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Abstract

By recurring to Geometric Probability methods, it is shown that the coupling constants, αEM ;αW ;αC

associated with Electromagnetism, Weak and the Strong (color ) force are given by the ratios of the ratios
of the measures of the Shilov boundaries Q2 = S1×RP 1; Q3 = S2×RP 1; S5, respectively, with respect to
the ratios of the measures µ[Q5]/µN [Q5] associated with the 5D conformally compactified real Minkowski
spacetime M̄5 that has the same topology as the Shilov boundary Q5 of the 5 complex-dimensional poly-
disc D5. The homogeneous symmetric complex domain D5 = SO(5, 2)/SO(5) × SO(2) corresponds to the
conformal relativistic curved 10 real-dimensional phase space H10 associated with a particle moving in the
5D Anti de Sitter space AdS5. The geometric coupling constant associated to the gravitational force can
also be obtained from the ratios of the measures involving Shilov boundaries. We also review our derivation
of the observed vacuum energy density based on the geometry of de Sitter ( Anti de Sitter ) spaces.

1. The Fine Structure Constant and Geometric Probability

Geometric Probability [21] is the study of the probabilities involved in geometric problems, e.g., the
distributions of length, area, volume, etc. for geometric objects under stated conditions. One of the most
famous problem is the Buffon’s Needle Problem of finding the probability that a needle of length l will land
on a line, given a floor with equally spaced parallel lines a distance d apart. The problem was first posed by
the French naturalist Buffon in 1733. For l < d the probability is

P =
1
2π

∫ 2π

0

dθ
l|cos(θ)|

d
=

4l

2πd

∫ π/2

0

cos(θ) =
2l

πd
=

2ld

πd2
. (1)

Hence, the Geometric Probability is essentially the ratio of the areas of a rectangle of length 2d, and width
l and the area of a circle of radius d . For l > d, the solution is slightly more complicated. [21]. The Buffon
needle problem provides with a numerical experiment that determines the value of π empirically. Geometric
Probability is a vast field with profound connections to Stochastic Geometry.

Feynman long ago speculated that the fine structure constant may be related to π. This is the case as
Wyler found long ago [1] . We will based our derivation of the fine structure constant based on Feynman’s
physical interpretation of the electron’s charge as the probability amplitude that an electron emits (or
absorbs) a photon. The clue to evaluate this probability within the context of Geometric Probability theory
is provided by the electron self-energy diagram. Using Feynman’s rules, the self-energy Σ(p) as a function
of the electron’s incoming ( outgoing ) energy-momentum pµ is given by the integral involving the photon
and electron propagator along the internal lines

−iΣ(p) = (−ie)2
∫

d4k

(2π)4
γµ i

γρ(pρ − kρ)−m

−igµν

k2
γν . (2)

The integral is taken with respect to the values of the photon’s energy-momentum kµ . By inspection one
can see that the electron self-energy is proportional to the fine structure constant αEM = e2, the square of
the probability amplitude ( in natural units of h̄ = c = 1 ) and physically represents the electron’s emission
of a virtual photon ( off-shell, k2 6= 0 ) of energy-momentum kρ at a given moment, followed by an absorption
of this virtual photon at a later moment.

Based on this physical picture of the electron self-energy graph, we will evaluate the Geometric Prob-
ability that an electron emits a photon at t = −∞ ( infinite past ) and re-absorbs it at a much later time
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t = +∞ ( infinite future ). The off-shell ( virtual ) photon associated with the electron self-energy diagram
asymptotically behaves on-shell at the very moment of emission ( t = −∞ ) and absorption ( t = +∞ ).
However, the photon can remain off-shell in the intermediate region between the moments of emission and
absorption by the electron.

The topology of the boundaries ( at conformal infinity ) of the past and future light-cones are spheres
S2 ( the celestial sphere ). This explains why the (Shilov) boundaries are essential mathematical features to
understand the geometric derivation of all the coupling constants. In order to describe the physics at infinity
we will recur to Penrose’s ideas [10] of conformal compactifications of Minkowski spacetime by attaching the
light-cones at conformal infinity. Not unlike the one-point compactification of the complex plane by adding
the points at infinity leading to the Gauss-Riemann sphere. The conformal group leaves the light-cone fixed
and it does not alter the causal properties of spacetime despite the rescalings of the metric. The topology of
the conformal compactification of real Minkowski spacetime M̄4 = S3 × S1/Z2 = S3 ×RP 1 is precisely the
same as the topology of the Shilov boundary Q4 of the 4 complex-dimensional poly-disc D4. The action of
the discrete group Z2 amounts to an antipodal identification of the future null infinity I+ with the past null
infinity I−; and the antipodal identification of the past timelike infinity i− with the future timelike infinity
, i+, where the electron emits, and absorbs the photon, respectively.

Shilov boundaries of homogeneous (symmetric spaces) complex domains, G/K [7,8,9] are not the same
as the ordinary topological boundaries (except in some special cases). The reason being that the action
of the isotropy group K of the origin is not necesarily transitive on the ordinary topological boundary.
Shilov boundaries are the minimal subspaces of the ordinary topological boundaries which implement the
Maldacena-’T Hooft-Susskind Holographic principle [13] in the sense that the holomorphic data in the
interior ( bulk ) of the domain is fully determined by the holomorphic data on the Shilov boundary. The
latter has the property that the maximum modulus of any holomorphic function defined on a domain is
attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions is an 8 real-dim Hyperboloid of constant negative
scalar curvature that can be identified with the conformal relativistic curved phase space associated with
the electron (a particle ) moving in a 4D Anti de Sitter space AdS4. The poly-disc is a Hermitian symmetric
homogeneous coset space associated with the 4D conformal group SO(4, 2) since D4 = SO(4, 2)/SO(4) ×
SO(2). Its Shilov boundary Shilov (D4) = Q4 has precisely the same topology as the 4D conformally
compactified real Minkowski spacetime Q4 = M̄4 = S3 × S1/Z2 = S3 ×RP 1. For more details about Shilov
boundaries, the conformal group, future tubes and holography we refer to the article by Gibbons [ 12 ] and
[7,16] .

In order to define the Geometric Probability associated with this process of the electron’s emission of
a photon at i− ( t = −∞ ), followed by an absorption at i+ ( t = +∞ ), we must take into account the
important fact that the photon is on-shell k2 = 0 asymptotically ( at t = ±∞ ), but it can move off-shell
k2 6= 0 in the intermediate region which is represented by the interior of the conformally compactified real
Minkowski spacetime Q4 = M̄4 = S3 × S1/Z2 = S3 ×RP 1.

Denoting by µ̂[Q4] the measure-density ( the measure-current ) whose flux through the future and past
celestial spheres S2 ( associated with the future/past light-cones ) at timelike infinity i+, i−, respectively,
is V (S2)µ̂[Q4]. The net flux through the two celestial spheres S2 at timelike infinity i± requires an overall
factor of 2 giving then the value of 2V (S2)µ̂[Q4]. The Geometric Probability is defined by the ratio of the
measures associated with the celestial spheres S2 at i+, i− timelike infinity, where the photon moves on-shell,
relative to the measure of the full interior region of Q4 = M̄4 = S3 × S1/Z2 = S3 ×RP 1, where the photon
can move off-shell, as it propagates from i− to i+ :

α =
2V (S2) µ̂[Q4]

µ[Q4]
. (3)

The ratio (µ̂[Q4]/µ[Q4] ) can be re-written in terms of the ratios of the normalized measures of

M̄5 = Q5 = Shilov [D5] = S4 × S1/Z2 = S4 ×RP 1. (4)

namely, in terms of the normalized measures of the conformally compactified 5D Minkowski spacetime. This
is achieved as follows [4]
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µ̂[Q4]
µ[Q4]

=
1

V (S4)
µN [Q5]
µ[Q5]

. (5)

resulting from the embeddings (inmersions ) of D4 → D5.
The origin of the factor V (S4) in the r.h.s of (5), as one goes from the ratio of measures in Q4 to the ratio

of the measures in Q5, is due to the reduction from the action of the isotropy group of the origin SO(5)×SO(2)
on Q5, to the action of the isotropy group of the origin SO(4)×SO(2) on Q4, furnishing an overall reduction
factor of V [SO(5)/SO(4)] = V (S4). The 5 complex-dimensional poly-disc D5 = SO(5, 2)/SO(5) × SO(2)
is the 10 real-dim Hyperboloid H10 corresponding to the conformal relativistic curved phase space of a
particle moving in 5D Anti de Sitter Space AdS5 . This picture is also consistent with the Kaluza-Klein
compactification procedure of obtaining 4D EM from pure Gravity in 5D. The H10 can be embedded in
the 11-dim pseudo-Euclidean R9,2 space, with two-time like directions. This is where 11-dim lurks into our
construction.

Next we turn to the Hermitian metric on D5 constructed by Hua [8] which is SO(5, 2)-invariant and
is based on the Bergmann kernel [ 15] involving a crucial normalization factor of 1/V (D5). However, the
standard normalized measure µN [Q5] based on the Poisson kernel and involving a normalization factor of
1/V (Q5) is not invariant under the full group SO(5, 2) . It is only invariant under the isotropy group of the
origin SO(5)× SO(2). In order to construct an invariant measure on Q5 under the full group SO(5, 2) one
requires to introduce a crucial factor related to the Jacobian measure involving the action of the conformal
group SO(5, 2) on the full bulk domain D5. As explained by [4] one has :

µN [Q5]
µ[Q5]

=
1

V (Q5)
||J−1

C || = 1
V (Q5)

√
||J−1

C (J ∗C)−1|| = 1
V (Q5)

√
||J−1

R || =

1
V (Q5)

√√
|det g|−1 =

1
V (Q5)

[ |det (g)| ]−1/4 =
1

V (Q5)
[ V (D5) ]

1
4 . (6)

the z dependence of the complex Jacobian is no longer explicit because the determinant of the SO(5, 2)
matrices is unity.

This explains very clearly the origins of the factor [ V (D5) ]
1
4 in Wyler’s formula for the fine structure

constant [1]. This reduction factor of V (Q5) is in this case given by V (D5)1/4. As we shall see below, the
power of 1/4 is related to the inverse of the dim(S4) = 4. This summarizes, briefly, the role of Bergmann
kernel [15] in the construction by Hua [8], and adopted by Wyler [1] , of the Hermitian metric of a bounded
homogenous ( symmetric ) complex domain. To sum up, we must perform the reduction from V (Q5) →
V (Q5)/V (D5)1/4 in the construction of the normalized measure µN [Q5] . This approach is very different
than the interpretation given by Smith [3] and later adopted by Smilga [5].

Hence, the Geometric Probability ratio becomes

µ̂[Q4]
µ[Q4]

=
1

V (S4)
µN [Q5]
µ[Q5]

=
1

V (S4)
1

V (Q5)
[ V (D5) ]

1
4 ≡ 1

αG
. (7a)

This last ratio , for reasons to be explained below, is nothing but the inverse of the geometric coupling
strength of gravity, 1/αG. The relationship to the gravitational constant is based on the definition of the
coupling appearing in the Einstein-Hilbert Lagrangian (R/16πG), as follows

(16πG)(m2
Planck) ≡ αEM αG = 8π ⇒ G =

1
16π

8π

m2
Planck

=
1

2m2
Planck

⇒

Gm2
proton =

1
2
(
mproton

mPlanck
)2 ∼ 5.9× 10−39. (7b)

and in natural units h̄ = c = 1 yields the physical force strength of Gravity at the Planck Energy scale
1.22 × 1019GeV . The Planck mass is obtained by equating the Schwarzschild radius 2GmPlanck to the
Compton wavelength 1/mPlanck associated with the mass; where mPlanck

√
2 = 1.22 × 1019 GeV and the

proton mass is 0.938 GeV . Some authors define the Planck mass by absorbing the factor of
√

2 inside the
definition of mPlanck = 1.22× 1019 GeV .
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The role of the conformal group in Gravity in these expressions (besides the holographic bulk/boundary
AdS/CFT duality correspondence [13] ) stems from the MacDowell-Mansouri-Chamseddine-West formu-
lation of Gravity based on the conformal group SO(3, 2) which has the same number of 10 generators as
the 4D Poincare group. The 4D vielbein ea

µ which gauges the spacetime translations is identified with the

SO(3, 2) generator A
[a5]
µ , up to a crucial scale factor R, given by the size of the Anti de Sitter space ( de

Sitter space ) throat. It is known that the Poincare group is the Wigner-Inonu group contraction of the
de Sitter Group SO(4, 1) after taking the throat size R = ∞. The spin-connection ωab

µ that gauges the

Lorentz transformations is identified with the SO(3, 2) generator A
[ab]
µ . In this fashion, the ea

µ, ωab
µ are en-

coded into the A
[mn]
µ SO(3, 2) gauge fields, where m,n run over the group indices 1, 2, 3, 4, 5. A word of

caution, Gravity is a gauge theory of the full diffeomorphisms group which is infinite-dimensional and which
includes the translations. Therefore, strictly speaking gravity is not a gauge theory of the Poincare group.
The Ogiovetsky theorem shows that the diffeomorphisms algebra in 4D can be generated by an infinity of
nested commutators involving the GL(4, R) and the 4D Conformal Group SO(4, 2) generators.

In [17] we have shown why the MacDowell-Mansouri-Chamseddine-West formulation of Gravity, with
a cosmological constant and a topological Gauss-Bonnet invariant term, can be obtained from an action
inspired from a BF-Chern-Simons-Higgs theory based on the conformal SO(3, 2) group. The AdS4 space is
a natural vacuum of the theory. The vacuum energy density was derived to be the geometric-mean between
the UV Planck scale and the IR throat size of de Sitter ( Anti de Sitter ) space . Setting the throat size
to coincide with the future horizon scale (of an accelerated de Sitter Universe ) given by the Hubble scale
( today ) RH , the geometric mean relationship yields the observed value of the vacuum energy density
ρ ∼ (LP )−2(RH)−2 = (LP )−4(L2

P /R2
H) ∼ 10−122M4

Planck. Nottale [23 ] gave a different argument to explain
the small value of ρ based on Scale Relativistic arguments. It was also shown in [17 ] why the Euclideanized
AdS2n spaces are SO(2n−1, 2) instantons solutions of a non-linear sigma model obeying a double self duality
condition.

Therefore, the Geometric Probability αEM for an electron to emit a photon at t = −∞ and to absorb
it at t = +∞ agrees with the Wyler’s celebrated expression for the fine structure constant

αEM =
2V (S2) µ̂[Q4]

µ[Q4]
= (8π)

1
V (S4)

1
V (Q5)

[ V (D5) ]
1
4 =

9
8π4

(
π5

24 × 5!
)1/4 =

1
137.03608

. (8)

after one inserts the values of the volumes :

V (D5) =
π5

24 × 5!
. V (Q5) =

8π3

3
. V (S4) =

8π2

3
. (9)

In general

V (Dn) =
πn

2n−1n!
. V (Sn−1) =

2πn/2

Γ(n/2)
. (10a)

V (Qn) = V (Sn−1 ×RP 1) = V (Sn−1)× V (RP 1) =
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
. (10b)

Objections were raised to Wyler’s original expression by Robertson [2]. One of them was that the
hyperboloids ( discs ) are not compact and whose volumes diverge since the Lobachevsky metric diverges on
the boundaries of the poly-discs. Gilmore explained [2] why one requires to use the Euclideanized regularized
volumes as Wyler did. Furthermore, in order to resolve the scaling problems of Wyler’s expression, Gilmore
showed why it is essential to use dimensionless volumes by setting the throat sizes of the Anti de Sitter
hyperboloids to r = 1, because this is the only choice for r where all elements in the bounded domains are
also coset representatives, and therefore, amount to honest group operations. Hence the so-called scaling
objections against Wyler raised by Robertson were satisfactory solved by Gilmore [2].

The question as to why the value of αEM obtained in Wyler’s formula is precisely the value of αEM

observed at the scale of the Bohr radius aB , has not been solved, to my knowledge. The Bohr radius is
associated with the ground ( most stable ) state of the Hydrogen atom [3]. The spectrum generating group
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of the Hydrogen atom is well known to be the conformal group SO(4, 2) due to the fact that there are two
conserved vectors, the angular momentum and the Runge-Lentz vector. After quantization, one has two
commuting SU(2) copies SO(4) = SU(2)×SU(2). Thus, it makes physical sense why the Bohr-scale should
appear in this construction. Bars [14] has studied the many physical applications and relationships of many
seemingly distinct models of particles, strings, branes and twistors, based on the (super) conformal groups in
diverse dimensions. In particular, the relevance of two-time physics in the formulation of M,F, S theory has
been advanced by Bars for some time. The Bohr radius corresponds to an energy of 137.036× 2× 13.6 eV ∼
3.72×103 eV . It is well known that the Rydberg scale, the Bohr radius, the Compton wavelength of electron,
and the classical electron radius are all related to each other by a successive scaling in products of αEM .

2. The Fiber Bundle Interpretation of The Wyler Formula

Having found Wyler’s expression from Geometric Probability, we shall present a Fiber Bundle inter-
pretation of the Wyler expression by starting with a Fiber bundle E over the base curved-space D5 =
SO(5, 2)/SO(5)× SO(2). The subgroup H = SO(5) of the isotropy group K = SO(5)× SO(2) acts on the
Fibers F = S4 ( the internal symmetry space). Locally, and only locally, the Fiber bundle E is the product
D5 × S4. However, this is not true globally. On the Shilov boundary Q5, the restriction of the Fiber bundle
E to the Shilov boundary Q5 is written by E|Q5 and locally is the product of Q5 × S4, but this is not true
globally. For this reason one has that the volume V (E|Q5) 6= V (Q5 × S4) = V (Q5) × V (S4). But instead,
V (E|Q5) = V (S4)× (V (Q5)/V (D5)1/4).

This is the reasoning behind the construction of the quantity µ̂[Q4]/µ[Q4] that has the units of a density.
Its inverse µ[Q4]/µ̂[Q4] is the volume associated with the restriction of the Fiber Bundle E to the Shilov
boundary Q5 : V (E|Q5) = V (S4)× (V (Q5)/V (D5)1/4).

The reason why one embeds D4 → D5 and Q4 → Q5 is because the space Q4 = S3 × RP 1 is not
large enough to implement the action of the SO(5) group, the compact version of the Anti de Sitter Group
SO(3, 2) that is required in the MacDowell-Mansouri-Chamseddine-West formulation of Gravity. However,
the space Q5 = S4×RP 1 is large enough to implement the action of SO(5) via the internal symmetry space
S4 = SO(5)/SO(4). This justifies the embedding procedure of D4 → D5. This Fiber Bundle interpretation
is not very different from Smith’s interpretation [ 3 ]. Following the Fiber Bundle interpretation of the
volume V (E|Q5) = V (S4)× (V (Q5)/V (D5)1/4), we will now prove why

2 V (S2) =
µ(S1)
µ̂(S1)

= 8π. (11)

The space S1 is associated with the U(1) group action and naturally encodes the U(1) gauge invariance
linked to Electromagnetism ( EM ). The result of eq-(11) is what will allow us to define αEM as the
ratio of the ratios of suitable measures in S1 and Q4, respectively,

αEM =
2V (S2) µ̂[Q4]

µ[Q4]
=

(µ(S1)/µ̂(S1))
(µ[Q4]/µ̂[Q4])

(12)

We may notice that S1 ≡ Q1 (very special case) since the circle is both the Shilov and ordinary
topological boundary of the disc D1. However, Q2 ≡ S1×S1/Z2 = S1×RP 1. Once again, we will write the
ratio of the measures in Q1 = S1 in terms of the ratio of the normalized measures in Q2 via the reduction
from S1 × S1/Z2 to S1 . This requires the embedding ( inmersion ) of D1 → D2 in order to construct the
measures on D1, Q1 as induced from the measures in D2, Q2 resulting from the embedding ( inmersion) :

µ̂(S1)
µ(S1)

=
µ̂(Q1)
µ(Q1)

=
1

V (S1/Z2)
µN [Q2]
µ[Q2]

=
1

V (S1/Z2)
1

(V (Q2)/V (D2)
. (13)

Notice that µ̂(S1) as explained before is a measure-density on S1. Likewise, µ̂(Q4) was a measure-density on
Q4. We should not confuse these measure-densities with the normalized measures in one-higher dimension.

By inserting the values of the measures and using
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V (S1/Z2) = V (RP 1) = π. V (D2) =
π2

2× 2!
. V (Q2) =

2π2

Γ(1)
= 2π2. (14)

it yields then

µ(S1)
µ̂(S1)

= (2π2) (π)
1

(π2/2× 2!)
= 8π = 2 V (S2) (15)

as claimed. Therefore, 2V (S2) = µ(S1)/µ̂(S1) = 8π is the crucial factor appearing in Wyler’s formula which
admits a natural Geometric probability explanation which is very different from the different interpretations
provided in [3,4,5] .

The Fiber Bundle interpretation associated with the U(1) ∼ SO(2) group is the following. The Fiber
bundle E is defined over the curved space D2 = SO(2, 2)/SO(2)×SO(2). The subgroup H = SO(2) ∼ U(1)
of the isotropy group K = SO(2)× SO(2) acts on the fibers identified with the symmetry space S1 ( where
the U(1) group acts ). The Fiber bundle E locally can be written as D2×S1 but not globally. The restriction
of the Fiber bundle E to the Shilov boundary Q2 = S1 × S1/Z2 = S1 × RP 1 is E|Q2 and locally can be
written as Q2 × S1, but not globally. This is why the volume V (E|Q2) 6= V (Q2) × V (S1) but instead it
equals (V (Q2)/V (D2))× V (S1/Z2) = 2V (S2) = 8π .

Concluding, the Geometric Probability that an electron emits a photon at t = −∞ and absorbs it at
t = +∞ is given by the ratio of the ratios of measures, and it agrees with Wheeler’s ideas that one must
normalize the couplings with respect to the geometric coupling strength of Gravity :

αEM =
2V (S2) µ̂[Q4]

µ[Q4]
=

(µ(S1)/µ̂(S1))
(µ[Q4]/µ̂[Q4])

= (8π)
1

V (S4)
1

V (Q5)
[ V (D5) ]

1
4 =

1
137.03608

. (16)

The second important conclusion that can be derived from Geometric Probability theory is the gen-
eral numerical values of the exponents sn appearing in the factors V (Dn)sn . The normalization factor
V (Q5)/V (D5)1/4 in the construction of the ratio of measures µN [Q5]/µ[Q5] involves in this case powers of
the type V (D5)1/4. The power of 1/4 is related to the inverse of the dim(S4) = 4 ( the internal symmetry
space SO(5)/SO(4) ) . From eq- (13) we learnt that the reduction factor of V (Q2)/V (D2) was V (D2); i.e. the
exponent is unity. The power of unity is related to the inverse of the dim (S1/Z2) = 1 . Thus, the arguments
based on Geometric Probability leads to normalized measures by factors of V (Qn)/V (Dn)sn and whose ex-
ponents sn are given by the inverse of the dimensions of the internal symmetry spaces sn = (dim(Sn−1))−1

. There is a different interpretation of these factors V (Dn)sn given by Smith [3]. In general, for other
homogeneous complex domains, this power is given by the inverse of the dimension of the internal symmetry
space.

3. The Weak and Strong Coupling Constants from Geometric Probability

We turn now to the derivation of the other coupling constants. The Fiber Bundle picture of the previous
section is essential in our construction. The Weak and the Strong geometric coupling constant strength,
defined as the probability for a particle to emit and later absorb a SU(2), SU(3) gauge boson, respectively,
can both be obtained by using the main formula derived from Geometric Probability after one identifies the
suitable homogeneous domains and their Shilov boundaries to work with. We will show why the weak and
strong couplings are given by

αWeak =
(µ[Q2]/µ̂[Q2])
(µ[Q4]/µ̂[Q4])

=
(µ[Q2]/µ̂[Q2])

αG
=

(µ[Q2]/µ̂[Q2])
(8π/αEM )

. (17)

and

αColor =
(µ[S4]/µ̂[S4])
(µ[Q4]/µ̂[Q4]

=
(µ[S4]/µ̂[S4])

αG
=

(µ[S4]/µ̂[S4])
(8π/αEM )

. (18)

The Shilov boundary of (D2) is Q2 = S1 ×RP 1 but is not large enough to accommodate the action of
the isospin group SU(2). One needs a Fiber Bundle over D3 = SO(3, 2)/SO(3) × SO(2) whose subgroup
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H = SO(3) of the isotropy group K = SO(3)× SO(2) acts on the internal symmetry space S2 ( the fibers
). Since the coset space SU(2)/U(1) is a double-cover of the S2 as one goes from the SO(3) action to
the SU(2) action one must take into account an extra factor of 2. This is the reason why one jumps to
one-dimension higher from Q2 to Q3 = S2 × RP 1, because the coset SU(2)/U(1) is a double-cover of the
sphere S2 = SO(3)/SO(2) and can acommodate the action of the SU(2) group.

By following the same procedure as above, i.e. by re-writing the ratio of the measures (µ̂[Q2]/µ[Q2]) in
terms of the ratio of the measures (µN [Q3]/µ[Q3]) via the embeddings of D2 → D3, one has

(µ̂[Q2]/µ[Q2]) =
1

V (SU(2)/U(1))
µN [Q3]
µ[Q3]

. (19)

.
Notice that because SU(2) is a 2− 1 covering of the SO(3), this implies that the measure

V (SU(2)/U(1)) = 2 V (SO(3)/U(1)) = 2 V (S2) = 8π. (20)

As indicated above, because the dimension of the internal symmetry space is dim(S2) = 2, the construction
of the normalized measure µN [Q3] will require a reduction of V (Q3) by a factor of V (D3) raised to the power
of (dim(S2))−1 = 1/2 :

µN [Q3]
µ[Q3]

=
1

V (Q3)/V (D3)1/2
=

1
V (Q3)

V (D3)1/2. (21)

Therefore, the ratio of the measures is

µ̂[Q2]
µ[Q2]

=
1

2V (S2)
1

V (Q3)
V (D3)1/2. (22)

whose Fiber Bundle interpretation is that the volume of the Fiber Bundle over D3, but restricted to the
Shilov boundary Q3, and whose structure group is SU(2) ( the double cover of SO(3) ) , is V (E|Q3) =
2V (S2)× (V (Q3)/V (D3)1/2). Thus, that the Geometric probability expression is

αWeak =
(µ[Q2]/µ̂[Q2])
(µ[Q4]/µ̂[Q4])

=
(µ[Q2]/µ̂[Q2])

(8π/αEM )
= 2V (S2) V (Q3)

1
V (D3)1/2

αEM

8π
= 0.2536. (23)

that corresponds to the weak geometric coupling constant αW at an energy of the order of

E = M = 146 GeV ∼
√

M2
W+

+ M2
W−

+ M2
Z . (24)

after we have inserted the expressions

V (S2) = 4π. V (Q3) = 4π2. V (D3) =
π3

24
. (25a)

into the formula (23) . The relationship to the Fermi coupling GFermi goes as follows (after indentifying the
energy scale E = M = 146 GeV ) :

GF ≡
αW

M2
⇒ GF m2

proton = (
αW

M2
) m2

proton = 0.2536× (
mproton

146 GeV
)2 ∼ 1.04× 10−5. (25b)

in very good agreement with experimental observations.
Once more, it is unknown why the value of αWeak obtained from Geometric Probability corresponds to

the energy scale related to the W+,W−, Z0 boson mass, after spontaneous symmetry breaking.
Finally, we shall derive the value of αColor following the Fiber Bundle approach. Since S4 is not large

enough to accommodate the action of the color group SU(3) one needs to work with one-dimension higher,
S5 , that can be interpreted as the boundary of the 6D Ball B6 = SU(4)/U(3) = SU(4)/SU(3) × U(1).
A Fiber bundle over B6 has the subgroup H = SU(3) of the isotropy group K = SU(3) × U(1) acting on
the internal symmetry space ( the fibers ) associated with the SU(3) color group CP 2 = SU(3)/U(2) =
SU(3)/SU(2)× U(1).
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In this special case the Shilov and ordinary topological boundaries of B6 coincide with S5 [3]. Notice
also that the volume V (CP 2) = V (S4) = 8π2/3 and that SU(4) is the compact version of the noncompact
and simple 4D conformal group SU(2, 2) . The 4D conformal Lie algebra so(4, 2) ∼ su(2, 2). This justifies
the use of S4 in the expressions below.

Similarly, following the same procedures above, by restricting the Fiber bundle over B6 to the Shilov
boundary S5 of the space B6, written as E|S5 , and which locally is S5×CP 2 , but not globally, the volume is
no longer given by the naive product of volumes but instead it is V (E|S5) = V (CP 2)× (V (S5)/V (B6)1/4) =
V (S4)× (V (S5)/V (B6)1/4). Hence, the ratio of the measures in S4 ( boundary of B5 ) can be re-written in
terms of the ratio of the measures in S5 ( boundary of B6 ) via the embeddings of B5 → B6 as follows :

µ̂[S4]
µ[S4]

=
1

V (S4)
µN [S5]
µ[S5]

=
1

V (S4)
1

V (S5)/V (B6)1/4
=

1
V (S4)

1
V (S5)

V (B6)1/4. (26)

since the exponent of the reduction factor V (B6)1/4 is given by (dim(S4))−1 = 1/4. Notice, again, that
µ̂[S4] is the measure-density in S4 and must not be confused with the normalized measures.

Therefore, one arrives at

αColor = V (S4) V (S5)
1

V (B6)1/4

αEM

8π
= 0.6286. (27)

that corresponds to the strong coupling constant at an energy related to the pion masses [3] :

E = 241 MeV ∼
√

m2
π+ + m2

π− + m2
π0 . (28)

and where we have used the expressions :

V (S4) = V (CP 2) =
8π2

3
. V (S5) = 4π3. V (B6) =

π3

6
. (29)

The pions are the known lightest quark/antiquark pairs that feel the strong interaction [3]. Once again, it is
unknown why the value of αColor obtained from Geometric Probability (28) corresponds to the energy scale
related to the masses of the three pions [3] . Masses of the fundamental particles were derived in [3] based
on the definitions that mass is the probability amplitude for a particle to change direction.

To conclude, by defining the geometric coupling constants as the Geometric Probability to emit ( and
later absorb ) a gauge boson , all the three geometric coupling constants, αEM ;αWeak;αColor are given by
the ratios of the ratios of the measures of the Shilov boundaries Q2 = S1 × RP 1; Q3 = S2 × RP 1; S5,
respectively, with respect to the ratios of the measures µ[Q5]/µN [Q5] associated with the 5D conformally
compactified real Minkowski spacetime M̄5 that has the same topology as the Shilov boundary Q5 of the
5 complex-dimensional poly-disc D5. The latter corresponds to the conformal relativistic curved 10 real-
dimensional phase space H10 associated with a particle moving in the 5D Anti de Sitter space AdS5.

It is not known whether this procedure would work for Grand Unified Theories based on the groups

SU(5), SO(10), E6, E7, E8. (30)

Beck [6] has obtained all the Standard Model parameters by studying the numerical minima (and zeros )
of certain potentials associated with the Kaneko coupled two-dim lattices based on Stochastic Quantization
methods. The results above and by Smith [3] are analytical rather than being numerical [6] and it is not
clear if there is any relationship between these two approaches. Noyes has proposed an iterated numerical
hierarchy based on Mersenne primes Mp = 2p − 1 for certain values of p = primes [18] and obtained many
numerical values for the physical parameters. Pitkanen has developed methods to calculate the physical
masses recurring to a p-adic hierarchy of scales based on Mersenne primes [19].

An important connection between anomaly cancellation in string theory and perfect even numbers was
found in [22[. These are numbers which can be written in terms of sums of its divisors, including unity, like
6 = 1 + 2 + 3, and are of the form P (p) = 1

22p(2p − 1) if, and only if, 2p − 1 is a Mersenne prime. Not
all values of p = prime yields primes. The number 211 − 1 is not a Mersenne prime, for example. The
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number of generators of the anomaly free groups SO(32), E8×E8 of the 10-dim superstring is 496 which is
an even perfect number. Another important group related to the unique tadpole-free bosonic string theory
is the SO(213) = SO(8192) group related to the bosonic string compactified on the E8 × SO(16) lattice.
The number of generators of SO(8192) is an even perfect number since 213 − 1 is a Mersenne prime. For an
introduction to p-adic numbers in Physics and String theory see [20]. A lot more work needs to be done to
be able to answer the question : Is all this just a mere numerical coincidence or is it design ?
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