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In the frame of the standard electrodynamics, a torque is calculated, which acts from a circularly 
polarized electromagnetic beam with a plane phase front on an absorbing surface. And a moment of 
momentum flux in the same beam is calculated in the frame of the same electrodynamics. It is found that this 
torque is twice more than the moment of momentum flux. We have inferred that the calculation of the 
electromagnetic angular momentum flux in the beam is incorrect. Namely, this calculation takes only a 
moment of momentum into account as an angular momentum, and does not take account of spin. An analysis 
of the field theory foundations of the electrodynamics confirms this inference. Some changes in the field 
theory allow obtaining an electrodynamics’ spin tensor, which accompanies the Maxwell energy-momentum 
tensor. Using this spin tensor for the beam yields the equality between the torque and the angular momentum 
flux. In this way, the electrodynamics is completed by a spin tensor. A criticism of an AOP reviewer and my 
answer are presented. 
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1. Introduction 
A circularly polarized light beam carries an angular momentum. It is beyond any doubt. This beam 

rotated the Beth’s birefringent plate [1]. This beam rotates particles trapped in optical tweezers (see, e.g. 
[2]). However, a troubling question exists: what is the distribution of this angular momentum over the beam 
section? Can we use a concept of an angular momentum flux density as well as we use an energy flux 

density or linear momentum flux density? In order to look 
into this question, in Introduction, we examine an influence of 
the energy flux and of the momentum flux upon a surface, 
which absorbs the light beam. The angular momentum flux is 
considered in the following two Sections. We are convinced 
that characteristics of mechanical stresses, which are made up 
by the angular momentum flux, show a location of the 
absorption of this flux 

In Section 4, an analysis of the field theory 
foundations of the electrodynamics is presented. In Section 5, 
we arrive at an electrodynamics’ spin tensor, which is applied 
for a calculation of the angular momentum flux in the beam in 
Section 6. The famous Humblet transformation is considered 
in Section 7. This transformation is at the heart of an 
erroneous interpretation of an orbital angular momentum as 
spin. 

If a light beam is absorbed by a material surface, this 
surface becomes hotter and experiences a pressure. The heat 
causes a temperature gradient and a heat flow on the surface 
from the alight zone of the surface to the periphery. The 
pressure causes a shear stress in the surface, by means of 
which the pressure force transfers to supports on the p

Con
eriphery 

sider a so-called paraxial circularly polarized 
beam of radius R  with its axis in the z-direction and trave
in this direction [3] (Fig. 1.) 
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The symbol ‘breve’ marks complex vectors and numbers excepting  i.  are the unique coordinate 
vectors. For short we set 

zyx ,,
1===ω ck , where ck ,,ω  are the frequency, wave number, and light velocity. 

 is the electric field amplitude. The function )(ρu )(ρu  is explicitly made constant  over a large central 
region of the beam. The variation of the function from this constant value to zero is localized within a layer 
of small thickness, which lies a distance  from the axis. In the surface layer of the beam, i.e. there 
where the function  decreases, longitudinal components of the electromagnetic fields exist (this 
components are -directed). This is because the lines of force are closed, but they cannot transgress the 
surface of the beam  
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We set 
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when integrating over the whole of absorbing surface, what is equivalent to integrating over a cross section 
of the beam (we will ignore the width of the surface layer of the beam when it is admissible). 

An energy flux density in the beam is the Poynting vector BE× . At first, we consider the -
component of the energy flux density, i.e. -component of the Maxwell tensor. Time averaging gives:  
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the dash marks complex conjugating numbers. Thus, the power of our beam, because of (1.2), is 
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We consider a sufficiently wide beam and neglect the surface layer of the beam here; we set 
 if . Thus, because of (1.2), Const)( 0 ==ρ uu R<ρ
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Now one can find a heat flux density in the absorbing surface: 
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(index i  means yxi ,=  on the surface). Indeed, a divergence of this flux density equals 
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Given heat conductivity, one can calculate the temperature distribution. 

The beam pressure on the absorbing surface equals -component of the Maxwell tensor. The sense 
of this component is given by the equality 
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where  is the force, which acts on an -element of an absorbing surface from an electro-magnetic 
field. Ignoring the surface layer of the beam, one has a constant pressure in the alight zone of the absorbing 
surface  
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which equals the energy flux density (1.3), as it must be. A mechanical stress in the absorbing surface must 
balance this pressure. The shear stress is distributed through the thickness of our material surface and is 
expressed by -component of the stress tensor of the surface. Consider a disk of radius  with its center at 
the axis of the beam, which is chosen from the absorbing surface. A balance conditions for this disk, viz. 

 for , and  for 
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mTRu R>ρ , give the mechanical stresses in the surface: 
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these expressions are similar to (1.6). 
Thus, the heat flux density and mechanical stress in -direction increase proportionally to the 

distance  from the axis in the alight zone of the absorbing surface. They tend to zero as hyperbole beyond 
the alight zone.  
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2. Maxwellian torque 
A torque acts on the absorbing surface from the beam, according to the Maxwell electrodynamics, if 

and only if the surface experiences tangential forces, which are expressed through -components of 
the Maxwell tensor. However, these components equal zero on the surface apart from a boundary of the 
alight zone of the absorbing surface where the surface layer of the beam is absorbed. 
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Indeed, the Poynting vector and the momentum density are directed along the direction of 
propagation, i.e. along -axis, in the large central region of the beam, as well as in a plane wave. Therefore, 
the tangential forces act on the absorbing surface only at the boundary of the alight zone, where 
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A disk of radius  with its center at the axis of the beam, which is chosen from the absorbing surface, 
does not experience tangential forces and does not experience a torque. Therefore, the alight zone, right up 
to its boundary, does not contain a mechanical stress, which is caused by a torque. 

R<ρ

A torque acts only on the boundary of the alight zone. The torqie equals  
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(index 2 means that this expression is valid in the frame of Section 2). Torque (2.3) must be balanced with a 
torque, which acts on our surface from supports on the periphery. Therefore the part of the surface for 

, which is outside of the alight zone, must contain a mechanical stress which is expressed by -
component of the surface stress tensor. The sense of this component is given by the equality  

R>ρ φρ
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where  if the force, which acts on the element  of a circle and is directed along φ -coordinate. A 
balance condition for a disk of radius , 
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gives . As a result, we have, according to the Maxwell electrodynamics, the mechanical stress 
in the absorbing surface is 
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The fact, that the moment of momentum relative to the beam axis is contained only in the surface 
layer of the beam, and, accordingly, the torque acting on the absorbing surface is localized at the boundary 
of the alight zone, is well known. 

For example, Ohanian [4] writes and depicts (see our Fig. 2.) 
“In a wave of finite transverse extent, the E and B fields have a component parallel to the wave vector (the 
field lines are closed loops) and the energy flow has components perpendicular to the wave vector. Hence 
the net energy flow is helical. The circulating energy flow in the wave implies the existence of angular 
momentum, whose direction is along the direction of propagation” 

Authors of work [5] present a similar figure (see our Fig. 3) and explain: 
“The electric and magnetic fields can have a nonzero -component only within the skin region of the wave. 
Having -components within this region implies the possibility of a nonzero -component of angular 
momentum within this region. Since the wave is identically zero outside the skin and constant inside the skin 
region, the skin region is the only one in which the -component of angular momentum does not vanish” 
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All presented here arguments show that, according to the standard electrodynamics, the large central 

alight zone of the absorbing surface experiences no torque and, accordingly, contains no corresponding 
mechanical stress. Mechanical stress, causing by torque, arises only in the boundary of the alight zone and 
extends over the absorbing surface to the periphery, right up to support of the surface. The boundary, and, 
consequently, supports on the periphery experience the torque from the beam, which equals . Because 
of the power of the beam is 

12 =τ
1=W  and the frequency 1=ω , one can write down  

ω=τ /2 W .                                                               (2.7) 



 

 
However, you must note that the power W  is absorbed uniformly by the alight zone, but the moment 

of momentum, which results in the torque , is absorbed only by the boundary of the alight zone, i.e. not 
there where the power is absorbed. Therefore, it is reasonably to suppose that this moment of momentum is 
not concerned with this energy, and that this energy, which is the energy of a circularly polarized 
electromagnetic field, is concerned with another angular momentum, which is absorbed uniformly by the 
alight zone, but is not considered by the standard electrodynamics. On the other hand, the torque 

2τ

2τ  is 
caused at the boundary of the alight zone by the longitudinal components of the electromagnetic fields. So, 

 cannot have a wave nature and, therefore, cannot be concerned with spin.  2τ
The absence of a torque in the large central alight zone of the absorbing surface in the frame of the 

standard paradigm is confirmed by an interesting reasoning in [6]. The authors cut the beam into two coaxial 
pieces in their mind: the inner part has radius of R<ρ1 , outer part looks like a thick-wall tube and is located 
between  and 1ρ R , 
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so . The authors rightly affirm that two equal, but opposite torques act on the 
absorbing surface near the circle of radius , which are eliminated mutually. 
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3. Spin torque 
The work [6] was written as a response to a question [7], where it was pointed out that dielectric 

dipoles of the absorbing surface experience torques from the circularly polarized wave. Because of this, the 
surface material must experience a volume density of torque, according to [8,9] 

EP×=τ V/ .                                                         (3.1) 
where  is the electric polarization  P

R. Feynman explains the beginning of this torque [10] (see our Fig. 4): 
“The electric vector E goes in a circle – as drawn in Fig. 17-5(a). Now suppose that such a light shines 
on a wall which is going to absorb it – or at least some of it – and consider an atom in the wall according 
to the classical physics. We’ll suppose that the atom is isotropic, so the result is that the electron moves 
in a circle, as shown in Fig. 17-5(b). The electron is displaced at some displacement r from its 
equilibrium position at the origin and goes around with some phase lag with respect to the vector Е. As 
time goes on, the electric field rotates and the displacement rotates with the same frequency, so their 
relative orientation stays the same. Now let’s look at the work being done on this electron. The rate that 
energy is being put into this electron is , its velocity, times the component of Е parallel to the velocity: v

veEW t=  
But look, there is angular momentum being poured into this electron, because there is always a torque 
about the origin. The torque is  which must be equal to the rate of change of angular momentum 

: 
reEt=τ

dtdJ z /
reEdtdJ tz =τ=/ . 

Remembering that rv ω= , we have that 
ω=τ /W ”. 

Unfortunately, the authors of the work [6] ignored the 
problems, which arise from taking into account this torque. 

Thus, the energy flux density (1.3), which falls on the 
absorbing surface, is accompanied by a torque density, and the 
energy flux density is in the same relation to the torque density as 
the whole energy flux (1.4) to the torque τ  (2.7), which acts on 
the boundary of the alight zone, in accordance with the Maxwell 
theory. However, now the torque density is constant at points of 
the alight zone and is not expressed in terms of the Maxwell 
tensor, though the torque undoubtedly cause a mechanical stress, 
which is expressed in terms of a mechanical stress tensor. We will 
find this stress by the use of a balance condition, but it is 
appropriate mention here that the authors of the works [8-10] 
identify the torque of Section 3 with spin flux of the beam. 

2

Consider a disk of radius R<ρ  with its center at the axis 
of the beam, which is chosen from the absorbing surface. 
According to (1.3) and (1.5) the disk receives the power 

, and then the disk experiences the torque 
 (index 3 means that this expression is valid in the 

frame of Section 3). A balance condition for this disk, viz. 
, which is analogous to (2.5), now takes the form of 
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Thus, with the regard for the stresses ) and (3.  arriv
periphe
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The result (3.3) was obtained more pronouncedly in [11,12]. The re

of mom

. Does electrodynamics’ spin tensor exist? 
-10] about a spin nature of the torque acting on the 

large c

, photons, i.e. electromagnetic waves, carry spin, energy, momentum, and angular 
momen

) 
4.1) 

where  is the field strength tensor. An interactio

.                                                     (4.2) 

The Maxwell equations .are used here. 
entum that is a momen m can be defined as [13] 

                     (4.3) 

and this construction must be named as an orbital angular momentum in the v
, m the 

ian [14 (4-111)],

Then, by the Lagrange formalism, the canonical energy-momentum tensor [14 (4-113)] 
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2mT  (2.6 2), we e to a double torque at the  φρ
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sult is evidence that the moment 

entum, which the beam (1.1) brings, according to the standard electrodynamics (see Section 2), is 
half of the angular momentum, which the absorbing surface receives, according to the same 
electrodynamics. This means the standard electrodynamics is not complete. 
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We will use the idea mentioned in the works [8

entral alight zone of the absorbing surface, and will show that the torque is really caused by an 
absorption of spin flux 

As is well known
tum that is a moment of the momentum relative to a given point or to a given axis. Energy and 

momentum of electromagnetic waves are described by the Maxwell energy-momentum tensor (density
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µν ggFF = n between electromagnetic 

waves and substance is described by a divergence of the energy-momentum tensor λµ∂ T , i.e. by the 
Lorentz force density, viz., 
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olume V . However, the 
modern electrodynamics has no describing of spin, though a concept of classical spin which differs fro
moment of momentum, is contained in the modern theory of fields. Unfortunately, the concept of spin is 
smothered in the standard electrodynamics as will be shown below. 
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and the canonical total angular momentum tensor [14 (4-147)] 
                                                                 (4.5) 

are obtained. Here 
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is the canonical spin tensor [14 (4-150)]. Its space component is AE× : 
                                                           (4.7) 

The sense of a spin tensor 

AE×=Υ 0ij ,                  
c

0ijΥ  is a volume density of spin. This λµνΥ  is as follows. The component 
mea nt ns that dVdS ijij 0Υ=  is the spin of electromagnetic field inside the spatial element dV . The compone

ijkΥ  is a flux density of spin flowing in the direction of the kx  axis. For example, 
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z daddtdSdtdS Υ=τ== //  is the z-component of spin flux passing through the surface element 
 per unit time, i.e. the torque acting on the element. zda
The sense of a total angular momentum tensor, , is that the total angular momentum in an element 
 is . The corresponding integral is 
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It consists of two terms: the first term involves a moment of momentum and represents an orbital angular 
momentum; the second term is spin. It must be emphasized that a moment of momentum cannot represent 
spin. This idea is discussed in the paper [15], which was written in response to [16] 

However, the canonical tensors (4.4), (4.5), (4.6) are not electrodynamics tensors. They obviously 
contradict experiments. For example, consider a uniform electric field: 
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The canonical energy density (4.4) is negative: 
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Another example: consider a circularly polarized plane wave (or a central part of a corresponding light 
beam), 
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This result is absurd because, though  and  are adequate, the result means that there are spin fluxes 

in - directions, i.e. in the directions, which are transverse to the direction of the wave propagation. 
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An opinion exists that a change of the Lagrangian can help to obtain the Maxwell tensor (4.1). A. 

Barut [17] presented a series of Lagrangians and field equations in Table 1 

 
However, A. Barut did not show energy-momentum and spin tensors corresponding to these 

Lagrangians. So, we add Table 2 
Table 2 

Electrodynamics’ Lagrangians, Energy-Momentum Tensors, and Spin Tensors 
Lagrangian Energy-momentum tensor Spin tensor 
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It is clear, none of these energy-momentum tensors is the Maxwell tensor. And what is more, none of 
these tensors differs from the Maxwell tensor by a divergence of an antisymmetric quantity. In other words, 
none of these tensors has true divergence (4.2). A method is unknown to get a tensor with the true 
divergence in the frame of the standard Lagrange formalism. A desire for such a tensor led Professor Soper 
to a mistake [18]. He used Lagrangian , but, instead of the tensor , he arrived at a false tensor [18, 
(8.3.5) – (8.3.9)] 
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which differs from the Maxwell tensor by a divergence of an antisymmetric quantity: 
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In the frame of the standard procedure, a specific terms,  
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are added to the canonical tensors (4.4) and (4.5) [19,20] (here ). This 

procedure gives a standard energy-momentum tensor  and a standard total angular momentum tensor 
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Unfortunately, the energy-momentum tensor  (4.17) is obviously invalid, as well as the canonical 

energy-momentum tensor (4.4). So, the (Belinfante-Rosenfeld) procedure [19,20] is unsuccessful, and the 
tensors (4.17), (4.18) are never used. But the worst thing is found out when calculating of the standard spin 
tensor , where the spin addend is  
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So, we see the procedure gives a standard spin tensor which equals zero! I.e. the procedure eliminates 
classical spin at all: 
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stcst
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That is why a spin term is absent in Eq. (4.22).  
Note that the addends , though they are unsuitable, satisfy an important equation λµνλµ

stst
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In spite of the fact that the standard spin tensor is zero, physicists understand they cannot shut eyes 
on existence of the classical electrodynamics’ spin. And they proclaim spin is in the moment of the 
momentum (4.3). I.e., the moment of momentum represents the total angular momentum: orbital angular 
momentum plus spin. I.e., equation (4.3) encompasses both the spin and orbital angular momentum density 
of a light beam [2-6,9,13,14,16-18,21-23]:  
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In the end, it is important to point out that an addition of any term to an energy-momentum tensor, 
including the addition of a divergence-free term like 2/~ λµν

ν Υ∂−
c

 (see, e.g. [23, (3.36)]), changes the 

energy-momentum distribution and changes the total 4-momentum of the system when the field does not 



change. Really, it is easy to express the energy-momentum tensor of an uniform ball of radius R in the form 
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5. Electrodynamics’ spin tensor exists 

Contrary to the Belinfante-Rosenfeld procedure, which eliminates spin, we modify the invalid canonical 
tensors (4.4) – (4.6) by another way [11,24-29]. In contrast to the procedure [19,20], we use other addends to 
the canonical energy-momentum and spin tensors. Our addends are 
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which is analogous to (4.21). As a result, we arrive at a quantity  

νµλλµνµνλ ∂+Υ=∂ AAAA
c

][]||[ 22 ,                                         (5.5) 

instead of the zero, and, at long last, at our spin tensor: 
][][ µνλµνλλµν Π∂Π+∂=Υ AA .                                         (5.6) 

Here  and  are magnetic and electric vector potentials which satisfy  λA λΠ
0=Π∂=∂ λ

λ
λ

λ A ,   µννµ =∂ FA ][2 ,   ,                                (5.7) αβ
µναβνµ −=Π∂ Fe][2

where ,  is the field strength tensor of a free electromagnetic field;  is the 

Levi-Civita antisymmetric tensor density. It is evident that the conservation law, , is held for a 
free field.  

βααβ −= FF νβµα
αβ

µν ggFF = µναβe

0=Υ∂ λµν
ν

In other words, we introduce a spin tensor λµνΥ  into the modern electrodynamics, i.e. we complete 
the electrodynamics by introducing the spin tensor, i.e. we claim that the total angular momentum consists of 
the moment of momentum (4.3) and a spin term, that equation (4.22) is incorrect, that the moment of 
momentum (4.3) does not contain spin at all, that, in reality, the total angular momentum in the volume V  
equals 

∫ Υ+=+=
V

ijjiijijij dVTxSLJ )2( 00][ ∫ ∫ Υ+××=
V V

ij dVdV 0)( BEr ,               (5.8) 

and the angular momentum flux on the area a  equals 
ijijij

spinorb
τ+τ=τ ∫ Υ+=

a k
ijkkji daTx )2( ][ ∫ ∫ Υ+××=

a a k
ijk dadaBEr )( ,               (5.9) 

The difference between our statement (5.8) and the common equation (4.22) is verifiable. The 
cardinal question concerns the angular momentum flux, i.e. torque dtdJ /=τ , which is carried by  the beam 
(1.1). The common answer, according to (4.22), is  

ω==τ P/dtdJ / ;                                                       (5.10) 
our answer, according to (5.9), is 

ω==τ P/2/ dtdJ ,                                                     (5.11) 
what corresponds to the result (3.3) 

 
6. Spin tensor of a circularly polarized beam 
Let us use Eq. (5.9) for proving result (5.11). The first term of (5.9) is already calculated, 12orb

=τ=τ  

(2.3). This term is independent of the existence of spin tensor. The second term, according to (5.6), uses the 



vector potentials  and  and their derivatives with respect to . We set the scalar potentials 
, ignore the surface layer of the beam, take into account that  because of the signature 

of the metric . Then we have  

λA λΠ z
000 =Π=A z

z −∂=∂
)( −−−+

0))]((exp[ uitzidt yxEA +−−=−= ∫
((

,  ∫ ∫ =−==Π AEB
((((

idtidt ,                          (6.1) 

AyxA
((( zzz iuitzi ∂=Π∂−−−=∂ ,))]((exp[ 0 ,                               (6.2) 

2
02/)(4/)( uAAAAAAAA xzyyzxxzyyzxxzyyzxxyz =∂−∂ℜ=Π∂Π−Π∂Π+∂−∂ℜ>=Υ<

((((((
.      (6.3) 

So, the second term of Eq. (5.9), in view of (1.2), equals 
13spin

=τ=τ .                                                       (6.4) 

Thus, the large central alight zone of the absorbing surface receives spin flux of a constant density over the 
zone. The corresponding torque density is constant over the zone and causes a specific mechanical stress 
(3.2). The total angular momentum flux provided by the beam (1.1), accordingly with (5.9), is  

xyxyxy

spinorb
τ+τ=τ ∫ ∫ =>Υ<+><−><= 2)( dxdydxdyTyTx xyzxz

e
yz

e ,              (6.5) 

as it was found in (3.3). 
 
7. The Humblet transformation 

The integrand in Eq. (2.3), , is not zero only at the boundary of the alight zone 
because -components of the Maxwell tensor are not zero only in the surface layer of the beam. It is 
due to -component of the moment of momentum is localized in the surface layer of the beam, there where 
energy flux circulates. However, when calculating the integral (2.3), an integration by parts is applied. As a 
result, in the end, the integral is calculated by integrating over all alight zone of the absorbing surface. From 
this mathematical fact, physicists make a strange conclusion that the whole of alight zone, rather than the 
boundary of the zone, contributes to the torque 

><−>< xz
e

yz
e TyTx

xz
e

yz
e TT ,

z

2τ  (2.3), and, so, the integral (2.3) can be named spin, which 
evidently there is within the beam, but is invisible for Maxwell’s electrodynamics. Having in view the 
moment of momentum (4.22), (7.1), Ohanian [4] writes: “The spin receives most of its contribution from the 
inner region, and the outer region can be neglected”.  

In reality, this false displacement of the moment of momentum from the surface layer of the beam 
into the beam is fulfilled by a complicated procedure [4,30,31]. The orbital moment of momentum, localized 
in the surface layer of the beam, , is expressed through an integral over all interior of the 
beam, viz,  

∫ ×× dV)( BEr

∫∫ ×=×× dVdV AEBEr )( ,                               (7.1) 
by means of the following transformation. At first, the integrand takes the form 

])[(])[()()]([)( AErAErrAErBEr ∇⋅×−=∇⋅×−∇×=×∇××=×× i
i AE ,                 (7.2) 

because  for the beam (1.1). Then they write 0)( >=∇×< i
i AEr

AEArEAEAEAErAEr ×+×−∇=×+×−∇⋅×−=∇⋅×− )]([])[(])[( ,               (7.3) 
and integrating yields Eq. (7.1). This transformation is considered in detail in [11]. Note, a change of an 
integrating area when calculating, does not entail physical conclusions. For example, consider a solenoid. 
Let its winding contains electric current of density j. Moment of this current, ∫ × dVjr , can be easily 
expressed by an integral over interior of the solenoid [11]: 

∫∫ =× dVdV Bjr 2 .                                                 (7.4) 
However, this does not mean, the interior of solenoid contributes to the moment of the current 
 



8. Supplement 
This paper was rejected without a review by Gordon W.F. Drake Editor Physical Review A, Manolis 
Antonoyiannakis Assistant Editor Physical Review Letters, Satoshi Kawata Editor Optics Communications. 
However, Frank Wilczek, Editor-in-Chief Annals of Physics sent a letter to me: 

“Dear Dr. Khrapko: I regret to inform you that the reviewer of your manuscript, referenced above, 
strongly advised against publication, and we must therefore reject it. The reviewer's comments are included 
below. Thank you for giving us the opportunity of considering your work. Yours sincerely, (Ms.) Eve 
Sullivan, Editorial Assistantfor Frank Wilczek, Editor-in-ChiefAnnals of Physics.  

Reviewer's comments:  
The results stated in this paper are absolutely wrong. The paper contains several fundamental errors, which 
are fatal and cannot be corrected by any rewriting of the paper. In the following, I will explain these errors in 
full detail, in the hope of saving the author from wasting any more time on this topic.  

SECTIONS 1 and 2. These sections are nearly correct, except for a minor error in the paragraph 
before Eq. 2.7, where the author erroneously asserts that there is no mechanical stress in the "central alight" 
zone. Obviously, in this zone there is a stress from the pressure of light (although no stress that causes a 
torque).   

SECTION 3. The author quotes Feynman's neat analysis of the absorption of angular momentum 
from a circularly polarized wave. He tries to use this analysis to deduce that there is a density of spin in this 
region of the wave, IN ADDITION to the spin carried in the "skin" region, or periphery, of the wave. This is 
a bad mistake. The absorption of angular momentum a la Feynman can be thought of as a couple acting on 
a small area of the absorbing surface. If there are many such couples, adjacent to each other, the forces 
acting an adjacent area elements cancel where these areas touch, and the net force acting on the combined 
area elements is simply the force that acts along the periphery; thus a couple acts on the periphery, but no net 
couple acts within the interior area. The Feynman picture leads to the same stress (purely peripheral) 
associated with torque as the calculation presented in Section 2. The Feynman picture merely gives an 
alternative way of doing the calculation of torque of Section 2, not an ADDITIONAL torque. Therefore the 
author's claim that "electrodynamics is not complete" is false.  

SECTION 4. The author claims that the "standard" energy-momentum tensor given by Soper is 
"obviously invalid," apparently because Eq. 4.17 seems to contain gauge-noninvariant terms. However, the 
author's entire treatment deals only with FREE e.m. waves, for which . Inserting this field 
equation into 4.17, we immediately find that 4.17 reduces to the usual Maxwell energy-momentum tensor. 
Thus, the Belinfante-Rosenfeld symmetrization does give us exactly what we want (and, of course, it also 
gives us exactly what we want if currents are present, because the extra interaction terms in the energy-
momentum tensor then cancel out, again leaving the Maxwell tensor; see Soper, Sections 9.4, 9.5).   

0=∂ µν
νF

SECTION 5. The author proposes "addends" for the energy-momentum and the spin tensors. His 
addend for the former tensor is correct, if the field is a free field (it then coincides with the usual Belinfante-
Rosenfeld addend). But his addend for the spin tensor is wrong, even for a free field. The author's 
fundamental mistake is that the spin term 5.2 CANNOT be postulated by an arbitray ukase; it must be 
constructed on the basis of the representation of the Lorentz group for the fields contained in the Lagrangian 
in conjunction with the assumed Belinfante-Rosenfeld addend to the energy-momentum tensor (the 
construction procedure involves the steps in Eqs. 4.15. 4.16. 4.19; this construction procedure links the spin 
tensor to the underlying physics, without it, we don't know what this spin tensor really represents). Thus, all 
of Section 5 beyond Eqs. 5.2 is nonsensical, and Sections 6 and 7 become irrelevant. Eq. 5.11 highlights the 
author's mistakes, and should have put him on the alert: if this equation were true, photons would have spin 2 
instead of spin 1!” 
 

My answer was: 
“Dear Frank Wilczek: 

I am grateful to you and to your reviewer for quick and detailed comments because they confirm an extreme 
importance of my work.  

The fact of matter is the reviewer agrees that a couple acts on any small area of the central alight 
zone. At the same time he believes that there is no stress in the zone (because the forces cancel out). But 



this belief conflicts with the conservation law: if any motionless area accepts an angular momentum flow, 
the edge of the area must experience compensative tangential forces from the rest of the surface. 

I recommend the reviewer to consider a very simple one-dimensional example. Let a rod experience 
a distributed torque because of applying a set of couples τ  (see Fig. 5).  

 
It is evident that any piece of the rod experiences forces xF ∆τ∆= /  acting on ends of the piece. So a 

constant shear stress is in the rod as well as the constant stress  (3.2) is in the central alight zone from 
my paper (see also [11] or 

φρ
3mT

www.sciprint.org, Preprint archives, Search For: author, Text: Khrapko, 
"Spin_produces_stress"). The stress (3.2) cannot be explained by the Maxwell electrodynamics, so the 
electrodynamics is not complete. 
Dear Frank Wilczek, the reviewer's reasoning is just the common delusion, which I try to expose during ten 
years. 

SECTION 4. The reviewer is mistaken concerning the role of Soper. Soper did not give the standard 
energy-momentum tensor  

)(4/ µνλ
ν

αβ
αβ

λµµν
ν

λλµλµλµ ∂++−∂=+= FAFFgFAtTT
stcst

.                           (4.17) 

Soper used Lagrangian 
σ

σ
µν

µν −−= jAFFLV 4/ . 
The Lagrangian gives a tensor 

σ
σ

λµσν
σν

λµµνλ
ν

λµ ++−= jAgFFgFATV 4/, . 
But Soper mistakenly derived a false tensor  

σλσν
σν

λµµνλ
ν

λµ ++−= jAFFgFAT
f

4/,  

from his Lagrangian . So, Soper gave nothing. But it is doesn't matter. VL
For that matter, the standard energy-momentum tensor (4.17) was derived by the Belinfante-

Rosenfeld procedure [19,20] from the canonical energy-momentum tensor (4.4). But the reviewer is 
mistaken concerning "the Belinfante-Rosenfeld symmetrization." The standard energy-momentum tensor 
(4.17) is not symmetric as well as the canonical energy-momentum tensor (4.4). 

For that matter, the standard energy-momentum tensor (4.17), as well as the canonical energy-
momentum tensor (4.4), is obviously invalid if currents are present. And the Lagrange formalism, as well as 
the Belinfante-Rosenfeld procedure, is incapable of deriving an electrodynamics energy-momentum tensor. 
The electrodynamics energy-momentum tensor (4.1), i.e. the Maxwell tensor, cannot be obtained by the 
Lagrange formalism. The coincidence of the standard energy-momentum tensor and the Maxwell tensor 
when currents is not present is of no importance. 

SECTION 5. However, the Belinfante-Rosenfeld procedure is not simply useless, it is extremely 
harmful because it deprives electrodynamics of spin (4.20). We modify the Belinfante-Rosenfeld procedure. 
Our procedure (5.1), (5.2) gives the Maxwell tensor and electrodynamics spin tensor, which are valid if 

http://podtime.net/sciprint/fm/index.php


currents are present. And the reviewer must not indicate the construction procedure to me. His conjecture 
about spin 2 indicates that he is confused about a difference between orbital and spin angular momentum. 
The orbital angular momentum of Section 2 originates from longitudinal components of the electromagnetic 
fields and does concern neither radiation nor spin.” 
 
Conclusions, Notes and Acknowledgements 

This paper conveys new physics. We review existing works concerning electrodynamics spin and 
indicate that existing theory is insufficient to solve spin problems because spin tensor of the modern 
electrodynamics is zero. Then we show how to resolve the difficulty by introducing a true electrodynamics 
spin tensor. Our spin tensor doubles a predicted angular momentum of a circularly polarized light beam 
without an azimuth phase structure. The tensor is needed, in particular, for understanding of essential 
characteristic features of a rotating dipole radiation [29]. 

I am deeply grateful to Professor Robert H. Romer for valiant publishing of my question [7] (was 
submitted on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 
sci.physics.electromag).  

The expression (5.6) for the spin tensor was submitted to scientific journals (the dates of the 
submissions are in parentheses): AJP (10 Sep 2001), AO (April 20, 2006), AP (May 5, 2006), APP (28 Jan 
2002), CJP (19 Nov 2003), CLEO/QELS Conference (22/11/2006), CMP (May 9, 2006), EJP (June 30, 
2005), EPL (15 Oct 2002), FP (May 3, 2002), IJTP (January 25, 2006), JETP (27 Jan 1999), JETP Letters 
(14 May 1998), JMO (Sept 29, 2004), JMP (28 Nov 2002), JOP A (Nov 30, 2003), JOSA A (Apr 7, 2006), 
JOSA B (Dec 27, 2005), JPA (23 Jun 2002), JPB (Dec 12, 2003), MPEJ (Dec 24, 2004), Nature (Sept 21, 
2006), NJP (27 Jun 2003), OC (22 Sept 2002), OL (29 Jul 2003), PLA (22 Jul 2002), PRA (19 Nov 2003), 
PRD (25 Sep 2001), PRL (Jul 4, 2005), RPJ (18 May 1999), TMP (29 Apr 1999), UFN (25 Feb 1999). 

Unfortunately, the expression was rejected 400 times by 35 scientific journals during 10 years since 14 
May 1998 
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