
Quantum Hall effect and Hierarchy of Planck

Constants

M. Pitkänen
Email: matpitka@luukku.com.fi.

http://www.helsinki.fi/∼matpitka/.

December 12, 2008

Contents

1 Introduction 3

2 About theories of quantum Hall effect 6
2.1 Quantum Hall effect as a spontaneous symmetry breaking down

to a discrete subgroup of the gauge group . . . . . . . . . . . . . 6
2.2 Witten-Chern-Simons action and topological quantum field theories 7
2.3 Chern-Simons action for anyons . . . . . . . . . . . . . . . . . . . 9
2.4 Topological quantum computation using braids and anyons . . . 10

3 A generalization of the notion of imbedding space 12
3.1 Both covering spaces and factor spaces are possible . . . . . . . . 12
3.2 Do factor spaces and coverings correspond to the two kinds of

Jones inclusions? . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 A simple model of fractional quantum Hall effect . . . . . . . . . 16

4 Quantum Hall effect, charge fractionization, and hierarchy of
Planck constants 18
4.1 Quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 TGD description of QHE . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Quantum TGD almost topological QFT . . . . . . . . . . . . . . 20
4.4 Constraints to the Kähler structure of generalized imbedding

space from charge fractionization . . . . . . . . . . . . . . . . . . 21
4.4.1 Hierarchy of Planck constants and book like structure of

imbedding space . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Non-vanishing of Poincare quantum numbers requires CP2

Kähler gauge potential to have M4 part . . . . . . . . . . 22
4.4.3 The M4 part of CP2 Kähler gauge potential for the gen-

eralized imbedding space . . . . . . . . . . . . . . . . . . 23

1



4.4.4 How fractional electric and magnetic charges emerge from
M4 gauge part of CP2 Kähler gauge potential? . . . . . . 24

4.4.5 Coverings and factor spaces of CP2 and anyonic gauge
part of Kähler gauge potential in CP2? . . . . . . . . . . 27

4.4.6 How the values of the anomalous charges relate to the
parameters characterizing the page of the Big Book? . . . 27

4.4.7 What about Kähler gauge potential for CD? . . . . . . . 29
4.5 In what kind of situations do anyons emerge? . . . . . . . . . . . 30
4.6 What happens in QHE? . . . . . . . . . . . . . . . . . . . . . . . 31

Abstract

I have already earlier proposed the explanation of FQHE, anyons, and
fractionization of quantum numbers in terms of hierarchy of Planck con-
stants realized as a generalization of the imbedding space H = M4×CP2

to a book like structure. The book like structure applies separately to CP2

and to causal diamonds (CD ⊂ M4) defined as intersections of future and
past directed light-cones. The pages of the Big Book correspond to singu-
lar coverings and factor spaces of CD (CP2) glued along 2-D subspace of
CD (CP2) and are labeled by the values of Planck constants assignable to
CD and CP2 and appearing in Lie algebra commutation relations. The
observed Planck constant h̄, whose square defines the scale of M4 metric
corresponds to the ratio of these Planck constants. The key observation is
that fractional filling factor results if h̄ is scaled up by a rational number.

In this chapter I try to formulate more precisely this idea. The outcome
is a rather detailed view about anyons on one hand, and about the Kähler
structure of the generalized imbedding space on the other hand.

1. Fundamental role is played by the assumption that the Kähler gauge
potential of CP2 contains a gauge part with no physical implica-
tions in the context of gauge theories but contributing to physics
in TGD framework since U(1) gauge transformations are represen-
tations of symplectic transformations of CP2. Also in the case of
CD it makes also sense to speak about Kähler gauge potential. The
gauge part codes for Planck constants of CD and CP2 and leads
to the identification of anyons as states associated with partonic 2-
surfaces surrounding the tip of CD and fractionization of quantum
numbers. Explicit formulas relating fractionized charges to the co-
efficients characterizing the gauge parts of Kähler gauge potentials
of CD and CP2 are proposed based on some empirical input.

2. One important implication is that Poincare and Lorentz invariance
are broken inside given CD although they remain exact symmetries
at the level of the geometry of world of classical worlds (WCW). The
interpretation is as a breaking of symmetries forced by the selection
of quantization axis.

3. Anyons would basically correspond to matter at 2-dimensional ”par-
tonic” surfaces of macroscopic size surrounding the tip of the light-
cone boundary of CD and could be regarded as gigantic elementary
particle states with very large quantum numbers and by charge frac-
tionization confined around the tip of CD. Charge fractionization
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and anyons would be basic characteristic of dark matter (dark only
in relative sense). Hence it is not surprising that anyons would have
applications going far beyond condensed matter physics. Anyonic
dark matter concentrated at 2-dimensional surfaces would play key
key role in the the physics of stars and black holes, and also in the
formation of planetary system via the condensation of the ordinary
matter around dark matter. This assumption was the basic starting
point leading to the discovery of the hierarchy of Planck constants.
In living matter membrane like structures would represent a key
example of anyonic systems as the model of DNA as topological
quantum computer indeed assumes.

4. One of the basic questions has been whether TGD forces the hierar-
chy of Planck constants realized in terms of generalized imbedding
space or not. The condition that the choice of quantization axes
has a geometric correlate at the imbedding space level motivated by
quantum classical correspondence of course forces the hierarchy: this
has been clear from the beginning. It is now clear that first prin-
ciple description of anyons requires the hierarchy in TGD Universe.
The hierarchy reveals also new light to the huge vacuum degeneracy
of TGD and reduces it dramatically at pages for which CD corre-
sponds to a non-trivial covering or factor space, which suggests that
mathematical existence of the theory necessitates the hierarchy of
Planck constants. Also the proposed manifestation of Equivalence
Principle at the level of symplectic fusion algebras as a duality be-
tween descriptions relying on the symplectic structures of CD and
CP2 forces the hierarchy of Planck constants.

Keywords: Topological Geometrodynamics, quantum biology, topological
quantum computation, DNA.

1 Introduction

Quantum Hall effect [29, 30, 35] occurs in 2-dimensional systems, typically a
slab carrying a longitudinal voltage V causing longitudinal current j. A mag-
netic field orthogonal to the slab generates a transversal current component jT

by Lorentz force. jT is proportional to the voltage V along the slab and the
dimensionless coefficient is known as transversal conductivity. Classically the
coefficients is proportional ne/B, where n is 2-dimensional electron density and
should have a continuous spectrum. The finding that came as surprise was
that the change of the coefficient as a function of parameters like magnetic field
strength and temperature occurred as discrete steps of same size. In integer
quantum Hall effect the coefficient is quantized to 2να, α = e2/4π, such that ν
is integer.

Later came the finding that also smaller steps corresponding to the filling
fraction ν = 1/3 of the basic step were present and could be understood if the
charge of electron would have been replaced with ν = 1/3 of its ordinary value.
Later also QH effect with wide large range of filling fractions of form ν = k/m
was observed.
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The model explaining the QH effect is based on pseudo particles known as
anyons [39, 30]. According to the general argument of [28] anyons have frac-
tional charge νe. Also the TGD based model for fractionization to be discussed
later suggests that the anyon charge should be νe quite generally. The braid
statistics of anyon is believed to be fractional so that anyons are neither bosons
nor fermions. Non-fractional statistics is absolutely essential for the vacuum
degeneracy used to represent logical qubits.

In the case of Abelian anyons the gauge potential corresponds to the vec-
tor potential of the divergence free velocity field or equivalently of incompress-
ible anyon current. For non-Abelian anyons the field theory defined by Chern-
Simons action is free field theory and in well-defined sense trivial although it
defines knot invariants. For non-Abelian anyons situation would be different.
They would carry non-Abelian gauge charges possibly related to a symmetry
breaking to a discrete subgroup H of gauge group [39] each of them defining an
incompressible hydrodynamical flow. According to [18] the anyons associated
with the filling fraction ν = 5/2 are a good candidate for non-Abelian anyons
and in this case the charge of electron is reduced to Q = e/4 rather than being
Q = νe [36]. This finding favors non-Abelian models [35].

Non-Abelian anyons [38, 30] are always created in pairs since they carry
a conserved topological charge. In the model of [18] this charge should have
values in 4-element group Z4 so that it is conserved only modulo 4 so that
charges +2 and -2 are equivalent as are also charges 3 and -1. The state of
n anyon pairs created from vacuum can be show to possess 2n−1-dimensional
vacuum degeneracy [37]. When two anyons fuse the 2n−1-dimensional state
space decomposes to 2n−2-dimensional tensor factors corresponding to anyon
Cooper pairs with topological charges 2 and 0. The topological ”spin” is ideal
for representing logical qubits. Since free topological charges are not possible the
notion of physical qubit does not make sense (note the analogy with quarks).
The measurement of topological qubit reduces to a measurement of whether
anyon Cooper pair has vanishing topological charge or not.

Topological quantum computation is perhaps the most promising application
of anyons [17, 18, 19, 20, 21, 22, 23].

I have already earlier proposed the explanation of FQHE, anyons, and frac-
tionization of quantum numbers in terms of hierarchy of Planck constants real-
ized as a generalization of the imbedding space H = M4 × CP2 to a book like
structure [A9]. The book like structure applies separately to CP2 and to causal
diamonds (CD ⊂ M4) defined as intersections of future and past directed light-
cones. The pages of the Big Book correspond to singular coverings and factor
spaces of CD (CP2) glued along 2-D subspace of CD (CP2) and are labeled
by the values of Planck constants assignable to CD and CP2 and appearing
in Lie algebra commutation relations. The observed Planck constant h̄, whose
square defines the scale of M4 metric corresponds to the ratio of these Planck
constants. The key observation is that fractional filling factor results if h̄ is
scaled up by a rational number.

In this chapter I try to formulate more precisely this idea. The outcome is a
rather detailed view about anyons on one hand, and about the Kähler structure
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of the generalized imbedding space on the other hand.

1. Fundamental role is played by the assumption that the Kähler gauge po-
tential of CP2 contains a gauge part with no physical implications in the
context of gauge theories but contributing to physics in TGD framework
since U(1) gauge transformations are representations of symplectic trans-
formations of CP2. Also in the case of CD it makes also sense to speak
about Kähler gauge potential. The gauge part codes for Planck con-
stants of CD and CP2 and leads to the identification of anyons as states
associated with partonic 2-surfaces surrounding the tip of CD and frac-
tionization of quantum numbers. Explicit formulas relating fractionized
charges to the coefficients characterizing the gauge parts of Kähler gauge
potentials of CD and CP2 are proposed based on some empirical input.

2. One important implication is that Poincare and Lorentz invariance are
broken inside given CD although they remain exact symmetries at the
level of the geometry of world of classical worlds (WCW). The interpreta-
tion is as a breaking of symmetries forced by the selection of quantization
axis.

3. Anyons would basically correspond to matter at 2-dimensional ”partonic”
surfaces of macroscopic size surrounding the tip of the light-cone bound-
ary of CD and could be regarded as gigantic elementary particle states
with very large quantum numbers and by charge fractionization confined
around the tip of CD. Charge fractionization and anyons would be ba-
sic characteristic of dark matter (dark only in relative sense). Hence
it is not surprising that anyons would have applications going far be-
yond condensed matter physics. Anyonic dark matter concentrated at
2-dimensional surfaces would play key key role in the the physics of stars
and black holes, and also in the formation of planetary system via the con-
densation of the ordinary matter around dark matter. This assumption
was the basic starting point leading to the discovery of the hierarchy of
Planck constants [A9]. In living matter membrane like structures would
represent a key example of anyonic systems as the model of DNA as topo-
logical quantum computer indeed assumes [L5].

4. One of the basic questions has been whether TGD forces the hierarchy
of Planck constants realized in terms of generalized imbedding space or
not. The condition that the choice of quantization axes has a geomet-
ric correlate at the imbedding space level motivated by quantum classical
correspondence of course forces the hierarchy: this has been clear from
the beginning. It is now clear that also the first principle description of
anyons requires the hierarchy in TGD Universe. The hierarchy reveals
also new light to the huge vacuum degeneracy of TGD and reduces it
dramatically at pages for which CD corresponds to a non-trivial covering
or factor space, which suggests that mathematical existence of the theory
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necessitates the hierarchy of Planck constants. Also the proposed manifes-
tation of Equivalence Principle at the level of symplectic fusion algebras
as a duality between descriptions relying on the symplectic structures of
CD and CP2[C4] forces the hierarchy of Planck constants.

The first sections of the chapter contain summary about theories of quantum
Hall effect appearing already in [E9]. Second section is a slightly modified ver-
sion of the description of the generalized imbedding space, which has appeared
already in [A9, E9, L5] and containing brief description of how to understand
QHE in this framework. The third section represents the basic new results
about the Kähler structure of generalized imbedding space and represents the
resulting model of QHE.

2 About theories of quantum Hall effect

The most elegant models of quantum Hall effect are in terms of anyons regarded
as singularities due to the symmetry breaking of gauge group G down to a finite
sub-group H, which can be also non-Abelian. Concerning the description of the
dynamics of topological degrees of freedom topological quantum field theories
based on Chern-Simons action are the most promising approach.

2.1 Quantum Hall effect as a spontaneous symmetry break-
ing down to a discrete subgroup of the gauge group

The system exhibiting quantum Hall effect is effectively 2-dimensional. Frac-
tional statistics suggests that topological defects, anyons, allowing a description
in terms of the representations of the homotopy group of ((R2)n −D)/Sn. The
gauge theory description would be in terms of spontaneous symmetry breaking
of the gauge group G to a finite subgroup H by a Higgs mechanism [39, 30].
This would make all gauge degrees of freedom massive and leave only topolog-
ical degrees of freedom. What is unexpected that also non-Abelian topological
degrees of freedom are in principle possible. Quantum Hall effect is Abelian or
non-Abelian depending on whether the group H has this property.

In the symmetry breaking G → H the non-Abelian gauge fluxes defined as
non-integrable phase factors Pexp(i

∮
Aµdxµ) around large circles (surrounding

singularities (so that field approaches a pure gauge configuration) are elements
of the first homotopy group of G/H, which is H in the case that H is discrete
group and G is simple. An idealized manner to model the situation [30] is to
assume that the connection is pure gauge and defined by an H-valued function
which is many-valued such that the values for different branches are related by
a gauge transformation in H. In the general case a gauge transformation of a
non-trivial gauge field by a multi-valued element of the gauge group would give
rise to a similar situation.

One can characterize a given topological singularity magnetically by an ele-
ment in conjugacy class C of H representing the transformation of H induced
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by a 2π rotation around singularity. The elements of C define states in given
magnetic representation. Electrically the particles are characterized by an irre-
ducible representations of the subgroup of HC ⊂ H which commutes with an
arbitrarily chosen element of the conjugacy class C.

The action of h(B) resulting on particle A when it makes a closed turn
around B reduces in magnetic degrees of freedom to translation in conjugacy
class combined with the action of element of HC in electric degrees of freedom.
Closed paths correspond to elements of the braid group Bn(X2) identifiable as
the mapping class group of the punctured 2-surface X2 and this means that
symmetry breaking G → H defines a representation of the braid group. The
construction of these representations is discussed in [30] and leads naturally via
the group algebra of H to the so called quantum double D(H) of H, which
is a quasi-triangular Hopf algebra allowing non-trivial representations of braid
group.

Anyons could be singularities of gauge fields, perhaps even non-Abelian
gauge fields, and the latter ones could be modelled by these representations.
In particular, braid operations could be represented using anyons.

2.2 Witten-Chern-Simons action and topological quantum
field theories

The Wess-Zumino-Witten action used to model 2-dimensional critical systems
consists of a 2-dimensional conformally invariant term for the chiral field having
values in group G combined with 2+1-dimensional term defined as the integral
of Chern-Simons 3-form over a 3-space containing 2-D space as its boundary.
This term is purely topological and identifiable as winding number for the map
from 3-dimensional space to G. The coefficient of this term is integer k in
suitable normalization. k gives the value of central extension of the Kac-Moody
algebra defined by the theory.

One can couple the chiral field g(x) to gauge potential defined for some sub-
group of G1 of G. If the G1 coincides with G, the chiral field can be gauged away
by a suitable gauge transformation and the theory becomes purely topological
Witten-Chern-Simons theory. Pure gauge field configuration represented either
as flat gauge fields with non-trivial holonomy over homotopically non-trivial
paths or as multi-valued gauge group elements however remain and the remain-
ing degrees of freedom correspond to the topological degrees of freedom.

Witten-Chern-Simons theories are labelled by a positive integer k giving
the value of central extension of the Kac-Moody algebra defined by the theory.
The connection with Wess-Zumino-Witten theory come from the fact that the
highest weight states associated with the representations of the Kac-Moody
algebra of WZW theory are in one-one correspondence with the representations
Ri possible for Wilson loops in the topological quantum field theory.

In the Abelian case case 2+1-dimensional Chern-Simons action density is
essentially the inner product A ∧ dA of the vector potential and magnetic field
known as helicity density and the theory in question is a free field theory. In
the non-Abelian case the action is defined by the 3-form
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k

4π
Tr

(
A ∧ (dA +

2
3
A ∧A)

)

and contains also interaction term so that the field theory defined by the expo-
nential of the interaction term is non-trivial.

In topological quantum field theory the usual n-point correlation functions
defined by the functional integral are replaced by the functional averages for
Diff3 invariant quantities defined in terms of non-integrable phase factors de-
fined by ordered exponentials over closed loops. One can consider arbitrary
number of loops which can be knotted, linked, and braided. These quantities
define both knot and 3-manifold invariants (the functional integral for zero link
in particular). The perturbative calculation of the quantum averages leads di-
rectly to the Gaussian linking numbers and infinite number of perturbative link
and not invariants.

The experience gained from topological quantum field theories defined by
Chern-Simons action has led to a very elegant and surprisingly simple category
theoretical approach to the topological quantum field theory [27, 25] allowing to
assign invariants to knots, links, braids, and tangles and also to 3-manifolds for
which braids as morphisms are replaced with cobordisms. The so called modular
Hopf algebras, in particular quantum groups Sl(2)q with q a root of unity, are
in key role in this approach. Also the connection between links and 3-manifolds
can be understood since closed, oriented, 3-manifolds can be constructed from
each other by surgery based on links.

Witten’s article [26] ”Quantum Field Theory and the Jones Polynomial” is
full of ingenious constructions, and for a physicist it is the easiest and certainly
highly enjoyable manner to learn about knots and 3-manifolds. For these reasons
a little bit more detailed sum up is perhaps in order.

1. Witten discusses first the quantization of Chern-Simons action at the weak
coupling limit k → ∞. First it is shown how the functional integration
around flat connections defines a topological invariant for 3-manifolds in
the case of a trivial Wilson loop. Next a canonical quantization is per-
formed in the case X3 = Σ2 × R1: in the Coulomb gauge A3 = 0 the ac-
tion reduces to a sum of n = dim(G) Abelian Chern-Simons actions with
a non-linear constraint expressing the vanishing of the gauge field. The
configuration space consists thus of flat non-Abelian connections, which
are characterized by their holonomy groups and allows Kähler manifold
structure.

2. Perhaps the most elegant quantal element of the approach is the decom-
position of the 3-manifold to two pieces glued together along 2-manifold
implying the decomposition of the functional integral to a product of func-
tional integrals over the pieces. This together with the basic properties of
Hilbert of complex numbers (to which the partition functions defined by
the functional integrals over the two pieces belong) allows almost a mir-
acle like deduction of the basic results about the behavior of 3-manifold
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and link invariants under a connected sum, and leads to the crucial skein
relations allowing to calculate the invariants by decomposing the link step
by step to a union of unknotted, unlinked Wilson loops, which can be
calculated exactly for SU(N). The decomposition by skein relations gives
rise to a partition function like representation of invariants and allows
to understand the connection between knot theory and statistical physics
[24]. A direct relationship with conformal field theories and Wess-Zumino-
Witten model emerges via Wilson loops associated with the highest weight
representations for Kac Moody algebras.

3. A similar decomposition procedure applies also to the calculation of 3-
manifold invariants using link surgery to transform 3-manifolds to each
other, with 3-manifold invariants being defined as Wilson loops associated
with the homology generators of these (solid) tori using representations Ri

appearing as highest weight representations of the loop algebra of torus.
Surgery operations are represented as mapping class group operations act-
ing in the Hilbert space defined by the invariants for representations Ri

for the original 3-manifold. The outcome is explicit formulas for the in-
variants of trivial knots and 3-manifold invariant of S3 for G = SU(N),
in terms of which more complex invariants are expressible.

4. For SU(N) the invariants are expressible as functions of the phase q =
exp(i2π/(k + N)) associated with quantum groups. Note that for SU(2)
and k = 3, the invariants are expressible in terms of Golden Ratio. The
central charge k = 3 is in a special position since it gives rise to k + 1 =
4-vertex representing naturally 2-gate physically. Witten-Chern-Simons
theories define universal unitary modular functors characterizing quantum
computations [19].

2.3 Chern-Simons action for anyons

In the case of quantum Hall effect the Chern-Simons action has been deduced
from a model of electrons as a 2-dimensional incompressible fluid [29]. Incom-
pressibility requires that the electron current has a vanishing divergence, which
makes it analogous to a magnetic field. The expressibility of the current as a curl
of a vector potential b, and a detailed study of the interaction Lagrangian leads
to the identification of an Abelian Chern-Simons for b as a low energy effec-
tive action. This action is Abelian, whereas the anyonic realization of quantum
computation would suggest a non-Abelian Chern-Simons action.

Non-Abelian Chern-Simons action could result in the symmetry breaking
of a non-Abelian gauge group G, most naturally electro-weak gauge group, to
a non-Abelian discrete subgroup H [39] so that states would be labelled by
representations of H and anyons would be characterized magnetically H-valued
non-Abelian magnetic fluxes each of them defining its own incompressible hydro-
dynamical flow. As will be found, TGD predicts a non-Abelian Chern-Simons
term associated with electroweak long range classical fields.
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2.4 Topological quantum computation using braids and
anyons

By the general mathematical results braids are able to code all quantum logic
operations [23]. In particular, braids allow to realize any quantum circuit con-
sisting of single particle gates acting on qubits and two particle gates acting on
pairs of qubits. The coding of braid requires a classical computation which can
be done in polynomial time. The coding requires that each dancer is able to
remember its dancing history by coding it into its own state.

The general ideas are following.

1. The ground states of anyonic system characterize the logical qubits, One
assumes non-Abelian anyons with Z4 -valued topological charge so that
a system of n anyon pairs created from vacuum allows 2n−1-fold anyon
degeneracy [37]. The system is decomposed into blocks containing one
anyonic Cooper pair with QT ∈ {2, 0} and two anyons with such topolog-
ical charges that the net topological charge vanishes. One can say that
the states (0, 1− 1) and (0,−1, +1)) represent logical qubit 0 whereas the
states (2,−1,−1) and (2, +1, +1) represent logical qubit 1. This would
suggest 22-fold degeneracy but actually the degeneracy is 2-fold.

Free physical qubits are not possible and at least four particles are in-
deed necessarily in order to represent logical qubit. The reason is that
the conservation of Z4 charge would not allow mixing of qubits 1 and 0,
in particular the Hadamard 1-gate generating square root of qubit would
break the conservation of topological charge. The square root of qubit
can be generated only if 2 units of topological charge is transferred be-
tween anyon and anyon Cooper pair. Thus qubits can be represented as
entangled states of anyon Cooper pair and anyon and the fourth anyon is
needed to achieve vanishing total topological charge in the batch.

2. In the initial state of the system the anyonic Cooper pairs have QT = 0
and the two anyons have opposite topological charges inside each block.
The initial state codes no information unlike in ordinary computation
but the information is represented by the braid. Of course, also more
general configurations are possible. Anyons are assumed to evolve like
free particles except during swap operations and their time evolution is
described by single particle Hamiltonians.

Free particle approximation fails when the anyons are too near to each
other as during braid operations. The space of logical qubits is realized as
k-code defined by the 2n−1 ground states, which are stable against local
single particle perturbations for k = 3 Witten-Chern-Simons action. In
the more general case the stability against n-particle perturbations with
n < [k/2] is achieved but the gates would become [k/2]-particle gates (for
k = 5 this would give 6-particle vertices).

3. Anyonic system provides a unitary modular functor as the S-matrix as-
sociated with the anyon system whose time evolution is fixed by the pre-
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existing braid structure. What this means that the S-matrices associated
with the braids can be multiplied and thus a unitary representation for the
group formed by braids results. The vacuum degeneracy of anyon system
makes this representation non-trivial. By the NP complexity of braids it
is possible to code any quantum logic operation by a particular braid [21].
There exists a powerful approximation theorem allowing to achieve this
coding classically in polynomial time [23]. From the properties of the R-
matrices inducing gate operations it is indeed clear that two gates can be
realized. The Hadamard 1-gate could be realized as 2-gate in the system
formed by anyon Cooper pair and anyon.

4. In [18] the time evolution is regarded as a discrete sequence of modifica-
tions of single anyon Hamiltonians induced by swaps [20]. If the modi-
fications define a closed loop in the space of Hamiltonians the resulting
unitary operators define a representation of braid group in a dense dis-
crete sub-group of U(2n). The swap operation is 2-local operation acting
like a 2-gate and induces quantum logical operation modifying also single
particle Hamiltonians. What is important that this modification maps
the space of the ground states to a new one and only if the modifications
correspond to a closed loop the final state is in the same code space as the
initial state. What time evolution does is to affect the topological charges
of anyon Cooper pairs representing qubits inside the 4-anyon batches de-
fined by the braids.

In quantum field theory the analog but not equivalent of this descrip-
tion would be following. Quite generally, a given particle in the final
state has suffered a unitary transformation, which is an ordered product
consisting of two kinds of unitary operators. Unitary single particle oper-
ators Un = Pexp(i

∫ tn+1

tn
H0dt) are analogs of operators describing single

qubit gate and play the role of anyon propagators during no-swap periods.
Two-particle unitary operators Uswap = Pexp(i

∫
Hswapdt) are analogous

to four-particle interactions and describe the effect of braid operations in-
ducing entanglement of states having opposite values of topological charge
but conserving the net topological charge of the anyon pair. This entan-
glement is completely analogous to spin entanglement. In particular, the
braid operation mixes different states of the anyon. The unitary time de-
velopment operator generating entangled state of anyons and defined by
the braid structure represents the operation performed by the quantum
circuit and the quantum measurement in the final state selects a particular
final state.

5. Formally the computation halts with a measurement of the topological
charge of the left-most anyon Cooper pair when the outcome is just single
bit. If decay occurs with sufficiently high probability it is concluded that
the value of the computed bit is 0, otherwise 1.
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3 A generalization of the notion of imbedding
space

In the following the recent view about structure of imbedding space forced by
the quantization of Planck constant is described. This view has developed much
before the original version of this chapter was written.

The original idea was that the proposed modification of the imbedding space
could explain naturally phenomena like quantum Hall effect involving fraction-
ization of quantum numbers like spin and charge. This does not however seem
to be the case. Ga×Gb implies just the opposite if these quantum numbers are
assigned with the symmetries of the imbedding space. For instance, quantiza-
tion unit for orbital angular momentum becomes na where Zna

is the maximal
cyclic subgroup of Ga.

One can however imagine of obtaining fractionization at the level of imbed-
ding space for space-time sheets, which are analogous to multi-sheeted Riemann
surfaces (say Riemann surfaces associated with z1/n since the rotation by 2π
understood as a homotopy of M4 lifted to the space-time sheet is a non-closed
curve. Continuity requirement indeed allows fractionization of the orbital quan-
tum numbers and color in this kind of situation.

3.1 Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible in
some sense to replace H or its factors by their multiple coverings.

1. This is certainly not possible for M4, CP2, or H since their fundamen-
tal groups are trivial. On the other hand, the fixing of quantization axes
implies a selection of the sub-space H4 = M2 × S2 ⊂ M4 × CP2, where
S2 is a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2 have
fundamental group Z since the codimension of the excluded sub-manifold
is equal to two and homotopically the situation is like that for a punc-
tured plane. The exclusion of these sub-manifolds defined by the choice
of quantization axes could naturally give rise to the desired situation.

2. H4 represents a straight cosmic string. Quantum field theory phase cor-
responds to Jones inclusions with Jones index M : N < 4. Stringy phase
would by previous arguments correspond to M : N = 4. Also these
Jones inclusions are labelled by finite subgroups of SO(3) and thus by Zn

identified as a maximal Abelian subgroup.

One can argue that cosmic strings are not allowed in QFT phase. This
would encourage the replacement M̂4 × ˆCP2 implying that surfaces in
M4 × S2 and M2 × CP2 are not allowed. In particular, cosmic strings
and CP2 type extremals with M4 projection in M2 and thus light-like
geodesic without zitterwebegung essential for massivation are forbidden.
This brings in mind instability of Higgs=0 phase.
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3. The covering spaces in question would correspond to the Cartesian prod-
ucts M̂4

na × ˆCP2nb
of the covering spaces of M̂4 and ˆCP2 by Zna

and
Znb

with fundamental group is Zna
× Znb

. One can also consider exten-
sion by replacing M2 and S2 with its orbit under Ga (say tedrahedral,
octahedral, or icosahedral group). The resulting space will be denoted by
M̂4×̂Ga resp. ˆCP2×̂Gb.

4. One expects the discrete subgroups of SU(2) emerge naturally in this
framework if one allows the action of these groups on the singular sub-
manifolds M2 or S2. This would replace the singular manifold with a
set of its rotated copies in the case that the subgroups have genuinely
3-dimensional action (the subgroups which corresponds to exceptional
groups in the ADE correspondence). For instance, in the case of M2 the
quantization axes for angular momentum would be replaced by the set of
quantization axes going through the vertices of tedrahedron, octahedron,
or icosahedron. This would bring non-commutative homotopy groups into
the picture in a natural manner.

5. Also the orbifolds M̂4/Ga × ˆCP2/Gb can be allowed as also the spaces
M̂4/Ga×( ˆCP2×̂Gb) and (M̂4×̂Ga)× ˆCP2/Gb. Hence the previous frame-
work would generalize considerably by the allowance of both coset spaces
and covering spaces.

There are several non-trivial questions related to the details of the gluing
procedure and phase transition as motion of partonic 2-surface from one sector
of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2×CP2 takes place? It
would seem that the covariant metric of M4 factor proportional to h̄2 must
be discontinuous at the singular manifold since only in this manner the
idea about different scaling factor of M4 metric can make sense. This is
consistent with the identical vanishing of Chern-Simons action in M2×S2.

2. One might worry whether the phase transition changing Planck constant
means an instantaneous change of the size of partonic 2-surface in M4

degrees of freedom. This is not the case. Light-likeness in M2×S2 makes
sense only for surfaces X1×D2 ⊂ M2×S2, where X1 is light-like geodesic.
The requirement that the partonic 2-surface X2 moving from one sector
of H to another one is light-like at M2 × S2 irrespective of the value of
Planck constant requires that X2 has single point of M2 as M2 projection.
Hence no sudden change of the size X2 occurs.

3. A natural question is whether the phase transition changing the value of
Planck constant can occur purely classically or whether it is analogous
to quantum tunnelling. Classical non-vacuum extremals of Chern-Simons
action have two-dimensional CP2 projection to homologically non-trivial
geodesic sphere S2

I . The deformation of the entire S2
I to homologically
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trivial geodesic sphere S2
II is not possible so that only combinations of par-

tonic 2-surfaces with vanishing total homology charge (Kähler magnetic
charge) can in principle move from sector to another one, and this process
involves fusion of these 2-surfaces such that CP2 projection becomes sin-
gle homologically trivial 2-surface. A piece of a non-trivial geodesic sphere
S2

I of CP2 can be deformed to that of S2
II using 2-dimensional homotopy

flattening the piece of S2 to curve. If this homotopy cannot be chosen to
be light-like, the phase transitions changing Planck constant take place
only via quantum tunnelling. Obviously the notions of light-like homo-
topies (cobordisms) and classical light-like homotopies (cobordisms) are
very relevant for the understanding of phase transitions changing Planck
constant.

3.2 Do factor spaces and coverings correspond to the two
kinds of Jones inclusions?

What could be the interpretation of these two kinds of spaces?

1. Jones inclusions appear in two varieties corresponding to M : N < 4 and
M : N = 4 and one can assign a hierarchy of subgroups of SU(2) with
both of them. In particular, their maximal Abelian subgroups Zn label
these inclusions. The interpretation of Zn as invariance group is natural
for M : N < 4 and it naturally corresponds to the coset spaces. For
M : N = 4 the interpretation of Zn has remained open. Obviously the
interpretation of Zn as the homology group defining covering would be
natural.

2. M : N = 4 should correspond to the allowance of cosmic strings and other
analogous objects. Does the introduction of the covering spaces bring
in cosmic strings in some controlled manner? Formally the subgroup of
SU(2) defining the inclusion is SU(2) would mean that states are SU(2)
singlets which is something non-physical. For covering spaces one would
however obtain the degrees of freedom associated with the discrete fiber
and the degrees of freedom in question would not disappear completely
and would be characterized by the discrete subgroup of SU(2).

For anyons the non-trivial homotopy of plane brings in non-trivial con-
nection with a flat curvature and the non-trivial dynamics of topological
QFTs. Also now one might expect similar non-trivial contribution to ap-
pear in the spinor connection of M̂2×̂Ga and ĈP 2×̂Gb. In conformal field
theory models non-trivial monodromy would correspond to the presence
of punctures in plane.

3. For factor spaces the unit for quantum numbers like orbital angular mo-
mentum is multiplied by na resp. nb and for coverings it is divided by
this number. These two kind of spaces are in a well defined sense ob-
tained by multiplying and dividing the factors of Ĥ by Ga resp. Gb and
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multiplication and division are expected to relate to Jones inclusions with
M : N < 4 and M : N = 4, which both are labelled by a subset of
discrete subgroups of SU(2).

4. The discrete subgroups of SU(2) with fixed quantization axes possess a
well defined multiplication with product defined as the group generated by
forming all possible products of group elements as elements of SU(2). This
product is commutative and all elements are idempotent and thus anal-
ogous to projectors. Trivial group G1, two-element group G2 consisting
of reflection and identity, the cyclic groups Zp, p prime, and tedrahedral,
octahedral, and icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional mod-
ule having natural numbers as coefficients (”rig”). The trivial group G1,
two-element group G2¡ generated by reflection, and tedrahedral, octahe-
dral, and icosahedral groups define 5 generating elements for this algebra.
The products of groups other than trivial group define 10 units for this
algebra so that there are 11 units altogether. The groups Zp generate
a structure analogous to natural numbers acting as analog of coefficients
of this structure. Clearly, one has effectively 11-dimensional commuta-
tive algebra in 1-1 correspondence with the 11-dimensional ”half-lattice”
N11 (N denotes natural numbers). Leaving away reflections, one obtains
N7. The projector representation suggests a connection with Jones in-
clusions. An interesting question concerns the possible Jones inclusions
assignable to the subgroups containing infinitely manner elements. Reader
has of course already asked whether dimensions 11, 7 and their difference
4 might relate somehow to the mathematical structures of M-theory with
7 compactified dimensions. One could introduce generalized configuration
space spinor fields in the configuration space labelled by sectors of H with
given quantization axes. By introducing Fourier transform in N11 one
would formally obtain an infinite-component field in 11-D space.

The question how do the Planck constants associated with factors and cov-
erings relate is far from trivial and I have considered several options.

1. If one assumes that h̄2(X), X = M4, CP2 corresponds to the scaling of
the covariant metric tensor gij and performs an over-all scaling of met-
ric allowed by Weyl invariance of Kähler action by dividing metric with
h̄2(CP2), one obtains r2 ≡ h̄2/h̄2

0h̄
2(M4)/h̄2(CP2). This puts M4 and

CP2 in a very symmetric role and allows much more flexibility in the
identification of symmetries associated with large Planck constant phases.

2. Algebraist would argue that Planck constant must define a homomorphism
respecting multiplication and division (when possible) by Gi. This requires
r(X) = h̄(X)h̄0 = n for covering and r(X) = 1/n for factor space or vice
versa. This gives two options.

3. Option I: r(X) = n for covering and r(X) = 1/n for factor space gives
r ≡ h̄/h̄0 = r(M4)/r(CP2). This gives r = na/nb for Ĥ/Ga × Gb option
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and r = nb/na for Ĥ ˆtimes(Ga × Gb) option with obvious formulas for
hybrid cases.

4. Option II: r(X) = 1/n for covering and r(X) = n for factor space gives
r = r(CP2)/r(M4). This gives r = nb/na for Ĥ/Ga × Gb option and
r = na/nb for Ĥ ˆtimes(Ga × Gb) option with obvious formulas for the
hybrid cases.

5. At quantum level the fractionization would come from the modification of
fermionic anti-commutation (bosonic commutation) relations involving h̄
at the right hand side so that particle number becomes a multiple of 1/m
or m. Partonic 2-surface (wormhole throat) is highly analogous to black
hole horizon and this led already years ago the notion of elementary par-
ticle horizon and generalization of the area law for black-holes [E5]. The
1/h̄-proportionality of the black hole entropy measuring the number of
states associated with black hole motivates the hypothesis that the num-
ber of states associated with single sheet of the covering proportional to
1/h̄ so that the total number states should remain invariant in the tran-
sition changing Planck constant. Since the number of states is obviously
proportional to the number m of sheets in the covering, this is achieved for
h̄(X) ∝ 1/m giving r(X) → r(X)/n for factor space and r(X) → nr(X)
for the covering space. Option II would be selected.

6. The second manner to distinguish between these two options is to apply
the theory to concrete physical situations. Since Ga and Gb act as sym-
metries in M4 and CP2 degrees of freedom, one might of being able to
distinguish between the two options if it is possible to distinguish between
the action of G as symmetry of quantum states associated with covering
and factor space. Also the quantization of the orbital spin quantum num-
ber at single particle level as multiples of n can be distinguished from that
in multiples of 1/n.

3.3 A simple model of fractional quantum Hall effect

The generalization of the imbedding space suggests that it could possible to
understand fractional quantum Hall effect [31] at the level of basic quantum
TGD. This section represents the first rough model of QHE constructed for a
couple of years ago is discussed. Needless to emphasize, the model represents
only the basic idea and involves ad hoc assumption about charge fractionization.

Recall that the formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (1)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13...,
5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9..., 1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7....
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with odd denominator have been observed as are also ν = 1/2 and ν = 5/2
states with even denominator [31].

The model of Laughlin [29] cannot explain all aspects of FQHE. The best
existing model proposed originally by Jain is based on composite fermions re-
sulting as bound states of electron and even number of magnetic flux quanta
[32]. Electrons remain integer charged but due to the effective magnetic field
electrons appear to have fractional charges. Composite fermion picture predicts
all the observed fractions and also their relative intensities and the order in
which they appear as the quality of sample improves.

The generalization of the notion of imbedding space suggests the possibility
to interpret these states in terms of fractionized charge, spin, and electron num-
ber. There are 2 × 2 = 4 combinations of covering and factors spaces of CP2

and three of them can lead to the increase of Planck constant. Besides this one
can consider two options for the formula of Planck constant so that which the
very meager theoretical background one can make only guesses. In the following
a model based on option II for which the number of states is conserved in the
phase transition changing h̄.

1. The easiest manner to understand the observed fractions is by assuming
that both M4 and CP2 correspond to covering spaces so that both spin
and electric charge and fermion number are fractionized. This means that
e in electronic charge density is replaced with fractional charge. Quantized
magnetic flux is proportional to e and the question is whether also here
fractional charge appears. Assume that this does not occur.

2. With this assumption the expression for the Planck constant becomes for
Option II as r = h̄/h̄0 = na/nb and charge and spin units are equal to 1/nb

and 1/na respectively. This gives ν = nna/nb. The values m = 2, 3, 5, 7, ..
are observed. Planck constant can have arbitrarily large values. There are
general arguments stating that also spin is fractionized in FQHE.

3. Both ν = 1/2 and ν = 5/2 state has been observed [31, 33]. The frac-
tionized charge is e/4 in the latter case [36, 35]. Since ni > 3 holds true
if coverings and factor spaces are correlates for Jones inclusions, this re-
quires na = 4 and nb = 8 for ν = 1/2 and nb = 4 and na = 10 for ν = 5/2.
Correct fractionization of charge is predicted. For nb = 2 also Z2 would
appear as the fundamental group of the covering space. Filling fraction
1/2 corresponds in the composite fermion model and also experimentally
to the limit of zero magnetic field [32]. nb = 2 is inconsistent with the
observed fractionization of electric charge for ν = 5/2 and with the vision
inspired by Jones inclusions.

4. A possible problematic aspect of the TGD based model is the experimental
absence of even values of nb except nb = 2 (Laughlin’s model predicts
only odd values of n). A possible explanation is that by some symmetry
condition possibly related to fermionic statistics (as in Laughlin model)
na/nb must reduce to a rational with an odd denominator for nb > 2. In
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other words, one has na ∝ 2r, where 2r the largest power of 2 divisor of
nb.

5. Large values of na emerge as B increases. This can be understood from
flux quantization. One has e

∫
BdS = nh̄(M4) = nnah̄0. By using actual

fractional charge eF = e/nb in the flux factor would give eF

∫
BdS =

n(na/nb)h̄0 = nh̄. The interpretation is that each of the na sheets con-
tributes one unit to the flux for e. Note that the value of magnetic field in
given sheet is not affected so that the build-up of multiple covering seems
to keep magnetic field strength below critical value.

6. The understanding of the thermal stability is not trivial. The original
FQHE was observed in 80 mK temperature corresponding roughly to a
thermal energy of T ∼ 10−5 eV. For graphene the effect is observed at
room temperature. Cyclotron energy for electron is (from fe = 6×105 Hz
at B = .2 Gauss) of order thermal energy at room temperature in a mag-
netic field varying in the range 1-10 Tesla. This raises the question why
the original FQHE requires so low temperature. The magnetic energy of a
flux tube of length L is by flux quantization roughly e2B2S ∼ Ec(e)meL
(h̄0 = c = 1) and exceeds cyclotron roughly by a factor L/Le, Le elec-
tron Compton length so that thermal stability of magnetic flux quanta is
not the explanation. A possible explanation is that since FQHE involves
several values of Planck constant, it is quantum critical phenomenon and
is characterized by a critical temperature. The differences of the energies
associated with the phase with ordinary Planck constant and phases with
different Planck constant would characterize the transition temperature.

As already noticed, it is possible to imagine several other options and the as-
sumption about charge fractionization -although consistent with fractionization
for ν = 5/2, is rather adhoc. Therefore the model can be taken as a warm-up
exercise only.

4 Quantum Hall effect, charge fractionization,
and hierarchy of Planck constants

In this section the most recent view about the relationship between dark mat-
ter hierarchy and quantum Hall effect is discussed. This discussion leads to
a more realistic view about FQHE allowing to formulate precisely the condi-
tions under which anyons emerge, describes the fractionization of electric and
magnetic charges in terms of the delicacies of the Kähler gauge potential of
generalized imbedding space, and relates the TGD based model to the original
model of Laughlin. The discussion allows also to sharpen the vision about the
formulation of quantum TGD itself.
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4.1 Quantum Hall effect

Recall first the basic facts. Quantum Hall effect (QHE) [29, 30, 31] is an es-
sentially 2-dimensional phenomenon and occurs at the end of current carrying
region for the current flowing transversally along the end of the wire in ex-
ternal magnetic field along the wire. For quantum Hall effect transversal Hall
conductance characterizing the 2-dimensional current flow is dimensionless and
quantized and given by

σxy = 2ναem ,

ν is so called filling factor telling the number of filled Landau levels in the
magnetic field. In the case of integer quantum Hall effect (IQHE) ν is inte-
ger valued. For fractional quantum Hall effect (FQHE) ν is rational number.
Laughlin introduced his many-electron wave wave function predicting fractional
quantum Hall effect for filling fractions ν = 1/m [29]. The further attempts to
understand FQHE led to the notion of anyon by Wilzeck [30]. Anyon has been
compared to a vortex like excitation of a dense 2-D electron plasma formed by
the current carriers. ν is inversely proportional to the magnetic flux and the
fractional filling factor can be also understood in terms of fractional magnetic
flux.

The starting point of the quantum field theoretical models is the effective
2-dimensionality of the system implying that the projective representations for
the permutation group of n objects are representations of braid group allowing
fractional statistics. This is due to the non-trivial first homotopy group of 2-
dimensional manifold containing punctures. Quantum field theoretical models
allow to assign to the anyon like states also magnetic charge, fractional spin,
and fractional electric charge.

Topological quantum computation [17, 18, E9, L5] is one of the most fas-
cinating applications of FQHE. It relies on the notion of braids with strands
representing the orbits of of anyons. The unitary time evolution operator cod-
ing for topological computation is a representation of the element of the element
of braid group represented by the time evolution of the braid. It is essential that
the group involved is non-Abelian so that the system remembers the order of
elementary braiding operations (exchange of neighboring strands). There is ex-
perimental evidence that ν = 5/2 anyons possessing fractional charge Q = e/4
are non-Abelian [36, 35].

During last year I have been developing a model for DNA as topological
quantum computer [L5]. Therefore it is of considerable interest to find whether
TGD could provide a first principle description of anyons and related phenom-
ena. The introduction of a hierarchy of Planck constants realized in terms of
generalized imbedding space with a book like structure is an excellent candidate
in this respect [A9]. As a rule the encounters between real world and quantum
TGD have led to a more precise quantitative articulation of basic notions of
quantum TGD and the same might happen also now.
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4.2 TGD description of QHE

The proportionality σxy ∝ αem ∝ 1/h̄ suggests an explanation of FQHE [30,
29, 31] in terms of the hierarchy of Planck constants. Perhaps filling factors and
magnetic fluxes are actually integer valued but the value of Planck constant
defining the unit of magnetic flux is changed from its standard value - to its
rational multiple in the most general case. The killer test for the hypothesis
is to find whether higher order perturbative QED corrections in powers of αem

are reduced from those predicted by QED in QHE phase. The proposed general
principle governing the transition to large h̄ phase is states that Nature loves
lazy theoreticians: if perturbation theory fails to converge, a phase transition
increasing Planck constant occurs and guarantees the convergence. Geometri-
cally the phase transition corresponds to the leakage of 3-surface from a given
8-D page to another one in the Big Book having singular coverings and factor
spaces of M4 × CP2 as pages.

Chern-Simons action for Kähler gauge potential (equivalently for induced
classical color gauge field proportional to the Kähler form) defines TGD as
almost topological QFT. This alone strongly suggests the emergence of quantum
groups and fractionalization of quantum numbers. The challenge is to figure
out the details and see whether this framework is consistent with what is known
about QHE. At least the following questions pop up immediately in mind.

1. What the effective 2-dimensionality of the system exhibiting QHE corre-
sponds in TGD framework?

2. What happens in the phase transition leading to the phase exhibiting QHE
effect?

3. What are the counterparts anyons? How the fractional electric and mag-
netic charges emerge at classical and quantum level.

4. The Chern-Simons action associated with the induced Kähler gauge po-
tential is Abelian: is this consistent with the non-Abelian character of
braiding matrix?

4.3 Quantum TGD almost topological QFT

The statement that TGD is almost topological QFT means following conjec-
tures.

1. In TGD the fundamental physical object is light-like 3-surface X3 con-
necting the light-cone boundaries of CD×CP2 ⊂ M4×CP2 (intersection
of future and past directed light-cones) but by conformal invariance in
the light-like direction of X3 physics is locally 2-dimensional in the sense
that one can regard this surface as an orbit of 2-D parton as long as one
restricts to finite region of X3. Physics at X3 remains 3-D in discretized
sense (quantum states are of course quantum superpositions of different
light-like 3-surfaces).
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2. At the fundamental level quantum TGD can be formulated in terms of
the fermionic counterpart of Chern-Simons action fort the Kähler gauge
potential associated with Kähler form of CP2. The Dirac determinant
associated with the modified Dirac action defines the vacuum functional of
the theory. Dirac determinant is defined as a finite product of the values
of generalizes eigenvalues (functions) of the modified Dirac operator at
points defined by the strands of so called number theoretic braids which
by number theoretic arguments are unique [E1, E2].

3. Vacuum functional equals to the exponent of Kähler action for a preferred
extremal X4(X3) of Kähler action, which plays the role of Bohr orbit
and allows to realize 4-D general coordinate invariance. The boundary
conditions of 4-D dynamics fixing X4(X3) are fixed by the requirement
that the tangent space of X4 contains a preferred Minkowski plane M2 ⊂
M4 at each point. This plane can be interpreted as the plane of non-
physical polarizations.

4. ”Number theoretic compactification” states that space-time surfaces can
be regarded as 4-surfaces of either hyper-octonionic M8 or M4 × CP2

(hyper-octonions corresponds to a sub-space of complexified octonions
with Minkowskian signature of metric). The surfaces of M8 are hyper-
quaternionic in the sense that each tangent plane is hyper-quaternionic
and contains (this is essential for number theoretic compactification) the
preferred hyper-complex plane M2 defined by hyper-octonionic real unit
and preferred imaginary unit. The preferred extrema of Kähler action
should correspond hyper-quaternionic 4-surfaces of M8 having preferred
M2 as a tangent space at each point.

These ’must-be-trues’ are of course highly non-trivial un-proven conjectures. If
one gives up conjecture about the reduction of entire 4-D dynamics to that for
almost topological fermions at 3-D light-like surfaces, one must assume sepa-
rately that vacuum functional is exponent of Kähler function for a preferred
extremal.

4.4 Constraints to the Kähler structure of generalized imbed-
ding space from charge fractionization

In the following the notion of generalized imbedding space is discussed. The new
element is more precise formulation of the Kähler structure by allowing Kähler
gauge potential to have what looks formally as gauge parts in both M4 and CP2

and of no physical significance on gauge theory context. In TGD framework the
gauge parts have deep physical significance since symplectic transformations act
as symmetries of Kähler and Chern-Simons-Kähler action only in the case of
vacuum extremals.
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4.4.1 Hierarchy of Planck constants and book like structure of imbed-
ding space

TGD leads to a description for the hierarchy of Planck constants in terms of the
generalization of the Cartesian factors of the imbedding space H = M4×CP2 to
book like structures. To be more precise, the generalization takes place for any
region CD×CP2 ⊂ H, where CD corresponds to a causal diamond defined as an
intersection of future and past directed light-cones of M4. CDs play key role in
the formulation of quantum TGD in zero energy ontology in which the light-like
boundaries of CD connected by light-like 3-surfaces can be said to be carriers of
positive and negative energy parts of zero energy states. They are also crucial
for TGD inspired theory of consciousness, in particular for understanding the
relationship between experienced and geometric time [16].

Both CD and CP2 are replaced with a book like structure consisting in
the most general case of singular coverings and factor spaces associated with
them. A simple geometric argument identifying the square of Planck constant
as scaling factor of the covariant metric tensor of M4 (or actually CD) leads
to the identification of Planck constant as the ratio h̄/h̄0 = q(M4)/q(CP2),
where q(X) = N holds true for the covering of X and q(X) = 1/N holds
true for the factor space. N is the order of the maximal cyclic subgroup of
the covering/divisor group G ⊂ SO(3). The order of G can be thus larger
than N . As a consequence, the spectrum of Planck constants is in principle
rational-valued. h̄0 is unique since it corresponds to the unit of rational numbers.
The field structure has far reaching implications for the understanding of phase
transitions changing the value of Planck constant.

The hierarchy of Planck constants relates closely to quantum measurement
theory. The selection of quantization axis has a direct correlate at the level
of imbedding space geometry. This means breaking of isometries of H for a
given CD with preferred choice time axis (rest frame) and quantization axis of
spin. For CP2 the choice of the quantization axes of color hyper charge and
isospin imply symmetry breaking SU(3) → U(2) → U(1)×U(1). The ”world of
classical worlds” (WCW) is union over all Poincare and color translates of given
CD×CP2 so that these symmetries are not lost at the level of WCW although
the loss can happen at the level of quantum states.

4.4.2 Non-vanishing of Poincare quantum numbers requires CP2 Kähler
gauge potential to have M4 part

Since Kähler action gives rise to conserved Poincare quantum numbers as Noether
charges, the natural expectation is that Poincare quantum numbers make sense
as Noether charges for Chern-Simons action. The problem is that Poincare
quantum numbers vanish for standard Kähler gauge potential of CP2 since it
has no M4 part.

The way out of the difficulty relies on the delicacies of CP2 Kähler structure.

1. One can give up the strict Cartesian product property and assume that
CP2 Kähler gauge potential has M4 part which is pure gauge and with-
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out physical meaning in gauge theory context. In TGD framework the
situation is different. The reason is that U(1) gauge transformations are
induced by the symplectic transformations of CP2 and correspond to gen-
uine dynamical symmetries acting as isometries of WCW. They act as
symmetries of Kähler action only in the case of vacuum extremals and
relate closely to the spin glass degeneracy of Kähler action with the coun-
terpart of spin glass energy landscape defined by small deformations of
vacuum extremals of Kähler action. This vacuum degeneracy has been
one of the most fruitful challenges of TGD.

2. Requiring Lorentz invariance one can write the non-vanishing pure gauge
M4 component of Kähler gauge potential as

Aa = constant . (2)

Here a denotes the light-cone proper time. It is of course possible that
also other components are present as it indeed turns out. Using stan-
dard formula for Noether current one finds that four-momentum is non-
vanishing because of the term Aa∂αa in Chern-Simons-Kähler action.
From ∂αa = mkmkl∂αml/a momentum current T k0 at given point of
X3 is proportional to the average 4-velocity with respect to the tip of
light-cone: T k0 ∝ mk/a. Therefore the motion in the average sense is
analogous to cosmic expansion. This is natural since the structure of CD
corresponding to particular quantization axes breaks Poincare symmetry.

3. Aa = constant guarantees the conservation of mass squared in the case
of CP2 type extremals at least and implies that mass squared is non-
vanishing. Four-momentum is also proportional to the Kähler magnetic
flux over the partonic 2-surface X2 and X2 must be homologically non-
trivial for the net value of four-momentum to be non-vanishing. X2 could
correspond to the end of cosmic string in 4-D picture. Homological non-
triviality does not seem to be necessary in the case of super-symmetric
counterpart of Dirac action since Kähler flux is multiplied by the fermionic
bilinear so that the outcome is more general than Kähler magnetic flux.

4.4.3 The M4 part of CP2 Kähler gauge potential for the generalized
imbedding space

The non-triviality of Aa transforms topological QFT to an almost topological
one, but says nothing about the covering- and factor space sectors of generalized
imbedding space- the pages of the book like structure defined by the generalized
imbedding space. The interpretation in terms of quantum measurement theory
suggests that Lorentz symmetry and color symmetry are broken to Cartan sub-
groups defining quantization axes. If anyons correspond to large h̄ phase, the
Kähler gauge potential of CP2 should contain in these sectors additional gauge

23



parts in both M4 and CP2 responsible for charge fractionization, magnetic
monopoles, and other anyonic effects.

The basic prerequisite for anyonic effects is that fundamental group is non-
trivial and for M4 the emergence of M2 as the intersection of sheets of the
singular covering implies this for the complement of M2. In the case of CP2 the
homologically trivial geodesic S2 is common to the coverings and factors spaces
and implies the non-triviality of the fundamental group.

Let (u = m0 + rM ), v = m0− rM , θ, φ) define light-like spherical coordinates
for M4

±. Here mk are linear M4 time coordinates and rM is radial M4 coordi-
nate. Denote the light-cone proper time by a =

√
uv . The origin of coordinates

lies at the either tip of CD. Coordinates are not global so that the patches
assignable to positive and negative energy parts of the zero energy state must
be used.

The fixing of the rest system, that is the direction of time axis, reduces
Lorentz invariance to SO(3). This allows A to have an additional part

Au =
k1

u2
. (3)

The functional form of Au will be deduced in the sequel from the conservation of
anyonic charges. The fixing of the direction of the spin quantization axis reduces
the symmetry to SO(2) and allows introduction of a further gauge component

Aφ =
k2

u2
. (4)

Clearly one has a hierarchical breaking of symmetry: Poincare group → Lorentz
group→ rotation group SO(3) → SO(2). Globally the symmetry is not broken
since WCW is a union over all possible choices of quantization for each CDs with
all possible positions of lower tip are allowed. p-Adic length scale hypothesis
results if the temporal distance between upper and lower tips is quantized in
multiples 2n. The hierarchy of Planck constants however implies that distance
are quantized as rational multiples of basic distance scale.

4.4.4 How fractional electric and magnetic charges emerge from M4

gauge part of CP2 Kähler gauge potential?

The Maxwell field defined by the induced CP2 Kähler form plays fundamental
role in the construction of quantum TGD. Kähler gauge potential of CP2 con-
tributes directly to the classical electromagnetic gauge potential. Its coupling to
M4×CP2 spinors is different for quarks and leptons representing different con-
served chiralities of H spinors and it explains different electromagnetic charges
of quarks and leptons as well as different color trialities. Also classical color
gauge field is proportional to Kähler form. Therefore one might hope that the
gauge parts of Kähler gauge potential might contain a lot of interesting physics.

The following series of arguments try to demonstrate following three results.

24



1. The anomalous contribution to the Kähler gauge potential induces anoma-
lous electric and magnetic Kähler charges and therefore also em, Z0, and
color gauge charges.

2. Anyons can be characterized as 2-surfaces surrounding the tip of CD.

3. In sectors corresponding to the non-standard value of h̄ the vacuum de-
generacy of Kähler and Chern-Simons actions is dramatically reduced.

Note that in this section the consideration is restricted to the gauge parts
of CP2 Kähler gauge potential in CD ⊂ M4. Also the gauge parts in CP2

are possible and the Kähler potential assignable to the contact structure of CD
must be considered separately.

1. The gauge part of Kähler gauge potential vanishes outside CD so that
it is discontinuous at light-like boundary in the direction of the light like
vector defined as the gradient of v = t − r. This means that for par-
tonic 2-surfaces surrounding the tip of light-cone both Kähler electric and
magnetic fluxes are non-vanishing and determined by Ki(u), i = 1, 2. By
requiring that the anomalous Kähler charge is time independent, one ob-
tains K1(u) = k1/u2. This means that the Kähler electric gauge field has a
delta function like singularity at the light-like boundares of CD which be-
comes carrier of Kähler charge from the view point of complement of CD.
This suggests that if one has N elementary particles at partonic 2-surface
X2 surrounding the tip of CD (wormhole throats of elementary particles
are condensed to X2), the charges of particles are effectively fractionized:

q → q +
QA

N
. (5)

2. In the case of Aφ = constant anomalous magnetic charge results since
the flux expressible as line integral

∫
Aφdφ is non-vanishing because the

poles of S2 act effectively as magnetic charges. The punctures at the
poles are the correlate for the selection of the quantization axes of spin.
K2(u) = k2/u2 follows from the conservation of magnetic charge. In the
case of ordinary magnetic monopole spin becomes half-odd integer valued
and analogous result holds also now. The minimal coupling to the gauge
part of Aφ defining the covariant derivative Dφ together with covariant
constancy condition implies that spin receives a fractional part for k2 6= 0
and spin fractionization results.

3. One can see the situation also differently. The 2-D partons at the ends of
light-like 3-surfaces at light-like boundaries of CD interact like particles
with anomalous gauge charges but the interaction is now in light-like di-
rection. The anomalous charges indeed characterize Chern-Simons action.
For k1 = k2 = 0 corresponding to h̄/h̄0 = 1 one has Lorentz invariance
and only cosmic string like objects seem to remain to the spectrum of the
theory (they dominate the very early TGD based cosmology [D6]).
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4. Quite generally, anyonic states can be assigned with partonic 2-surfaces
surrounding surrounding the tip of CD since the fractional contribution
to the gauge charge vanishes otherwise.

5. Kähler gauge potential appears in the expression of the em charge so that
a fractionization of electric and magnetic em and Z0 charges results but
there is no fractionization of the weak charge. The components of the
classical color gauge field are of form GA ∝ HAJ , HA the Hamiltonian of
color isometry and J Kähler form. The assumption that the singular part
of GA is induced from that for J implies anomalous electric and magnetic
color gauge charges located at boundaries of CD. These charges should
make sense as fluxes since the SU(3) holonomy is Abelian.

6. Au contributes to the four-momentum density a term proportional to the
four-vector ∂u/∂mk which in vector notation looks like (1, rM/rM ): thus
the direction of 3-momentum rends to be same as for Aa. In the ap-
proximation that the M4 coordinates for partonic 2-surface are constant
(excellent approximation at elementary particle level) this contribution to
the four-momentum is massless unlike for Aa. If the variation of the pro-
jection of Au in Chern-Simons action is responsible for the four-momentum
X2 must carry non-vanishing homological charge for Chern-Simons action
but not for its fermionic counterpart. If the variation of the projection of
the singular part Juv is responsible for the momentum the CP2 projection
can be 1-dimensional so that the vacuum degeneracy is reduced and the
homological non-triviality in CP2 is replaced with homological triviliaty
in CD with the line connecting the tips of CD removed.

7. For (k1, k2) = (0, 0) all space-time surfaces for which CP2 projection is
Lagrange manifold of CP2 (generally 2-dimensional sub-manifold having
vanishing induced Kähler form) are vacuum extremals For (k1, k2) 6= (0, 0)
and for partonic 2-surfaces surrounding the tip of the light-cone, the situa-
tion changes since also partonic 2-surfaces which have 1-D CP2 projection
can carry non-vanishing Kähler, em, and color charges, and even four-
momentum. If M4 projection is 2-D, the anomalous part of Kähler form
contributing to the charges is completely in M4 and the variation of of Aα

in Chern-Simons action gives rise to color currents. Four-momentum can
be non-vanishing even when CP2 projection is zero-dimensional since the
variation of Aa gives rise to it when X2 surrounds the tip of CD. Hence
the hierarchy of Planck constants removes partially the vacuum degener-
acy. This correlation conforms with the general idea that both the vacuum
degeneracy and the hierarchy of Planck constants relate closely to quan-
tum criticality. Perhaps the hierarchy of Planck constants accompanied
by the anyonic gauge parts of A makes possible to have mathematically
well-define theory.
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4.4.5 Coverings and factor spaces of CP2 and anyonic gauge part of
Kähler gauge potential in CP2?

Nothing about possible coverings and factor spaces of CP2 has been said above.
In principle they could contribute to CP2 Kähler gauge potential an anomalous
part and would form a representation for the hierarchy of Planck constants in
CP2 degrees of freedom.

1. If Kähler gauge potential has also anyonic CP2 part, it should fix the choice
of quantization axes for color charges. Thus the anomalous components
could be of form AI3 = k(I3) and AY = k(Y3) where the angle variables
vary along flow lines of I3 and Y . Singularity would emerge both at the
origin and at the 2-sphere r = ∞ analogous to the North pole of S2, at
which the second angle variable becomes redundant.

2. These terms would give to the anomalous Kähler magnetic charge a contri-
bution completely analogous to that coming from Aφ. Also color charges
would receive similar contribution.

4.4.6 How the values of the anomalous charges relate to the param-
eters characterizing the page of the Big Book?

One should be able to relate the anomalous parameters characterizing anoma-
lous gauge potentials to the parameters na, nb characterizing the coverings of
CD and CP2. Consider first various manners to understand charge fractioniza-
tion.

1. The hypothesis at the end of previous section states that for nb-fold cov-
ering of CP2 the fractionized electric charge equals to e/nb. This predicts
charge fractionization correctly for ν = 5/2 = 10/4 [36]. This simple ar-
gument could apply also to other charges. The interpretation would be
that when elementary particle becomes anyonic, its charge is shared be-
tween nb sheets of the covering of CP2. In the case of factor space the
singular factor space would appear as nb copies meaning the presence nb

particles behaving like single particle. Charge fractionization would be
only apparent in this picture.

2. This global representation of the fractionization of Kähler charge might
be enough. One can however ask whether also a local representation could
exist in the sense that the coupling of fermions to the gauge parts of Kähler
gauge potential would represent charge fractionization at single particle
level in terms of phase factors analogous to plane waves. If charge frac-
tionization is only apparent, the total anomalous Kähler charge assignable
to particles should be compensated by the total anomalous Kähler charge
associated with Au. This gives a constraint between k1 and parameter
k(Y ).
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3. Similar argument for the Kähler magnetic charge gives a constraint be-
tween k2 and k(Y ) implying k1 = k2 consistent with assumption that
also the anyonic part of Kähler form is self dual. In the simplest situa-
tion k1 = k2 = NqKk(Y ), where N is the number of identical particles
at the anyonic space-time sheet. In more general case one would have
k1 = k2

∑
i NiqK,ik(Y ). If the anyonic space-time sheet does not contain

the tip of CD in its interior, the total anomalous Kähler charge associated
with the fermions at it must vanish.

4. Both em and Z0 fields contain a part proportional to Kähler form so that
total anomalous gauge charges defined as fluxes should be equal to those
defined as sums of elementary particle contributions.

5. Anomalous color isospin and hypercharge and corresponding magnetic
charges would have also representations as color gauge fluxes by using
QA ∝ HAJ restricted to Cartan algebra of color group. The couplings to
the anomalous gauge parts of Kähler gauge potential in CP2 would give
rise to anomalous color charges at single particle level, and also now the
condition that the total anomalous charges assignable to particles com-
pensates that assignable to the singular part of color gauge potential is
natural. Thus quite a number of consistency conditions emerge.

The foregoing discussion relates to the gauge part of Kähler gauge potential
assigned to CP2 degrees of freedom. Analogous discussion applies to the M4

part.

1. Covariant constancy conditions appear also in Minkowski degrees of free-
dom and correlate the value of anomalous Poincare charges to anoma-
lous Kähler charge. Anomalous Kähler charge k1 gives via covariant
constancy condition for induced spinors contribution to four-momentum
analogous to Coulomb interaction energy with Kähler charge k1: at point
like limit the contribution is light-like. In the similar manner k2 = k1

gives rise to anomalous orbital spin via the covariant constancy condition
DφΨ = (∂φ + Aφ)Ψ = 0 equating Aφ with the fractional contribution
to spin. Thus both anomalous four-momentum and spin fractionization
effect reflects the total anomalous Kähler charge.

2. The values of k1 = k2 should correlate directly with the order of the
maximal cyclic subgroup Zna associated with the covering/factor space of
CD. For covering one should should have k2 = n/na since the rotation
by N × 2π is identity transformation. For the factor space one should
have k2 = nna since the states must remain invariant under rotations by
multiples of 2π/N and spin unit becomes na. This picture is consistent
with the scaling up of the spin unit with h̄/h̄0. Since k1 must be also an
integer multiple of 1/nb, k1 should be inversely proportional to a common
factor of na and nb.
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That classical color hyper charge and isospin correspond to electro-weak
charges is an old idea which I have not been able to kill. It is discussed also in
[C4] from the point of view of symplectic fusion algebras.

1. Quark color is not a spin like quantum number but corresponds to CP2

partial waves in cm degrees of freedom of partonic 2-surface. Hence it
should not relate to the classical color charges associated with classical
color gauge field or with the modes of induced spinor fields at space-time
sheet. These nodes can also carry color hyper charge and isospin in the
sense that they are proportional to space-time projections of phase factors
representing states with constant Y and I3 (being completely analogous
to angular momentum eigen states on circle).

2. In the construction of symmetric spaces the holonomy group of the spinor
connection is identified as a subgroup of the isometry group. Therefore
electro-weak gauge group U(2)ew would correspond to U(2) ⊂ SU(3)
defining color quantization axis. If so, the phase factors assignable to the
induced spinor fields could indeed represent the electromagnetic and weak
charges of the particle and one would have Y = Yew and I3 = I3,ew. Also
electro-weak quantum numbers, which are spin-like, would have geometric
representation as phase factors of spinors.

3. This kind of multiple representation emerges also via number theoretical
compactication [E2] meaning that space-time surfaces can be regarded
either as surfaces in hyper-octonionic space M8 = M4×E4 or M4×CP2.
In M8 electro-weak quantum numbers are represented as particle waves
and color is spin like quantum number.

Again a word of caution is in order since the formula for charge fraction-
ization is supported only by its success in ν = 5/2 case. Also the proposed
formulas are only heuristic guesses.

4.4.7 What about Kähler gauge potential for CD?

One can assign also to light-cone boundary- metrically equivalent with S2, sym-
plectic (or more precisely contact-) structure. This structure can be extended to
a pseudo-symplectic structure in the entire CD. The structure is not global and
one must introduce two patches corresponding to the two light-cone boundaries
of CD.

This symplectic structure plays a key role in the construction of symplectic
fusion algebra [C4]. In TGD framework Equivalence Principle is realized in
terms generalized coset construction for the super-canonical conformal algebra
assignable to the light-cone boundary and super-Kac-Moody algebra assignable
to the light-like 3-surfaces. The cautious proposal of [C4] is that at the level
of fusion algebra Equivalence Principle means the possibility to use either the
symplectic fusion algebra of light-cone boundary for light-cone defined by S2

Kähler form or the symplectic fusion algebra for light-cone boundry defined by
CP2 Kähler form.
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The vacuum degeneracy of Kähler action requiring that CP2 projection of
the partonic 2-surface is non-trivial would at first seem to exclude this option.
Anomalous gauge charges however remove this vacuum degeneracy for k1 6= 0
so that there are no obvious reasons excluding this manifestation of Equivalence
Principle.

The Kähler gauge potential of the degenerate Kähler form assignable to the
light-like boundary (basically to the rM = constant sphere S2) and also to CD
and identifiable as the Kähler form of S2 defining its signed area can indeed
contain gauge part with a structure similar that for CP2 Kähler gauge potential
and involving three rational valued constants corresponding to gauge parts Aa,
Au, and Aφ. The TGD based realization of the Equivalence Principle suggests
that the constants associated with the two Kähler forms are identical or at least
proportional to each other. One could perhaps even say that the hierarchy of
Planck constants and dark matter are necessary to realize Equivalence Principle
in TGD framework.

4.5 In what kind of situations do anyons emerge?

Charge fractionization is a fundamental piece of quantum TGD and should
be extremely general phenomenon and the basic characteristic of dark matter
known to contribute 95 per cent to the matter of Universe.

1. In TGD framework scaling h̄ = mh̄0 implies the scaling of the unit of
angular momentum for m-fold covering of CD only if the many particle
state is Zm singlet. Zm singletness for many particle states allows of
course non-singletness for single particle states. For factor spaces of CD
the scaling h̄ → h̄/m is compensated by the scaling l → ml for Lz =
lh̄ guaranteing invariance under rotations by multiples of 2π/m. Again
one can pose the invariance condition on many-particle states but not to
individual particles so that genuine physical effect is in question.

2. There is analogy with Z3-singletness holding true for many quark states
and one cannot completely exclude the possibility that quarks are actu-
ally fractionally charged leptons with m = 3-covering of CP2 reducing
the value of Planck constant [A8, A9] so that quarks would be anyonic
dark matter with smaller Planck constant and the impossibility to ob-
serve quarks directly would reduce to the impossibility for them to exist
at our space-time sheet. Confinement would in this picture relate to the
fractionization requiring that the 2-surface associated with quark must
surround the tip of CD. Whether this option really works remains an
open question. In any case, TGD anyons are quite generally confined
around the tip of CD.

3. Quite generally, one expects that dark matter and its anyonic forms emerge
in situations where the density of plasma like state of matter is very high
so that N -fold cover of CD reduces the density of matter by 1/N factor
at given sheet of covering and thus also the repulsive Coulomb energy.
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Plasma state resulting in QHE is one examples of this. The interiors of
neutron stars and black hole like structures are extreme examples of this,
and I have proposed that black holes are dark matter with a gigantic
value of gravitational Planck constant implying that black hole entropy
-which is proportional to 1/h̄ - is of same order of magnitude as the en-
tropy assignable to the spin of elementary particle. The confinement of
matter inside black hole could have interpretation in terms of macroscopic
anyonic 2-surfaces containing the topologically condensed elementary par-
ticles. This conforms with the TGD inspired model for the final state of
star [D4] inspiring the conjecture that even ordinary stars could posses
onion like structure with thin layers with radii given by p-adic length
scale hypothesis. The idea about hierarchy of Planck constants was in-
spired by the finding that planetary orbits can be regarded as Bohr orbits
[40, A9]: the explanation was that visible matter has condensed around
dark matter at spherical cells or tubular structures around planetary or-
bits. This led to the proposal that planetary system has formed through
this kind of condensation process around spherical shells of dark matter.
The question why dark matter would concentrate at spherical shells was
not answered. The answer would be that dark matter is anyonic matter
at these 2-surfaces.

4. DNA as topological quantum computer idea assumes that DNA nucleotides
are connected by magnetic flux tubes to the lipids of the cell membrane.
In this case, p-adically scaled down u and d quarks and their antiquarks
are assumed to be associated with the ends of the flux tubes and provide
a representation of DNA nucleotides. Quantum Hall states would be as-
sociated with partonic 2-surfaces assignable to the lipid layers of the cell
and nuclear membrane and also endoplasmic reticulum filling the cell in-
terior and making it macroscopic quantum system and explaining also its
stability.

4.6 What happens in QHE?

This picture suggest following description for what would happens in QHE in
TGD Universe.

1. Light-like 3-surfaces - locally random light-like orbits of partonic 2-surfaces-
are identifiable as very tiny wormhole throats in the case of elementary
particles. This is the case for electrons in particular. Partonic surfaces
can be also large, even macroscopic, and the size scales up in the scal-
ing of Planck constant. To avoid confusion, it must be emphasized that
light-likeness is with respect to the induced metric and does not imply
expansion with light velocity in Minkowski space since the contribution
to the induced metric implying light-likeness typically comes from CP2

degrees of freedom. Strong classical gravitational fields are present near
the wormhole throat. Second important point is that regions of space-
time surface with Euclidian signature of the induced metric are implied:
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CP2 type extremals representing elementary particles and having light-
like random curve as CP2 projection represents basic example of this.
Hence rather exotic gravitational physics is predicted to manifest itself in
everyday length scales.

2. The simplest identification for what happens in the phase transition to
quantum Hall phase is that the end of wire carrying the Hall current cor-
responds to a partonic 2-surface having a macroscopic size. The electrons
in the current correspond to similar 2-surfaces but with size of elementary
particle for the ordinary value of Planck constant. As the electrons meet
the end of the wire, the tiny wormhole throats of electrons suffer topo-
logical condensation to the boundary. One can say that one very large
elementary particle having very high electron number is formed.

3. The end of the wire forms part of a spherical surface surrounding the tip
of the CD involved so that electrons can become carriers of anomalous
electric and magnetic charges.

4. Chern- Simons action for Kähler gauge potential is Abelian. This raises
the question whether the representations of the number theoretical braid
group are also Abelian. Since there is evidence for non-Abelian anyons,
one might argue that this means a failure of the proposed approach. There
are however may reasons to expect that braid group representations are
non-Abelian. The action is for induced Kähler form rather than pri-
mary Maxwell field, U(1) gauge symmetry is transformed to a dynamical
symmetry (symplectic transformations of CP2 representing isometries of
WCW and definitely non-Abelian), and the particles of the theory belong
to the representations of electro-weak and color gauge groups naturally
defining the representations of braid group.

5. The finite subgroups of SU(2) defining covering and factor groups are in
the general case non-commutative subgroups of SU(2) since the hierarchies
of coverings and factors spaces are assumed to correspond to the two
hierarchy of Jones inclusions to which one can assign ADE Lie algebras
by McKay correspondence. The ADE Lie algebras define effective gauge
symmetries having interpretation in terms of finite measurement resolution
described in terms of Jones inclusion so that extremely rich structures are
expected.

6. The proposed model allows charge and spin fractionization also for IQHE
since h̄/h̄0 = 1 holds true for na = nb. There is also infinite number of
anyonic states predicting a given value of ν ((na, nb) → k(na, nb) symme-
try).

An interesting challenge is to relate concrete models of QHE to the proposed
description. Here only some comments about Laughlin’s wave function are
made.

32



1. In the description provided by Lauglin wave function FQHE results from
a minimization of Coulomb energy. In TGD framework the tunneling to
the page of H with m sheets of covering has the same effect since the
density of electrons is reduced by 1/m factor.

2. The formula ν ∝ e2Ne/e
∫

BdS with scaling up of magnetic flux by h̄/h̄0 =
m implies effective fractional filling factor. The scaling up of magnetic flux
results from the presence of m sheets carrying magnetic field with same
strength. Since the Ne electrons are shared between m sheets, the filling
factor is fractional when one restricts the consideration to single sheet as
one indeed does.

3. Laughlin wave function makes sense for ν = 1/m, m odd, and is m:th
power of the many electron wave function for IQHE and expressible as the
product

∏
i<j(zi − zj)m, where z represents complex coordinate for the

anyonic plane. The relative orbital angular momenta of electrons satisfy
Lz ≥ m if the value of Planck constant is standard. If Laughlin wave
function makes sense also in TGD framework, then m:th power implies
that many-electron wave function is singlet with respect to Zm acting
in covering and the value of relative angular momentum indeed satisfies
Lz ≥ mh̄0 just as in Laughlin’s theory.
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