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A circularly polarized light beam carries an angular momentum (AM) [1,2]. However, troubling
questions exist: what is the distribution of this AM over the beam section, and what is the nature
of the AM, orbital or spin?

A paraxial circularly polarized Laguerre-Gaussian beam [3], LG 'p , in the cylindrical
coordinates p,d,z with the metric dI? = dp® + p®do® +dz?, namely
E=exp{il +)d+io(z-t)Hop+iopdp+iz 8p)u'p(p, z), B=-lE,
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(p, d,z are covariant coordinate vectors, k = @, ¢ =1) is an eigenfunction of the orbital, not

spin, AM operator —ind, with the eigenvalue 7(l +1). This means that both, the circular

polarization and the spiral phase front related with |, carry only orbital AM, not spin, in the
frame of the standard electrodynamics.

Now we consider an exact, not paraxial, solution of the Maxwell equations; the solution for
the radiation of a rotating electric dipole [4-6] in the spherical coordinates r, 6, ¢ :

E"=(2/r®—i2w/r?)sin8 exp[ie + io(r —t)]/ 4n, 2)
E® =(-1/r* +io/r® + ®*/r?)cos 0 exp[ip + io(r —t)]/ 4x, (3)
E®=(-i/r" —o/r®+io’/r*)exp[ip+ion(r —t)]/(4nsin), (4)

B,, = (io/r +w?)cosO explip +im(r —t)]/ 4x, (5)

B, =(o/r— i®®)sin 0 exp[ip +io(r —t)]/4mn, Bg, = 0. (6)

An angular distribution of the energy flux, dP/dQ =< (ExB), r*>>= o"(cos* 0 +1)/(32n*),
and an angular distribution of z -component of the moment of momentum flux, i.e., of torque,
dL, /dtdQ = dt, /dQ =< [r x (Ex B)], r*>= »’sin’ 0/(16n?), (7)
are depicted. The total power and total torque are P = * /6n and 1, = »°/67. We present also

a distribution of the degree of circular polarization o of the radiation [4], which approximately
equals the ratio of lengths of the axes of the ellipse: o = c0s6.



It is seen that AM (7) is emitted mainly into the equatorial part of space, situated near the
X — Yy -plane where the polarization is elliptic or linear. Polar regions, situated near the z-axis, are
scanty by AM (7), although they are intensively illuminated by the almost circularly polarized
radiation. So, if we associate spin of an electromagnetic radiation with a circular polarization, we
must recognize AM (7) is an orbital AM, not spin. Also note, fields (2) — (6) are eigenfunctions
of the orbital, not spin, AM operator, —i#nd, , with eigenvalue 7 . This confirms the orbital
nature of AM (7).

Thus we must recognise the standard electrodynamics cannot catch sight of spin of
electromagnetic fields (1) — (6), and it is in need of an expansion.
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The classical field theory points the way to the expansion. The Lagrange formalism gives two
divergence-free tensors for free fields, energy-momentum and spin tensors [7]:

T™=0"A, L —g™L, Y™=-2AMsH . (8)
a(8,A,) o(0,A,)

Unfortunately, the standard Belinfante-Rosenfeld procedure [8,9] eliminates the spin tensor of
electrodynamics [10,11]. So, we proposed an alternative procedure [12,13], which gives the
Maxwell energy-momentum tensor and an elecrtrodynamics’ spin tensor
v = Al gM AW 4T MM (9)

Here A* and IT" are the magnetic and electric vector potentials which satisfy
0,A*=0,1" =0, 20,A,,=F,, 20,I1,=-e F*?, where F*¥ = —-FFP*,
F.,=F “ﬂg#agvﬁ is the field strength tensor of a free electromagnetic field; e, is the Levi-
Civita antisymmetric tensor density. Using (9) yields an angular distribution of z -component of
the spin flux in the rotating electric dipole radiation [5,6]:

ds, /dtdQ = ® cos” 0/(167°), (10)
and the total flux of z -component of the spin, dS, /dt = ®® /(12r) , which is half of the total

orbital angular momentum flux. However, the ratio of the spin flux density to the power density
at 6 =0 equalsto 1/ w,
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(11)



just as for a photon because the radiation is circularly polarized with plane phase front along z -
axis:
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