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Abstract

Two models the membrane model and the equivalent model were used for the
solution of some of the questions related to formation of the Solar System. Both models
show that the planets create clusters in which lies a higher probability of origination of
large masses. The rings and belt of asteroids between Mars and Jupiter and the belt
of asteroids behind the Neptune track are the beginnings of these clusters.

According to the equivalent model, the Solar System went through a different de-
velopment than other extrasolar systems. Both models show the wave principle, which
is the same for other planetary systems and systems of moons of large planets [1].
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1 Introduction

Formation of the Solar system and its development is well described in the paperwork [2].
The existing theories presume the age of the Solar system as 4.5 billion years and that the
entire system was created approximately 100 million years after the formation of the Sun.
Despite of this, some of the chronological events of the formation of the systems still remain
unknown to us.

By comparing with the young TTauri stars, we can say that the Sun formed in the center
of a protoplanetary disc with dimensions of approximately 1000 AU. The planets formed in
the first 10 million years after the formation of the protoplanetary disc. The development of
the Solar system was terminated approximately 90 million years after the formation of the
protoplanetary disc.

However, there are many inexplicable questions. Is our Solar system exceptional? Why
there are at least two populations of meteorites of different ages?

Why do planets form in clusters? Which planets formed first and how? Are there any
other undiscovered planets in the Solar system? We will try to solve some of the questions
using the theoretical models of the origin of the Solar system and by comparing the solar
system with the planetary systems. In the first case, we tried to apply the membrane model
to the Solar system using the fine structure constant. In the second case, we will compare
all the satellite planet systems using the weight of the central object and its distance.
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2 Membrane model - theory

Currently, the kinematics and dynamics of the Solar system are described using two methods.
The first method is the classic approach [3], which is described using classical physics. This
approach comes from the Newton and Einstein Theories. The second approach describes the
Solar system using quantum physics, which has been very successful describing the physical
events of a micro world.

Very interesting explanation of why we should study star systems using quantum me-
chanics was brought by the papers [4], [5], [6], [7], [8], [9] and many other authors.

The star system can also be described using a modified Schrődinger equation [7]:
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where E is the total energy of the system, µ = mM/(m + M) is reduced weight and g∗ =
1.2× 1042 Js is the re-scaled Planck constant.

Based on this consideration, we described in [10] the planetary tracks using the modified
Schrődinger equation where we have chosen a similar solution system, but we also used
statistical methods. We pointed out a very interesting connection in dividing the weight
probability of planets in the Solar system.

But how can we explain the discrete tracks of planets around the central objects using
classical physics? There is only one way the wave principle. Thus, we need waves which
form certain sectors where there is the highest probability to create a large object.

But how can we apply the wave principle to the formation of star systems? Is there a
universal principle? This question has been answered in the Science Magazine [12]. The
authors presume that the Solar system originated in a large cloud of ionized gas. However,
not only the Sun was formed, but also other stars of large and small weights. The basic
argument of this theory is the presence of the Fe60 isotope in meteors. This isotope is not
stable and can be created only in the hearts of very massive stars. The presence of the Fe60

isotope in our Solar system is, thus, the main proof that the Sun was created along with
very massive stars in an ionized nebula.

Lets consider our Solar system, where we have performed some simplifications:

• The orbits of the orbs around the Sun are considered circular.

• These orbits lay in one plane with regard to the Sun.

Then, we can define a two-dimensional planetary model of radius r0. Is there a physical
explanation of why we define a two-dimensional membrane? There are two possibilities:

• The theory of star formation, according to [11]. Provided the nebula is ionized, the
electric fields induce movements of plasma [15]. The plasma allows spreading the
waves analogically as waves in a taut string (one dimension case) or as waves in a
membrane (two dimension case). The speed of these hydro-magnetic waves vA is
directly proportional to the magnetic induction B field (analogous to the tension in
the membrane) and inversely proportional to the square root of the plasma density ρ
(analogous to the density of the material from which the membrane was made)

vA =

√
B2

ρµmed

, (2)

where ρ is the plasma density and µmed is the environment permeability.
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• Another explanation of why we define the membrane model is the possibility that the
environment has, in [13] electric and magnetic character. These electric and magnetic
characteristics create gravitation. This structure is the source of the dark mass and
energy and also the source of gravitation.

To understand the development of the Solar system, lets imagine a circular membrane
model (two dimension model) with r0 radius. Properly, we should apply a three dimension
model [14] but a two dimension model is, for our considerations, sufficient. Furthermore,
lets presume that the surface of the membrane is flat at the beginning of the development.
However, during the development, the membrane surface can change through interactions
with external forces (electric fields, shock waves from nearby stars). These influences can be
described as small causal deviations, which deform the surface of a two dimensional circular
membrane.

It is a perfectly bendable circular membrane of consistent thickness [15]. It is pre-stressed
with force Fl in length units acting in distance r0 from the center of the membrane. When
creating the movement equation, we consider only the cross deviations ω ≡ ω(x, y, t), which
are small in comparison with the dimensions of the circular membrane. If µA is a unit
weight of the sector and the function gA(x, y, t) is the operation burdening the unit forces,
then the movement equation for these deviations at B ×R1 have, in Cartesian coordinates,
the following form:
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and the initial and limit conditions are:
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where β is a disc of radius r0 and the center of the origin, S is a circle which is a limit of

the disc [16]. The relation
√
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If we institute the polar coordinates r and ϕ with the relationships x = r cosϕ a y =
r sinϕ, we rewrite the equation (3) and the conditions (4), (5) for function w(r cosϕ, r sinϕ, t) =
w̃(r, ϕ, t) and gA(rcosϕ, rsinϕ, t) = g̃A(r, φ, t):
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When the weighting force g̃A(r, φ, t) , g̃A(r, φ, t) = 0, we are solving the homogenous equation
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The task is solved using the method of separation of variables, which is based on the solution
of the form

w̃(r, ϕ, t) = R(r, ϕ)T (t). (10)

By substitution (10) into the (6) equation and respecting the conditions (7), (8), we acquire
the solution

d2

dt2
T (t) = −λ2 Fl

µA

T (t) (11)
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and marginal value problem(
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where λ is an unknown constant. We are solving a marginal-value problem (12)–(13) using
separation of variables

R(r, ϕ) = R1(r)Φ(ϕ), (14)

which, by substitution of (14) into (12) and (13), carries the marginal-value problem(
r2 d

2
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+ r
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)
R1(r) = 0, (15)

R1(r)|r=r0
= 0, (16)

and a common differential equation

Φ
′′
(ϕ) + ν2Φ(ϕ) = 0, (17)

where ν an unknown constant. By transfer into polar coordinates, we must fulfill some of
the conditions

|R1(r)|r=0| ≤ ∞, (18)

Φ(ϕ) = Φ(ϕ+ 2π). (19)

2π periodical solution of equation (17) exists for ν = n

Φn(ϕ) = An cos(nϕ) +Bn sin(nϕ). (20)

because, for ν = −n, we get the solution of the same form, we will limit ourselves to n ≥ 0.
The equation (15) is a differential equation for function Jν(λr) level ν and Neumann function
Nν(λr) level ν and general solution is, for ν = n in the following form:

R1n(r) = CnJn(λr) +DnNn(λr). (21)

If the function Nn(0) is unlimited, then, Dn = 0 is the result. The limit conditions (16) are
presumed as:

CnJn(λr0) = 0. (22)

The (22) equation has the solution λ = 0 for n 6= 0 and solution

λ(n)
m = ±µ

(n)
m

r0
, n = 0, 1, . . . ,∞, m = 1, 2, . . . ,∞, (23)

where µ(n)
m are positive roots of the equation

Jn(µ) = 0. (24)

The solution of the marginal-value problem (15)–(16):
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(
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m

r
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)
, (25)

where λ(n)
m ≥ 0. The problem solution (11) is:

Tnm(t) = Enm exp(iΩnmt), (26)
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where

Ωnm = λ(n)
m

√
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The solution of the mixed problem (9)–(8) with separated variables, can be rewritten

w̃nm(r, ϕ, t) = R1nm(r)Φn(ϕ)Tnm(t), n = 0, 1, . . . ,∞, m = 1, 2, . . . ,∞. (28)

The solution of the marginal-value problem (9)–(8) is:
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The solution of the mixed problem (9)–(8)–(7) is:
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After selecting

w̃0(r, ϕ) = Jn0

(
µ

(n0)
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sin(n0ϕ) (33)

it is true that
Anm = 0, Cnm = δn,n0δm,1. (34)

The (30) solution is valid for any circular membrane. For n = 0 membrane has non zero
amplitude at the point r0 = 0. For other n, Jn(0) = 0. The n and m indexes describe the
position of nodal lines. The membrane has 2n radial nodal segments and m nodal circles
including the perimeter of the membrane.

3 Membrane model - application to star systems

We define the center of the membrane model as the point from which we spread the waves to
other sectors of the membrane. The membrane center must not, therefore, be defined solely
with one point, but by a sector which is equal to the half of the Schwarzschild gravitational
radius:

rSchwarz =
GMStar

c2
, (35)

where G is the gravitational constant, MStar is the weight of the central star and c is the
speed of light.

Pursuant to the vibrations of the membrane model, we can define sectors of high proba-
bility of formation of planets and moons and sectors with low probability of forming objects
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in the Solar system. The distances between the smallest probabilities of origination of an
orb are called waves. The following applies for the distances with the smallest probability
of forming an orb:

rmem = rSchwarz(µ
n
m)8, (36)

where µn
m is the position of a nodal point of the Bessel function.

Based on the equation (3), we describe the distances of waves for planets using the Bessel
function J0, and distances of waves for moons around large planets using the Bessel function
J1. We interpret the Bessel waves J0 a J1 as oscillation of material in electric and magnetic
fields of the membrane model.

Well now discuss the exponents of the nodal points for the radius of the membrane model.
According to the relationship between the electrical Felec and gravitational Fgrav forces, the
following applies:

αe
Fgrav

Felec

= αg, (37)

where αe = 1/137 is the constant of fine structure and 1/αg = 2113+
−15 is the structural

gravitational constant pursuant to [4]. The following applies for the ratio between the
electrical and gravitational forces:

Felec

Fgrav

=
αe

αg

= 15.4 (38)

This value lies between the first wave of the hot-Jupiter planets and the second wave,
because the gravitational structural constant from [4] depends on the first orbit of the planet
(hot-Jupiter) around the central orb. According to the value 15.4 between the waves, we
found only two possible solutions for [µ(n)

m ]8 and [µ(n)
m ]9. Provided we apply the solution of

the exponent value [µ(n)
m ]9, we do not get a good harmony with the observation. The only

possible solution is, therefore, the exponent value [µ(n)
m ]8.

rmem = rSchwarz[(µ
n
m)4]2 (39)

and substitution [µ(n)
m ]4 = [ν(n)

m ] in the form

rmem = rSchwarz[(ν
n
m)2]. (40)

The (40) is very similar to the equation for orbits of hydrogen atoms, but the physical
interpretation is different.

• The νn
m values are not quantum numbers of orbits, but nodal points of the Bessel

waves. The nodal points can be interpreted as the smallest probability of forming
planets around stars. Because the Bessel waves are symmetric, we are also able to
interpret the highest probability of forming planets around central stars.

• We do not interpret the half Schwarzschild radius as the first orbit of a planet, we
understand it as a center of the membrane model, wherefrom the waves spread into
other sectors.

According to this interpretation, we can understand this model as a gravitational atom.

4 Systems of Isolated Stars

For the smallest probability of formation of planets around isolated stars applies:

rmem =
GMStar

c2
(µ0

m)8. (41)
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Figure 1: Bessel function J0(x).

Figure 2: Bessel function J1(x).

Important orbits referring to the nodal points µ0
m determine the temporary sectors of the

planetary system, where the large orbs (planets) have the smallest probability of origination.
There are only small orbs. These orbits are radii of the membrane model in our paper. The
possible origination of planets around the isolated planets takes place only in certain areas.
These areas are called waves. We describe the creation of the planets around the isolated
stars as vibrations of monopoles of the membrane model.

Figure 3: Course of the Bessel waves J0 in the membrane model.

5 Systems of Moons around Large Planets

Lets imagine a two-star system or a system of moons around large planets. The central
planet Mp and the central star MStar must have influence on the formation of moons around
the large planets but also the distance between the central star and the central planet l, in
which the moons circulate. The problem of two weights is solved using the Newton potential

Φ = G(
MStar

R1

+
Mp

R2

), (42)
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Figure 4: Course of the Bessel waves J0 in the membrane model.

Figure 5: Problem of two orbs.

where R1 is the distance between the central star and moon, R2 R2 is the distance between
the central planet and moon, l is the distance between the central star and the central planet.

According to equation (42) we can define the distance rSchwarz under the condition l ≈ R1

rSchwarz =
GMplanet

c2
, (43)

where rSchwarz is half Schwarzschild radius of the planet. The membrane model depends on
the weight of the central star. We define the center of the membrane model for the system
of moons as follows:

rcentre =
GMµ

c2
, (44)

where Mµ is the reduced weight of the membrane model for moon system

Mµ =

√√√√ M2
StarMp

MStar +Mp

. (45)

Thus, for the smallest probability of formation of moons around large planets applies:

rmem = rcentre(µ
1
m)8. (46)

Provided we study the development of the Solar system, the Solar system has a different
development than extrasolar systems with similar weights of the central stars. This is based
on data from space probes and research of extrasolar systems. If we compare the known
extrasolar systems to our Sun, the Hot Jupiter planets are missing in our system (9).
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Figure 6: Course of the Bessel waves J1 in the membrane model.

Figure 7: Course of the Bessel waves J1 in the membrane model.

6 Equivalent model - theory

The equivalent model is based on equations which might be comparable in both spaces in
reality and in the model. The equivalent model can use artificial or natural models. In case
of our Solar system, the satellite sets of planets can be used as the model of the entire Solar
system (or vice versa) and both of these models can be used as a model of extrasolar systems
(and vice versa). The same physical laws must apply in both spaces real and model. We
must use such relations and standardization during the equivalent planning, so all modeled
parameters are equivalent. In our case, we will not use the most difficult parameter to
model time. We will limit ourselves to only two parameters distance and weight. We will
use Newtons law of gravitation

Fgrav =
GMpM

Star

r2
, (47)

where G is the gravitational constant, MStar is the weight of the central orb, Mp is the
weight of the planet and r is the distance between both orbs. If we divide both sides of the
equation twice by the central weight MStar, we will get its equivalent representation in the
Newton gravitational model

Fgrav

MStar︸ ︷︷ ︸
F̂

= G (
Mp

MStar
)︸ ︷︷ ︸

M̂p

(
MStar

MStar
)︸ ︷︷ ︸

=1

(
MStar

r2
)︸ ︷︷ ︸

1
ˆ

r2

, (48)

where the equivalent central weight MStar is standardized to 1. The equation shows that
the equivalent gravitational force is F̂ = (Fgrav/M

Star), equivalent periphery weight is M̂p =
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(Mp/M
Star) and the equivalent distance is r̂ = (r/

√
(MStar).

7 Ekvivalent Model - Application to a Solar System

During the last decades, many probes were exploring the majority of the planets in the
Solar system including Uranus and Neptune. The Voyager 2 probe brought the majority
of information on the moons of Jupiter (1979), Saturn (1981), Uranus (1986) and Neptune
(1989) (Voyager page JPL 2006). Therefore, nowadays we know almost the complete sys-
tem of planet satellites with radius larger than 2050 km. This forms a good database for
comparison analysis.

Mars has two moons Phobos and Deimos which are probably caught asteroids and,
thus, neither the first orbit nor their position may not serve for comparison with the genesis
of satellite systems. The first four of Jupiters moons were discovered by Galileo Galilei in
1610. Nowadays, we know of 67 satellites of Jupiter with the smallest diameter 1 − 2 km.
Only in 2003, S. Sheppard and D. Jewitt discovered 21 new satellites from the observatory
in Hawaii.

The dependence of their distribution in distance from Jupiter is shown in figure no.
8. The weight distribution forms an almost lognormal distribution with the maximum of
masses around a distance of 1 million kilometers. Quite evident are two belts of satellites of
distances 15.5 and 21.2 million kilometers from Jupiter. The diameters of the orbits form
almost an exponential series and, thus, are almost equidistant in a logarithmic scale with one
exception between the last large moon Callisto and two belts of satellites on the periphery of
the satellite system. At first sight, the satellite system of Saturn is different from the satellite
systems of the other planets due to its rings, but the weight distribution is very similar to
other planets and, in addition, small rings were discovered around all the large planets [18],
[19]. The Saturn rings mark the belts of the satellites on the planet side and also in the
minimum of the weight distribution in the orbit node close to the Iapetus moon in distance
480000 km. The weight distribution of the Uranus satellites is very similar to the mass
distribution around Jupiter with such characteristics as the lognormal distribution, gap in
weight distribution behind the largest moons, ring of satellites at the system periphery and
exponential distribution of the satellite orbits. The transition of the character of the mass
distribution from large moons towards Uranus is very pronounced. The orbits with large
mass concentration (large moons) merge into orbits on which are only smaller satellites and
those in the vicinity of Uranus transfer into rings in which reside only small objects (stone
and dust).

The mass distribution around Neptune is not as pronounced as the distribution around
Uranus, but shows the same basic characteristics. If we compare all the satellite planet
systems and Solar systems in an equivalent scheme by standardizing the central weight =
1 (dividing the set in the equivalent scheme by weight, or more precisely by dividing the
distance by the square root of the central weight) (see fig. 8), we can see that all the satellite
systems, with exception of the Solar system, as an entity, copy one and the other. The Solar
system does not conform to the other systems neither in the weight nor distance scale. If,
theoretically, we increase the weight of the Sun 12 to 15 fold, the weight distribution of the
Solar system would be comparable to all other satellite planet systems (see fig. 8). Then we
can see that the mass creates concentrated clusters of planets and moons. The probability
function of the weight distribution would then be described as a decreasing wave function
with lognormal distribution of the mass in the clusters. The first cluster then corresponds to
the standardized radius of the central orb. The second cluster corresponds to the terrestrial
planets or to the largest moons of planets. The third cluster corresponds to large gaseous
giant planets and/or periphery planet satellites. If we extrapolate, in the same sense, the
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probability distribution function from the Sun, then we could presume the existence of
another cluster of concentration of mass into planets similar to moons with weight approx.
10−7 of the Sun weight, in distances 10−5kmkg−1/2 of the square root of the Sun weight.

Figure 8: Weight distribution standardized by the weight of the central orb.

7.1 Application of the Equivalent Model to Extrasolar Systems

If we carry the dependence of the orbit radius on the weight of the central orb, we can see
that the radius of the first orbit of the extrasolar planets and moons in the Solar system can
be described as a line in the log-log scale (see fig. 9). The directive of this line is approx. 0.5
in concordance with the theory (see chapter 7). The extrasolar planets form two clusters.
The first cluster, closer to the central star, is formed by hot-Jupiter planets with orbit periods
of several days. The external cluster of planets is formed by large gaseous giants with orbit
period from several years to several decades of years. The more distant planets have not
been found yet due to the influence of other orbital periods and smaller gravitation influence
on the central star. Figure 9 shows that the first cluster of the Hot-Jupiter type planets
is located in equivalent distance from the central orb as well as the largest moons of the
planets in the Solar system. The second cluster of the giant, extrasolar planets is located in
equivalent distance as small moons at the periphery of the planet satellite systems. On the
other side, the Solar system, as a unit, is not comparable to either the extrasolar systems
or the satellite planet systems. The radii of the planet orbits in the Solar system are larger
than equivalent, which might mean that the Solar system is missing the Hot-Jupiter planet
types, or that the Sun weight has been reduced. If we presume that the Sun weight dropped
during the genesis of the Solar system 12 − 15 times, than the terrestrial planets would
correspond with their orbits to the orbits of the extrasolar, Hot-Jupiter type planets and the
large gaseous giants would correspond to the extrasolar large gaseous giants. We arrived at
the same conclusion by comparing the Solar system as a unit to the satellite planet systems
(see chapter 8).

Figure (9) shows that, in places where the orbits with a small probability of mass con-
centration are located, rings (in case of planets) or asteroid belts (in case of the Solar system
as in between mars and Jupiter or behind the orbit of Neptune Kuiper belt) are found.
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Figure 9: The dependence of the orbits of planet and moons on the central weight of stars
or planets and separation of systems in clusters. According to the theory of the membrane
model, we presume a low-probability and high-probability concentration of masses.

7.2 Discussion

Both models - the membrane model as well as the Equivalent model - showed that the dis-
tribution of mass around the central orb is not monotonously dropping, but forms clusters
of discrete orbits with higher probability of concentration. This probability can be described
using Bessel functions (see figure 7) which form rings around the central orb, thus a mem-
brane with higher and lower probability than the medium probability. The amplitude of
the probability is dropping with distance from the central orb.

The satellite planet systems in the solar system as well as extrasolar planets show the
same characteristics of clusters of moons or planets in compliance with the membrane model.
The size of the first orbit is comparable as well as the maximum of concentration of the mass
in the first and the second cluster. Orbits with small concentration of mass or only with
asteroid belts are located between both clusters. From this comparison, it is clear that
the largest planet moons are equivalents to Hot-Jupiters and the small periphery moons of
planets are equivalents to extrasolar large gaseous giants.

The Solar system shows somehow different behavior in comparison to both other systems.
The radius of the first orbit (Mercury) is too distant from the Sun to account for the fact
that the terrestrial planets could be a clear equivalent of the Hot-Jupiters. The cluster of
terrestrial planets is at distances almost corresponding to the extrasolar large gaseous giants.
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However, the large gaseous giants would then not have, in the Solar system, their equivalent
in large gaseous giants of extrasolar planets. If we presume that the Sun weight dropped
during the genesis of the Solar system 12 − 15 times, than the terrestrial planets would
correspond with their orbits to the orbits of the extrasolar, Hot-Jupiter type planets and the
large gaseous giants would correspond to the extrasolar large gaseous giants. We arrived at
the same conclusion by comparing the Solar system as a unit to the satellite planet systems
(see chapter 8).

7.3 Conclusion

The Solar system is somewhat different from the satellite systems of planetary moons as
well as from extrasolar systems. It shows that the Solar system went through a different
development than the majority of extrasolar systems. This different development could have
caused the possible origin of life on our planet.
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