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Abstract

The recent discovery of CDF anomaly suggest the existence of a new long-lived particle
which means a dramatic deviation from standard model. This article summarizes the quantum
model of CDF anomaly. The anomaly is interpreted in terms of production of τ -pions which
can be regarded as pion like bound states of color octet excitations of τ -leptons and corre-
sponding neutrinos. Colored leptons are one of the basic predictions of TGD distinguishing
it from standard model and for 18 years ago were applied to explain the anomalous produc-
tion of electron-positron pairs in heavy ion collisions near Coulomb wall. First it is shown
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that the model explains the basic characteristics of the anomaly. Then various alternatives
generalizing the earlier model for electro-pion production are discussed and a general formula
for differential cross section is deduced. Three alternatives inspired by eikonal approximation
generalizing the earlier model inspired by Born approximation to a perturbation series in the
Coulomb interaction potential of the colliding charges. The requirement of manifest relativis-
tic invariance for the formula of differential cross section leaves only two options, call them I
and II. The production cross section for τ -pion is estimated and found to be consistent with
the reported cross section of order 100 pb for option I using same energy cutoff for lepto-pions
as in the model for electro-pion production. For option II the production cross section is by
several orders of magnitude too small under these assumptions. Since the model involves only
fundamental coupling constants, the result can be regarded as a further success of the τ -pion
model of CDF anomaly. Analytic expressions for the production amplitude are deduced in
the Appendix as a Fourier transform for the inner product of the non-orthogonal magnetic
and electric fields of the colliding charges in various kinematical situations. This allows to
reduce numerical integrations to an integral over the phase space of lepto-pion and gives a
tight analytic control over the numerics.

1 Introduction

Colored leptons represent one of the basic predictions of TGD distinguishing it from standard
model [2]. For about eighteen years ago [8] I applied the notion of color octet electron to explain
the anomalous production of electron-positron pairs in heavy ion collisions near Coulomb wall
[20, 21, 14, 15]. The older version of the model can be found in [7] and the recent version in [6].
There is a lot of literature about this anomaly dating back to seventies [9, 10, 11, 12, 13], which
for some reason has been forgotten more or less completely. In fact, the article about the first
version of the model published in International Journal of Theoretical Physics [8] remained one of
the last of my publications. After my lifework was doomed to be complete nonsense by two young
professors from Finland, a censorship was established preventing publishing in both journals and
in arXiv. Only the articles based on talks in some conferences such as CASYS and the emergence
of web made it possible for some information to leak through the communication wall.

High energy limit for lepto-hadron physics predicts leptonic analogs of hadronic jets and the
old evidence [16, 17, 18, 19] for the surplus of electrons and positrons in hadronic reactions might
relate to this. Quite recently, similar surplus have been discovered in cosmic ray spectrum [28, 27].

Electro-pions could explain also the orto-positronium decay rate anomaly [25, 26]. Lepto-pions
could relate also to the anomalous value of the anomalous magnetic moment of muon [34] and the
magnetic moments of leptons give strong constraints on the parameters of the the possibly existing
lepto-hadron physics.

It is quite possible that lepto-hadrons exists only in the dark sectors of quantum TGD char-
acterized by non-standard values of Planck constant. Since different values of Planck constant
correspond to different pages of the book like structure formed by the generalized 8-D imbedding
space, the absence of direct couplings of ordinary intermediate gauge bosons to colored leptons is
predicted for dark leptonic color. This would explain why colored states of leptons do not con-
tribute to the decay widths of intermediate gauge bosons. More generally, TGD allows a fractal
hierarchy of dark copies of the standard model physics consistent with the decay rates of intermedi-
ate gauge bosons. In particular, nuclear string model [4, 5] assumes that scaled variants of quarks
play a key role in nuclear physics. Nucleons are assumed to be connected by color bonds having
exotic light quark and antiquark at their ends. The model predicts the existence of exotic nuclei
with excitation energies in X ray range [4, 5] and there are anomalies supporting this prediction.

TGD predicts that also µ and τ should possess colored excitations. Karmen anomaly [23, 24]
provides less direct evidence for µ-pions and for about year ago evidence for colored excitations of
muons emerged [32, 33]. At the end of October 2008, CDF collaboration published an e-print [39]
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describing its experimental findings suggesting the existence of a new long-lived particle producing
muons in their decays. Few days later CDF collaboration published an e-print proposing that the
anomaly involves a cascade like decay of at least three new particles [40] with masses coming in
good approximation as powers of two. In TGD framework this suggests strongly that p-adically
scaled up variants of same particle are in question.

It soon became clear that colored τ -leptons could explain CDF anomaly [6]. The reported
lifetime of the long-lived state is consistent with the prediction for the lifetime of charged τ -pion
in weak decays. The masses coming as powers of two could be interpreted in terms of p-adically
scaled variants of neutral τ -pion. The observed muon jets result from the peculiar decay kinematics
in which neutral τ -pion decays to three τ -pions with p-adically halved mass scale and therefore
almost at rest (leptonic variants of quark jets are not in question). That muons are favored follows
from the fact that the allowed phase space volume is much smaller for electrons and τ -leptons. If
τ and its neutrino and their colored variants have nearly the same masses as required by the jet
structure, rather precise information about the mass spectrum of τ -mesons can be deduced and a
rich spectroscopy would be waiting to be discovered.

Besides dezcribing the basic model, this article summarizes the quantum model for lepto-pion
production and applies it to the recent situation. Various alternatives generalizing the earlier model
for electro-pion production are discussed and a general formula for the differential cross section
is deduced. Three alternatives inspired by eikonal approximation generalizing the earlier model
inspired by Born approximation to a perturbation series in the Coulombic interaction potential
of the colliding charges. The requirement of manifest relativistic invariance for the formula of
differential cross section leaves only two options, call them I and II. The production cross section
for τ -pion is estimated and found to be consistent with the reported cross section of order 100 pb
for option I using same energy cutoff for lepto-pions as in the model for electropion production.
For option II the production cross section is by several orders of magnitude too small under these
assumptions. Since the model involves only fundamental coupling constants, the result can be
regarded as a further success of the τ -pion model of CDF anomaly. Analytic expressions for the
production amplitude are deduced in the Appendix as a Fourier transform for the inner product
of the non-orthogonal magnetic and electric fields of the colliding charges in various kinematical
situations. This allows to reduce numerical integrations to an integral over the phase space of
lepto-pion and gives a tight analytic control over the numerics.

The updated model predicts also the production cross section for the production of electro-pions
in heavy ion collisions correctly if maximal impact parameter for heavy ion collisions is about 1
Angstrom [6]. Hence the model possesses remarkable internal consistency and there are reasons for
certain optimism after 31 years of futile attempts to communicate TGD to the physics community:
perhaps Nature itself forces the colleagues to take TGD seriously when nothing else helps.

2 Evidence for τ-hadrons

The evidence for τ -leptons came in somewhat funny but very pleasant manner. During my friday
morning blog walk, the day next to my birthday October 30, I found that Peter Woit had told in his
blog about a possible discovery of a new long-lived particle by CDF experiment [35] emphasizing
how revolutionary finding is if it is real. There is a detailed paper [39] with title Study of multi-
muon events produced in p-pbar collisions at

√
(s) = 1.96 TeV by CDF collaboration added to

the ArXiv October 29 - the eve of my birthday. I got even second gift posted to arXiv the very
same day and reporting an anomalously high abundance of positrons in cosmic ray radiation [27].
Both of these articles give support for basic predictions of TGD differentiating between TGD and
standard model and its generalizations.
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2.1 The first gift

A brief summary of Peter Woit about the finding gives a good idea about what is involved.
The article originates in studies designed to determine the b-bbar cross-section by looking for

events, where a b-bbar pair is produced, each component of the pair decaying into a muon. The
b-quark lifetime is of order a picosecond, so b-quarks travel a millimeter or so before decaying.
The tracks from these decays can be reconstructed using the inner silicon detectors surrounding the
beam-pipe, which has a radius of 1.5 cm. They can be characterized by their impact parameter,
the closest distance between the extrapolated track and the primary interaction vertex, in the plane
transverse to the beam.

If one looks at events where the b-quark vertices are directly reconstructed, fitting a secondary
vertex, the cross-section for b-bbar production comes out about as expected. On the other hand,
if one just tries to identify b-quarks by their semi-leptonic decays, one gets a value for the b-bbar
cross-section that is too large by a factor of two. In the second case, presumably there is some
background being misidentified as b-bbar production.

The new result is based on a study of this background using a sample of events containing two
muons, varying the tightness of the requirements on observed tracks in the layers of the silicon
detector. The background being searched for should appear as the requirements are loosened. It
turns out that such events seem to contain an anomalous component with unexpected properties that
disagree with those of the known possible sources of background. The number of these anomalous
events is large (tens of thousands), so this cannot just be a statistical fluctuation.

One of the anomalous properties of these events is that they contain tracks with large impact
parameters, of order a centimeter rather than the hundreds of microns characteristic of b-quark
decays. Fitting this tail by an exponential, one gets what one would expect to see from the decay
of a new, unknown particle with a lifetime of about 20 picoseconds. These events have further
unusual properties, including an anomalously high number of additional muons in small angular
cones about the primary ones.

The lifetime is estimated to be considerably longer than b quark life time and below the lifetime
89.5 ps of K0,s mesons. The fit to the tail of ”ghost” muons gives the estimate of 20 picoseconds.

2.2 The second gift

In October 29 also another remarkable paper [27] had appeared in arXiv. It was titled Observa-
tion of an anomalous positron abundance in the cosmic radiation. PAMELA collaboration finds
an excess of cosmic ray positron at energies 10 → 50 GeV. PAMELA anomaly is discussed in
Resonaances blog [36]. ATIC collaboration in turn sees an excess of electrons and positrons going
all the way up to energies of order 500-800 GeV [28].

Also Peter Woit refers to these cosmic ray anomalies and also to the article LHC Signals for a
SuperUnified Theory of Dark Matter by Nima Arkadi-Hamed and Neal Weiner [29], where a model
of dark matter inspired by these anomalies is proposed together with a prediction of lepton jets
with invariant masses with mass scale of order GeV. The model assumes a new gauge interaction
for dark matter particles with Higgs and gauge boson masses around GeV. The prediction is that
LHC should detect ”lepton jets” with smaller angular separations and GeV scale invariant masses.

2.3 Explanation of the CDF anomaly

Consider first the CDF anomaly. TGD predicts a fractal hierarchy of QCD type physics. In
particular, colored excitations of leptons are predicted to exist. Neutral lepto-pions would have
mass only slightly above two times the charged lepton mass. Also charged lepto-pions are predicts
and their masses depend on what is the p-adic mass scale of neutrino and it is not clear whether
it is much longer than that for charge colored lepton as in the case of ordinary leptons.
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1. There exists a considerable evidence for colored electrons [6]. The anomalous production of
electron positron pairs discovered in heavy ion collisions can be understood in terms of decays
of electro-pions produced in the strong non-orthogonal electric and magnetic fields created
in these collisions. The action determining the production rate would be proportional to the
product of the lepto-pion field and highly unique ”instanton” action for electromagnetic field
determined by anomaly arguments so that the model is highly predictive.

2. Also the .511 MeV emission line [30, 31] from the galactic center can be understood in terms
of decays of neutral electro-pions to photon pairs. Electro-pions would reside at magnetic
flux tubes of strong galactic magnetic fields. It is also possible that these particles are dark
in TGD sense.

3. There is also evidence for colored excitations of muon and muo-pion [32, 33]. Muo-pions could
be produced by the same mechanism as electro-pions in high energy collisions of charged
particles when strong non-orthogonal magnetic and electric fields are generated.

Also τ -hadrons are possible and CDF anomaly can be understood in terms of a production of
higher energy τ -hadrons as the following argument demonstrates.

1. τ -QCD at high energies would produce ”lepton jets” just as ordinary QCD. In particular,
muon pairs with invariant energy below 2m(τ) ∼ 3.6 GeV would be produced by the decays of
neutral τ -pions. The production of monochromatic gamma ray pairs is predicted to dominate
the decays. Note that the space-time sheet associated with both ordinary hadrons and τ
lepton correspond to the p-adic prime M107 = 2107 − 1.

2. The model for the production of electro-pions in heavy ion collisions suggests that the pro-
duction of τ -pions could take place in higher energy collisions of protons generating very
strong non-orthogonal magnetic and electric fields. This This would reduce the model to the
quantum model for electro-pion production.

3. One can imagine several options for the detailed production mechanism.

(a) The decay of virtual τ -pions created in these fields to pairs of lepto-baryons gener-
ates lepton jets. Since colored leptons correspond to color octets, lepto-baryons could
correspond to states of form LLL or LLL.

(b) The option inspired by a blog discussion with Ervin Goldfein is that a coherent state
of τ -pions is created first and is then heated to QCD plasma like state producing the
lepton jets like in QCD. The linear coupling to E · B defined by em fields of colliding
nucleons would be analogous to the coupling of harmonic oscillator to constant force
and generate the coherent state.

(c) The option inspired by CDF model [40] is that a p-adically scaled up variant of on mass
shell neutral τ -pion having k = 103 and 4 times larger mass than k = 107 τ -pion is
produced and decays to three k = 105 τ -pions with k = 105 neutral τ -pion in turn
decaying to three k = 107 τ -pions.

4. The basic characteristics of the anomalous muon pair prediction seems to fit with what one
would expect from a jet generating a cascade of τ -pions. Muons with both charges would be
produced democratically from neutral τ -pions; the number of muons would be anomalously
high; and the invariant masses of muon pairs would be below 3.6 GeV for neutral τ -pions
and below 1.8 GeV for charged τ -pions if colored neutrinos are light.
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5. The lifetime of 20 ps can be assigned with charged τ -pion decaying weakly only into muon
and neutrino. This provides a killer test for the hypothesis. In absence of CKM mixing for
colored neutrinos, the decay rate to lepton and its antineutrino is given by

Γ(πτ → L + νL) =
G2m(L)2f2(π)(m(πτ )2 −m(L)2)2

4πm3(πτ )
. (1)

The parameter f(πτ ) characterizing the coupling of pion to the axial current can be written
as f(πτ ) = r(πτ )m(πτ ). For ordinary pion one has f(π) = 93 MeV and r(π) = .67. The
decay rate for charged τ -pion is obtained by simple scaling giving

Γ(πτ → L + νL) = 8x2u2y3(1− z2)
1

cos2(θc)
Γ(π → µ + νµ) ,

x =
m(L)
m(µ)

, y =
m(τ)
m(π)

, z =
m(L)
2m(τ)

, u =
r(πτ )
r(π)

.

(2)

If the p-adic mass scale of the colored neutrino is same as for ordinary neutrinos, the mass
of charged lepto-pion is in good approximation equal to the mass of τ and the decay rates to
τ and electron are for the lack of phase space much slower than to muons so that muons are
produced preferentially.

6. For m(τ) = 1.8 GeV and m(π) = .14 GeV and the same value for fπ as for ordinary pion
the lifetime is obtained by scaling from the lifetime of charged pion about 2.6× 10−8 s. The
prediction is 3.31×10−12 s to be compared with the experimental estimate about 20×10−12

s. r(πτ ) = .41rπ gives a correct prediction. Hence the explanation in terms of τ -pions seems
to be rather convincing unless one is willing to believe in really nasty miracles.

7. Neutral τ -pion would decay dominantly to monochromatic pairs of gamma rays. The decay
rate is dictated by the product of τ -pion field and ”instanton” action, essentially the inner
product of electric and magnetic fields and reducing to total divergence of instanton current
locally. The rate is given by

Γ(πτ → γ + γ) =
α2

emm3(πτ )
64π3f(πτ )2

= 2x−2y × Γ(π → γ + γ) ,

x =
f(πτ )
m(πτ )

, y =
m(τ)
m(π)

.Γ(π → γ + γ) = 7.37 eV .

(3)

The predicted lifetime is 1.17× 10−17 seconds.

8. Second decay channel is to lepton pairs, with muon pair production dominating for kinemat-
ical reasons. The invariant mass of the pairs is 3.6 GeV of no other particles are produced.
Whether the mass of colored neutrino is essentially the same as that of charged lepton or
corresponds to the same p-adic scale as the mass of the ordinary neutrino remains an open
question. If colored neutrino is light, the invariant mass of muon-neutrino pair is below 1.78
GeV.
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2.4 PAMELA and ATIC anomalies

TGD predicts also a hierarchy of hadron physics assignable to Mersenne primes. The mass scale
of M89 hadron physics is by a factor 512 higher than that of ordinary hadron physics. Therefore
a very rough estimate for the nucleons of this physics is 512 GeV. This suggest that the decays
of M89 hadrons are responsible for the anomalous positrons and electrons up to energies 500-800
GeV reported by ATIC collaboration. An equally naive scaling for the mass of pion predicts that
M89 pion has mass 72 GeV. This could relate to the anomalous cosmic ray positrons in the energy
interval 10-50 GeV reported by PAMELA collaboration. Be as it may, the prediction is that M89

hadron physics exists and could make itself visible in LHC.
The surprising finding is that positron fraction (the ratio of flux of positrons to the sum of elec-

tron and positron fluxes) increases above 10 GeV. If positrons emerge from secondary production
during the propagation of cosmic ray-nuclei, this ratio should decrease if only standard physics is
be involved with the collisions. This is taken as evidence for the production of electron-positron
pairs, possibly in the decays of dark matter particles.

Lepto-hadron hypothesis predicts that in high energy collisions of charged nuclei with charged
particles of matter it is possible to produce also charged electro-pions, which decay to electrons or
positrons depending on their charge and produce the electronic counterparts of the jets discovered
in CDF. This proposal - and more generally lepto-hadron hypothesis - could be tested by trying to
find whether also electronic jets can be found in proton-proton collisions. They should be present
at considerably lower energies than muon jets. I decided to check whether I have said something
about this earlier and found that I have noticed years ago that there is evidence for the production
of anomalous electron-positron pairs in hadronic reactions [16, 17, 18, 19]: some of it dates back
to seventies.

The first guess is that the center of mass energy at which the jet formation begins to make
itself visible is in a constant ratio to the mass of charged lepton. From CDF data this ratio satisfies√

s/mτ = x < 103. For electro-pions the threshold energy would be around 10−3x × .5 GeV and
for muo-pions around 10−3x× 100 GeV.

2.5 Comparison of TGD model with the model of CDF collaboration

Few days after the experimental a theoretical paper by CDF collaboration proposing a phenomeno-
logical model for the CDF anomaly appeared in the arXiv [40], and it is interesting to compare the
model with TGD based model (or rather, one of them corresponding to the third option mentioned
above).

The paper proposes that three new particles are involved. The masses for the particles -
christened h3, h2, and h1 - are assumed to be 3.6 GeV, 7.3 GeV, and 15 GeV. h1 is assumed to be
pair produced and decay to h2 pair decaying to h3 pair decaying to a τ pair.

h3 is assumed to have mass 3.6 GeV and life-time of 20× 10−12 seconds. The mass is same as
the TGD based prediction for neutral τ -pion mass, whose lifetime however equals to 1.12× 10−17

seconds (γ +γ decay dominates). The correct prediction for the lifetime provides a strong support
for the identification of long-lived state as charged τ -pion with mass near τ mass so that the decay
to µ and its antineutrino dominates. Hence the model is not consistent with lepto-hadronic model.

p-Adic length scale hypothesis predicts that allowed mass scales come as powers of
√

2 and
these masses indeed come in good approximation as powers of 2. Several p-adic scales appear in
low energy hadron physics for quarks and this replaces Gell-Mann formula for low-lying hadron
masses. Therefore one can ask whether the proposed masses correspond to neutral tau-pion with
p = Mk = 2k− 1, k = 107, and its p-adically scaled up variants with p ' 2k, k = 105, and k = 103
(also prime). The prediction for masses would be 3.6 GeV, 7.2 GeV, 14.4 GeV.

This co-incidence cannot of course be taken too seriously since the powers of two in CDF model
have a rather mundane origin: they follow from the assumed production mechanism producing 8
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τ -leptons from h1. One can however spend some time by looking whether it could be realized
somehow allowing p-adically scaled up variants of τ -pion.

1. The proposed model for the production of muon jets is based on production of k=103 neutral
τ -pion (or several of them) having 8 times larger mass than k=107 τ -pion in strong EB
background of the colliding proton and antiproton and decaying via strong interactions to
k=105 and k=107 τ -pions.

2. The first step would be

π0
τ (103) → π0

τ (105) + π+
τ (105) + π−τ (105) .

This step is not kinematically possible if masses are obtained by exact scaling and if m(π0
τ ) <

m(pi±τ ) holds true as for ordinary pion. p-Adic mass formulas do not however predict exact
scaling. In the case that reaction is not kinematically possible, it must be replaced with
a reaction in which second charged k=105 pion is virtual and decays weakly. This option
however reduces the rate of the process dramatically and might be excluded.

3. Second step would consist of a scaled variant of the first step

π0
τ (105) → π0

τ (107) + π+
τ (107) + π−τ (107) ,

where second charged pion also can be virtual and decay weakly, and the weak decays of the
π±τ (105) with mass 2m(τ) to lepton pairs. The rates for these are obtained from previous
formulas by scaling.

4. The last step would involve the decays of both charged and neutral πτ (107). The signature
of the mechanism would be anomalous γ pairs with invariant masses 2k ×m(τ), k = 1, 2, 3
coming from the decays of neutral τ -pions.

5. Dimensionless four-pion coupling λ determines the decay rates for neutral τ -pions appearing
in the cascade. Rates are proportional to phase space-volumes, which are rather small by
kinetic reasons.

The total cross section for producing single lepto-pion can be estimated by using the quantum
model for lepto-pion production. Production amplitude is essentially Coulomb scattering ampli-
tude for a given value of the impact parameter b for colliding proton and anti-proton multiplied by
the amplitude U(b, p) for producing on mass shell k = 103 lepto-pion with given four-momentum
in the fields E and B and given essentially by the Fourier transform of E ·B. The replacement of
the motion with free motion should be a good approximation.

UV and IR cutoffs for the impact parameter appear in the model and are identifiable as appro-
priate p-adic length scales. UV cutoff could correspond to the Compton size of nucleon (k = 107)
and IR cutoff to the size of the space-time sheets representing topologically quantized electro-
magnetic fields of colliding nucleons (perhaps k = 113 corresponding to nuclear p-adic length
scale and size for color magnetic body of constituent quarks or k = 127 for the magnetic body
of current quarks with mass scale of order MeV). If one has h̄/h̄0 = 27 one could also guess that
the IR cutoff corresponds to the size of dark em space-time sheet equal to 27L(113) = L(127) (or
27L(127) = L(141)), which corresponds to electron’s p-adic length scale. These are of course rough
guesses.

Quantitatively the jet-likeness of muons means that the additional muons are contained in the
cone θ < 36.8 degrees around the initial muon direction. If the decay of π0

τ (k) can occur to on
mass shell π0

τ (k + 2), k = 103, 105, it is possible to understand jets as a consequence of the decay
kinematics forcing the pions resulting as decay products to be almost at rest.
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1. Suppose that the decays to three pions can take place as on mass shell decays so that pions
are very nearly at rest. The distribution of decay products µν in the decays of π±(105) is
spherically symmetric in the rest frame and the energy and momentum of the muon are given
by

[E, p] = [m(τ) +
m2(µ)
4m(τ)

,m(τ)− m2(µ)
4m(τ)

] .

The boost factor γ = 1/
√

1− v2 to the rest system of muon is γ = m(τ)
m(µ) + m(µ)

4m(τ ) ∼ 18.

2. The momentum distribution for µ+ coming from π+
τ is spherically symmetric in the rest

system of π+ . In the rest system of µ− the momentum distribution is non-vanishing only for
when the angle θ between the direction of velocity of µ− is below a maximum value of given by
tan(θmax) = 1 corresponding to a situation in which the momentum µ+ is orthogonal to the
momentum of µ− (the maximum transverse momentum equals to m(µ)vγ and longitudinal
momentum becomes m(µ)vγ in the boost). This angle corresponds to 45 degrees and is not
too far from 36.8 degrees.

3. At the next step the energy of muons resulting in the decays of π±(103)

[E, p] = [
m(τ)

2
+

m2(µ)
2m(τ)

,
m(τ)

2
− m2(µ)

2m(τ)
] ,

and the boost factor is γ1 = m(τ)
2m(µ) + m(µ)

2m(τ) ∼ 9. θmax satisfies the condition tan(θmax) =
γ1v1/γv ' 1/2 giving θmax ' 26.6 degrees.

If on mass shell decays are not allowed the situation changes since either of the charged pions
is off mass shell. In order to obtain similar result the virtual should occur dominantly via states
near to on mass shell pion. Since four-pion coupling is just constant, this option does not seem to
be realized.

Quantitatively the jet-likeness of muons means that the additional muons are contained in the
cone θ < 36.8 degrees around the initial muon direction. If the decay of π0

τ (k) can occur to on
mass shell π0

τ (k + 2), k = 103, 105, it is possible to understand jets as a consequence of the decay
kinematics forcing the pions resulting as decay products to be almost at rest.
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[E, p] = [m(τ) +
m2(µ)
4m(τ)

,m(τ)− m2(µ)
4m(τ)

] .

The boost factor γ = 1/
√

1− v2 to the rest system of muon is γ = m(τ)
m(µ) + m(µ)

4m(τ ∼ 18.

2. The momentum distribution for µ+ coming from π+
τ is spherically symmetric in the rest

system of π+ . In the rest system of µ− the momentum distribution is non-vanishing only for
when the angle θ between the direction of velocity of µ− is below a maximum value of given by
tan(θmax) = 1 corresponding to a situation in which the momentum µ+ is orthogonal to the
momentum of µ− (the maximum transverse momentum equals to m(µ)vγ and longitudinal
momentum becomes m(µ)vγ in the boost). This angle corresponds to 45 degrees and is not
too far from 36.8 degrees.
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3. At the next step the energy of muons resulting in the decays of π±(103)

[E, p] = [
m(τ)

2
+

m2(µ)
2m(τ)

,
m(τ)

2
− m2(µ)

2m(τ)
] ,

and the boost factor is γ1 = m(τ)
2m(µ) + m(µ)

2m(τ) ∼ 9. θmax satisfies the condition tan(θmax) =
γ1v1/γv ' 1/2 giving θmax ' 26.6 degrees.

If on mass shell decays are not possible, the situation changes since either of the charged pions
is off mass shell. In order to obtain similar result the virtual should occur dominantly via states
near to on mass shell pion. Since four-pion coupling is just constant, this option does not seem to
be realized.

2.6 Does the production of lepto-pions involve a phase transition in-
creasing Planck constant?

The critical argument of Tommaso Dorigo in his blog inspired an attempt to formulate more
precisely the hypothesis

√
s/mτ > x < 103. This led to the realization that a phase transition

increasing Planck constant might happen in the production process as also the model for the
production of electro-pions requires.

Suppose that the instanton coupling gives rise to virtual neutral lepto-pions which ultimately
produce the jets (this is first of the three models that one can imagine). E and B could be
associated with the colliding proton and antiproton or quarks.

1. The amplitude for lepto-pion production is essentially Fourier transform of E · B, where E
and B are the non-orthogonal electric and magnetic fields of the colliding charges. At the
level of scales one has τ ∼ h̄/E, where τ is the time during which E ·B is large enough during
collision and E is the energy scale of the virtual lepto-pion giving rise to the jet.

2. In order to have jets one must have m(πτ ) << E. If the scaling law E ∝ √
s hold true, one

indeed has
√

s/m(πτ ) > x < 103.

3. If proton and antiproton would move freely, τ would be of the order of the time for proton to
move through a distance, which is 2 times the Lorentz contracted radius of proton: τfree =
2×√1− v2Rp/v = 2h̄/Ep. This would give for the energy scale of virtual τ -pion the estimate
E = h̄/τfree =

√
s/4. x = 4 is certainly quite too small value. Actually τ > τfree holds true

but one can argue that without new physics the time for the preservation of E ·B cannot be
by a factor of order 28 longer than for free collision.

4. For a colliding quark pair one would have τfree = 4h̄/
√

spair(s), where
√

spair(s) would be
the typical invariant energy of the pair which is exponentially smaller than

√
s. Somewhat

paradoxically from classical physics point of view, the time scale would be much longer for
the collision of quarks than that for proton and antiproton.

The possible new physics relates to the possibility that lepto-pions are dark matter in the sense
that they have Planck constant larger than the standard value.

1. Suppose that the produced lepto-pions have Planck constant larger than its standard value
h̄0. Originally the idea was that larger value of h̄ would scale up the production cross section.
IT turned out that this is not the case. For exp(iS) option the lowest order contribution
is not affected by the scaling of h̄ and for exp(iS) − 1 option the lowest order contribution
scales down as 1/hbar2. The improved formulation of the model however led to a correct
order of magnitude estimates for the production cross section.
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2. Assume that a phase transition increasing Planck constant occurs during the collision. Hence
τ is scaled up by a factor y = h̄/h̄0. The inverse of the lepto-pion mass scale is a natural
candidate for the scaled up dark time scale. τ(h̄0) ∼ τfree, one obtains y ∼ √

smin/4m(πτ ) ≤
28 giving for proton-antiproton option the first guess

√
s/m(πτ ) > x < 210. If the value of y

does not depend on the type of lepto-pion, the proposed estimates for muo- and electro-pion
follow.

3. If the fields E and B are associated with colliding quarks, only colliding quark pairs with√
spair(s) > (>)m(πτ ) contribute giving yq(s) =

√
spair(s)/s× y.

If the τ -pions produced in the magnetic field are on-mass shell τ -pions with k = 113, the value
of h̄ would satisfy h̄/h̄0 < 25 and

√
s/m(πτ ) > x < 27.

3 Quantum model for lepto-pion production

The basic question is what quantum model means. The most natural thing is to start from Coulomb
scattering and multiply Coulomb scattering amplitude for a given impact parameter value b with
the amplitude for lepto-pion production. This because the classical differential cross section given
by 2πbdb in Coulomb scattering equals to the quantum cross section. One might however argue
that on basis of S = 1 + T decomposition of S-matrix the lowest order contribution to lepto-pion
production in quantum situation corresponds to the absence of any scattering. The lepto-pion
production amplitude is indeed non-vanishing also for the free motion of nuclei. The resolution
of what looks like a paradox could come from many-sheeted space-time concept: if no scattering
occurs, the space-time sheets representing colliding nuclei do not touch and all and there is no
interference of em fields so that there is no lepto-pion production. It turns however that lowest
order contribution indeed corresponds to the absence of scattering in the model that works.

3.1 Two possible approaches

One can imagine two approaches to the construction of the model for production amplitude in
quantum case.

The first approach is based on eikonal approximation [41]. Eikonal approximation applies at
high energy limit when the scattering angle is small and one can approximate the orbit of the
projectile with a straight orbit.

The expression for the scattering amplitude in eikonal approximation reads as

f(θ, φ) =
k

2πi

∫
d2bexp(−ik · b)exp(iξ(b))− 1) ,

ξ(b) =
−m

kh̄2

∫ z=∞

z=−∞
dzV (z, b) ,

dσ

dΩ
= |f2| . (4)

as one expands the exponential in lowest in spherically symmetric potential order one obtains the

f(θ, φ) ' − m

2πh̄2

∫
J0(kT b)ξ(b)bdb .

(5)

The challenge is to find whether it is possible to generalize this expression so that it applies to
the production of lepto-pions.
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1. The simplest guess is that one should multiply the eikonal amplitude with the dimensionless
amplitude A(b):

f(θ, φ) → f(θ, φ, p) =
k

2πi

∫
d2bexp(−ik · b)exp(iξ(b))− 1)A(b, p)

' − m

2πh̄2

∫
J0(kT b)ξ(b)A(b, p)bdb . (6)

2. Amplitude squared must give differential cross section for lepto-pion production and scatter-
ing

dσ = |f(θ, φ, p)|2dΩd3n ,

d3n = V d3p . (7)

This requires an explicit introduction of a volume factor V via a spatial cutoff. This cutoff is
necessary for the coordinate z in the case of Coulomb potential, and would have interpretation
in terms of a finite spatio-temporal volume in which the space-time sheets of the colliding
particles are in contact and fields interfere.

3. There are several objections against this approach. The loss of a manifest relativistic in-
variance in the density of states factor for lepto-pion does not look nice. One must keep
count about the scattering of the projectile which means a considerable complication from
the point of view of numerical calculations. In classical picture for orbits the scattering angle
in principle is fixed once impact parameter is known so that the introduction of scattering
angles does not look logical.

Second approach starts from the classical picture in which each impact parameter corresponds
to a definite scattering angle so that the resulting amplitude describes lepto-pion production am-
plitude and says nothing about the scattering of the projectile. This approach is more in spirit
with TGD since classical physics is exact part of quantum TGD and classical orbit is absolutely
real from the point of view of lepto-pion production amplitude.

1. The counterpart of the eikonal exponent has interpretation as the exponent of classical action
associated with the Coulomb interaction

S(b) =
∫

γ

V ds (8)

along the orbit γ of the particle, which can be taken also as a real classical orbit but will be
approximated with rectilinear orbit in sequel.

2. The first guess for the production amplitude is

f(p) =
∫

d2bexp(−i∆k(b) · b)exp[
i

h̄
S(b)]A(b, p)

=
∫

J0(kT (b)b)(1 +
i

h̄

∫ z=a

z=−a

dzV (z, b) + ..)A(b, p) . (9)
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∆k is the change of the momentum in the classical scattering and in the scattering plane. The
cutoff |z| ≤ a in the longitudinal direction corresponds to a finite imbedding space volume
inside which the space-time sheets of target and projectile are in contact.

3. The production amplitude is non-trivial even if the interaction potential vanishes being given
by

f(p) =
∫

d2bexp(−ik · b))A(b, p) = 2πintJ0(kT (b)b)×A(b, p)bdb . (10)

This formula can be seen as a generalization of quantum formula in the sense that incoherent
integral over production probabilities at various values of b is replaced by an integral over
production amplitude over b so that interference effects become possible.

4. This result could be seen as a problem. On basis of S = 1+ iT decomposition corresponding
to free motion and genuine interaction, one could argue that since the exponent of action
corresponds to S, A(p, b) vanishes when the space-time sheets are not in contact. The
improved guess for the amplitude is

f(p) =
∫

d2bexp(−ik · b)exp(
i

h̄
S(b))A(b, p)

=
∫

J0(kT (b)b)(
i

h̄

∫ z=a

z=−a

V (z, b) + ..)A(b, p) . (11)

This would mean that there would be no classical limit when coherence is assumed to be
lost. At this stage one must keep mind open for both options.

5. The dimension of f(p) is L2/h̄

dσ = |f(p)|2 d3p

2Ep(2π)3
. (12)

has correct dimension. This model will be considered in sequel. The earlier work in [7] was
however based on the first option.

3.2 Formula for the production cross section

The expression for the differential cross section for lepto-pion production is given by

dσ = KF 2|
∫

(CUT1 + CUT2)bdb|2 d3p

2E
,

(13)

This expression and also the expressions of the integrals of CUT1 and CUT2 are calculated explicitly
as powers series of the impact parameter in the APPENDIX.
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1. For exp(iS) option one has

K = (Z1Z2)2α4
emN2

c [
m(πL)
f(πL)

]2
1

(2π)13
,

F = 1 . (14)

2. For exp(iS)− 1 option one has

K = (Z1Z2)4α6
emN2

c [
m(πL)
f(πL)

]2
1

(2π)13
,

F = 2〈〈ln(
√

a2 − b2 + a

b
)〉 . (15)

In the approximation that F is constant the two lowest order predictions are related by a scaling
factor

R = (Z1Z2αem)2F 2 . (16)

3.3 Numerical estimate for the production cross section

The numerical estimate of the cross section involves some delicacies. The model has purely physical
cutoffs which must be formulated in a precise manner.

1. Since energy conservation is not coded into the model, some assumption about the maximal
τ -pion energy in cm system expressed as a fraction ε of proton’s center of mass energy is
necessary. Maximal fraction corresponds to the condition m(πτ ) ≤ m(πτ )γ1 ≤ εmpγcm in cm
system giving [m(πτ )/(mpγcm) ≤ ε ≤ 1. γcm can be deduced from the center of mass energy
of proton as γcm =

√
s2mp,

√
s = 1.96 TeV. This gives 1.6 × 10−2 < ε < 1 in a reasonable

approximation. It is convenient to parameterize ε as

ε = (1 + δ)× m(πτ )
mp

× 1
γcm

.

The coordinate system in which the calculations are carried out is taken to be the rest
system of (say) antiproton so that one must perform a Lorentz boost to obtain upper and
lower limits for the velocity of τ -pion in this system. In this system the range of γ1 is fixed
by the maximal cm velocity fixed by ε and the upper/lower limit of γ1 corresponds to a
direction parallel/opposite to the velocity of proton.

2. By Lorentz invariance the value of the impact parameter cutoff bmax should be expressible
in terms τ -pion Compton length and the center of mass energy of the colliding proton and
the assumption is that bmax = γcm × h̄/m(πτ ), where it is assumed m(πτ ) = 8m(τ). The
production cross section does not depend much on the precise choice of the impact parameter
cutoff bmax unless it is un-physically large in which case b2

max proportionality is predicted.

The numerical estimate for the production cross section involves some delicacies.
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1. The power series expansion of the integral of CUT1 using partial fraction representation does
not converge since that roots c± are very large in the entire integration region. Instead the
approximation A1 ' iBcos(ψ)/D simplifying considerably the calculations can be used. Also
the value of b1L is rather small and one can use stationary phase approximation for CUT2.
It turns out that the contribution of CUT2 is negligible as compared to that of CUT1.

2. Since the situation is singular for θ = 0 and φ = 0 and φ = π/2 (by symmetry it is enough
to calculate the cross section only for this kinematical region), cutoffs

θ ∈ [ε1, (1− ε1)]× π , φ ∈ [ε1, (1− ε1)]× π/2 , ε1 = 10−3 .

The result of the calculation is not very sensitive to the value of the cutoff.

3. Since the available numerical environment was rather primitive (MATLAB in personal com-
puter), the requirement of a reasonable calculation time restricted the number of intervals
in the discretization for the three kinematical variables γ, θ, φ to be below Nmax = 80. The
result of calculation did not depend appreciably on the number of intervals above N = 40
for γ1 integral and for θ and φ integrals even N = 10 gave a good estimate.

The calculations were carried for the exp(iS) option since in good approximation the estimate
for exp(iS)− 1 model is obtained by a simple scaling. exp(iS) model produces a correct order of
magnitude for the cross section whereas exp(iS) − 1 variant predicts a cross section, which is by
several orders of magnitude smaller by downwards α2

em scaling. As I asked Tommaso Dorigo for an
estimate for the production cross section in his first blog posting [38], he mentioned that authors
refer to a production cross section is 100 nb which looks to me suspiciously large (too large by
three orders of magnitude), when compared with the production rate of muon pairs from b-bbar.
δ = 1.5 which corresponds to τ -pion energy 36 GeV gives the estimate σ = 351 nb. The energy is
suspiciously high.

In fact, in the recent blog posting of Tommaso Dorigo [37] a value of order .1 nb for the
production cross section was mentioned. Electro-pions in heavy ion collisions are produced almost
at rest and one has ∆v/v ' .2 giving δ = ∆E/m(π) ' 2× 10−3. If one believes in fractal scaling,
this should be at least the order of magnitude also in the case of τ -pion. This would give the
estimate σ = 1 nb. For δ = ∆E/m(π) ' 10−3 a cross section σ = .16 nb would result.

One must of course take the estimate cautiously but there are reasons to hope that large
systematic errors are not present anymore. In any case, the model can explain also the order of
magnitude of the production cross section under reasonable assumptions about cutoffs.

3.4 Could lepto-hadrons correspond to dark matter?

It has been proposed that the particles produced in CDF anomaly might be decay products of dark
matter particles. In TGD framework lepto-hadron hypothesis explains successfully the basic quan-
titative and qualitative factors about CDF anomaly and relates it to a bundle of other anomalies
(as previous postings should demonstrate). The question is whether there are compelling reasons
for identifying lepto-hadrons as dark matter in TGD sense.

Consider first the experimental side. The proposed identification of cosmic strings (in TGD
sense) as the ultimate source of both visible and dark matter discussed in [3] does not exclude the
possibility that a considerable portion of topologically condensed cosmic strings have decayed to
some light particles. In particular, this could be the situation in the galactic nuclei.

The idea that lepto-hadrons might have something to do with the dark matter has popped up
now and then during the last decade but for some reason I have not taken it seriously. Situation
changed towards the end of the year 2003. There exist now detailed maps of the dark matter in
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Figure 1: Differential cross section sin2(θ) × d2σ
2Ed3p for τ -pion production for γ1 = 1.090 × 103 in

the rest system of antiproton for δ = 1.5. m(πτ ) defines the unit of energy and nb is the unit for
cross section. The ranges of θ and φ are (0, π) and (0, π/2).

the center of galaxy and it has been found that the density of dark matter correlates strongly with
the intensity of monochromatic photons with energy equal to the rest mass of electron [42].

The only explanation for the radiation is that some yet unidentified particle of mass very nearly
equal to 2me decays to an electron positron pair. Electron and positron are almost at rest and this
implies a high rate for the annihilation to a pair of gamma rays. A natural identification for the
particle in question would be as a lepto-pion (or rather, electro-pion). By their low mass lepto-
pions, just like ordinary pions, would be produced in high abundance, in lepto-hadronic strong
reactions and therefore the intensity of the monochromatic photons resulting in their decays would
serve as a measure for the density of the lepto-hadronic matter. Also the presence of lepto-pionic
condensates can be considered.

These findings force to take seriously the identification of the dark matter as lepto-hadrons.
This is however not the only possibility. The TGD based model for tetra-neutrons discussed in
[4] is based on the hypothesis that mesons made of scaled down versions of quarks corresponding
to Mersenne prime M127 (ordinary quarks correspond to k = 107) and having masses around one
MeV could correspond to the color electric flux tubes binding the neutrons to form a tetra-neutron.
The same force would be also relevant for the understanding of alpha particles.

There are also good theoretical arguments for why lepto-hadrons should be dark matter in the
sense of having a non-standard value of Planck constant.

1. Since particles with different Planck constant correspond to different pages of the book like
structure defining the generalization of the imbedding space, the decays of intermediate gauge
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bosons to colored excitations of leptons would not occur and would thus not contribute to
their decay widths.

2. In the case of electro-pions the large value of the coupling parameter Z1Z2αem > 1 combined
with the hypothesis that a phase transition increasing Planck constant occurs as perturbative
QFT like description fails would predict that electro-pions represent dark matter. Indeed,
the power series expansion of the exp(iS) term might well fail to converge in this case since
S is proportional to Z1Z2. For τ -pion production one has Z1 = −Z2 = 1 and in this case
one can consider also the possibility that τ -pions are not dark in the sense of having large
Planck constant. Contrary to the original expectations darkness does not affect the lowest
order prediction for the production cross section of lepto-pion.

3.5 Could it have been otherwise?

To sum up, the probability that a correct prediction for the lifetime of the new particle using only
known lepton masses and standard formulas for weak decay rates follows by accident is extremely
low. Throwing billion times coin and getting the same result every time might be something
comparable to this. And not only this: masses of the states proposed by CDF collaboration
are predicted correctly as masses of neutral lepto-pions. Also the reaction mechanism producing
jets has been identified and production cross section is consistent with the experimental estimate.
Therefore my sincere hope is that colleagues would be finally mature to take TGD seriously. If TGD
based explanation of the anomalous production of electron positron pairs in heavy ion collisions
would have been taken seriously for eighteen years ago, particle physics might look quite different
now.

4 APPENDIX

4.1 Evaluation of lepto-pion production amplitude

4.1.1 General form of the integral

The amplitude for lepto-pion production with four momentum

p = (p0, p̄) = mγ1(1, vsin(θ)cos(φ), vsin(θ)sin(φ), vcos(θ)) ,

γ1 = 1/(1− v2)1/2 , (17)

is essentially the Fourier component of the instanton density

U(b, p) =
∫

eip·xE ·Bd4x (18)

associated with the electromagnetic field of the colliding nuclei.
In order to avoid cumbersome numerical factors, it is convenient to introduce the amplitude

A(b, p) as

A(b, p) = N0 × 4π

Z1Z2αem
× U(b, p) ,

N0 = (2π)7

i (19)
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Coordinates are chosen so that target nucleus is at rest at the origin of coordinates and colliding
nucleus moves along positive z direction in y = 0 plane with velocity β. The orbit is approximated
with straight line with impact parameter b.

Instanton density is just the scalar product of the static electric field E of the target nucleus
and magnetic field B the magnetic field associated with the colliding nucleus, which is obtained
by boosting the Coulomb field of static nucleus to velocity β. The flux lines of the magnetic field
rotate around the direction of the velocity of the colliding nucleus so that instanton density is
indeed non vanishing.

The Fourier transforms of E and B for nuclear charge 4π (chose for convenience) giving rise to
Coulomb potential 1/r are given by the expressions

Ei(k) = Nδ(k0)ki/k2 ,

Bi(k) = Nδ(γ(k0 − βkz))kjεijze
ikxb/((

kz

γ
)2 + k2

T ) ,

N =
1

(2π)2
. (20)

The normalization factor corresponds to momentum space integration measure d4p. The Fourier
transform of the instanton density can be expressed as a convolution of the Fourier transforms of
E and B.

A(b, p) ≡ = N0N1

∫
E(p− k) ·B(k)d4k ,

N1 =
1

(2π)4
. (21)

Where the fields correspond to charges ±4π. In the convolution the presence of two delta functions
makes it possible to integrate over k0 and kz and the expression for U reduces to a two-fold integral

A(b, p) = βγ

∫
dkxdkyexp(ikxb)(kxpy − kypx)/AB ,

A = (pz − p0

β
)2 + p2

T + k2
T − 2kT · pT

B = k2
T + (

p0

βγ
)2 ,

pT = (px, py) . (22)

To carry out the remaining integrations one can apply residue calculus.

1. ky integral is expressed as a sum of two pole contributions

2. kx integral is expressed as a sum of two pole contributions plus two cut contributions.

4.1.2 ky-integration

Integration over ky can be performed by completing the integration contour along real axis to a
half circle in upper half plane (see Fig. 4.1.3).

The poles of the integrand come from the two factors A and B in denominator and are given
by the expressions
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k1
y = i(k2

x + (
p0

βγ
)2)1/2 ,

k2
y = py + i((pz − p0

β
)2 + p2

x + k2
x − 2pxkx)1/2 . (23)

One obtains for the amplitude an expression as a sum of two terms

A(b, p) = 2πi

∫
eikxb(U1 + U2)dkx , (24)

corresponding to two poles in upper half plane.
The explicit expression for the first term is given by

U1 = RE1 + iIM1 ,

RE1 = (kx
p0

β
y − pxre1/2)/(re2

1 + im2
1) ,

IM1 = (−kxpyre1/2K
1/2
1 − pxpyK

1/2
1 )/(re2

1 + im2
1) ,

re1 = (pz − p0

β
)2 + p2

T − (
p0

βγ
)2 − 2pxkx ,

im1 = −2K
1/2
1 py ,

K1 = k2
x + (

p0

βγ
)2 . (25)

The expression for the second term is given by

U2 = RE2 + iIM2 ,

RE2 = −((kxpy − pxpy)py + pxre2/2)/(re2
2 + im2

2) ,

IM2 = (−(kxpy − pxpy)re2/2K
1/2
2 + pxpyK

1/2
2 )/(re2

2 + im2
2) ,

re2 = −(pz − p0

β
)2 + (

p0

βγ
)2 + 2pxkx +

p0

β
y − p0

β
x ,

im2 = 2pyK
1/2
2 ,

K2 = (pz − p0

β
)2 +

p0

β
x + k2

x − 2pxkx . (26)

A little inspection shows that the real parts cancel each other:RE1 + RE2 = 0. A further useful
result is the identity im2

1 + re2
1 = re2

2 + im2
2 and the identity re2 = −re1 + 2p2

y.

4.1.3 kx-integration

One cannot perform kx-integration completely using residue calculus. The reason is that the terms
IM1 and IM2 have cuts in complex plane. One can however reduce the integral to a sum of pole
terms plus integrals over the cuts.

The poles of U1 and U2 come from the denominators and are in fact common for the two
integrands. The explicit expressions for the pole in upper half plane, where integrand converges
exponentially are given by
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re2
i + im2

i = 0 , i = 1, 2 ,

kx = (−b + i(−b2 + 4ac)1/2)/2a ,

a = 4p2
T ,

b = −4((pz − p0

β
)2 + p2

T − (
p0

βγ
)2)px ,

c = ((pz − p0

β
)2 + p2

T − (
p0

βγ
)2)2 + 4(

p0

βγ
)2p2

y . (27)

A straightforward calculation using the previous identities shows that the contributions of IM1

and IM2 at pole have opposite signs and the contribution from poles vanishes identically!
The cuts associated with U1 and U2 come from the square root terms K1 and K2. The condition

for the appearance of the cut is that K1 (K2) is real and positive. In case of K1 this condition
gives

kx = it, t ∈ (0,
p0

βγ
) . (28)

In case of K2 the same condition gives

kx = px + it, t ∈ (0,
p0

β
− pz) . (29)

Both cuts are in the direction of imaginary axis.
The integral over real axis can be completed to an integral over semi-circle and this integral in

turn can be expressed as a sum of two terms (see Fig. 4.1.3).

A(b, p) = 2πi(CUT1 + CUT2) . (30)

The first term corresponds to contour, which avoids the cuts and reduces to a sum of pole contri-
butions. Second term corresponds to the addition of the cut contributions.

In the following we shall give the expressions of various terms in the region φ ∈ [0, π/2]. Using
the symmetries

A(b, px,−py) = −A(b, px, py) ,

A(b,−px,−py) = Ā(b, px, py) . (31)

of the amplitude one can calculate the amplitude for other values of φ.
The integration variable for cuts is the imaginary part t of complexified kx. To get a more

convenient form for cut integrals one can perform a change of the integration variable

cos(ψ) =
t

( p0
βγ )

,

cos(ψ) =
t

(p0
β − pz)

,

ψ ∈ [0, π/2] . (32)
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1. The contribution of the first cut

By a painstaking calculation one verifies that the expression for the contribution of the first
cut is given by

CUT1 = D1 ×
∫ π/2

0

exp(− b

b0
cos(ψ))A1dψ ,

D1 = −1
2

sin(φ)
sin(θ)

, b0 =
h̄

m

βγ

γ1
,

A1 =
A + iBcos(ψ)

cos2(ψ) + 2iCcos(ψ) + D
,

A = sin(θ)cos(φ) , B = K ,

C = K
cos(φ)
sin(θ)

, D = −sin2(φ)− K2

sin2(θ)
,

K = βγ(1− vcm

β
cos(θ)) , vcm =

2v

1 + v2
.

(33)

The definitions of the various kinematical variables are given in previous formulas. The notation
is tailored to express that A1 is rational function of cos(ψ).

1. The exponential exp(−bcos(ψ)/b0) is very small in the condition

cos(ψ) ≥ cos(ψ0) ≡ h̄

mb

βγ

γ1cos(φ)
(34)

holds true. Here h̄ = 1 convention has been given up to make clear that the increase of the
Compton length of lepto-pion due to the scaling of h̄ increase the magnitude of the contri-
bution. If the condition cos(ψ0) << 1 holds true, the integral over ψ receives contributions
only from narrow range of values near the upper boundary ψ = π/2 plus the contribution
corresponding to the pole of X1. The practical condition is in terms of critical parameter
bmax above which exponential approaches zero very rapidly.

2. For cos(ψ0) << 1, that is for b > bmax and in the approximation that the function multiplying
the exponent is replaced with its value for ψ = π/2, one obtains for CUT1 the expression

CUT1 ' D1A1(ψ = π/2)
h̄

mb

=
1
2
× βγ

γ1
× h̄

mb
× sin2(θ)cos(φ)sin(φ)

sin2(θ)sin2(φ) + K2
. (35)

3. For cos(ψ0) >> 1 exponential factor can be replaced by unity in good approximation and
the integral reduces to an integral of rational function of cos(ψ) having the form

D1
A + iBcos(ψ)

cos2(ψ) + 2iC × cos(ψ) + D

. (36)
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which can be expressed in terms of the roots c± of the denominator as

D1 ×
∑
±

A∓ iBc±
cos(ψ)− c±

, c±) = −iC ±
√
−C2 −D . (37)

Integral reduces to an integral of rational function over the interval [0, 1] by the standard
substitution tan(ψ/2) = t, dψ = 2dt/(1+ t2), cos(ψ) = (1−t2)/(1+t2), sin(ψ) = 2t/(1+ t2).

I = 2D1

∑
±

∫ 1

0

dt
A∓ iBc±

1− c± − (1 + c±)t2
(38)

This gives

I = 2D1

∑
±

A∓ iBc±
s±

× arctan(
1 + c±
1− c±

) .

(39)

s± is defined as
√

1− c2± and one must be careful with the signs. This gives for CUT1 the
approximate expression

CUT1 = D1

∑
±

sin(θ)cos(φ)∓ iKc±
s±

× arctan(
1 + c±
1− c±

) ,

c± =
−iKcos(φ)± sin(φ)

√
sin2(θ) + K2

sin(θ)
. (40)

Arcus tangent function must be defined in terms of logarithm functions since the argument
is complex.

4. In the intermediate region, where the exponential differs from unity one can use expansion
in Taylor polynomial to sum over integrals of rational functions of cos(ψ) and one obtains
the expression

CUT1 = D1

∞∑
n=0

(−1)n

n!
(

b

b0
)nIn ,

In =
∑
±

(A∓ iBc±In(c±) ,

In(c) =
∫ π/2

0

cosn(ψ)
cos(ψ)− c

.

(41)

In(c) can be calculated explicitly by expanding in the integrand cos(ψ))n to polynomial with
respect to cos(ψ))− c, c ≡ c±
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cosn(ψ)
cos(ψ)− c

=
n−1∑
m=0

(
n
m

)
cm(cos(ψ)− c)n−m−1 +

cn

cos(ψ)− c
.

(42)

After the change of the integration variable the integral reads as

In(c) =
n−1∑
m=0

n−m−1∑

k=0

(
n
m

)(
n−m− 1

k

)
(−1)k(1− c)n−m−1−k(1 + c)kcmI(k, n−m)

+
cn

1− c
× log[

√
1− c +

√
1 + c√

1− c−√1 + c
] ,

I(k, n) = 2
∫

dt
t2k

(1 + t2)n
. (43)

Partial integration for I(k, n) gives the recursion formula

I(k, n) = −2−n+1

n− 1
+

2k − 1
2(n− 1)

× I(k − 1, n− 1) . (44)

The lowest term in the recursion formula corresponds to I(0, n − k), can be calculated by
using the expression

(1 + t2)−n =
n∑

k=0

c(n, k)[(1 + it)−k + (1− it)−k] ,

c(n, k) =
n−k−1∑

l=0

c(n− 1, k + l)2−l−2 + c(n− 1, n− 1)2−n+k−1 . (45)

The formula is deducible by assuming the expression to be known for n and multiplying the
expression with (1 + t2)−1 = [(1 + it)−1 + (1 − it)−1]/2 and applying this identity to the
resulting products of (1 + it)−1 and (1− it)−1. This gives

I(0, n) = −2i
∑

k=2,n

c(n, k)
(k − 1)

[1 + 2(k−1)/2sin((k − 1)π/4)] + c(n, 1)log(
1 + i

1− i
) . (46)

This boils down to the following expression for CUT1

CUT1 = D1

∞∑
n=0

(−1)n

n!
(

b

b0
)nIn ,

In =
∑
±

[A∓ iBc±]In(cos(c±) ,
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In(c) =
n−1∑
m=1

n−m−1∑

k=0

(
n
m

) (
n−m− 1

k

)
(1− c)n−m−1−k(1 + c)kcmI(k, n−m− 1)

+
cn

1− c
× log[

√
1− c +

√
1 + c√

1− c−√1 + c
] ,

I(k, n) = −2−n+1

n− 1
+

2k − 1
2(n− 1)

× I(k − 1, n− 1) ,

I(0, n) = −2i

n∑

k=2

c(n, k)
(k − 1)

[1 + 2(k−1)/2sin((k − 1)π/4)]− c(n, 1) ,

c(n, k) =
n−k−1∑

l=0

c(n− 1, k + l)2−l−2 + c(n− 1, n− 1)2−n+k−1 . (47)

This expansion in powers of c± fails to converge when their values are very large. This happens
in the case of τ -pion production amplitude. In this case one typically has however the situation in
which the conditions A1 ' iBcos(ψ)/D holds true in excellent approximation and one can write

CUT1 ' i
D1B

D
×

∑
n=0,1,...

(−1)n

n!2n
(

b

b0
)nIn× ,

In =
∫ π/2

0

cos(ψ)n+1dψ =
n+1∑

k=0

(
n + 1

k

)
in−2k − 1
n + 1− 2k

. (48)

The denominator X1 vanishes, when the conditions

cos(θ) =
β

vcm
,

sin(φ) = cos(ψ) (49)

hold. In forward direction the conditions express the vanishing of the z-component of the lepto-
pion velocity in velocity cm frame as one can realize by noticing that condition reduces to the
condition v = β/2 in non-relativistic limit. This corresponds to the production of lepto-pion with
momentum in scattering plane and with direction angle cos(θ) = β/vcm.

CUT1 diverges logarithmically for these values of kinematical variables at the limit φ → 0 as is
easy to see by studying the behavior of the integral near as K approaches zero so that X1 approaches
zero at sin(φ) = cos(Φ) and the integral over a small interval of length ∆Ψ around cos(Ψ) = sin(φ)
gives a contribution proportional to log(A + B∆Ψ))/B, A = K[K − 2isin(θ)sin2(φ)] and B =
2sin(θ)cos(φ)[sin(θ)sin(φ) − iKcos(φ)]. Both A and B vanish at the limit φ → 0, K → 0. The
exponential damping reduces the magnitude of the singular contribution for large values of sin(φ)
as is clear form the first formula.

2. The contribution of the second cut

The expression for CUT2 reads as

CUT2 = D2exp(− b

b2
)×

∫ π/2

0

exp(i
b

b1
cos(ψ))A2dψ ,

D2 = − sin(φ
2 )

usin(θ)
,
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b1 =
h̄

m

β

γ1
, b2 =

h̄

mb

1
γ1 × sin(θ)cos(φ)

A2 =
Acos(ψ) + B

cos2(ψ) + 2iCcos(ψ) + D
,

A = sin(θ)cos(φ)u , B =
w

vcm
+

v

β
sin2(θ)[sin2(φ)− cos2(φ)] ,

C =
βw

uvcm

cos(φ)
sin(θ)

, D = − 1
u2

(
sin2(φ)

γ2
+ β2(v2sin2(θ)− 2vw

vcm
)cos2(φ))

+
w2

v2
cmu2sin2(θ)

+ 2i
βv

u
sin(θ)cos(φ) ,

u = 1− βvcos(θ) , w = 1− vcm

β
cos(θ) . (50)

(51)

The denominator X2 has no poles and the contribution of the second cut is therefore always finite.

1. The factor exp(−b/b2) gives an exponential reduction and the contribution of CUT2 is large
only when the criterion

b <
h̄

m
× 1

vγ1sin(θ)cos(φ)

for the impact parameter b is satisfied. Large values of h̄ increase the range of allowed impact
parameters since the Compton length of lepto-pion increases.

2. At the limit when the exponent becomes very large the variation of the phase factor implies
destructive interference and one can perform stationary phase approximation around ψ =
π/2. This gives

CUT2 '
√

2πb1

b
×D2 × exp(

b

b2
)A2(ψ = 0) ,

D2 = − sin(φ
2 )

usin(θ)
, A2 =

A

D
. (52)

3. As for CUT1, the integral over ψ can be expressed as a finite sum of integrals of rational func-
tions, when the value of (b/b1)cos(ψ) is so small that exp(i(b/b1)cos(ψ)) can be approximated
by a Taylor polynomial. More generally, one obtains the expansion

CUT2 = D2exp(− b

b2
)×

∞∑
n=0

1
n!

in(
b

b1
)nIn(A,B, C, D) ,

In(A,B, C, D) =
∫ π/2

0

cos(ψ)n A + iBcos(ψ)
cos2(ψ) + Ccos(ψ) + D

. (53)

The integrand of In(A, B,C, D) is same rational function as in the case of CUT1 but the
parameters A,B,C, D given in the expression for CUT2 are different functions of the kine-
matical variables. The functions appearing in the expression for integrals In(c) correspond
to the roots of the denominator of A2 and are given by c± = −iC ± √−C2 −D, where C
and D are the function appearing in the general expression for CUT2 in Eq. 51.
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Figure 2: Evaluation of ky-integral using residue calculus.

Figure 3: Evaluation of kx-integral using residue calculus.
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4.2 Production amplitude in quantum model

The previous expressions for CUT1 and CUT2 as such give the production amplitude for given b
in the classical model and the cross section can be calculated by integrating over the values of b.
The finite Taylor expansion of the amplitude in powers of b allows explicit formulas when impact
parameter cutoff is assumed.

4.2.1 General expression of the production amplitude

In quantum model the production amplitude can be reduced to simpler form by using the defining
integral representation of Bessel functions

fB = i

∫
F (b)J0(∆kb)(CUT1 + CUT2)bdb ,

F = 1 for exp(i(S)) option ,

F (b ≥ bcr) =
∫

dz
1√

z2 + b2
= 2ln(

√
a2 − b2 + a

b
) for exp(i(S))− 1 option ,

∆k = 2ksin(
α

2
) , k = MRβ . (54)

Note that F is a rather slowly varying function of b and in good approximation can be replaced
by its average value A(b, p), which has been already explicitly calculated as power series in b. αem

corresponds to the value of αem for the standard value of Planck constant.

4.2.2 The limit ∆k = 0

The integral of the contribution of CUT1 over the impact parameter b involves integrals of the
form

J1,n = b2
0

∫
J0(∆kb)F (b)xn+1dx ,

x =
b

b0
. (55)

Here a is the upper impact parameter cutoff. For CUT2 one has integrals of the form

J2,n = b2
1(

b2

b1
)n+2

∫
J0(∆kb)F (b)exp(−x)xn+1dx ,

x =
b

b2
. (56)

Using the following approximations it is possible to estimate the integrals analytically.

1. The logarithmic term is slowly varying function and can be replaced with its average value

F (b) → 〈F (b)〉 ≡ F . (57)

2. ∆k is fixed once the value of the impact parameter is known. At the limit ∆k = 0 making
sense for very high energy collisions one can but the value of Bessel function to J0(0) = 1.
Hence it is advantageous to calculated the integrals of

∫
CUTibdb .
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Consider first the integral
∫

CUT1bdb. If exponential series converges rapidly one can use Taylor
polynomial and calculate the integrals explicitly. When this is not the case one can calculate
integral approximately and the total integral is sum over two contributions:

∫
CUT1bdb = Ia + Ib . (58)

1. The region in which Taylor expansion converges rapidly gives rise integrals

I1,n ' b2
0

∫
xn+1dx = b2

0

1
n + 2

[(
bmax

b0
)n+2 − (

bcr

b0
)n+2] ' b2

0

1
n + 2

(
bmax

b0
)n+2 ,

I2,n ' b2
1(

b2

b1
)n+2

∫
exp(−x)xn+1dx = b2

1(
b2

b1
)n+2(n + 1)! .

(59)

2. For the perturbative part of CUT1 one obtains the expression

Ia =
∫ bmax

0

CUT1bdb = D1 × b2
0 ×

∞∑
n=0

1
n!(n + 2)

(
bmax

b0
)n+2In(A,B,C, D) ,

D1 = −1
2

sin(φ)
sin(θ)

, b0 =
h̄βγ

mγ1
.

(60)

There bmax is the largest value of b for which the series converges sufficiently rapidly.

3. The convergence of the exponential series is poor for large values of b/b0, that is for b > bm.
In this case one can use the approximation in which the multiplier of exponent function in
the integrand is replaced with its value at ψ = π/2 so that amplitude becomes proportional
to b0/b. In this case the integral over b gives a factor proportional to ab0, where a is the
impact parameter cutoff.

Ib ≡
∫ a

bm

CUT1bdb ' b0(a− bm)D1 ×A1(ψ = π/2)

=
βγ

γ1
× h̄

m
× sin2(θ)cos(φ)sin(φ)

sin2(θ)sin2(φ) + K2
,

D1 = −1
2

sin(φ)
sin(θ)

, A1(ψ = π/2) =
A

D
.

(61)

4. As already explained, the expansion based on partial fractions does not converge, when the
roots c± have very large values. This indeed occurs in the case of τ -pion production cross
section. In this case one has A1 ' iBcos(ψ)/D in excellent approximation and one can
calculate CUT1 in much easier manner. Using the formula of Eq. 48 for CUT1, one obtains
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∫
CUT1bdb ' b2

0

D1B

D
×

∑
n=0,1,...

(−1)n

n!(n + 2)2n
×

n+1∑

k=0

(
n + 1

k

)
cn,k × (

bmax

b0
)n ,

cn,k =
in+1−2k − 1
n + 1− 2k

for n 6= 2k − 1 , cn,k =
iπ

2
for n = 2k − 1 , (62)

Note that for n = 2k + 1 = k the coefficient diverges formally and actua

Highly analogous treatment applies to the integral of CUT2.

1. For the perturbative contribution to
∫

CUT2bdb one obtains

Ia =
∫ b1,max

0

CUT2bdb = b2
1D2

∞∑
n=0

(n + 1)inIn(A,B, C,D)× (
b2

b1
)n+2 ,

D2 = − sin(φ
2 )

usin(θ)
,

b1 =
h̄β

mγ1
, b2 =

h̄

mγ1

1
sin(θ)cos(φ)

. (63)

2. Taylor series converges slowly for

b1

b2
=

sin(θ)cos(φ)
β

→ 0 .

In this case one can replace exp(−b/b2) with unity or expand it as Taylor series taking only
few terms. This gives the expression for the integral which is of the same general form as in
the case of CUT1

Ia =
∫ bmax

0

CUT2bdb = b2
1D2

∞∑
n=0

in

n!(n + 2)
In(A,B, C, D)(

bmax

b1
)n+1 .

(64)

3. Also when b/b1 becomes very large, one must apply stationary phase approximation to cal-
culate the contribution of CUT2 which gives a result proportional to

√
b1/b. Assume that

bm >> b1 is the value of impact parameter above which stationary phase approximation
is good. This gives for the non-perturbative contribution to the production amplitude the
expression

Ib =
∫ a

bm

CUT2bdb = k

√
2πb1

b2
b2
2 ×D2 ×A2(ψ = π/2) ,

k =
∫ x2

x1

exp(−x)x1/2dx = 2
∫ √

x2

√
x1

exp(−u2)u2du ,

x1 =
bm

b2
, x2 =

a

b2
. (65)

In good approximation one can take x2 = ∞. x1 = 0 gives the upper bound k ≤ √
π for the

integral.
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Some remarks relating to the numerics are in order.

1. The contributions of both CUT1 and CUT2 are proportional to 1/sin(θ) in the forward
direction. The denominators of Ai however behave like 1/sin2(θ) at this limit so that the
amplitude behaves as sin(θ) at this limit and the amplitude approaches to zero like sin(θ)
Therefore the singularity is only apparent but must be taken into account in the calculation
since one has c± → i∞ at this limit for CUT2 and for CUT1 the roots approach to c+ =
c− = i∞. One must pose a cutoff θmin below which the contribution of CUT1 and CUT2

are calculated directly using approximate he expressions for DiAi.

D1A1 → − i

K
cos(ψ)× sin(θ) → 0

D2A2 → −uvcm

w
× sin(θ) → 0 . (66)

In good approximation both contributions vanish since also sin2(θ) factor from the phase
space integration reduces the contribution.

2. A second numerical problem is posed by the possible vanishing of

K = βγ(1− vcm

β
cos(θ)) .

In this case the roots c± = ±sin(φ) are real and c+ gives rise to a pole in the integrand.

The singularity to the amplitude comes from the logarithmic contributions in the Taylor
series expansion of the amplitude. The sum of the singular contributions coming from c+

and c− are of form

cn

2
(
√

1− sin(φ) +
√

1 + sin(φ)log(
1 + u

1− u
) , u =

√
1 + sin(φ)
1− sin(φ)

.

Here cn characterizes the 1/(cos(ψ) − c±) term of associated with the cos(ψ)n term in the
Taylor expansion. Logarithm becomes singular for the two terms in the sum at the limit
φ → 0. The sum however behaves as

cn

2
sin(φ)log(

sin(φ)
2

) .

so that the net result vanishes at the limit φ → 0. It is essential that the logarithmic
singularities corresponding to the roots c+ and c− cancel each other and this must be taken
into account in numerics. There is also apparent singularity at φ = π/2 canceled by cos(φ)
factor in D1. The simplest manner to get rid of the problem is to exclude small intervals
[0, ε] and [π/2− ε, π/2] from the phase space volume.

4.2.3 Improved approximation to the production cross section

The approximation J0(∆kT (b)b) = 1 and F (b) = F = constant allows to perform the integrations
over impact parameter explicitly (for exp(iS) option F = 1 holds true identically in the lowest
order approximation). An improved approximation is obtained by diving the range of impact
parameters to pieces and performing the integrals over the impact parameter ranges exactly using
the average values of these functions. This requires only a straightforward generalization of the
formulas derived above involving integrals of the functions xn and exp(−x)xn over finite range.
Obviously this is still numerically well-controlled procedure.
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