co-incide at criticality. If this picture is correct the hierarchy of Planck constants
would be an outcome of criticality and of preferred extremal property and preferred extremals would
be just those multi-branched space-time surfaces for which branches co-incide at the the boundaries
of CD x CP, and at the throats.

4.4 Number theoretic compactification and M® — H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M® — H duality boils down to the assumption
that space-time surfaces can be regarded either as surfaces of H or as surfaces of M® composed of
hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of space-time possessing
Minkowskian resp. Euclidian signature of the induced metric.