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The fact is used that electromagnetic fields are covariant (antisymmetric) tensors or 
contravariant (antisymmetric) tensor densities, which are mutual conjugated. The conjugation 
allows many-fold specific differentiation of the fields and leads to field chains. An integral 
operation, named the generation, is considered, which is reverse to the specific differentiation. 
The double generation yields zero as well as the double differentiation. The Helmholtz 
decomposition is compared with the Poincare decomposition, and many ways of the 
Helmholtz decomposition are presented. Laplace operator and the inverse Laplace operator 
are expressed in terms of the differential and integral operations. All results are illustrated by 
simple examples. 

 
1. Introduction. Helmholtz’s decomposition and Poincare’s decomposition 

The Helmholtz’s theorem is familiar to physicists [1] and mathematics [2]. The essence of the 
theorem is as follows. A field, e.g. an electric vector field , can be written as the sum of two terms, the 
transverse or solenoidal field  and the longitudinal or irrotational field :  
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Transverse or solenoidal fields are usually denoted by E  or E , 
and longitudinal or irrotational fields are denoted by E  or E , 
however, we use the circle o  and the cross ×  for marking 
solenoidal and irrotational vector fields respectively because this 
notations remind pictures of field tubes (or lines) of these fields 
(see Fig. 1 from [3] for a solenoidal field and Fig. 2 from [4] for 

irrotational fields). We are sure these visual notations are appropriate for a pedagogical paper. Moreover, 
in accordance with Fig. 1, we name divergence-free fields closed fields. Thus, the circle o  marks a closed 
field. 

t ⊥

l ||

Note that  
0/div,curl ερ=⋅∇≡−=×∇≡

××
EEBEE &

oo
.                                   (1.2) 

Helmholtz’s decomposition is well known. The irrotational part of a vector field E  is 
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Meanwhile, two different expressions are known for the solenoidal part of E:  
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Here  means the coordinates x zyx ,, ; the prime marks the variables of integrating or differentiating 
under the integral sign;  is the distance between  and . Thus, a field is integrated and 
differentiated by turns when the field is under the Helmgoltz’s decomposition. 

||)'.( xxxxr ′−= 'x x

We pay attention that a similar consecution of integrating and differentiating takes place when an 
exterior differential form ω  (briefly, form) is decomposed into closed and not closed parts [10, 11]: 
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(we mark closed parts of forms by the circle and not closed parts by the plus sign). This formula is very 
important in the theory of exterior differential forms. In Eq. (1.6),  means the exterior derivative, and d
K  is an operation which is an inverse operation to the exterior derivative in the following sense: if 
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K -operator exists in domains which are not too complicated topologically, according to the Poincare 
theorem.  

We present here an example of K -operator using tensor indices. If ω  is a 3-form, , then )(xijkω
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We name K -operator the Poincare generative operator, we name  the Poincare generation from 

, and we name  a source of . Note that the Poincare generative operator does not contain a 
metric tensor.  
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It is easy to show that a double application of the K -operator yields zero, i.e. . For example, 0=KK
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because . We say that the generation from the generation is zero, or that the generation is 
sterile. So, K eliminates the sterile part of a form 

0=ωijk
ij xx

ω  while d eliminates the closed part of a form: 
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Thus, Eq. (1.6) is the decomposition of a form ω  into the closed part 
o
ω  and the Poincare sterile part 

+
ω .  

A purpose of this paper is to show that the Helmholtz’s decomposition is a decomposition into closed 
and sterile fields as well. 
 
2. Differential forms, tensor densities, the boundaries, the conjugation, etc  

It is important to recognize that the electromagnetism involves geometrical quantities [12] of two 
different types [13]. These are covariant (antisymmetric) tensors ijii BAE ,,,ϕ , which are named also 
exterior differential forms or simply forms, and contravariant (antisymmetric) tensor densities: 

.  ∧∧∧∧ ρ,,, iiik EjB
The distinction between forms and tensor densities is known long since. For example, professor J. A. 

Schouten delivered lectures on this subject before the war at Delft, and after the war at Amsterdam (see 
the classical monograph [12], which was grown from the lectures, and Fig. 3). A similar interpretation for 
covectors is presented in [14] (Fig. 4). Note that the magnitude of a covector is proportional to the density 
of sheets. Therefore, a covector fields must be depicted by a family of bisurfaces with an outer orientation 
and bivector densities must be depicted by a family of bisurfaces with an inner orientation rather than by 
lines or tubes. 



Unfortunately, this distinction is ignored by most of the physicists.  
So, common boldfaced characters do 

not represent the quantities adequately, and 
we are forced to use tensor indices. 
Besides, instead of using of Gothic 
characters (as in Fig. 3), it is convenient to 
mark the density by the symbol ‘wedge’ ∧  
at the level of bottom indices for a density 
of weight  and at the level of top indices 
for a density of weight . For example, 
volume element  is a density of weight 

. Also we mark pseudo forms by the 
asterisk * and pseudo densities by the tilde 
~: , . 
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The exterior derivation of the forms is 

used in the electrodynamics. The exterior 
derivation of a scalar is the common partial derivation, 

φ⋅∇=φ=⇔φ∂= gradEiiE                                      (2.1) 
(we do not write minus in this formula, so we write ), but in a general case an antisymmetrization 
is implied. The notion “curl” can be used with a covector, 
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As to tensor densities, a transvection over a (last) contravariant index is used in the electrodynamics 
when the specific derivation is performed. The derivation of a vector density is named divergence:  

Ediv=ρ⇔∂=ρ ∧∧
i

i E ,                                       (2.4) 
but the derivation of a bivector density is denote by curl, 
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The derivation of a scalar density is zero, 



0≡ρ∂ ∧i ,                                                        (2.4) 
because  has no contravariant indexes. We emphasize that all presented differential operations are 
covariant operations. Their writing is valid no matter what coordinates are in use, Euclidean or 
curvilinear. The Cristoffel symbols are not needed. 

∧ρ

For short, we will designate the derivations of the both types by the symbol , curly d, without 
indices. We name a derived field a boundary, and we name the field under derivation the filling of the 
boundary, i.e. (boundary) = (filling), for example, 
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The term “boundary” is justified, for example, by the fact that lines (or tubes) of force of -field are 
bounded by a charge density , according to . This example is depicted in Fig. 2 where the 
electric charge bounds the electric vector field E. Thus, the symbol 

iE∧

∧ρ
iE∧∧ ∂=ρ

∂  expresses the relation between a 
boundary and its filling, i.e.  is a boundary operator.  ∂

Our symbol ∂ , instead of , means the exterior derivation when it is applied to a form. We are 
convinced it is anti-pedagogical to use the symbol  as a designation of the exterior derivation. The 
symbol  is used for infinitesimal quantities in physics and mathematics, not for a derivation. For 
example,  denotes the charge of an infinitesimal volume . Another example: one can 
write  where  is a velocity, 
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vector , and  are the infinitesimal increments of the coordinates. Also , and 
we can write  or even .  
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Contrary to this, is used as an operator which takes each p-form d ω  to a -form )1( +p ωd , and 
 forever [10, 11]. Accordingly, the expressions  are known as a nonindex notation 

for the coordinate 1-forms, i.e., covectors, rather than as the components of the infinitesimal vector , 
i.e.  are known as . This mishmash is inadmissible. 
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On the other side, the symbol  means “boundary” in the theory of sets. And this is the very 

meaning that our symbol 
∂

∂  has. 
If the boundary of a field is zero, we say that the field is closed, for example,  is closed: 

. An example of a closed electric field is presented in Fig. 1, . Lines of force 

of the induced (solenoidal) vector field  have no boundaries, and this field has no boundary. In 

accordance with Section 1, we mark a closed field by a circle.  
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The double derivation gives zero, 0=∂∂ . For example, if φ∂= iiE
o

, then . We say 

that the boundary of a boundary is zero, or that a boundary is closed. A boundary has no boundary, but a 
boundary has a filling, according to the Poincare theorem. In the case, 
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, φ  is a filling of the 

boundary . This case is depicted in Fig. 11. Another example: if , then , i.e.  

is a boundary, and the vector electric potential  is the filling.  
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The raising and lowering of tensor indices is usually performed by a metric tensor  or . But, in 
the electrodynamics, this process is accompanied by the transition between differential forms and 
contravariant densities, for example, between the covector  and the vector density . So this process 

uses the root of the metric tensor determinant 

ikg ikg

iE iE∧

∧g , which is a scalar density of weight . So, the 

tensor densities 

1+

∧∧ = ggg ikik  or ∧
∧ = ggg ikik / is used instead of  or ,. If Cartesian coordinates 

are in use, the absolute value of the determinant equals one, but the root has a specific geometrical 
properties. The process of the raising or lowering of tensor indices changes the geometrical sense of a 
field; it is referred to as the conjugation here, and we designate the process by the Courier star * (in 
contrast to the Hodge star operation *), for example, 
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The conjugation is obviously involutory: 1** = . We say that a field and the conjugate field make up a 
tandem. For example ( ) and (  & ) are tandems (see Fig. 5 and Fig. 6). i

i
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The conjugation * differ from the Hodge star operation * [10, 11, 15]. Hodge operator performs our 

conjugation of a field and then renumbers components of the field by the antisymmetric tensor pseudo 
density  (Levi Civita density). For example, . Here Hodge operator transforms a 

1-form  into the pseudo 2-form . However, the renumbering has no physical and geometrical 
meaning because  has the same geometrical meaning as the vector density  (Fig. 5). 
Therefore, the addition of the renumbering to the conjugation has no sense. We do not use the 
renumbering and so we reduced Hodge operation to the conjugation. Note, the Hodge operator cannot be 
applied to a tensor density. 
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It is important that when the Hodge operator is applied two times in the structure , the result 
differs from  by a sign only [15, p. 315]: 
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where n is the dimension of the space and p is the degree of the form . Because a so-called 
codifferential is defined  as  
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we have for the codifferential 
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It is remarkable that the conjugation often transforms a closed field into a not closed field. For 

example, 
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Such fields, closed before or after conjugation, is named conjugate-closed fields, or, simply, coclosed 
fields:  is closed, but  is coclosed because .  ijB mnB∧ 0=∂=∂ ∧ ij

mn BB*

Now recall Helmholtz’s theorem (1.1). It must be written down in terms of vector densities,  
iii EEE ∧×∧∧ +=

o
.                                                        (2.11) 



The solenoidal vector field , which satisfies iE ∧=
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. The irrotational Coulomb vector field , which satisfies  

, is coclosed: 
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Thus, the mark × , which was used already in (1.1), marks the coclosed fields.  
As a result, we see that Helmholtz’s decomposition (1.1) is a decomposition into closed and coclosed 

components.  
It is important that Helmholtz’s decomposition (1.1) can be rewritten in the conjugate form in term of 

covectors 
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Here , the first component of decomposition (2.13), which corresponds to the induced solenoidal 

closed vector field, is not closed now; it has a boundary:  (1.2). This boundary is the time-

dependent magnetic field, and the bisurfaces, which depict the covector field , are bounded by tubes of 

force of the magnetic field, the bisurfaces start from tubes of force of the magnetic field in Fig. 7. These 
bisurfaces is orthogonal to lines of force in Fig. 1.The field , is obviously coclosed: . 
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The second component in (2.13), , which corresponds to the irrotational vector field , is closed 

now because Eq. (1.1), means . Accordingly, -field is 

depicted by spherical bisurfaces in Fig. 8. These bisurfaces is orthogonal to lines of force in Fig. 2. 
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3. Chains of fields 

The property of the conjugation to transform closed fields into not closed fields leads to an existence 
of infinite or finite chains of fields. We present here, as an example, the infinite chain of the electrostatic.  
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The sections of the chain, i.e. , etc., are joined by the symbols  and (*). It means, for 

example, .  In (3.1), 
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charge density  equals ∧ρ rπ−=ρ∧ 4/1 . The explicit form of the chain in this case is 
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Really, a coclosed electric intensity, corresponding to the density rπ−=ρ∧ 4/1 , is  

because  
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boundary of a hypothetical coclosed field ; etc.   On the other hand, the boundary of 
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We can present a complementary electrostatic chain: 
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Here  is a closed vector density, , i.e. kE ∧
o
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Π= curlE , and Π  is so-called electric vector 

potential. Magnetic current density  is the boundary of the coclosed covector electric intensity 
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We can present also a chain that is complementary to chain (3.3): 
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Here the closed electric bivector potential  is the boundary of a hypothetic -field: . 

This can be expressed as  where 
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Two complementary magnetostatic chains can be obtained by renaming of sections of chains (3.3) 
and (3.4), 
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Here  is the magnetic charge, ][3 kijjki
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, and  is the magnetic pseudo scalar 

potential: , i.e. . 
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4. The Laplace operator 

The derivation of a sum of a closed and a coclosed field equals the derivation of the coclosed term 
only, because the derivation eliminates closed term, like (1.10), 
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However, Laplacian, the second order operator, , treats both terms of such a sum. As is 
known [15, p. 316],  
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see also [16]. It is easy to show that for a contravariant density of valence p , ∧β
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Thus, Laplacian realizes a transition to four sections of a chain to the left and, maybe, changes the sign. 
For example, according to (3.2) and (4.5) for 0=p , 
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according to (3.5) and (4.4) for , 1=p
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If the vector potential is not satisfied (3-dimension) Lorentz gauge, , then, according to (4.5) and 
[1, (5.30)], 
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5. The generations 

Given a closed differential form or contravariant density, we can find their fillings by an integral 
generative operator  
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instead of iK  from (1.7). For example, the filling of )(x∧δ  (see (3.2)) is 
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We say that  is a source which generates )(x∧δ 34
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Generally, we say that a source generates the generation, i.e. †(source) = (generation).  
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Thus, we can rewrite the chain (3.2), for example, in terms of the generation instead of the bourdary 
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We can say, in particular, that ρ  is a source of the vector field E , or ρ  generates E , or E  is the 
generation from : ρ
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This generating is depicted in Fig. 2. Electric charge emits lines of force of . It is a source of E. This 
example shows visually that generations are coclosed, i.e.  

E

0†=∂* .                                             (5.6) 
Really, bisurfaces, which are orthogonal to the emitted lines, are closed (Fig. 8). This assertion is proved 

by a simple identity 03][ =∂
r
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kji . Accordingly, we mark generations by the cross × . 

The generating  (magnetic field generates the magnetic covector potential), according to 
(3.5), 
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is depicted in Fig. 9.  determines the potential  uniquely. This potential stands out against a 

background of all gauge equivalent vector potentials [16].  
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However, the magnetic vector potential usually is depicted by lines of force of the vector  as in 

Fig. 10 from [17], but Fig. 9 shows visually how B-tubes emit bisurfaces of . 
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The only distinction between (5.8) and (5.7) is that -tubes and -bisurfaces have an outer 
orientation, but -tubes and -bisurfaces have an inner orientation. 
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A scalar field  is depicted by hatching or darkening of the space. Fig. 11 shows how the closed 
electric field  bounds , i.e. how 
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iE  is a source of  and, at the same time, φ φ  is a filling of . Note, Eq. (5.9) determines the potential 

 uniquely as well as Eq. (5.7) determines . 
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As an example, we apply Eq. (5.9) for a solution of the problem: “What potential is generated by a 

thin two-dimensional ‘spherical’ capacitor?” So, in a two-dimensional (for simplicity) space there are two 
concentric circles between which a given radial electric field E exists. It is necessary to find the potential 

 in this space by the formula )(xφ

∫ π
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where da is an element of the space (plane). We have (see Fig 12): 
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I.e. φ =  on the outside of the circles, that is at R < x, and 0 δ−=φ E  inside the circles, that is at R > x, just 
as expected.  

The generations have an important property: the generation generates zero,  
0†† = .                                                             (5.15) 

In other words, the generations are sterile as well as the Poincare generation (1.7). We prove this 
assertion here for  from (5.5), i.e. we prove that the integral iE ∧×
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equals zero. Indeed, inserting  from (5.5) into (5.16) gives iE ∧×
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To prove the last equality, fix the points x" and x. Then, because of the symmetry of the space, for each x' 
exists such '~x  that the vector product in x' and ][

1
ki rr '~x  differ in the sign only. So, integrating over  

gives zero.  

'∧dV

It can be shown that coclosed fields are sterile, i.e. 
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As a simple example, consider the constant coclosed density 1=ψ ∧

×
. We have: 

∫ ==ψ ∧
×

0')',(† 3
i

r
dVxxr i

,                                            (5.19) 

because of the symmetry of the space.  
Thus, generating eliminates the sterile part of a source as well as the derivation eliminates the 

closed part of a filling (4.1). Only closed part of a source generates. For example,  

××
φ==+ i

i
ii

i EEE
oo

†)(† .                                           (5.20) 

Therefore, we can calculate the potential of a non-potential field by the generative operator. The 
solenoidal part  of the vector field (1.1), which satisfies , and which correspond 

to sterile  in Eq. (2.13), may be present in the integrand of Eq. (5.9), but its contribution is zero. In 

contrast to Eq. (5.8), the standard formula  gives an ambiguous result for a non-potential field 

E. 
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In that sense,  and ∂  are the mutually inverse operators (compare with (1.7)). For example, we have †

33 44
†

r
r

r
r ij

j
i

π
=

π
∂ ∧∧  and 

rri
i

π
−

=
π
−

∂
4

1
4

1† . 

If relations between E  and φ  are φ∂=E , as in (3.2) – (3.6), and , as in (5.4), we will write 
 and so on. For example , 
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instead of (3.1), (3.3) 
 
6. The generative operator squared 

We define the generative operator squared, ‡, by the equations (compare with (4.4), (4.5)) † 
p

p
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The result follows from the definition: 
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because of (4.1), (5.18). Eqs. (6.3) yields 

∫ ′π
−=

∧′

),(4
‡

xxr
dV .                                (6.5) 

Thus, the generative operator squared makes a transition to four sections of a chain to the right and, 
maybe, changes the sign. For example, according to (3.2) and (6.2) for 0=p , 
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According to (3.5) and (6.1) for , 1=p
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7. Various variants of Helmholtz’s decomposition 

There are many different ways of the Helmholtz’s decomposition. Recall formula (1.1) 
×
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o

. 

The simplest decomposition of the vector (density) field is 
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This decomposition does not use the conjugation. An explicit form of the decomposition is 
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It is depicted in Figures 13 and 14. 

 
There is another decompisition of a vector field, which uses operators †,∂  only: 
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Eq. (7.5) is depicted in Fig.15. 

 
Eqs. (1.3), (1.4) use the generative operator squared, ‡, and two the boundary operators, ∂ , e.g., for 

(1.4), . It is depicted in Fig. 16. (Note, according to (6.2), ). ii EE ∧∧ ∂−∂= ‡**
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ii EE ∧∧ −=
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††‡ **

Eq. (1.5) uses the operators ‡ and ∂  in another order then Eq. (1.4): . ii EE ∧∧ ∂−∂= **‡
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8. An example of the use of the simplest decomposition (7.1) 

Consider a semi-infinite straight thin wire carrying an electric current I along the positive z-axis. Let 
the current density j is singular in the wire territory: 
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Our aim is to decompose the density j into solenoidal and irrotational parts by applying Eq. (7.1) to j:  
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We have step by step. The Biot-Savarat law yields: 
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B×∇  for  can be determined from (8.5) by the Stokes theorem for a circle of radius 0,0 ==> yxz R  
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Thus, according to (8.7), )0,()( RIz δ=×∇ B . In other words, the solenoidal part  of the current , 
o

j j

 



,
4 3 z

I
r

I zrj +
π

−=
o

 if ,   0>z 34 r
I
π

−=
rj

o

, if ,                              (8.8) 0<z

consists of radial converged field tubes (8.6) and the semi axis . 0>z
The irrotational part is 

∫ π
=

π
δ

=
× )(4

)(
)',(4

')',()0,'()( 33 xr
xI

xxr
dVxxxIx rrj .                                        (8.9) 

The decomposition is depicted at Fig. 17. Field tubes are used instead of common field lines 
because the current density j is a vector density. One can see that the components of the decomposition 
extend over all space, despite j is localized. Many authors pointed out this fact [1]. 
 
9. The Minkowski space. Tandem-closed fields 

Chains (3.1) – (3.4) use the Euclidean metric tensor for conjugating, 1}1,1,diag{ +++=ijg , but 
chains of electromagnetic fields use }11,1,1,diag{ −−−+=µνg : 
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We denote the electromagnetic tensor µνµν −= FB  instead of  in order to  instead of 

common , and our magnetic vector 4-potential  satisfies ] . So, e.g., 
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In (9.1), Q and C are hypothetic fields. 
Besides closed and coclosed fields, there are tandem-closed fields, i.e.fields, which are closed and 

coclosed simultaneously. We mark these fields by the pair of signs o× . For example, an electromagnetic 
plane wave makes up an tandem-closed field , . Indeed, if αβ
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In this case, both the fields of a tandem are closed. We name such a tandem an end-tandem because a 
chain ends at the tandem. Obviously, an end-tandem is the end of two (complementary) chains. For 
example 
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Electromagnetic field  in chain (9.4) is the boundary of the magnetic vector potential : 

, , however the same electromagnetic field  in chain (9.5) is the 

boundary of the electric three-vector potential : ,  . Some next 
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Because Laplacian realizes a transition to four sections of a chain to the left and, maybe, changes the 
sign, we have, according to (9.4), 
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But, the same field ,according to (9.5), equals αβ
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Now we have arrived at an interesting conclusion: 
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By the way, we can consider the harmonic field  as a plane polarized electromagnetic plane 
wave because it satisfies the wave equation (9.11). By analogy with (9.2) we have from (9.6), (9.7) 
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But it is a very strange wave. The Poynting vector, 2/)( BES ×= , has the -component directed 
opposite to the direction of wave propagation: 

z
8/1−=zS , and the wave is accompanied by electric  

and magnetic  currents: 
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We present here another example of the end-tandem which is very simple. Let 
. Then  and  are the tandem-closed fields if . Really: 

, and . So, we have two complementary chains: 
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According to (9.10),  must be harmonic. Really,  iii ccc
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and 02211 =∂+∂=∂+∂ cccc yyxxyyxx . This is OK. 
 
10. Conclusion 

Usefulness of concepts of differential forms and tensor densities in the electromagnetism is shown. 
Concepts of boundary and its filling, source and its generation are introduced. These concepts extend an 
understanding of electrodynamics because they explain mutual relations between the electromagnetic 
fields. 
 
References 
1. J. D. Jackson Classical Electrodynamics. (John Wiley & Sons, Inc., 1999) 
2. G. A. Korn, T. M. Korn, Mathematical Handbook (McGraw-Hill, 1968) 
3. H. C. Ohanian Physics. (N.Y.: W.W.Norton, 1985) 
4. Д. В. Сивухин Общий курс физики. Том 3, часть 1. (М.: Наука, 1996) 
5. J. D. Jackson “From Lorenz to Coulomb and other explicit gauge transformations” American J. 

Physics. 70 917-928 (2002) 
6. A. M. Stewart “Vector potential of the Coulomb gauge” European J. Physics 24 519 (2003) 
7. V. Hnzido “Comment on `Vector potential of the Coulomb gauge’” European J. Physics 25 L21 (2004) 



8. B. P. Miller “Interpretations from Helmholtz’ theorem in classical electromagnetism” American J. 
Physics 52 948-950 (1984) 

9. D. H. Kobe “Helmholtz’s theorem revisited” American J. Physics 54 552-554 (1986) 
10. H. Cartan, Calcul Differentiel. Formes Differentielles (Herman, Paris, 1967) 
11. H. Flanders, Differential Forms (Academic, New York, 1963) 
12. J. A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1951) 
13. R. I. Khrapko, “Tubes of force and bisurfaces in the electromagnetism,” 

http://www.mai.ru/projects/mai_works/articles/num4/article7/auther.htm (2005) 
14. J. Napolitano and R. Lichtenstein “Answer to Question  #55 Are the pictorial examples that 

distinguish covariant and contravariant vectors?” American J. Physics 65 1037 (1997) 
15. C. Von Westenholz, Differential Forms in Mathematical Physics (North Holland, 1978) 
16. R. I. Khrapko. “Violation of the gauge equivalence,” physics/0105031  
17. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison–Wesley, 

London, 1965) Vol. 2 
 

http://www.mai.ru/projects/mai_works/articles/num4/article7/auther.htm
http://arxiv.org/abs/physics/0105031

	References

